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Neural associative networks with plastic synapses have been proposed
as computational models of brain functions and also for applications
such as pattern recognition and information retrieval. To guide biolog-
ical models and optimize technical applications, several definitions of
memory capacity have been used to measure the efficiency of associative
memory. Here we explain why the currently used performance measures
bias the comparison between models and cannot serve as a theoretical
benchmark. We introduce fair measures for information-theoretic capac-
ity in associative memory that also provide a theoretical benchmark.

In neural networks, two types of manipulating synapses can be dis-
cerned: synaptic plasticity, the change in strength of existing synapses,
and structural plasticity, the creation and pruning of synapses. One of
the new types of memory capacity we introduce permits quantifying how
structural plasticity can increase the network efficiency by compressing
the network structure, for example, by pruning unused synapses. Specifi-
cally, we analyze operating regimes in the Willshaw model in which struc-
tural plasticity can compress the network structure and push performance
to the theoretical benchmark. The amount C of information stored in each
synapse can scale with the logarithm of the network size rather than being
constant, as in classical Willshaw and Hopfield nets (≤ ln 2 ≈ 0.7). Fur-
ther, the review contains novel technical material: a capacity analysis of
the Willshaw model that rigorously controls for the level of retrieval qual-
ity, an analysis for memories with a nonconstant number of active units
(where C ≤ 1/e ln 2 ≈ 0.53), and the analysis of the computational com-
plexity of associative memories with and without network compression.
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1 Introduction

1.1 Conventional Versus Associative Memory. In the classical von
Neumann computing architecture, computation and data storage is per-
formed by separate modules, the central processing unit and the random
access memory, respectively (Burks, Goldstine, & von Neumann, 1946). A
memory address sent to the random access memory gives access to the data
content of one particular storage location. Associative memories are comput-
ing architectures in which computation and data storage are not separated.
For example, an associative memory can store a set of associations between
pairs of (binary) patterns {(uμ → vμ) : μ = 1, . . . , M}. Similar to random ac-
cess memory, a query pattern uμ entered in associative memory can serve
as an address for accessing the associated pattern vμ. However, the tasks
performed by the two types of memory differ fundamentally. Random ac-
cess is defined only for query patterns that are valid addresses, that is, for
the set of u patterns used during storage. The random access task consists
of returning the data record at the addressed location (look-up). In contrast,
associative memories accept arbitrary query patterns ũ, and the computa-
tion of any particular output involves all stored data records rather than
a single one. Specifically, the associative memory task consists of compar-
ing a query ũ with all stored addresses and returning an output pattern
equal (or similar) to the pattern vμ associated with the address uμ most
similar to the query. Thus, the associative memory task includes the ran-
dom access task but is not restricted to it. It also includes computations
such as pattern completion, denoising, or data retrieval using incomplete
cues.

In this review, we compare different implementations of associative
memories: First, we study associative networks, that is, parallel implementa-
tions of associative memory in a network of neurons in which associations
are stored in a set of synaptic weights A between neurons using a local
Hebbian learning rule. Associative networks are closely related to Hebbian
cell assemblies and play an important role in neuroscience as models of
neural computation for various brain structures, for example, neocortex,
hippocampus, cerebellum, and mushroom body (Hebb, 1949; Braitenberg,
1978; Palm, 1982; Fransen & Lansner, 1998; Pulvermüller, 2003; Rolls, 1996;
Kanerva, 1988; Marr, 1969, 1971; Albus, 1971; Laurent, 2002).

Second, we study compressed associative networks, that is, networks
with additional optimal or suboptimal schemes to represent the information
contained in the synaptic weight structure efficiently. The analysis of this
implementation will enable us to derive a general performance benchmark
and understand the difference between structural and synaptic plasticity.

Third, we study sequential implementation of associative memories,
that is, computer programs that implement storage (compressed or un-
compressed) and memory recall for technical applications and run on an
ordinary von Neumann computer.
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1.2 Performance Measures for Associative Memory. To judge the per-
formance of a computing architecture, one has to relate the size of the
achieved computation with the size of required resources. The first popular
performance measure for associative memories was the pattern capacity,
that is, the ratio between the number of storable association patterns and
the number of neurons in the network (Hopfield, 1982). However, in two
respects, the pattern capacity is not general enough. First, to compare as-
sociative memory with sparse and with dense patterns, the performance
measure has to reflect information content of the patterns, not just the
count of stored associations. Thus, performance should be measured by
the channel capacity of the memory channel, that is, the maximal mutual
information (or transinformation) between the stored patterns vμ and the
retrieved patterns v̂μ (Cover & Thomas, 1991; Shannon & Weaver, 1949):
T(v1, v2, . . . , vM; v̂1, v̂2, . . . , v̂M). Second, the performance measure should
take into account the true required storage resources rather than just the
number of neurons. The count of neurons in general does not convey the
size of the connectivity structure between neurons, which is the substrate
where the associations are stored in associative memories. As we will dis-
cuss, there is not one universal measure to quantify the storage substrate
in associative memories. To reveal theoretical limitations as well as the ef-
ficiency of technical and biological implementations of specific models of
associative memory, different aspects of the storage substrate are critical.
Here we define and compare three performance measures for associative
memory models that deviate in how the required storage resources are
taken into account.

First, We define (normalized) network capacity C as the channel capacity
of the associative memory with given network structure, normalized to
the number of synaptic contacts between neurons that can accommodate
synapses:

C =
T(v1, v2, . . . , vM; v̂1, v̂2, . . . , v̂M)

#contacts
[bit/contact]. (1.1)

In particular, this definition assumes (in contrast to the following two defini-
tions) that the network structure is fixed and independent of the stored data.
Definition 1 coincides with the earlier definitions of information-theoretical
storage capacity, for example, as employed in Willshaw, Buneman, and
Longuet-Higgins (1969), Palm (1980), Amit, Gutfreund, and Sompolinsky
(1987b), Nadal (1991), Frolov and Murav’ev (1993), and Palm and Sommer
(1996). The network capacity balances computational benefits with the re-
quired degree of connectivity between circuit elements. Such a trade-off is
important in many contexts, such as chip design and neuroanatomy of the
brain. Network capacity quantifies the resources required in a model by just
counting contacts between neurons, regardless of the entropy per contact.
This property limits the model class for which network capacity defines a
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benchmark. Only for associative memories with binary contacts is the net-
work capacity bounded by the value C = 1, which marks the achievable op-
timum as the absolute benchmark. For binary synapses, the normalization
constant in the network capacity equals the maximum entropy or Shannon
information IA of the synaptic weight matrix A, assuming statistically in-
dependent connections: C = T/ max[IA]. However, in general, network ca-
pacity has no benchmark value. Because it does not account for entropy per
contact, this measure tends to overestimate the performance of models rely-
ing on contacts with high entropy, and conversely, it underestimates models
that require contacts with low entropy (cf., Bentz, Hagstroem, & Palm, 1989).

Second, to account for the actual memory requirement of an individual
model, we define information capacity as the channel capacity normalized
by the total entropy in the connections C I = T/I (A):

C I =
T(v1, v2, . . . , vM; v̂1, v̂2, . . . , v̂M)

# bits of required physical memory
. (1.2)

The information capacity is dimensionless and possesses a model-
independent upper bound C I

opt = 1 that defines a general benchmark for
associative network models (Knoblauch, 2003a, 2003b, 2005). Note that for
efficient implementation of associative memory, large information capacity
is necessary but not sufficient. For example, models that achieve large in-
formation capacity with low entropy connections rely on additional mecha-
nisms of synaptic compression and decompression to make the implemen-
tation efficient. Various compression mechanisms and their neurobiological
realizations will be proposed and analyzed in this review. Note further that
for models with binary synapses, information capacity is an upper bound
of network capacity: C ≤ C I ≤ 1 (because the memory requirement of the
most wasteful model cannot exceed 1 bit per contact).

Third, we define synaptic capacity C S as the channel capacity of the asso-
ciative memory normalized by the number of nonsilent synapses,

C S =
T(v1, v2, . . . , vM; v̂1, v̂2, . . . , v̂M)

# nonsilent synapses
[bit/synapse], (1.3)

where nonsilent synapses are chemical synapses that transmit signals to the
postsynaptic cell and have to be metabolically maintained.

Two reasons motivate definition 3. First, the principal cost of neural sig-
naling appears to be restoring and maintaining ionic balances following
postsynaptic potentials (Lennie, 2003; Laughlin & Sejnowski, 2003; Attwell
& Laughlin, 2001). This suggests that the most critical resource for stor-
ing memories in the brain is the physiological maintenance of nonsilent
synapses. Thus, our definition of synaptic capacity assesses the number
of active synapses commensurate with metabolic energy consumption in-
volved in synaptic transmission.
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The second reason is that silent synapses are irrelevant for information
retrieval in associative networks (although they are required for storing
new information) and could therefore be pruned and replaced by synapses
at more useful locations. This idea assumes that the network structure can
be adapted to the stored data and has close relations to theoretical consid-
erations about structural plasticity (Stepanyants, Hof, & Chklovskii, 2002;
Poirazi & Mel, 2001; Fusi, Drew, & Abbott, 2005). These ideas are also in line
with recent neurobiological findings suggesting that structural plasticity
(including synaptogenesis and dendritic and axonal growth and remodel-
ing) is a common feature in the physiology of adult brains (Woolley, 1999;
Witte, Stier, & Cline, 1996; Engert & Bonhoeffer, 1999; Lamprecht & LeDoux,
2004). Indeed, we have shown in further modeling studies (Knoblauch,
2006, 2009) how ongoing structural plasticity and synaptic consolidation,
for example, induced by hippocampal memory replay, can “place” the rare
synapses of a sparsely connected network at the most useful locations and
thereby greatly increase the information stored per synapse in accordance
with our new performance measure C S.

The synaptic capacity is related to the previous definitions of capacity.
First, synaptic capacity is an upper bound of the network capacity C ≤ C S.
Second, for binary synapses with low entropy, the synaptic capacity and
the information capacity are proportional C S ≈ αC I : For r ≪ mn nonsi-
lent synapses in an m × n-dimensional connectivity matrix A, we have
IA ≈ mnI (r/mn) with the single synapse entropy I (r/mn) ≈ r log(mn) (see
appendix A) and therefore α = log(mn). Thus, associative memories with
binary low-entropy synapses can be implemented by synaptic pruning, and
the upper benchmark is given by C S

opt = log(mn).
Finally, we give an example illustrating when and how the three differ-

ent performance measures are applicable. Consider storing 1 kilo bits of
information in a neural network A of 100 × 100 binary synapses, and let
150 of the 10,000 synapses have weight 1. Then the network capacity of the
static fully connected net is simply C = 1000/10,000 = 0.1 bit per binary
synapse. However, the synaptic weight matrix A has only sparsely one-
entries with a single synapse entropy of I (150/10,000) = 0.1124 bit. Then
A can be compressed such that the memory requirements for a computer
implementation could decrease to only I (A) = 1124 bit. Thus, the infor-
mation capacity would be C I = 1000/1124 = 0.89. In a sparsely connected
biological network endowed with structural plasticity, it would be possible
to prune silent synapses, regenerate new synapses at random locations,
and consolidate synapses only at useful positions. Such a network could
get along with only 150 nonsilent synapses such that the resulting synaptic
capacity is C S = 1000/150 = 6.7 bits per synapse.

1.3 Associative Memory Models and Their Performance. How do
known associative models perform in terms of the capacities we have intro-
duced? The network capacity was first applied to the Willshaw or Steinbuch



294 A. Knoblauch, G. Palm, and F. Sommer

model (Willshaw et al., 1969; Palm, 1980), a feedforward neural associative
network with binary neurons and synapses first proposed by Steinbuch
(1961; see section 2.2 of this review). The feedforward heteroassociative
Willshaw model can achieve a network capacity of C = ln 2 ≈ 0.7 bits per
contact. The model performs high compared to alternative neural imple-
mentations of associative memory with nonbinary synapses and feedback
network architectures, which became very popular in the 1980s (Hopfield,
1982, 1984; Hopfield & Tank, 1986; Hertz, Krogh, & Palmer, 1991). The net-
work capacity of the original (nonsparse) Hopfield model stays with 0.14
bits per contact (Amit, Gutfreund, & Sompolinsky, 1987a; Amit et al., 1987b)
far below the one for the Willshaw model (see Schwenker, Sommer, & Palm,
1996; Palm, 1991).

The difference in network capacity between the Willshaw model and
the Hopfield model turns out to be due to differences in the stored mem-
ory patterns. The Willshaw model achieves high network capacity with
extremely sparse memory patterns, that is, with a very low ratio between
active and nonactive neurons. Conversely, the original Hopfield model is
designed for nonsparse patterns with even ratio between active and nonac-
tive neurons. Using sparse patterns in the feedforward Hopfield network
with accordingly adjusted synaptic learning rule (Palm, 1991; Dayan &
Willshaw, 1991; Palm & Sommer, 1996) increases the network capacity to
1/(2 ln 2) ≈ 0.72 (Tsodyks & Feigel’man, 1988; Palm & Sommer, 1992). Thus,
in terms of network capacity, the sparse Hopfield model outperforms the
Willshaw model, but only marginally. The picture is similar in terms of
synaptic capacity since the number of nonsilent synapses is the same in
both models. However, the comparison between Willshaw and Hopfield
model changes significantly when estimating the information capacities. If
one assumes a fixed number of bits h assigned to represent each synaptic
contact, the network capacity defines a lower bound on the information ca-
pacity by C I ≥ C/h ≥ C/#{bits per contact}. Thus, for the Willshaw model
(with h = 1), the information capacity is C I ≥ 0.69. In contrast, assuming
h = 2 in the sparse Hopfield model yields a significantly lower information
capacity of C I ≥ 0.72/2 = 0.36. In practice, h > 2 is used to represent the
synapses with sufficient precision, which increases the advantage of the
Willshaw model even more.

