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Abstract—In the near future, cameras will be used everywhere
as flexible sensors for numerous applications. For mobility and
privacy reasons, the required image processing should be local on
embedded computer platforms with performance requirements
and energy constraints. Dedicated acceleration of Convolutional
Neural Networks (CNN) can achieve these targets with enough
flexibility to perform multiple vision tasks. A challenging problem
for the design of efficient accelerators is the limited amount
of external memory bandwidth. We show that the effects of
the memory bottleneck can be reduced by a flexible memory
hierarchy that supports the complex data access patterns in CNN
workload. The efficiency of the on-chip memories is maximized
by our scheduler that uses tiling to optimize for data locality. Our
design flow ensures that on-chip memory size is minimized, which
reduces area and energy usage. The design flow is evaluated by a
High Level Synthesis implementation on a Virtex 6 FPGA board.
Compared to accelerators with standard scratchpad memories
the FPGA resources can be reduced up to 13x while maintaining
the same performance. Alternatively, when the same amount of
FPGA resources is used our accelerators are up to 11x faster.

I. INTRODUCTION

Advances in sensor technology and compute platforms
have reduced camera cost and size, and enabled their usage
in numerous applications. Well known examples are systems
that monitor traffic at road intersections [1], and the cameras
that are currently being integrated in glasses as a state-of-the-
art wearable support system [2]. There is a huge potential for
further increasing the use of cameras, provided that privacy
issues can be handled appropriately. This requires that image
processing is performed locally, such that privacy sensitive
data can be discarded at the camera level. This onboard
processing by embedded computer platforms has to satisfy
real-time performance requirements while constraining energy
usage, and should be flexible enough to support many appli-
cations, which is currently not yet the case. General-purpose
processors, with the usual image processing algorithms for
object detection and recognition, are notoriously inefficient
from an energy perspective, and although a custom accelerator
can improve compute performance and energy efficiency this
mostly reduces the flexibility.

Recent work shows that Convolutional Neural Networks
(CNNs) [3] can outperform, and therefore replace, many com-
bined algorithms for vision tasks [4]. Feature extraction and
classification are then combined in a single flexible model that
can adapt functionality by simple weight updates. Reported ap-
plications are face detection [5], traffic sign detection [6], and
many others. An embedded camera platform equipped with a
CNN accelerator has the performance advantages of dedicated
acceleration without sacrificing flexibility for multiple vision
tasks.
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Fig. 1. Data transfer energy for DRAM and On-Chip accesses

A CNN allows sufficient parallelism to execute hundreds
of operations in parallel. The current bottleneck in available
platforms for efficient utilization of parallelism is data transfer.
Evaluating a trained CNN on 720p video involves a large
number of convolutions, which in a single layer can require 3.4
billion memory accesses. Without on-chip buffers all accesses
are to external memory, requiring huge memory bandwidth and
consuming a lot of energy. The number of external accesses
can be reduced by on-chip memory that exploits data reuse.
Varying on-chip memory size is in essence trading chip area
versus memory bandwidth. E.g. 4 MB on-chip memory can
reduce the external accesses to 5.4 million.

We estimated the energy of data transfer for varying on-
chip memory size with a memory tracing tool [7], and did
energy estimation for external [8] and on-chip [9] accesses.
From the result, depicted in Figure 1, we conclude that
increasing accelerator utilization with more external memory
bandwidth is bad for energy. Although on-chip memories can
help to increase accelerator utilization, along with the size, the
energy consumption per access also increases. In other words,
large on-chip memories do not solve the energy problem.

In this paper we present a memory-centric accelerator to
improve performance without increasing memory bandwidth.
This accelerator uses specialized memories that support the
data movement patterns and optimized scheduling for data
locality. This combination allows the required buffer size to
be minimized and data reuse to be maximized. Specifically,
we make the following contributions:

• A configurable accelerator template for CNN, with
flexible data reuse buffers. The template supports the
different compute patterns in the CNN workload and
can be configured to match the external memory
bandwidth.

• A memory-centric design flow to synthesize and pro-
gram the accelerator template. Our design flow uses
quick design space exploration to optimize on-chip
memory size and data reuse.



• A high-level verification and evaluation of the method-
ology by FPGA mapping of a speed traffic-sign recog-
nition application.

This enables the synthesis of accelerators that are very efficient
in terms of utilization, FPGA resources and external bandwidth
requirements. Compared to accelerators with standard scratch-
pad memories, the buffer resources can be reduced up to a
factor 13 while maintaining performance. In addition, when
the same amount of FPGA resources is used our accelerators
are up to 11 times faster.

The paper is organized as follows. Section II discusses
related work. Section III gives a computational overview of the
CNN algorithm. Section IV presents the hardware accelerator
template. Section V outlines the complete design flow. We
present the evaluation of our method in Section VI, and the
conclusions in Section VII.

II. RELATED WORK

Acceleration of the CNN algorithm for FPGA or VLSI
has been done by others. They have focused on the filter-
ing part, because that represents 90% of the computational
workload of the CNN. Systolic implementations seem to be
a natural fit, because they are very efficient at that filtering.
Recently, two design proposals were built around systolic
implementations of the 2d convolution operation: NEC labs
developed a convolutional coprocessor [10] and an accelerator
design is reported in [11]. However, systolic implementations
are very inflexible. Therefore, these proposals had to resort
to complex