1.4 The Willshaw Model and Its Problems. Since the Willshaw model
is not only among the simplest realizations of content-addressable memory
but is also promising in terms of information capacity, it is interesting for ap-
plications as well as for modeling the brain. However, the original Willshaw
model suffers from a number of problems that prevented broader technical
application and limited its biological relevance. First, the basic Willshaw
model approaches C = ln 2 only for very large (i.e., not practical) numbers
n of neurons, and the retrieval accuracy at maximum network capacity
is low (Palm, 1980; Buckingham & Willshaw, 1992). Various studies have
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shown, however, that modifications of the Willshaw model can overcome
this problem: Iterative and bidirectional retrieval schemes (Schwenker et al.,
1996; Sommer & Palm, 1999), improved threshold strategies (Buckingham
& Willshaw, 1993; Graham & Willshaw, 1995), and retrieval with spiking
neurons (Knoblauch & Palm, 2001; Knoblauch, 2003b) can significantly im-
prove network capacity and retrieval accuracy in small memory networks.

But two other problems of the Willshaw model and its derivates remain
so far unresolved. The first open question is the sparsity problem that is,
the question of whether there is a way to achieve high capacity outside
the regime of extreme sparseness in which the number of one-entries k
in memory patterns is logarithmic in the pattern size n: k = c log n for a
constant c (cf. Figure 3). In the standard model, even small deviations from
this sparseness condition reduce network capacity drastically. Although it
was possible for some applications to find coding schemes that fulfill the
strict requirements for sparseness (Bentz et al., 1989; Rehn & Sommer, 2006),
the sparse coding problem cannot be solved in general. The extreme sparsity
requirement is problematic not only for applications (e.g., see Rachkovskij &
Kussul, 2001) but also for brain modeling because it is questionable whether
neural cell assemblies that satisfy the sparseness condition are stable with
realistic rates of spontaneous activity (Latham & Nirenberg, 2004). At least
for sparsely connected networks realizing only a small given fraction P
of the possible synapses, it is possible to achieve nonzero capacities up to
0.53 ≤ C ≤ 0.69 for a larger but still logarithmic pattern activity k = c log n,
where the optimal c → ∞ increases with decreasing P → 0 (Graham &
Willshaw, 1997; Bosch & Kurfess, 1998; Knoblauch, 2006).

The second open question concerning the Willshaw model is the capacity
gap problem, that is, the question of why the optimal capacity C = ln 2 is
separated by a gap of 0.3 from the theoretical optimum C = 1. This question
implicitly assumes that the optimal representation of the binary storage
matrix is the matrix itself—that is, the distinction between the capacities C
and C I defined here is simply overlooked. For many decades, the capacity
gap was considered an empirical fact for distributed storage (Palm, 1991).
Although we cannot solve the capacity gap and sparsity problems for the
classical definition of C , we propose models optimizing C I (or C S) that can
achieve C I = 1 (or C S = log n) without requiring extremely sparse activity.

1.5 Organization of the Review. In section 2 we define the compu-
tational task of associative memory, including different levels of retrieval
quality. Further, we describe the particular model of associative memory
under investigation, the Willshaw model.

Section 3 contains a detailed analysis of the classical Willshaw model,
capturing its strengths and weaknesses. We revisit and extend the classical
capacity analysis, yielding a simple formula how the optimal network ca-
pacity of C = 0.69 bits per contact decreases as a function of the noise level
in the address pattern. Further, we demonstrate that high values of network



296 A. Knoblauch, G. Palm, and F. Sommer

capacity are tightly confined to the regime of extreme sparseness and, in
addition, that finite-sized networks cannot achieve high network capacity
at a high retrieval quality.

In section 4, the capacity analysis is extended to the new capacity mea-
sures we have defined in section 1, to information capacity and synaptic
capacity. The analysis of information capacity reveals two efficient regimes
that curiously do not coincide with the regime of logarithmic sparseness
in which the network capacity is optimal. Interestingly, in the two efficient
regimes, the ultrasparse regime (k < c log n) and the regime of moderate
sparseness (k > c log n), the information capacity becomes even optimal,
that is, C I = 1. Thus, our analysis shows that the capacity gap problem is
caused by the bias inherent in the definition of network capacity. Further,
the discovery of a regime with optimal information capacity at moderate
sparseness points to a solution of the sparsity problem. The analysis of
synaptic capacity reveals that if the number of active synapses rather than
the total number of synaptic contacts is the critical constraint, the capacity in
finite-size associative networks increases from less than 0.5 bit per synaptic
contact to about 5 to 10 bits per active synapse.

In section 5 we consider the computational complexity of the retrieval
process. We focus on the time complexity for a sequential implementation
on a digital computer, but the results can also be interpreted metabolically
in terms of energy consumption since retrieval time is dominated by the
number of synaptic operations. In particular, we compare two-layer im-
plementations of the Willshaw model to three-layer implementations or
look-up tables with an additional hidden grandmother cell layer.

After the discussion in section 6, appendix A gives an overview of binary
channels. Appendix B reviews exact formulas for analyzing the Willshaw
models with fixed pattern activity that are used to verify the results of
this review and compute exact capacities for various finite network sizes
(see Table 2). Appendix C points out some fallacies with previous analyses,
for example, relying on gaussian approximations of dendritic potential
distributions. Finally, appendix D extends our theory to random pattern
activity, where it turns out C ≤ 1/(e ln 2).

2 Associative Memory: Computational Task and Network Model

2.1 The Memory Task. Associative memories store information about a
set of memory patterns. For retrieving memories, three different computa-
tional tasks have been discussed in the literature. The first task is familiarity
discrimination, a binary classification of input patterns into known and un-
known patterns (Palm & Sommer, 1992; Bogacz, Brown, & Giraud-Carrier,
2001). The second task is autoassociation or pattern completion, which in-
volves completing a noisy query pattern to the memory pattern that is
most similar to the query (Hopfield, 1982). Here we focus on the third
task, heteroassociation, which is most similar to the function of a random
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access memory. The memorized patterns are organized in association pairs
{(uμ 	→ vμ) : μ = 1, . . . , M}. During retrieval, the memory performs asso-
ciations within the stored pairs of patterns. If a pattern uμ is entered, the
associative memory produces the pattern vμ (Kohonen, 1977). Thus, in
analogy to random access memories, the u-patterns are called address pat-
terns and the v-patterns are called content patterns. However, the associative
memory task is more general than a random access task in that arbitrary
query patterns are accepted, not just the set of u-patterns. A query pattern
ũ will be compared to all stored u-patterns, and the best match μ will be
determined. The memory will return an output pattern v̂ that is equal or
similar to the stored content pattern vμ. Note that autoassociation is a spe-
cial case of heteroassociation (for uμ = vμ) and that both tasks are variants
of the best match problem in Minsky and Papert (1969). Efficient solutions
of the best match problem have widespread applications, for example, for
cluster analysis, speech and object recognition, or information retrieval in
large databases (Kohonen, 1977; Prager & Fallside, 1989; Greene, Parnas, &
Yao, 1994; Mu, Artiklar, Watta, & Hassoun, 2006; Rehn & Sommer, 2006).

2.1.1 Properties of Memory Patterns. In this review, we focus on the case
of binary pattern vectors. The address patterns have dimension m, and the
content patterns have dimension n. The number of one-entries in a pattern
is called the pattern activity. The mean activity in each address pattern uμ is
k, which means that, on average, it has k one-entries and m − k zero-entries.
Analogously, the mean activity in each content pattern vμ is l. Typically the
patterns are sparse, which means that the pattern activity is much smaller
than the vector size (e.g., k ≪ m). For the analyses, we assume that the M
pattern pairs are generated randomly according to one of the following
two methods. First, in the case of fixed pattern activity, each pattern has
exactly the same activity. For address patterns, for example, this means that
each of the

(m
k

)

binary vectors of size m and activity k has the same chance
to be chosen. Second, in the alternative case of random pattern activity,
pattern components are independently generated. For address patterns, for
example, this means that a pattern component uμ

i is one with probability
k/m and zero otherwise, independent of other components. It turns out that
the distinction between constant and random pattern activity is relevant
only for address patterns, not for content patterns. Binary memory patterns
can be distorted by two distinct types of noise: add noise means that false
one-entries are added, and miss noise means that one-entries are deleted.
The rates of these error types in query and output patterns determine two
key features of associative memories: noise tolerance and retrieval quality.

2.1.2 Noise Tolerance. To assess how much query noise can be tolerated
by the memory model, we form query patterns ũ by adding random noise
to the u-patterns. For our analyses in the main text, we assume that a query
pattern ũ has exactly λk “correct” and κk “false” one-entries. Thus, query
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patterns have fixed pattern activity (λ + κ)k (see appendix D for random
query activity). Query noise and cross-talk between the stored memories
can lead to noise in the output of the memory. Output noise is expressed in
deviations between retrieval output v̂ and the stored v-patterns.

2.1.3 Retrieval Quality. Increasing the number M of stored patterns will
eventually increase the output noise introduced by cross-talk. Thus, in terms
of the introduced capacity measures, there will be a trade-off between mem-
ory load that increases capacity and the level of output noise that decreases
capacity. In many situations, a substantial information loss due to output
errors can be compensated by the high number of stored memories, and
the capacity is maximized at high levels of output errors. For applications,
however, this low-fidelity regime is not interesting, and one has to assess ca-
pacity at specified low levels of output noise. Based on the expectation Eμ of
errors per output pattern or Hamming distance h(vμ, v̂μ) :=

∑n
j=1 |vμ

j − v̂
μ

j |,
we define different retrieval qualities (RQ) that will be studied:

� RQ0: Eμh(vμ, v̂μ) = lp10 + (n − l)p01 ≤ ρ0n

� RQ1: Eμh(vμ, v̂μ) = lp10 + (n − l)p01 ≤ ρ1l

� RQ2: Eμh(vμ, v̂μ) = lp10 + (n − l)p01 ≤ ρ2

� RQ3: Eμh(vμ, v̂μ) = lp10 + (n − l)p01 ≤ ρ3/M,

where p10 := pr[v̂μ

j = 0 | v
μ

j = 1] and p01 := pr[v̂μ

j = 1 | v
μ

j = 0] are the
component error probabilities and ρ0, ρ1, ρ2, ρ3 are (typically small) con-
stants. Note that the required quality is increasing from RQ0 to RQ3. Asymp-
totically for n → ∞, RQ0 requires small constant error probabilities, RQ1
requires the expected number of output errors per pattern to be a small
fraction of pattern activity l, RQ2 requires the expected number of output
errors per pattern to be small, and RQ3 requires the total number of errors
(summed over the recall of all M stored patterns) to be small. Making these
distinctions explicit allows a unified analysis of associative networks and
reconciles discrepancies between previous works (cf. Nadal, 1991).

2.2 The Willshaw Model. To represent the described associative mem-
ory task in a neural network, neurons with binary values are sufficient,
although for the computation neurons with continuous values can be bene-
ficial (Anderson, Silverstein, Ritz, & Jones, 1977; Anderson, 1993; Hopfield,
1984; Treves & Rolls, 1991; Sommer & Dayan, 1998). The patterns uμ and vμ

describe the activity states of two populations of neurons at time μ. In neu-
ral associative memories, the associations are stored in the synaptic matrix
or memory matrix.

2.2.1 Storage. In the Willshaw or Steinbuch model (Willshaw et al., 1969;
Steinbuch, 1961; Palm, 1980, 1991), not only neurons but also synapses
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Figure 1: Learning and retrieving patterns in the binary Willshaw model. Dur-
ing learning (left), the associations between a set of address patterns uμ and
content patterns vμ are stored in the synaptic memory matrix A by clipped
Hebbian learning (see equation 2.1). For retrieval (right), a query pattern ũ is
propagated through the synaptic network by a vector-matrix multiplication fol-
lowed by a threshold operation (see equation 2.2). In the example, the query
pattern contains half of the one-entries of u1, and the retrieval output v̂ equals
v1 for an optimal threshold � = |ũ| = 2.

have binary values. The storage and retrieval processes work as follows.
The pattern pairs are stored heteroassociatively in a binary memory matrix
A ∈ {0, 1}m×n (see Figure 1), where

Ai j = min

⎛

⎝1,

M
∑

μ=1

uμ

i · v
μ

j

⎞

⎠ ∈ {0, 1} . (2.1)

The network architecture is feedforward; thus, an address population u
consists of m neurons projects via the synaptic matrix A to a content popu-
lation v consisting of n neurons. Note that the memory matrix is formed by
local Hebbian learning, that is, Ai j is a (nonlinear) function of the activity
values in the pre- and postsynaptic neuron ui and v j regardless of other
activity in the network. Note further that for the autoassociative case u = v

(i.e., if address and content populations are identical), the network can be
interpreted as an undirected graph with m = n nodes and edge matrix A,
where patterns correspond to cliques of k = l nodes.
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2.2.2 Retrieval. Stored information can be retrieved by entering a query
pattern ũ. First, a vector-matrix-multiplication yields the dendritic poten-
tials x = ũ · A in the content neurons. Second, a threshold operation in each
content neuron results in the retrieval output v̂,

v̂ j =

⎧

⎪

⎨

⎪

⎩

1, x j =

(

m
∑

i=1

ũi Ai j

)

≥ �

0, otherwise

. (2.2)

A critical prerequisite for high-retrieval quality is the right choice of the
threshold value �. Values that are too low will lead to high rates of add-
errors, whereas values that are too high will result in high rates of miss-
errors. A good threshold value is the number of correct one elements in the
address pattern because it yields the lowest rate of add errors in the retrieval
while still avoiding miss errors entirely. Depending on the types of errors
present in the address, this threshold choice can be simple or rather difficult.

For the cases of error-free addresses (λ = 1 and κ = 0) and pattern part
retrieval, that is, when the address contains miss errors only (0 < λ ≤ 1
and κ = 0), the optimal threshold value is a simple function of the address
pattern � = |ũ| :=

∑m
i=0 ũi . This threshold value was used in the original

Willshaw model, and therefore we will refer to it as the Willshaw threshold.
This threshold setting can be easily implemented in technical systems and
is also biologically very plausible, for example, based on feedforward inhi-
bition via “shadow” interneurons (cf. Knoblauch & Palm, 2001; Knoblauch,
2003b, 2005; Aviel, Horn, & Abeles, 2005).

For the general case of noisy addresses, including miss and add errors
(0 < λ ≤ 1, κ ≥ 0) the optimal threshold is no simple function of the address
pattern ũ. In this case, the number of correct ones is uncertain given the
address, and therefore the threshold strategies have to estimate this value
based on priori knowledge of κ and λ.

2.3 Two-Layer Associative Networks and Look-Up Tables. Essentially
the Willshaw model is a neural network with a single layer of neurons v

that receive inputs from an address pattern u. A number of memory models
in the literature can be regarded as an extension of the Willshaw model by
adding an intermediate layer of neurons w (see Figure 2). If for each asso-
ciation to be learned, uμ → vμ, one would activate an additional random
pattern wμ, the two memory matrices A1 and A2 would store associations
uμ → wμ and wμ → vμ, respectively. Thus, the two-layer memory would
function analogously to the single-layer model (see equation 2.1). However,
the two-layer model can be advantageous if address and content patterns
are nonrandom or nonsparse because in such cases, the performance of
the single-layer model is severely impaired (Knoblauch, 2005; Bogacz and
Brown, 2003). The advantage of two-layer models is related to the fact that
single-layer perceptrons can learn only linearly separable mappings uμ →
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A1 A2
uu

A
vwv

Figure 2: Single-layer Willshaw model (left) and two-layer extension (right)
where an additional cell layer w mediates between address layer u and content
layer v.

vμ, while arbitrary mappings require at least a second (hidden) layer. In-
stead of choosing random patterns wμ, one can also try to optimize the inter-
mediary pattern representations. Another interesting model of a two-layer
memory is the Kanerva network, where the first memory matrix A1 is a fixed
random projection, and only the second synaptic projection A2 is learned
by Hebbian plasticity (Kanerva, 1988). In addition, two-layer memories are
neural implementations of look-up tables if the intermediary layer w has a
single active (grandmother) neuron for each association to be stored. In this
case, the two memory matrices A1 and A2 degenerate to simple look-up
tables where the μth row contains the μth pattern, respectively. In section 5,
we will compare the single-layer model to the two-layer (grandmother cell
or look-up table) model. Surprisingly, we will find that the performance of
the grandmother cell model is superior to that of the single-layer model in
many cases. This is true at least for technical applications, while for biology,
the large number of neurons required in the middle layer may be unrealistic,
even when it would be possible to select single cells in a WTA-like manner.

3 Analysis of Network Capacity

3.1 Asymptotic Analysis of Network Capacity. This section summa-
rizes and extends the classical asymptotic analysis of the Willshaw model
(Willshaw et al., 1969; Palm, 1980). The fraction of one-entries in the memory
matrix p1 :=

∑

i j Ai j/mn is a monotonic function of the number of stored
patterns and will therefore be referred to as matrix load or memory load. The
probability that a physically present synapse is not activated by the associ-
ation of one pattern pair is 1 − kl/mn. Therefore, after learning M patterns,
the matrix load is given by

p1 = 1 −
(

1 −
kl

mn

)M

. (3.1)

It is often convenient to use equation 3.1 to determine the number of stored
patterns,

M =
ln(1 − p1)

ln(1 − kl/mn)
≈ −

mn

kl
ln(1 − p1), (3.2)

where the approximation is valid for kl ≪ mn.
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The general analysis of retrieval includes queries ũ that contain both
noise types, that is, λ · k “correct” and κ · k “false” one-entries (0 < λ ≤ 1;
0 ≤ κ). For clarity, we start with the analysis of pattern part retrieval where
the query pattern contains no add noise, that is, κ = 0 (for investigations of
the general case, see section 4.5). For pattern part retrieval with fixed query
activity and Willshaw threshold � = |ũ| = λk, the probability of add noise
in the retrieval is

p01 = p(v̂i = 1 | v
μ

i = 0) � p1
λk . (3.3)

(For exact formulas, see equations B.6 to B.8 in appendix B. For random
query activity, see appendix D.) The following analysis is based on the
binomial approximation equation 3.3, which assumes independently gen-
erated one-entries in a subcolumn of the memory matrix. Although this is
obviously not true for distributed address patterns with k > 1, the approx-
imation is sufficiently exact for most parameter ranges. Knoblauch (2007,
2008) shows that equation 3.3 is generally a lower bound and becomes exact

at least for k = O(n/ log4 n).
With the error probability p01, one can compute the mutual information

between the memory output and the original content. The mutual infor-
mation in one pattern component is T(l/n, p01, 0) (see equation A.5). When
Mn such components are stored, the network capacity C(k, l, m, n, λ, M) of
equation 1.1 is

C =
M

m
T

(

l

n
, p01, 0

)

≤
ldp01 ln(1 − p1)

k
(3.4)

≤ λ · ldp1 · ln(1 − p1) ≤ λ ln 2, (3.5)

where we used the bound equation A.6 and the binomial approximation
equation 3.3. The first equality is strictly correct only for random activity of
address patterns, but still a tight approximation for fixed address pattern
activity. The first bound becomes tight at least for (l/n)/p01 → 0 (see equa-

tion A.6), the second bound for k ∼ O(n/ log4 n) (see references above), and
the third bound for p1 = 0.5 and M ≈ 0.69mn/kl.

Thus, the original Willshaw model can store at most C = ln 2 ≈ 0.69 bits
per synapse for λ = 1 (however, for random query activity, we achieve
at most C = 1/(e ln 2) ≈ 0.53 bits per synapse; see appendix D). The up-
per bound can be reached for sufficiently sparse patterns, l ≪ n, k ≪ m,
and balanced memory matrix with an equal number of active and inactive
synapses. Strictly speaking, the requirement (l/n)/p01 ≪ 1 implies only low
retrieval quality, with the number of false one-entries exceeding the number
of correct one-entries l. The following section shows that the upper bound
can also be reached at higher levels of retrieval quality.
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3.2 Capacity Analysis for Defined Grades of Retrieval Quality. To
ensure a certain retrieval quality, we bound the error probability p01 by
p01ǫ ,

p01 ≤ p01ǫ :=
ǫl

n − l
⇔ λ ≥ λǫ :≈

ln ǫl
n−l

k ln p1
, (3.6)

where we call ǫ > 0 the fidelity parameter. For the approximation of minimal
address pattern fraction λǫ , we again used the binomial approximation
equation 3.3. Note that for p10 = 0 and constant ǫ, this condition ensures
retrieval quality of type RQ1 (see section 2.1). More generally, to ensure
retrieval quality RQ0-3 at levels ρ0 − ρ3, the fidelity parameter ǫ has to
fulfill the following conditions:

� RQ0: ǫ ≤ ρ0
n
l

� RQ1: ǫ ≤ ρ1
� RQ2: ǫ ≤ ρ2/ l
� RQ3: ǫ ≤ ρ3

1
Ml

.

As one stores more and more patterns, the matrix load p1 increases, and
the noise level λǫ that can be afforded in the address to achieve the specified
retrieval quality drops. Therefore, the maximum number of patterns that
can be stored is reached at the point where λǫ reaches the required fault
tolerance: λǫ = λ (see equation 3.6). Accordingly, the maximum matrix load
(and the optimal activity of address patterns) is given by

p1ǫ ≈
(

ǫl

n − l

)
1

λ·k
(

⇔ k ≈
ld ǫl

n−l

λldp1ǫ

)

. (3.7)

Thus, with equations 3.2 and 3.4, we obtain the maximal number of stored
patterns: the pattern capacity Mǫ and the network capacity Cǫ(k, l, m, n, λ, ǫ) ≈
Mǫm−1T(l/n, ǫl/(n − l), 0),

Mǫ ≈ −λ2 · (ldp1ǫ)2 · ln(1 − p1ǫ) ·
k

l
·

mn
(

ld n−l
ǫ·l

)2
(3.8)

Cǫ ≈ λ · ldp1ǫ · ln(1 − p1ǫ) · η, (3.9)

where

η :=
T

(

l
n
, ǫl

n−l
, 0

)

− l
n

ld ǫl
n−l

=
T

(

l
n
, ǫl

n−l
, 0

)

I ( l
n

)

·

(

1

1 + ln ǫ
ln(l/n)

− ln(1−l/n)
ln(l/n)

+
(n − l)ld(1 − l/n)

lld(ǫl/n)

)

(3.10)
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≈
1

1 + ln ǫ
ln(l/n)

. (3.11)

The approximation equation 3.11 is valid for small ǫ, l/n ≪ 1. For high-
fidelity recall with small ǫ ≪ 1, the error e I of approximating T by I
becomes negligible and even T/I = (1 − e I ) → 1 for l/n → 0 (see equa-
tion A.9 for details). For sparse content patterns with l/n ≪ 1, we have
I (l/n) ≈ −(l/n)ld(l/n) (see equation A.1), and the right summand in the
brackets can be neglected. Finally, the left summand in the brackets of
equation 3.10 becomes 1 for ln ǫ/ ln(l/n) → 0.

The next two figures illustrate the results of this analysis with an exam-
ple: a Willshaw network with a square-shaped memory matrix (m = n). The
address and content patterns have the same activity (k = l), and the input is
noiseless, that is, λ = 1, κ = 0. Figure 3 presents results for a network with
n = 100,000 neurons, a number that corresponds roughly to the number of
neurons below 1 square millimeter of cortex surface (Braitenberg & Schüz,
1991; Hellwig, 2000). Figure 3a shows that high network capacity is assumed
in a narrow range around the optimum pattern activity kopt = 18 and de-
creases rapidly for larger or smaller values. For the chosen fidelity level
ǫ = 0.01, the maximum network capacity is Cǫ ≈ 0.5, which is significantly
below the asymptotic bound. The dashed line shows how the memory load
p1ǫ increases monotonically with k from 0 to 1. The maximum network
capacity is assumed near p1ǫ = 0.5, similar to the asymptotic calculation.
Note that the number of patterns Mǫ becomes maximal at smaller values
p1ǫ < 0.5 (Mǫ ≈ 29.7 · 106 for k = 8 and p1ǫ ≈ 0.17).

Figure 3b explores the case where pattern activity is fixed to the value
k = 18, which was optimal in Figure 3a, for variable levels of fidelity. The
most important observation is that not only the maximum number of pat-
terns, but also the maximum network capacity is obtained for low fidelity:
C ≈ 0.64 occurs for ǫ ≈ 1.4. This means that in a finite-sized Willshaw net-
work, a high number of stored patterns outbalances the information loss
due to the high level of output errors, an observation made also by Nadal
and Toulouse (1990) and Buckingham and Willshaw (1992). However, most
applications require low levels of output errors and therefore cannot use
the maximum network capacity. Technically the pattern capacity M is un-
bounded since Mǫ → ∞ for ǫ → n/ l − 1. However, this transition corre-
sponds to p1ǫ → 1 and p01ǫ → 1, which means that the stored patterns
cannot be retrieved anymore. The contour plots in Figures 3c to 3e give an
overview of how network capacity, memory load, and the maximum num-
ber of stored patterns vary with pattern activity and fidelity level. High-
quality retrieval with small ǫ requires generally larger assembly size k. For
fixed fidelity level ǫ, optimal k for maximal M is generally smaller than
optimal k for maximal C (the latter has about double size; cf. Knoblauch,
Palm, & Sommer, 2008).
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Figure 3: Classical capacity measures C and M for a finite Willshaw network
with m = n = 105 neurons assuming equal pattern activities, k = l, and zero
input noise, λ = 1, κ = 0. (a) Network capacity Cǫ (bold line), pattern capacity
Mǫ (thin line), and memory load p1ǫ (dashed line) as functions of pattern activity
k (log scale). The fidelity level is ǫ = 0.01. The maximum Cǫ ≈ 0.49 is reached
for k = 18. For larger or smaller k, the capacity decreases rapidly. The memory
load p1ǫ increases monotonically with k and is near 0.5 at maximum capacity.
(b) Same quantities as in a plotted as functions of ǫ (log scale) assuming fixed
k = 18. The maximum Cǫ ≈ 0.63 is reached at low fidelity (ǫ ≈ 1) where the
retrieval result contains a high level of add noise. (c–e) : Contour plots in the
plane spanned by pattern activity k and high-fidelity parameter ǫ for network
capacity Cǫ (c), memory load p1ǫ (d), and pattern capacity Mǫ (e).

3.3 Refined Asymptotic Analysis for Large Networks. Section 3.2 de-
lineated a theory for the Willshaw associative memory that predicts pattern
capacity and network capacity for finite network sizes and defined levels
of retrieval quality. Here we use this theory to specify the conditions under
which large networks reach the optima of network capacity Cǫ → λ ln 2 and
pattern capacity Mǫ . We focus on the case k ∼ l, which applies to autoasso-
ciative memory tasks and heteroassociative memory tasks if the activities of
address and content patterns are similar. The results displayed in Figure 4
can be compared to the predictions of the classical analysis recapitulated in
section 3.1. Several important observations can be made:

� The upper bound of network capacity can in fact be reached by equa-
tion 3.9 for arbitrary small constant ǫ, that is, at retrieval-quality
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Figure 4: Classical capacity measures C and M for the Willshaw network in
the asymptotic limit n → ∞. Other parameter settings are as in Figure 3: m = n,
k = l, λ = 1, and κ = 0. (a) Network capacity Cǫ → ldp1ǫ ln(1 − p1ǫ) (bold line;
see equation 3.9) and pattern capacity Mǫ/(mn/(ldn)2) → −(ldp1ǫ)2 ln(1 − p1ǫ)
(thin line; see equation 3.8) as functions of the matrix load p1ǫ (see equation 3.7).
Cǫ is maximal for p1ǫ = 0.5, whereas Mǫ is maximal for p1ǫ ≈ 0.16. (b) Network
capacity Cǫ as a function of n for different functions of pattern activity k(n).
Black lines correspond to high-fidelity retrieval with ǫ = 0.01, gray lines to low
fidelity with ǫ = 1. Bold lines: square root sparseness; solid lines: logarithmic
sparseness; thin lines: low, constant activity (k = 5).

grade RQ1 at arbitrary high fidelity: Cǫ → λ ln 2 for m, n → ∞ and
p1ǫ → 0.5. The latter condition requires logarithmic pattern sparse-
ness k = ldn/λ (see equation 3.7).

� At retrieval quality grade RQ1, network capacity and pattern capac-
ity assume their optima for somewhat different parameter settings.
The pattern capacity Mǫ (see equation 3.8) peaks at a memory load
p1ǫ ≈ 0.16, which also requires logarithmic sparseness in the memory
patterns, but with a smaller constant than for maximizing network
capacity: k = ldn/(λld6.25). The optimal pattern capacity grows with
mn/(log n)2 (see equation 3.8).

� The optimal bound of network capacity is approached only for log-
arithmic sparseness k ∼ log n, the asymptotically optimal choice of
sparseness. For weaker sparseness (e.g., k ∼

√
n) or stronger sparse-

ness (e.g., k = 5), the network capacity peaks at some finite network
size and vanishes asymptotically. The rate of convergence toward the
asymptotic capacity ln 2 depends strongly on the required level of fi-
delity. For high fidelity (e.g., ǫ = 0.01), this convergence is quite slow,
for low fidelity much faster (e.g., ǫ = 1).

With regard to the first statement, it is interesting to ask for what grades
of retrieval quality higher than RQ1 the upper bound of network capacity
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C = λ ln 2 can be achieved. The first statement relies on η → 1 (in equa-
tion 3.9), that requires ǫ > l/n, a condition that is always fulfilled for the
retrieval quality regimes RQ0 and RQ1. It also holds for RQ2 (requiring
ǫ ∼ 1/ l) if l is sufficiently small, for example, l/nd → 0 for any d > 0. In
particular, this ansatz describes the usual case of logarithmic sparseness
k ∼ l and k ∼ log n. However, in the strictest “no-error” quality regime
RQ3, the upper bound of network capacity is unachievable because it re-
quires ǫ ∼ 1/(Ml) = k/(mn ln(1 − p1)) ∼ k/(mn), which is incompatible with
η → 1 or ln ǫ/ ln(l/n) → 0. For example, assuming m ∼ n yields η → 1/3
and therefore the upper bound of network capacity for RQ3 becomes
C = (λ ln 2)/3 ≤ 0.23. Note that this result is consistent with the Gardner
bound 0.29 (Gardner & Derrida, 1988) and suggests that previous estimates
of RQ3 capacity are wrong or misleading. For example, the result 0.346 com-
puted by Nadal (1991) is correct only for very small-content populations,
for example, n = 1, where ǫ ∼ k/m and η → 1/2.

In summary, the Willshaw model achieves the optimal capacity ln 2 (or
1/e ln 2 for random query activity; see appendix D) at surprisingly high
grades of retrieval quality. Recall that the Hopfield model achieves nonzero
capacity only in the retrieval quality regime RQ0 (Amit et al., 1987a).
However, to date no (distributed) associative memory model is known
that equals look-up tables in their ability to store an arbitrary large number
of patterns without any errors (see section 5). Note that our method of
asymptotic analysis is exact, relying only on the binomial approximation,
equation 3.3, which has recently been shown to be accurate for virtually any
sublinearly sparse patterns (see Knoblauch, 2007, 2008; see also appendix C
for linearly sparse and nonsparse patterns). Furthermore, we are able to
compute exact capacities even for small networks and thus verify our
asymptotic results (see appendixes B and D and Table 2). In contrast, many
classical analyses, for example, based on statistical physics (e.g., Tsodyks
& Feigel’man, 1988; Golomb, Rubin, & Sompolinsky, 1990), become reliable
only for very large networks, assume an infinite relaxation time, and
apply only to autoassociation with a recurrent symmetric weight matrix.
However, some more recent attempts apply nonequilibrium methods for
studying the behavior of recurrent neural networks with symmetric or
asymmetric connections far from equilibrium and relaxation (for review,
see Coolen, 2001a, 2001b). Alternative approaches based on signal-to-noise
theory (e.g., Dayan & Willshaw, 1991; Palm & Sommer, 1996) are better
suited for finite feedforward networks with asymmetric weight matrix but
require gaussian assumptions on the distribution of dendritic potentials,
which may lead to inaccurate results even for very large networks, in
particular if patterns are very sparse or nonsparse (see appendix C).
Before we proceed to compute synaptic capacity and information capacity
for the Willshaw network, we characterize promising working regimes
where the synaptic matrix has low entropy, and therefore compression is
possible.
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3.4 Regimes of Balanced, Sparse and Dense Potentiation. Historically,
most analyses and model extensions of the Willshaw model have focused
on the regime of balanced potentiation with a balanced memory load 0 <

p1ǫ < 1 in which the network capacity becomes optimal (Willshaw et al.,
1969; Palm, 1980; Nadal, 1991; Buckingham & Willshaw, 1992; Sommer &
Palm, 1999). Our extended analysis can reveal the optimal values p1ǫ for
arbitrary parameter settings, and it certainly suggests avoiding the regimes
p1ǫ → 0 or p1ǫ → 1. Equations 3.5 and 3.9 and Figure 4a illustrate that in
these regimes, the network capacity drops to zero. It is easy to show that in
the limit n → ∞, the following equivalences hold:

Cǫ > 0 ⇔ k ∼ log n ⇔ 0 < p1ǫ < 1. (3.12)

To see this, we can rewrite equation 3.7 as p1ǫ = exp(−d/λc) with c > 0,
logarithmic k = c ln n, and d := − ln(ǫl/n)/ ln n. At retrieval quality grades
RQ2 and RQ3, d is a constant. Even at RQ1, d remains typically constant
for sublinear l(n) (e.g., d = 1 if l grows not faster than a polynomial in
log n). Then by varying c, one can obtain asymptotically for p1ǫ all possible
values in (0; 1), and correspondingly for Cǫ all values in (0; ln 2]. Since p1ǫ

is monotonically increasing in k, we conclude that in the limit n → ∞, for
d = − ln p01ǫ/ ln n ∼ 1 and sublinear l(n) the equivalences 3.12 hold.

Thus, nonzero Cǫ is equivalent to logarithmic k(n) ∼ log n and corre-
sponds to the regime of balanced potentiation with p1ǫ ∈ (0; 1). For sublog-
arithmic k(n) the potentiated (1-)synapses in the memory matrix A are
sparse, that is, p1ǫ → 0, and for supralogarithmic k(n) potentiated synapses
are dense, that is, p1ǫ → 1. Both cases, however, imply C → 0. We will
reevaluate these cases of sparse and dense potentiation, which appear in-
efficient in the light of network capacity, in the following section using the
performance measures of information capacity and synaptic capacity that
we introduced in section 1.2.

4 Analysis of Information Capacity and Synaptic Capacity

4.1 Information Capacity. Information capacity (see equation 1.2) re-
lates the stored (retrievable) information to the memory resources required
by implementation of an associative memory. Thus, information capacity
measures how well a specific implementation exploits its physical substrate.
For example, the standard implementation of a Willshaw network allocates
one bit of physical memory for each of the mn synapses. Therefore, for a
matrix load of p1 = 0.5, the information capacity is identical to the network
capacity studied in section 3. However, if the memory load is p1 �= 0.5,
implementations that include a compression of the memory matrix can
achieve an information capacity that exceeds the network capacity.

Optimal compression of the memory matrix A by Huffman (1952) or
Golomb (1966) coding (the latter works in cases p1 → 0 or p1 → 1) can
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decrease the required physical memory by a factor according to the Shannon
information I (p1) := −p1ldp1 − (1 − p1)ld(1 − p1) of a synaptic weight (see
appendix A).1 Thus, with equation 3.9, the information capacity C I for
optimal compression is written as

C I
ǫ :=

Cǫ

I (p1ǫ)
≈ λ

ln p1ǫ ln(1 − p1ǫ)

−p1ǫ ln p1ǫ − (1 − p1ǫ) ln(1 − p1ǫ)
η. (4.1)

Equation 4.1 reveals the surprising result that in the optimally com-
pressed Willshaw model, the balanced regime is outperformed by the
dense and sparse regimes, which both allow approaching the theoretical
upper bound of information capacity C I → λη. For small p1ǫ → 0, we
have I (p1ǫ) ≈ −p1ǫ ldp1ǫ and ln(1 − p1ǫ) ≈ −p1ǫ , and therefore C I → λη.
For large p1ǫ → 1, we have I (p1ǫ) ≈ −(1 − p1ǫ)ld(1 − p1ǫ), and therefore
also C I ≈ (− ln p1ǫ)/(1 − p1ǫ) → λη. Thus, a high-fidelity asymptotic in-
formation capacity of λ ∈ (0; 1] is possible for sparse and dense potenti-
ation, that is, p1ǫ → 0 or p1ǫ → 1, for n → ∞ and η → 1 (see section 3.4; cf.
Knoblauch, 2003a).

This finding is nicely illustrated by the plots of network and informa-
tion capacity in Figures 5 and 6. The classical maximum of the network
capacity C in the balanced regime coincides with the local minimum of the
information capacity C I . For all values p1ǫ �= 0.5, the information capacity
surmounts the network capacity and reaches in the sparse and dense regime
the theoretical optimum C I = 1. Although networks of reasonable size can-
not achieve the theoretical optimum at high retrieval quality, the capacity
increases are still considerable, in particular for very sparse activity (e.g.,
k = 2). Moreover, there is a wide range in pattern activity k in which the
information capacity C I exceeds the network capacity C assumed at its nar-
row optimum. Thus, evaluating the capacity of compressed networks more
appropriately by C I avoids the “sparsity” and “capacity gap” problems of
C discussed in section 1.4.

A simple alternative method of synaptic compression would be to form
target lists of sparse or dense matrix entries. One can simply store for each
address neuron i an index list of postsynaptic targets or nontargets—for
p1 < 0.5, the list represents the one-entries in the memory matrix and for
p1 > 0.5 the zero-entries. For the latter case, one can adapt the retrieval algo-
rithm in an obvious way such that each 0-synapse decreases the membrane
potential of the postsynaptic neuron (see Knoblauch, 2003b, 2006). The tar-
get list requires min(p1, 1 − p1)mnldn bits of physical memory if we neglect

1This compression factor is approximate since it assumes independence of the matrix
elements, which is not fulfilled for the storage of distributed patterns. Nevertheless, nu-
merical simulations described in Knoblauch et al. (2008) show that the actual compression
factor comes very close to I (p1).
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Figure 5: Capacity measures C I and C S for a finite Willshaw network with
structural compression. Parameters are as in Figure 3 (square weight matrix
with m = n = 105, equal pattern activities k = l, zero input noise with λ = 1,
κ = 0). The plots show information capacity C I

ǫ for optimal Huffman-Golomb
compression (medium solid), information capacity C I ′

ǫ for simple target lists
(thin line), and synaptic capacity C S

ǫ (dash-dotted line). For reference, the plots
show also network capacity Cǫ (thick solid line) and matrix load p1ǫ (dashed
line). Capacities are drawn as either functions of k for fixed fidelity parameter
ǫ = 0.01 (a) or functions of ǫ for fixed k = 18 (b).
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Figure 6: Capacity measures C I and C S for the compressed Willshaw model
in the asymptotic limit n → ∞. Parameters are as in Figure 4: m = n, k = l,
λ = 1, κ = 0. (a) Information capacity C I

ǫ (solid line) and synaptic capacity C S
ǫ

(dash-dotted line) as functions of the matrix load p1ǫ . For reference, the plot also
shows network capacity Cǫ (bold line). The maximum of C at p1ǫ = 0.5 turns
out to be the minimum of C I and C S. For sparse or dense potentiation with
p1ǫ → 0 or p1ǫ →, both C I

ǫ → 1 and C S
ǫ ∼ ln n → ∞ achieve their theoretical

bounds. (b) Storage capacities Cǫ , C I
ǫ , C I ′

ǫ (thin line), and C S
ǫ as functions of the

network size n for pattern activities k(n) = 5 (black line) and k(n) =
√

n (gray
line) assuming ǫ = 0.01 (cf. Figure 4b). While Cǫ → 0 it is C I

ǫ → 1 and C S
ǫ → ∞

for both functions k(n). C I ′
ǫ → 1/k = 0.2 for k(n) = 5. C I ′

ǫ → 0.5 for k(n) =
√

n
(see Table 1).
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the additional memory required for m “memory pointers” linking the tar-
get lists to the memory matrix.2 Thus, for large n, the resulting compression
factor is min(p1, 1 − p1)ldn. With equation 3.9, this yields the information
capacity for the Willshaw model with the synaptic target list:

C I ′

ǫ :=
Cǫ

min(p1ǫ, 1 − p1ǫ)ldn
≈ λ

ldp1ǫ · ln(1 − p1ǫ)

min(p1ǫ, 1 − p1ǫ)ldn
η. (4.2)

Figure 5 shows that the information capacity for target list compression C I ′

stays far below the information capacity for optimal compression C I . As the
asymptotic analyses below will show, target list compression achieves the
theoretical optimum C I ′ = 1 only for dense potentiation with nearly linear
k(n). Nevertheless, target list compression achieves C I ′

> C for very small
or quite large k (e.g., k ≤ 5, k ≥ 177 for n = 105). The next section shows that
C I ′

has characteristics very similar to synaptic capacity C S, which is more
relevant for biological networks.

4.2 Synaptic Capacity. Information capacity is clearly important for
technical implementations of associative memories on sequential standard
computers. But for the brain and also parallel VLSI hardware, it might not be
the information content of the required physical memory that really matters.
Rather, what matters may be the physiological resources necessary for the
physical implementation of the network. For example, the synaptic capacity
defined in equation 1.3 measures the mutual information in the memory
task per functional synapse. Thus, the physiological resources taken into
account are the number of functional synapses, that is, the one-entries in
the synaptic matrix, while we assume that silent synapses, the zero-entries,
are metabolically cheap and could even be pruned. The synaptic capacity
of the Willshaw model can be written as

C S
ǫ :=

Cǫ

min(p1ǫ, 1 − p1ǫ)
= C I ′

ǫ ldn ≈ λ
ldp1ǫ · ln(1 − p1ǫ)

min(p1ǫ, 1 − p1ǫ)
η, (4.3)

with η from equations 3.11 and 3.10. Note that C S and C I ′
in equation 4.2

are proportional by a factor of ldn. Another similarity to implementations
with target list compression is that in the range of dense connectivity, that
is, p1 > 0.5, the synaptic capacity counts the synaptic resources required
by an inhibitory network implementation that represents the less frequent
(1 − p1)mn zero-entries in the memory matrix with functional synapses (cf.
Knoblauch, 2003b, 2006). Such inhibitory implementations of associative
memory have been proposed for the cerebellum (Kanerva, 1988; Marr, 1969;
Albus, 1971) and might also be relevant for the basal ganglia (Wilson, 2004).

2This is negligible for large n if on average a matrix row contains many sparse entries,
min(p1, 1 − p1)n ≫ 0, that is, if a neuron has many functional synapses, which is usually
true.
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Figure 5a shows for m = n = 105 that the Willshaw model can store up
to 8.5 bits per synapse for k = l = 2, which exceeds the asymptotic network
capacity C ≤ 0.7 bits per synapse by more than one order of magnitude.
As for information capacity, the very steep capacity increase for ultrasparse
patterns, k → 2, is remarkable.

For moderately sparse patterns and dense potentiation (p1ǫ → 1), our
analysis (see equation 4.3) suggests synaptic capacities of up to C S ≈ 4.9 bits
per synapse for k = 9281. However, it turns out that the underlying ap-
proximation, equation 3.3, of C S and C I can become inaccurate for large
cell assemblies (see appendixes B and C). Unfortunately, the true values
of C S are significantly smaller, and the maximum occurs for smaller k (see
also Table 2 for λ = 0.5). The reason is that C S is very sensitive to the com-
pression factor 1 − p1ǫ . Thus, even if the true value of Mǫ is only a little bit
smaller than suggested by equation 3.8, the corresponding value of 1 − p1ǫ ,
and therefore the compressibility of the memory matrix, can be strongly
affected for p1ǫ → 1 (see appendix C for more details; see also section 4.4).
In contrast, this effect is not present for ultrasparse patterns with p1ǫ → 0.

Figures 6a and 5b suggest that C S → ∞ for p1ǫ → 0 or p1ǫ → 1 and
very low fidelity ǫ → ∞, respectively. This means that in principle, it is
possible to store an infinite amount of information per synapse. Strictly
speaking this is true only for infinitely large networks with n → ∞ because
the synaptic capacity C S is limited by the the number of possible spatial
locations, that is, C S ≤ ldn. Note that this is the essential difference between
the concepts of synaptic capacity and network capacity: The maximum
of network capacity per fixed synapse is determined only by the number
of potential synaptic weight states induced by Hebbian plasticity (0 or 1
in the Willshaw model). In contrast, the maximum of synaptic capacity
additionally considers the number of potential locations where the synapse
can be placed by structural plasticity.

The following two sections derive explicit formulas for storage capacities
and memory load for the regimes of sparse and dense potentiation (see
section 3.4). Table 1 summarizes all the results for the case m = n → ∞,
k = l, noiseless addresses λ = 1 and κ = 0, and retrieval-quality grade RQ1
with constant ǫ ∼ 1.

4.3 Capacities for Sparse Synaptic Potentiation. For sparse synaptic
potentiation, we have p1ǫ → 0 and typically sublogarithmic pattern activity
k with k/ldn → 0 (see section 3.4; cf. Table 1). With − ln(1 − p1ǫ) ≈ p1ǫ and
I (p1ǫ) ≈ −p1ǫ ldp1ǫ we obtain from equations 3.7, 3.2, 3.9, 4.1, 4.2, and 4.3
for large m, n → ∞:

Mǫ ≈
(

ǫl

n − l

)
1
λk mn

kl
≈ ǫ

1
λk

m

k

(n

l

)1− 1
λk

(4.4)
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Cǫ ≈
(

ǫl
n−l

)
1
λk ld ǫl

n−l

k
η → 0 (4.5)

C I
ǫ ≈ λη ≤ λ (4.6)

C I ′

ǫ ≈
ld ǫl

n−l

kldn
· η ≤ 1/k (4.7)

C S
ǫ ≈

ld ǫl
n−l

k
· η ≤

ldn

k
. (4.8)

The second approximation in equation 4.4 is valid only for l ≪ n. Thus, for
sparse potentiation, we can still store a very large number of ultrasparse
patterns where M scales almost with mn, for large k. However, note that
for given m, n, maximal M is obtained for logarithmic k (cf. Figure 4a). The
classical network capacity C vanishes for large n, but for optimal compres-
sion, we obtain an information capacity with C I → 1. For simple target
lists (see above), the information capacity approaches C I ′ → 1/k. Thus, C I ′

is nonzero only for small constant k. For constant k = 1, we have trivially
C I ′ → 1. However, this result is not very interesting since for k = 1, we
have no really distributed storage. For k = 1, there are only M = m possible
patterns to store, and the memory matrix degenerates to a look-up table.
Section 5 discusses more closely the relation between the Willshaw model
and different implementations of look-up tables.

For the synaptic capacity, we have C S
ǫ ∼ log n → ∞ for constant k ∼ 1,

which comes very close to the theoretical optimum C S ≤ ldn, the informa-
tion necessary to determine the target cell of a given synapse among the n
potential targets in the content population. Most interestingly, C S and C I ′

are independent of the fault tolerance parameter λ (and consequently must
also be independent of the high-fidelity parameter ǫ). Thus, decreasing M
from M = Mǫ to M = 1 virtually does not affect either C S or C I ′

. Note that
for a single stored pattern, C S = (ld

(n
l

)

)/(kl) ≈ (ldn)/k reaches the upper
bound of equation 4.8.

4.4 Capacities for Dense Synaptic Potentiation. For dense synap-
tic potentiation, we have p1ǫ → 1 and typically supralogarithmic pattern
activity k with k/ldn → ∞ (see section 3.4; cf. Table 1). With I (p1ǫ) ≈
−(1 − p1ǫ)ld(1 − p1ǫ) and 1 − p1ǫ ≈ − ln p1ǫ we obtain from equations 3.7,
3.2, 3.9, 4.1, 4.2, and 4.3 for large n → ∞:

1 − p1ǫ ≈
ln n−l

ǫl

λk
→ 0 (4.9)

Mǫ ≈
mn

kl

(

ln(λk) − ln ln
n − l

ǫl

)

(4.10)
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Cǫ ≈
(

ln(λk) − ln ln
n − l

ǫl

)

ld n−l
ǫl

k
· η → 0 (4.11)

C I
ǫ ≈ λη ≤ λ (4.12)

C I ′

ǫ ≈ λ ·
ln(λk) − ln ln n−l

ǫl

ln n
≤ λ

ln k

ln n
(4.13)

C S
ǫ ≈ λ · ld(λk) − ld ln

n − l

ǫl
≤ λ ln n. (4.14)

Although the pattern capacity Mǫ is much smaller than for balanced and
sparse synaptic potentiation, here we can still store many more moder-
ately sparse patterns than there are neurons (M ≫ n) as long as k ≤

√
n

(see equation 4.10; cf. Table 1). The classical network capacity C vanishes
for large n, but for optimal compression, we obtain a high information
capacity C I → 1. Surprisingly, information capacity can approach the max-
imum even for nonoptimal compression. For k = nd and 0 < d < 1, we
obtain C I ′ → λd from equation 4.13. Similarly, synaptic capacity achieve its
upper bound, C S ≤ ldn, for k = nd with d → 1. Note that here, C I ′

and C S

achieve factor two larger values than for sparse potentiation and distributed
storage with k ≥ 2 (see equations 4.7 and 4.8). However, the convergence
appears to be extremely slow for high fidelity (see appendix B; see also
Knoblauch, 2008), and for d > 0.5 we obtain asymptotically only M < n
(see equation 4.10; cf. Table 1; see also section 5).

For dense synaptic potentiation, both C I ′
and C S depend on the fault

tolerance requirement λ and the high-fidelity parameter ǫ, unlike sparse
synaptic potentiation, where these capacities are independent from λ. Un-
fortunately, requiring high fidelity and fault tolerance counteracts the com-
pressibility of the memory matrix because I (p1) increases for decreasing
p1 > 0.5. This results in the counterintuitive fact that the amount of nec-
essary physical memory increases with the decreasing number of stored
patterns M.

As can be seen in Figure 5a, both information capacities C I and C I ′

and synaptic capacity C S exhibit local maxima at k I
opt and kS

opt (= k I ′

opt) for
k > ldn. In Knoblauch (2003b, appendix B.4.2) these maxima are computed
(not shown here). The resulting asymptotic optima are approximately

kS
opt ∼ n · (e

√
− ln ǫ)−

√
ln n (4.15)

k I
opt ∼ n1− − ln ǫ−

√
− ln ǫ

− ln ǫ−1 . (4.16)

Note that kS
opt grows faster than nd for any d < 1, but slower than the upper

bound n/ log4 n, where our theory based on the binomial approximation
equation 3.3, is valid.
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For linear k = cm and l = dn, the binomial approximation is invalid, and
we have to use alternative methods as described in appendix C. Here the
Willshaw model can store only M ∼ log m pattern associations with van-
ishing storing capacities C, C I , C S → 0. There are much better alternative
models for this parameter regime. For example, the classical Hopfield model
can store a much larger number of M = 0.14n nonsparse patterns resulting
in 0.14 bits per (nonbinary) synapse (Hopfield, 1982; Amit et al., 1987a,
1987b). Thus, for nonsparse patterns, synapses with gradual weight states
such as employed in the Hopfield model appear to make a big difference to
binary clipped Hebbian learning, as in the Willshaw model.

4.5 Remarks on Fault Tolerance and Attractor Shape. How does in-
creasing noise (1 − λ,κ) in the query patterns ũ affect the number of storable
patterns Mǫ and the other capacity measures (Cǫ , C I

ǫ , C S
ǫ ) for a given net-

work size and pattern activity?3 It is particularly simple to answer this
question for pattern part retrieval where query patterns contain miss noise
only (κ = 0). Using equations 3.2 and 3.7, we can introduce the fraction of
storable patterns as a function of the query noise λ,

mλ :=
Mǫ(λ)

Mǫ(1)
≈

ln(1 − p1ǫ(λ))

ln(1 − p1ǫ(1))
∈ (0; 1]

{

≈ p1ǫ(1)(1−λ)/λ) → 0, p1ǫ(1) → 0

→ 1, p1ǫ(1) → 1
, (4.17)

where we used ln(1 − p1ǫ) ≈ −p1ǫ for p1ǫ → 0 and de l’Hôpital’s rule for
p1ǫ → 1. The fraction of storable patterns with increasing fault tolerance
differs markedly for the regimes of sparse, balanced, and dense synaptic
potentiation (cf. sections 3.4, 4.3, and 4.4): Figure 7a shows that the decrease
is steep for very sparse memory patterns and p1ǫ → 0 and shallow for mod-
erately sparse patterns and p1ǫ → 1. Thus, relatively large cell assemblies
with k ≫ log n are much more robust against miss noise than small cell as-
semblies with k ≤ log n (cf. Table 1). The same conclusion is true for network
capacity, Cǫ(λ) := mλ · Cǫ(1) (see equations 3.4 and 3.9).

Increasing fault tolerance or attractor size of a memory will decrease not
only Mǫ but also p1ǫ . Therefore, the compressibility of the memory matrix
also will change. In analogy to mλ for Mǫ , we can compute the relative
compressibility iλ for C I

ǫ ,

iλ :=
I (p1ǫ(λ))

I (p1ǫ(1))

{

≈ p1ǫ(1)((1−λ)/λ)
/λ → 0, p1ǫ(1) → 0

→ 1/λ, p1ǫ(1) → 1
, (4.18)

3Note the difference between assessing fault tolerance for either a given memory load
p1ǫ or given pattern activities k, l, since the former is a function of the latter.
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Figure 7: Impact of miss noise on the number of storable patterns and the
compressibility of the memory matrix for different p1. Query patterns ũ are
assumed to contain λk out of the k original ones, but no false ones (κ = 0). Here
p1 := p1ǫ(1) is the maximal matrix load for λ = 1 (see equation 3.7). (a) Fraction
of storable patterns mλ versus λ (see equation 4.17). (b) Relative compressibility
iλ versus λ (see equation 4.18). (c) For all values of p1, we have c I

λ := mλ/ iλ ≈ λ

(see equation 4.19). (d) The error f (λ, p1) := c I
λ − λ of approximating c I

λ by λ is
small (−0.02 < f < 0.06) and even vanishes for p1 → 0 and p1 → 1.

where we used I (p1) ≈ −p1ldp1 for p1ǫ(1) → 0 and de l’Hôpital’s rule for
p1ǫ(1) → 1 (cf. Knoblauch, 2003b). The relative compressibility is depicted
in Figure 7b. Note that always iλ < 1 for p1ǫ(1) < 0.5, but usually iλ > 1 for
p1ǫ(1) > 0.5. The latter occurs for dense potentiation and moderately (e.g.,
supralogarithmically) sparse address patterns (see Table 1) and implies the
counterintuitive fact that although fewer patterns are stored, more physical
memory is required. Thus, the dependence of information capacity on miss
noise is

c I
λ :=

C I
ǫ (λ)

C I
ǫ (1)

=
mλ

iλ
= λ + f (λ, p1ǫ(1)) ≈ λ, (4.19)
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for a small error function f with f → 0 for p1ǫ → 0 and p1ǫ → 1. The plots
of c I

λ in Figure 7c reveal the surprising result that the relative decrease
in information capacity is almost linear in λ in all the regimes of pattern
sparsity. One can verify numerically that −0.02 < f (λ, p1) < 0.06 for λ, p1 ∈
(0; 1) (see Figure 7d).

Similar considerations for the synaptic capacity C S (that apply also to
information capacity C I ′

) reveal that

cS
λ :=

C S
ǫ (λ)

C S
ǫ (1)

=
mλ min(p1ǫ(1), 1 − p1ǫ(1))

min(p1ǫ(λ), 1 − p1ǫ(λ))

≈

{

C S
ǫ (1), p1ǫ(1) → 0

λC S
ǫ (1), p1ǫ(1) → 1

. (4.20)

It is remarkable that C S is independent of λ for ultrasparse patterns with
k/ log n → 0 and sparse potentiation p1ǫ → 0. Thus, decreasing M from
M = Mǫ(1) to M = Mǫ(λ) affects neither C S nor C I ′

. Actually, for a single
stored pattern, C S = (ld

(n
l

)

)/(kl) ≈ (ldn)/k is identical to the upper bound
of equation 4.8. Thus, C S

ǫ (λ) actually increases for λ → 0 (or ǫ → 0).
A theoretical analysis including add noise (κ ≥ 0) is more difficult (cf.

Palm & Sommer, 1996; Sommer & Palm, 1999; Knoblauch, 2003b). In numer-
ical experiments, we have investigated retrieval quality as a function of miss
noise (λ < 1) and add-noise (κ > 0) using exact expressions for retrieval er-
rors p01 and p10 (see equations B.1 and B.2). For given network size (here
m = n = 1000) and sparsity level (k = l = 4, 10, 50, 100, 300), the number of
stored patterns M has been chosen such that for noiseless query patterns
(λ = 1, κ = 0), a high-fidelity criterion ǫ ≤ 0.01 was fulfilled. Then we com-
puted retrieval quality for noisy query patterns ũ with activity z := |ũ|. For
z ≤ k, queries were pattern parts (0 < λ ≤ 1, κ = 0). For z > k, queries were
supersets of the original address patterns (λ = 1, κ ≥ 0). The retrieval qual-
ity was measured by minimizing ǫT := (T(k/n, p01, p10) − I (k/n))/I (k/n)
with respect to the neuron threshold �. Here ǫT corresponds to the nor-
malized information loss between retrieved and originally stored patterns,
but using the Hamming distance based measure ǫ as defined in section 3.2
leads qualitatively to the same results (see Knoblauch et al., 2008). Figure 8a
shows for each noise level the retrieval quality and Figure 8b the optimal
threshold.

These numerical experiments validate our theoretical results for pattern
part retrieval (without add noise). For λ < 1, ultrasparse patterns (e.g., con-
stant k = 4) appear to be very vulnerable to miss noise (i.e., ǫ increases very
steeply with decreasing λ). In contrast, moderately sparse patterns (e.g.,
k = 1000 for n = 10,000) are much more robust against miss noise (i.e., the
increase of ǫ is much weaker). On the other hand, our data also show that
ultrasparse cell assemblies are very robust against add noise (i.e., the fidelity
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Figure 8: Impact of query noise on the retrieval quality of the Willshaw
model for m = n = 1000 neurons and different pattern activities k = l =
4, 10, 50, 100, 300 (increasing line thickness) storing M = 4928, 4791, 663, 207, 27
patterns in each case (corresponding to ǫ = 0.01 for noiseless queries). Data are
computed from exact error probabilities (see equations B.1 and B.2). (a) Re-
trieval quality ǫT := (T(k/n, p01, p10) − I (k/n))/I (k/n) as a function of query
pattern activity z = (λ + κ)k. The queries were noiseless for z/k = 1, contained
only miss noise for z/k < 1 (i.e., λ < 1, κ = 0), and contained only add noise
for z/k > 1 (i.e., λ = 1, κ > 0). The threshold � is chosen such that ǫT (λ, κ) is
minimized. (b) Optimal threshold �opt for minimal ǫT shown in a . The plots for
ǫ instead of ǫT are qualitatively the same (Knoblauch et al., 2008).

parameter ǫ increases only relatively slowly with increasing add noise level
κ). In contrast, the large cell assemblies are quite vulnerable to add noise:
Here ǫ increases very steeply with κ . Our results show that the attractors
around memories uμ (i.e., the subspace of query patterns ũ that map to
vμ) have only little similarity to spheres in Hamming space. Rather, for
ultrasparse patterns (k/ log n → 0), attractors are elongated toward query
patterns with more add noise than miss noise, whereas for moderately
sparse patterns (k/ log n → ∞), attractors are elongated toward query pat-
terns with more miss noise than add noise.

Figure 8b illustrates another important difference between sparse and
dense synaptic potentiation corresponding to ultrasparse or moderately
sparse activity. For ultrasparse patterns, the optimal threshold depends
mainly on λ, but only very weakly on κ . In contrast, for moderately sparse
patterns, the optimal threshold has a strong dependence on both λ and κ . As
a consequence, in particular for biological systems, it may be much easier
to implement the optimal threshold for retrieving ultrasparse patterns. In
a noisy regime with κ ≫ 0, it will be sufficient to simply choose a constant
threshold identical to the assembly size, � = k, assuming that information
processing is usually accomplished with complete patterns, λ = 1. This
bears in particular the possibility of activating superpositions of many dif-
ferent ultrasparse cell assemblies. Actually, a reasonable interpretation of
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seemingly random or spontaneous ongoing activity (Arieli, Sterkin, Grin-
vald, & Aertsen, 1996; Softky & Koch, 1993) would be that a large number
of small cell assemblies or synfire chains (Abeles, 1982; Abeles, Bergman,
Margalit, & Vaadia, 1993; Diesmann, Gewaltig, & Aertsen, 1999; Wennekers
& Palm, 1996) are active at the same time, independent of each other.

5 Computational Complexity and Energy Requirements

5.1 Compressed and Uncompressed Willshaw Network. So far we
have been concerned with the storage capacity and fault tolerance of the
Willshaw associative memory. Another important question is how fast the
information can be retrieved for implementation on a sequential digital
computer. To retrieve a pattern in the Willshaw model, we have to compute
potentials x = ũA and afterward apply a threshold on each component of
x, that is, the retrieval time (or number of retrieval steps) is

tW
seq = z · n + n ≈ zn, (5.1)

where z := (λ + κ)k is the query pattern activity. Note that retrieval time
is dominated by synaptic operations. Thus, our temporal measure also
has an interpretation in terms of energy consumption. However, for this
interpretation, it may be more relevant to consider only nonsilent synapses
(see section 1.2 and Lennie, 2003; Laughlin & Sejnowski, 2003), which is
captured by the following analysis for the “compressed” model.

Matrix compression (or eliminating silent synapses) in the sparse and
dense connectivity regimes not only improves storage capacity but gener-
ally accelerates retrieval. For sparse connectivity with p1 → 0, the memory
matrix A contains sparsely one-entries, and computing the potentials x re-
quires only p1 · n steps per activated address neuron. Similarly, for dense
connectivity with p1 → 1, we can compute the potentials by x = z − ũA′

where A′ := 1 − A contains sparsely one-entries (see also Knoblauch, 2006).
Thus, the retrieval time is

tcW
seq = c · z · n · min(p1, 1 − p1), (5.2)

where c is a (small) constant accounting for decompression of A (or A′),
keeping track of neurons selected by A (or A′) in a list, and finally applying
the threshold to the neurons in that list (note that zn min(p1, 1 − p1) may
be ≪ n). Obviously, tcW

seq /tW
seq → 0, at least for sparse and dense potentiation

with p1 → 0 or p1 → 1. However, it may be unfair to compare the com-
pressed to the uncompressed Willshaw model since the latter works in an
optimal manner for p1 = 0.5, where compression is not possible. Thus, we
may want to compare the two models for different pattern sparseness k, l.
Such an approach has been conducted by Knoblauch (2003b) showing that
the compressed model is superior to the uncompressed even if one normal-
izes the amount of retrieved information to the totally stored information.
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5.2 Comparison to Look-Up Tables and “Grandmother Cell” Net-
works. It has been pointed out that Willshaw associative memory can allow
much faster access to stored pattern information than a simple look-up table
(e.g., see Palm, 1987). A look-up table implementation of associative mem-
ory would require an M × m matrix U for the address pattern vectors and
an M × n matrix V for the content patterns such that Uμ = uμ and Vμ = vμ

for μ = 1, . . . , M (each matrix row corresponds to a pattern vector). We
also refer to the look-up table as a grandmother cell model (or briefly grand-
mother model; cf. Knoblauch, 2005; Barlow, 1972) because its biological
interpretation corresponds to a two-layer architecture where an intermedi-
ary population contains M neurons, one “grandmother” cell for each stored
association (see section 2.3). Thus, grandmother cell μ receives inputs via
synapses corresponding to the μth row of U. A winner-takes-all dynamics
activates only the most excited grandmother cell, which can activate the
content population according to the corresponding synaptic row in V.

For naive retrieval using a query pattern ũ, one would compare ũ to
each row of U and select the most similar uμ. If each row of U contains
k ≪ m one-entries, we may represent each pattern by the (ordered) list of
the positions (indices) of its one-entries. Then the retrieval takes only

tnLUT
seq = M · (z + k). (5.3)

Then for M/n → ∞, we indeed have tnLUT
seq /tW

seq ≥ M/n → ∞. Thus, the Will-
shaw model is more efficient than a naive look-up table if we store more
patterns M than we have content neurons n.

However, in many cases, compressed look-up tables can be implemented
more efficiently than the Willshaw model even for M ≫ n. So far, by rep-
resenting lists of one-entries for each pattern in the look-up table, we have
essentially compressed the matrix rows. However, it turns out that com-
pressing the columns is always more efficient (Knoblauch, 2005). If we
optimally compress the columns of U (e.g., by Huffman or Golomb cod-
ing, similar to the compressed Willshaw model), then information capacity
becomes C I → 1 and a retrieval requires only

tcLUT
seq = c · z · M · k/m (5.4)

steps. Compared with the compressed Willshaw model, this yields

ν :=
tseq

cLUT

tseq
cW

≈
− ln(1 − p1)

l min(p1, 1 − p1)
≤

− ln(1 − p1ǫ)

l min(p1ǫ, 1 − p1ǫ)

→

⎧

⎪

⎨

⎪

⎩

1/ l, p1ǫ → 0

λ k
l

ln(λk) − ln ln n
ǫl

ln n
ǫl

, p1ǫ → 1,
(5.5)
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where we used 1 − p1ǫ ≈ − ln p1ǫ for p1ǫ → 1. Remember from section 3.1
that the memory matrix is sparse (p1ǫ → 0), balanced (0 < δ < p1ǫ < 1 − δ),
or dense (p1ǫ → 1) for sublogarithmic, logarithmic, or supralogarithmic
k(n). Thus, the Willshaw model performs worse than the grandmother
model for most parameters. The Willshaw model is unequivocally supe-
rior only for asymmetric networks with large k and small l. If we require
m = n and k = l (e.g., for autoassociation), the Willshaw model is superior
with ν → λd/(1 − d) only for almost linear k = nd with 1/(1 + λ) < d < 1.

Look-up tables are also superior to distributed associative networks
with respect to fault tolerance because they always find the exact nearest
neighbor. In order to have a fair comparison with respect to fault tolerance,
we can dilute the look-up tables by randomly erasing one-entries in matrix
U. This will further accelerate retrieval in look-up tables and cut even
the remaining parameter range where the Willshaw model is superior
(Knoblauch et al., 2008). At least for asymmetric networks, there remains a
narrow parameter range where the Willshaw model beats diluted look-up
tables. This seems to be the case for large m, small l, n, and relatively small k
(but still large enough with supralogarithmic k/ log n → ∞ to obtain dense
potentiation).

5.3 Parallel Implementations. For full (i.e., synapse-) parallel hard-
ware implementations (like brain tissue or VLSI chips; Chicca et al., 2003;
Heittmann & Rückert, 2002), the retrieval time is O(1), and the remaining
constant is mainly determined by the hardware properties. Here the lim-
iting resource is the connectivity (e.g., the number of nonsilent synapses),
and our analysis so far can be applied again.

However, there are also neuron-parallel computers with reduced hard-
ware connectivity. One big advantage of the Willshaw model is that there
are obvious realizations for such architectures (Palm & Palm, 1991; Ham-
merstrom, 1990; Hammerstrom, Gao, Zhu, & Butts, 2006). For example, on
a computer with n processors (one per neuron) and a common data bus
shared by all processors, a retrieval takes time tprl

W = z + 1. In comparison,
a corresponding implementation of the grandmother model or a look-up
table will require M processors and time tprl

LUT = z + log M. In particular
for M ≫ n, there is no obvious parallelization of look-up tables that would
beat the Willshaw model.

In summary, both the Willshaw and the grandmother model are efficient
(tseq/M, tprl/n → 0) only for sparse address patterns. Nonsparse patterns re-
quire additionally a sparse recoding (or indexing) as is done in multi-index
hashing (Greene et al., 1994). Although there are quite efficient computer
implementations, it appears that distributed neural associative memories
have only minor advantages over compressed look-up tables or multi-
index hashing, at least for solving the best match problem on sequential
computers. On particular parallel computers, the Willshaw model remains
superior.
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6 Summary and Discussion

Neural associative memories are promising models for computations in
the brain (Hebb, 1949; Anderson, 1968; Willshaw et al., 1969; Marr, 1969,
1971; Little, 1974; Gardner-Medwin, 1976; Braitenberg, 1978; Hopfield, 1982;
Amari, 1989; Palm, 1990), as well as potentially useful in technical applica-
tions such as cluster analysis, speech and object recognition, or information
retrieval in large databases (Kohonen, 1977; Bentz et al., 1989; Prager &
Fallside, 1989; Greene et al., 1994; Knoblauch, 2005; Mu et al., 2006; Rehn &
Sommer, 2006).

In this review, we have raised the question of how to evaluate the ef-
ficiency of associative memories, that is, how to quantify the achieved
computation and the used resources. The common measure of efficiency
is network capacity, that is, the amount of information per synapse that
can be stored in a network of fixed structure (Willshaw et al., 1969; Palm,
1980, 1991; Amit et al., 1987a, 1987b; Nadal, 1991; Buckingham & Willshaw,
1992; Sommer & Palm, 1999; Bosch & Kurfess, 1998). Here we have ar-
gued that network capacity is biased because it disregards the entropy of
the synapses and thus underestimates models with low synaptic entropy
and overestimates models with high synaptic entropy. To account for the
synaptic entropy, it was necessary to introduce information capacity, a new
performance measure. Interestingly, network capacity and information ca-
pacity draw radically different pictures in what range associative memories
work efficiently. For example, the Willshaw model is known to optimize the
network capacity if the distribution of 0-synapses and 1-synapses is even
and thus the synaptic entropy is maximal (Willshaw et al., 1969; Palm,
1980). In contrast, the Willshaw model reaches the optimum information
capacity in regimes of small synaptic entropy if either almost all synapses
remain silent (sparse potentiation with memory load p1 → 0) or if almost
all synapses are active (dense potentiation with memory load p1 → 1). We
have shown that the regimes of optimal information capacity that we dis-
covered have direct practical implications. Specifically, we have constructed
models of associative memory using mechanisms like Huffman or Golomb
coding for synaptic compression, which can outperform their counterparts
without matrix compression.

Further, the discovery of regimes in associative memories with high
information capacity could be a key to understanding the computational
function of the various types of structural plasticity in the brain. In struc-
tural plasticity, functionally irrelevant silent synapses are pruned and re-
placed by new synapses generated at other locations in the network. This
process can lead to a sparsely connected neural network in which each
synapse carries a large amount of information about previously learned
patterns (Knoblauch, 2009). To quantify the effects of structural plasticity,
we have introduced the definition of synaptic capacity, which measures the
information stored per functionally necessary synapse (i.e., not counting
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silent synapses, which could be pruned). Our model analyses indicate that
information capacity and synaptic capacity become optimal in the same
regimes of operation. Thus, structural plasticity can be understood as a
form of synaptic compression required to optimize information capacity in
biological networks.

Although our new definitions of performance measures for associative
memories are general, for practical reasons we had to restrict the model
analysis to two simple yet interesting examples of associative memories. The
simplest possible version is a linear associative memory in which learning
corresponds to forming the correlation matrix of the data and retrieval
corresponds to a matrix-vector multiplication (Kohonen, 1977). However,
the efficiency of linear associative memories is very limited. The cross-talk
can be predicted to set in if the stored patterns deviate from the principal
components of the data, which will necessarily be the case if the number of
stored patterns exceeds the dimension of the patterns. The Willshaw model
is a feedforward neural network similar to the linear associative memory
but much more efficient by any standards, because nonlinearities in the
neural transfer function and in the superposition of memory traces keep the
cross-talk small, even if the number of stored patterns scales almost with the
square of the dimension of the patterns (Willshaw et al., 1969; Palm, 1980).
Thus, we chose to analyze the Willshaw network. In addition, to compare
neural associative memories to look-up tables (LUT), the classical structure
for content-addressable memory in computer science, we also analyzed a
two-layer extension of the Willshaw network with winner-take-all (WTA)
activation in the hidden layer, which implements a look-up table.

Previous analyses of the Willshaw network revealed that network capac-
ity is optimized in a regime in which stored patterns are sparse (the number
of active units grows only logarithmically in the network size, k ∼ log n)
and the number of stored patterns grows as n2/(log n)2 (Willshaw et al.,
1969; Palm, 1980). However, these analyses determined the upper bound of
the network capacity with the level of retrieval errors undefined. In practice,
computations rely on a specific and guaranteed level of retrieval quality.
Therefore, for fair and meaningful comparisons of the three definitions of
storage capacity, network, and information and synaptic capacity, we had
to develop new analytical procedures to quantify the different capacities at
a defined level of retrieval errors.

The new analyses revealed three important new results. First, implicit in
classical analyses, a high network capacity 0 < C ≤ ln 2 ≈ 0.69 or 0 < C ≤
1/e ln 2 ≈ 0.53 is restricted to a very narrow range of logarithmic pattern
sparseness (see section 3.4 and appendix D). Second, the information and
synaptic capacities assume high values for quite wide ranges of pattern ac-
tivities (see Figure 5). Third, the optimal regimes of information and synap-
tic capacities, C I → 1 and C S ∼ log n, coincide but are distinct from the
optimal regime for network capacity. For example, the information capac-
ity has the minimum in the regime of optimal network capacity and assumes
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the theoretical optimum C I → 1 either for ultrasparse patterns k/ log n → 0
or for moderately sparse patterns k/ log n → ∞ (see Perez-Orive et al., 2002;
Hahnloser, Kozhevnikov, & Fee, 2002; Quiroga, Reddy, Kreiman, Koch, &
Fried, 2005; Waydo, Kraskov, Quiroga, Fried, & Koch, 2006, for experimental
evidence supporting sparse representations in the brain).

In addition, the new analyses revealed how the robustness of content-
addressable memory against different types of noise in the address patterns
varies in the different regimes of operation. While the effects of additional
activity (add errors) and missing activity (miss errors) were quite balanced
for log-sparse patterns (see Figure 8), the effects strongly varied with error
type in the ultrasparse and moderately sparse regime. Specifically, the re-
trieval of ultrasparse patterns (k ≪ log n) was robust against add errors in
the address pattern but vulnerable to miss errors. The inverse relation was
found for the retrieval of moderately sparse patterns. Thus, the ultrasparse
regime could be of particular interest if a memory has to be recognized in
superpositions of many patterns, whereas the moderately sparse regime
allows completing a memory pattern from a small fragment.

The retrieval speed defined as the time (or number of computation steps)
required to retrieve a pattern is another important performance measure
for associative memory. Previous work has hypothesized that neural asso-
ciative memory is an efficient means for information retrieval in the context
of the best match problem (Minsky & Papert, 1969), even when imple-
mented on conventional computers. For example, Palm (1987) has argued
that distributed neural associative memory would have advantages over
local representations such as in the LUT network. While this may hold true
for plain (uncompressed) and parallel implementations (Hammerstrom,
1990; Palm & Palm, 1991; Knoblauch, 2003b; Chicca et al., 2003), we showed
in section 5 that the compressed LUT network implemented on a sequential
architecture outperforms the Willshaw network for almost all parameters
(see equation 5.5). Asymptotically, sequential implementations of the single-
layer Willshaw model remain superior only for almost nonsparse patterns
(k ∼ nd with d near 1) or if content patterns are much sparser than address
patterns.

The neurobiological implications of the new efficient regimes we dis-
covered in the Willshaw model (sparse and dense synaptic potentiation
corresponding to ultrasparse and moderately sparse patterns) rely on two
oversimplifications that need to be addressed in future work.

First, our analyses have assumed that learning starts in a fully connected
network and is followed by a pruning phase, where the silent dispensable
synapses can be pruned. Since neural networks of the brain have generally
low connectivity at any time, this highly simplified model must be refined.
Currently we investigate a more realistic model for cortical memory in
which a low-capacity memory buffer network (e.g., the hippocampus)
interacts with a high-capacity associative projection (e.g., a cortico-cortical
synaptic connection), which is subject to structural plasticity. Pattern
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associations are temporarily stored in the low-capacity buffer and repeat-
edly replayed to the high-capacity network. The combination of repetitive
training, structural plasticity, and an adequate consolidation of activated
synapses emulates a fully connected network equivalent to the model
analyzed in this work, although the connectivity level in the cortical
module is always low (Knoblauch, 2006, 2009).

Second, it needs to be explained how the regime of moderately sparse
patterns with k/ log n → ∞ corresponding to dense synaptic potentiation
with p1 → 1 can be realized in realistic neuronal circuitry. This regime
becomes efficient in terms of high synaptic capacity or few synaptic opera-
tions per retrieval but only if implemented with inhibitory neurons where
the rare silent (0-)synapses are maintained and the large number of active
(1-)synapses can be pruned (Knoblauch, 2006). The implementation of this
regime is conceivable in brain structures that are dominated by inhibitory
neurons (e.g., cerebellum, basal ganglia) and also by using specific types of
inhibitory interneurons in cortical microcircuits.

Appendix A: Binary Channels

The Shannon information I (X) of a binary random variable X on � = {0, 1}
with p := pr[X = 1] equals

I (p) :=−p · ldp − (1 − p) · ld(1 − p)

≈

{

−p · ldp, p ≪ 0.5

−(1 − p) · ld(1 − p), 1 − p ≪ 0.5
(A.1)

(Shannon & Weaver, 1949; Cover & Thomas, 1991). Note the symmetry
I (p) = I (1 − p), and that I (p) → 0 for p → 0 (and p → 1). A binary mem-
oryless channel is determined by the two error probabilities p01 (false one)
and p10 (false zero). For two binary random variables X and Y, where Y is
the result of transmitting X over the binary channel, we can write

I (Y) = IY(p, p01, p10) := I (p (1 − p10) + (1 − p) p01) (A.2)

I (Y|X) = IY|X(p, p01, p10) := p · I (p10) + (1 − p) · I (p01) (A.3)

T(X; Y) = T(p, p01, p10) := IY(p, p01, p10) − IY|X(p, p01, p10). (A.4)

For the analysis of pattern part retrieval in section 3.1, the case p10 = 0 is of
particular interest:

T(p, p01, 0) = I (p + p01 − pp01) − (1 − p) · I (p01) (A.5)

≤ I (p01) + I ′(p01) · (p(1 − p01)) − (1 − p) · I (p01)

=−pldp01. (A.6)
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For the upper bound, we have linearized I in p01 and used the convexity of
I (p)—(d I/dp)2 = −1/(p(1 − p) ln 2) < 0. The upper bound becomes exact
for p/p01 → 0. For high fidelity, we are typically interested in p01 ≪ p := l/n
(see section 3.2). Thus, linearization of I in p yields a better upper bound,

T(p1, p01, 0) ≤ I (p) + I ′(p) · (1 − p) · p01 − (1 − p) · I (p01) ≤ I (p),

(A.7)

where the approximations become exact in the limit p01/p → 0. For the
relative error e I of approximating T(p, p01, p10) by I (p), we can write

e I :=
I (p1) − T(p1, p01, p10)

I (p1)
≈ (1 − p1)

I (p01) − I ′(p1) · p01

I (p1)

≈
I (p01)

I (p1)
−

p01

p1
, (A.8)

where for the last approximation, we additionally assume p ≪ 0.5 and
correspondingly 1 − p ≈ 1, I (p) ≈ −pldp, and I ′(p) ≈ −ldp.

Applying these results to our analysis of the Willshaw model in sec-
tion 3.2, using p := l/n ≪ 0.5 and p01 := ǫp for ǫ ≪ 1, we obtain

e I ≤
I (ǫ l

n
)

I ( l
n

)
− ǫ ≈ ǫ ·

ldǫ

ld( l
n

)
≈

I (ǫ)

−ld( l
n

)
≤

{

I (ǫ), in any case

ǫ, l/n ≤ ǫ
. (A.9)

Note that typically sparse patterns with l/n ≪ 1/100 are used. Thus, requir-
ing for example, ǫ = 0.01 implies that the relative error of approximating T
by I in equation 3.10, is smaller than 1%.

Appendix B: Exact Retrieval Error Probabilities for Fixed
Query Activity

Our analysis so far used the binomial approximation, equation 3.3. Here
we give the exact expressions for fixed query pattern activity, that is, when
the query pattern ũ has exactly c := λk correct one-entries from one of the
address patterns uμ and, additionally, f := κk false one-entries (0 < λ ≤ 1,
κ ≥ 0). Retrieving with threshold �, the exact retrieval error probabilities
p01 := pr(v̂i = 1|vμ

i = 0) of a false one-entry and p10 := pr(v̂i = 0|vμ

i = 1) of
a missing one-entry are

p01(�) =
c+ f
∑

x=�

pWP(x; k, l, m, n, M − 1, c + f ) (B.1)
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p10(�) =
�−1
∑

x=c

pWP(x − c; k, l, m, n, M − 1, f ) , (B.2)

where pWP(x; k, l, m, n, M, z) is the distribution of dendritic potential x
when stimulating with a random query pattern having exactly z one-entries
and m − z zero entries (0 ≤ x ≤ z). It is

pWP(x; k, l, m, n, M, z)

=
(

z

x

) x
∑

s=0

(−1)s

(

x

s

) (

1 −
l

n
(1 − B(m, k, s + z − x))

)M

(B.3)

≈
(

z

x

) x
∑

s=0

(−1)s

(

x

s

)

(

1 −
l

n

(

1 −
(

1 −
k

m

)s+z−x
))M

(B.4)

=
M

∑

i=0

pB(i; M, l/n)pB(x; z, 1 − (1 − k/m)i ), (B.5)

where we used B(a , b, c) :=
(a−b

c

)

/
(a

c

)

=
∏c−1

i=0 (a − b − i)/(a − i) and the bi-

nomial probability pB(x; N, P) :=
(N

x

)

Px(1 − P)N−x. Equation B.3 is exact
for fixed address pattern activity, that is, if each address pattern uμ has ex-
actly k one-entries and has been found by Knoblauch (2008), generalizing
a previous approach of Palm (1980) for the particular case of zero noise
(c = k, f = 0). The approximations, equations B.4 and B.5, would be exact
for random address pattern activity, that is, if uμ

i is one with probability k/m
(but still fixed c, f ). Equation B.5 averages over the so-called unit-usage (the
number of patterns a given content neuron belongs to) and has been found
by Buckingham and Willshaw (1992) and Buckingham (1991). The trans-
formation to equation B.4 has been found by Sommer and Palm (1999).
Equations B.3 and B.4 are numerically efficient to evaluate for low query
pattern activity c + f , whereas equation B.5 is efficient for a few stored
patterns M. The distinction between fixed and random address pattern
activity, |uμ|, is of minor interest for moderately large networks, because
then equations B.3 to B.5 yield very similar values (Knoblauch, 2006, 2008).
However, the distinction between fixed and random query pattern activity,
|ũ|, remains important even for large networks (see appendix D).

For the particular case of pattern part retrieval, c = λk and f = 0, we can
use the Willshaw threshold � = λk, and the error probabilities are p10 = 0
and

p01 =
λk

∑

s=0

(−1)s

(

λk

s

) [

1 −
l

n
(1 − B(m, k, s))

]M−1

(B.6)
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Figure 9: Approximation quality of our analysis in sections 3 and 4 based on
equation 3.3 for m = n, k = l, high-fidelity parameter ǫ = 0.01, when addressing
with half address patterns (λ = 0.5, κ = 0). (a) Relative approximation quality
of the pattern capacity Mǫ/M

approx
ǫ as a function of neuron number n. The exact

value Mǫ is computed as in Table 2 and the approximation M
approx
ǫ is computed

from equation 3.8. The different lines correspond to different pattern activi-
ties k(n) = 4, ldn,

√
n, n2/3, n3/4, n/4, n/2 (increasing line thickness; alternation

of solid and dashed lines). Approximation quality for network capacity Cǫ is
qualitatively the same. (b) Relative approximation quality similar to a , but for
the information capacity C I

ǫ . C I,approx is computed from equation 4.1. Approxi-
mation quality for the synaptic capacity C S

ǫ is qualitatively the same.

≈
λk

∑

s=0

(−1)s

(

λk

s

) [

1 −
l

n
(1 − (1 − k/m)s)

]M−1

(B.7)

=
M−1
∑

i=0

pB(i; M − 1, l/n)(1 − (1 − k/m)i )λk (B.8)

≥ pλk
1 . (B.9)

Here equations B.6 to B.8 correspond to equations B.3 to B.5, and the bound
corresponds to the binomial approximation, equation 3.3. Knoblauch (2007,

2008) shows that this lower bound becomes tight at least for k ∼ O(n/ log4 n)

or, for m = n, k = l, already for k ∼ O(n/ log2 n). Thus, our theory based on
the binomial approximation, equation 3.3, becomes exact for virtually any
sublinear k(n).

We have validated these results in extensive numerical experiments,
which can be found in Knoblauch (2006, 2008) and Knoblauch et al. (2008).
Table 2 shows some exact results when addressing with half patterns
(λ = 0.5, κ = 0). Figure 9 plots the quality of the binomial approximation,
equation 3.3, for pattern capacity M and information capacity C I for differ-
ent sparsity levels and increasing network size n → ∞.
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Appendix C: Fallacies for Extremely Sparse and Nonsparse Activity

As discussed in section 3.3, our analysis method is exact for both small and
very large networks, whereas alternative methods are inaccurate for finite
networks and, for some parameter ranges, even in the asymptotic limit. For
example, previous analyses of feedforward associative networks with linear
learning, such as the covariance rule, often compute capacity as a function
of the so-called signal-to-noise ratio SNR = (μhi − μlo)2/σ 2, defined as the
mean potential difference between “high units” (which should be active in
the retrieval result v̂) and “low units” (which should be inactive) divided by
the potential variance (Dayan & Willshaw, 1991; Palm, 1991; Palm & Som-
mer, 1996). Assuming gaussian dendritic potentials, such analyses propose
an asymptotic network capacity C = 0.72 for linear associative networks
with covariance learning and k/m → 0, which seems to be better than the
binary Willshaw model. However, numerical evaluations prove that even
for moderate sparseness in large, finite networks, the Willshaw model per-
forms better (data not shown). To analyze the reason for this discrepancy,
we compute the SNR for the Willshaw model,

SNRWillshaw ≈
(λk(1 − p1))2

λkp1(1 − p1)
=

λk(1 − p1)

p1
. (C.1)

The SNR for the network with linear learning and the optimal covariance
rule has been found to be m/(M(l/n)(1 − l/n)) for zero query noise (Dayan
& Willshaw, 1991; Palm & Sommer, 1996). Using M as in equation 3.2 and
assuming small p1 → 0, this becomes

SNRCov ≈
mkl

−mn(l/n) ln(1 − p1)
=

k

− ln(1 − p1)
. (C.2)

Thus, for small p1 → 0, the SNR will be k/p1 for both models, which falsely
suggests, assuming gaussian dendritic potentials, that the Willshaw model
could also store 0.72 bits per synapse, which is, of course, wrong. In fact,
for k/ log n → 0 (which is equivalent to p1ǫ → 0), equation 3.12 proves zero
capacity for the Willshaw model and strongly suggests the same result
for the covariance rule in the linear associative memory. Further numerical
experiments and theoretical considerations show that even for k ∼ log n, the
Willshaw model performs better than linear covariance learning, although
it cannot exceed C = 0.69 or C = 0.53. This shows that the SNR method
and the underlying gaussian approximation become reliable only for dense
potentiation with p1ǫ → 1 and k/ log n → ∞ (see also Knoblauch, 2008;
Henkel & Opper, 1990).

But even for dense potentiation, the gaussian assumption is inaccu-
rate for linear pattern activities k = cn and l = dn with constant c and d ,
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falsely suggesting constant pattern capacity Mǫ ∼ 1 for m, n → ∞ (note that
dense potentiation may imply highly asymmetric potential distributions;
see Knoblauch, 2003b). In fact, Mǫ → ∞ diverges for RQ1 as can be seen
in equation B.8. Moreover, we can compute upper and lower bounds for
equation B.8 by assuming that all content neurons have a unit usage i larger

or smaller than Md + ξ
√

Md(1 − d) (note that p01 given i increases with i),

p01 ≈ (1 − (1 − c)Md+ξ
√

Md(1−d))λcm. (C.3)

For sufficiently large positive (but for RQ1 still constant) ξ , this approx-
imation is an upper bound. For example, we can choose ξ := Gc−1(ǫ1d)
with ǫ1 ≪ ǫ such that only a few content neurons have a unit usage
more than ξ standard deviations larger than the mean unit usage (here,

Gc(x) := 0.5erfc(x/
√

2) is the gaussian tail integral). Similarly, for large neg-
ative ξ we obtain a lower bound. Requiring p01 ≤ ǫd/(1 − d), we obtain for
the pattern capacity

Mǫ + ξ
√

Mǫ(1 − d)/d ≈
ln(1 − (ǫd/(1 − d))1/(λcm))

d ln(1 − c)
≈

ln m

−d ln(1 − c)
.

(C.4)

Thus, the pattern capacity is essentially independent of ξ . However, com-
pared to equations 3.8 and 4.10, the asymptotic pattern capacity is re-
duced by a factor f := (− ln(1 − c))/c < 1. This turns out to be the rea-
son that the Willshaw network has zero information capacity C I → 0
and zero synaptic capacity C S → 0 for linear address pattern activ-
ity k = cm. With p̃0ǫ := (1 − cd) f Mǫ → 0 (see equation 3.1), it is p0ǫ :=
1 − p1ǫ = p̃

f
0ǫ (see equation 3.7). Therefore, equation 4.1 becomes C I

ǫ ∼
ld(1 − p̃0ǫ)(ln p̃0ǫ)/( p̃

f
0ǫ ld p̃

f
0ǫ) ∼ p̃

1− f
0ǫ → 0. Similarly, equation 4.3 becomes

C S
ǫ ∼ ld(1 − p̃0ǫ)(ln p̃0ǫ)/ p̃

f
0ǫ ≈ p̃

1− f
0ǫ ln p̃0ǫ → 0.

Appendix D: Corrections for Random Query Activity

So far, our exact theory in appendix B as well as the approximative theory
in sections 3 to 5 assume that the query pattern ũ has exactly λk correct
one-entries (and κk false one-entries). This is sufficient for many applica-
tions where specifications assume a minimal quality of query patterns in
terms of a lower bound for the number of correct one-entries. However,
in particular for small k or large λ near 1, we may want to include the
case of random query pattern activity. In the following, we assume that
the address patterns have random activity—each pattern component uμ

i is
one with probability k/m independent of other components. Similarly, in a
query pattern ũ, a one-entry is erased with probability 1 − λ. For simplicity,
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we assume no add noise (i.e., κ = 0). Thus, a component in the query pat-
tern, ũi , is one with probability λk/m. Then the query pattern activity Z is
a binomially distributed random variable, pr[Z = z] = pB(z; m, λk/m) (for
pB , see equation B.5). For a particular Z = z, the exact error probability p01

is given by equation B.7 (or equation B.8), replacing λk by z. Averaging over
all possible z yields

p∗
01 =

m
∑

z=0

pB(z; m, λk/m)
z

∑

s=0

(−1)s

(

z

s

) [

1 −
l

n
(1 − (1 − k/m)s)

]M−1

=
m

∑

s=0

(

−
λk

m

)s (

m

s

) [

1 −
l

n
(1 − (1 − k/m)s)

]M−1

(D.1)

=
M−1
∑

i=0

pB(i; M − 1, l/n)
m

∑

z=0

pB(z; m, λk/m)(1 − (1 − k/m)i )z

=
M−1
∑

i=0

pB(i; M − 1, l/n)

(

1 −
λk

m
(1 − k/m)i

)m

. (D.2)

The first equation is numerically efficient for small k, the last equation for
small M. For the binomial approximative analyses, we can rewrite equa-
tion 3.3 as

p∗
01 ≈

m
∑

z=0

pB(z; m, λk/m)pz
1 =

(

1 − λ
k

m
(1 − p1)

)m

. (D.3)

Controlling for retrieval quality, p∗
01 ≤ ǫl/(n − l), the maximal memory load,

equation 3.7, becomes

p∗
1ǫ ≈ 1 −

1 − ( ǫl
n−l

)1/m

λk/m
. (D.4)

Note that positive p∗
1ǫ ≥ 0 requires ǫ ≥ e−λk(n − l)/ l or, equivalently, k ≥

ln((n − l)/(ǫl))/λ. Consequently, even for logarithmic k, l = O(log n), it may
be impossible to achieve retrieval quality levels RQ1 or higher (see sec-
tion 2.1). For example, k ≤ c log n with c < 1 implies diverging noise
ǫ ≥ n1−c/ l, while RQ1 would require constant ǫ ∼ 1 and RQ2 or RQ3 even
vanishing ǫ → 0. This is a major difference to the model with fixed query
pattern activity.
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Writing x := ǫl/(n − l) and using ex =
∑∞

i=0 xi/ i !, we obtain for the dif-
ference �p1ǫ := p1ǫ − p∗

1ǫ between equation 3.7 and equation D.4:

�p1ǫ ≈ e (ln x)/(λk) −
(

1 +
e (ln x)/m − 1

λk/m

)

(D.5)

=
∞

∑

i=1

(ln x)i

i !(λk)i
−

(ln x)i

i !λkmi−1
(D.6)

=
∞

∑

i=2

(ln x)i

i !(λk)i
(1 − (λk/m)i−1) (D.7)

≈ p1ǫ − 1 − ln p1ǫ, (D.8)

where the last approximation is true for balanced potentiation with fixed
p1ǫ and λk/m → 0. Note that for sparse potentiation with p1ǫ → 0 and
k/ log n → 0 we have diverging �p1ǫ . At least for dense potentiation with
p1ǫ → 1 and k/ log n → ∞, the relative differences vanish: �p1ǫ/p1ǫ → 0
and even �p1ǫ/(1 − p1ǫ) → 0. Thus, at least for dense potentiation, the
models with fixed and random query pattern activity become equivalent,
including all results on information capacity C I and synaptic capacity C S

(see sections 3–5). Proceeding as in section 3.2, we obtain

p∗
1ǫ ≈ 1 + ln p1ǫ ≈ 1 −

ln n−l
ǫl

λk
(D.9)

p∗
0ǫ := 1 − p∗

1ǫ =
ln n−l

ǫl

λk

(

⇔ k ≈
ln n−l

ǫl

λp∗
0ǫ

)

(D.10)

M∗
ǫ = −

mn

kl
ln p∗

0ǫ ≈ −λ2 p∗2
0ǫ ln p∗

0ǫ

k

l

mn

(ln n−l
ǫl

)2
(D.11)

C∗
ǫ = Mǫm−1T(l/n, ǫl/(n − l), 0) ≈ −λp∗

0ǫ ldp∗
0ǫη. (D.12)

The asymptotic bound of network capacity is thus only C∗
ǫ ≤ 1/(e ln 2) ≈

0.53 for p∗
0ǫ = 1/e ≈ 0.368 and retrieval quality levels RQ0-RQ2 (for RQ3,

the bound decreases by factor 1/3 as discussed in section 3.3). Figure 10
illustrates asymptotic capacities in analogy to Figure 6. For dense potenti-
ation, p∗

0ǫ → 0, results are identical to the model with fixed query pattern
activity. For sparse potentiation, p∗

0ǫ → 1, we have C I∗
ǫ := C∗

ǫ /I (p∗
0ǫ) → 0

and still C S∗
ǫ := C∗

ǫ / min(p∗
0ǫ, 1 − p∗

0ǫ) → 1/ ln 2 ≈ 1.44. For k = l maximal
pattern capacity is 0.18λ2mn/(ldn)2 for p∗

0ǫ = 1/
√

e ≈ 0.61.
Note that our result C∗ ≤ 0.53 contradicts previous analyses. For exam-

ple, Nadal (1991) estimates C∗ ≤ 0.236 for p∗
1 = 0.389. We believe that our

results are correct and that the discrepancies are due to inaccurate approxi-
mations employed by previous work. In fact, we have verified the accuracy
of our theory in two steps (see Knoblauch, 2006, 2008; Knoblauch et al.,
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Figure 10: (a) Asymptotic network capacity C∗
ǫ , information capacity C I∗

ǫ ,
synaptic capacity C S∗, and pattern capacity M∗

ǫ as functions of memory load p∗
1ǫ

for the model variant with random query pattern activity. Compare to Figure 6a.
(b) Exact and approximative network capacity for finite network sizes m = n
and mean pattern activity k = l = e ln n (thin lines) or k = l =

√
n (bold lines).

For random query pattern activity, the plot shows results computed with exact
equation D.1 (C∗; black solid) and binomial approximation equation D.9 (C∗,bin;
gray solid). For fixed query pattern activity, the plot shows results computed
with exact equation B.7 (CBWSP; black dashed) and equation B.6 (CKPS; black
dash-dotted), the binomial approximation equation 3.7 (Cbin; gray dashed), and
a gaussian approximation of dendritic potentials (Cgauss; gray dash-dotted; see,
Knoblauch, 2008). Note that the binomial approximations closely approximate
the exact values already for relatively small networks. In contrast, the gaussian
approximation significantly underestimates capacity even for large networks.

2008). First, we have verified all our formulas for the exact error proba-
bilities of the different model variants (equations B.1 to B.8 and D.1 and
D.6) by extensive simulations of small networks. Second, we have proven
the asymptotic correctness of our binomial approximative theory (see equa-
tions 3.3, 3.7–3.9, and D.9–D.12) by theoretical considerations and numerical
experiments (see also Figure 10).
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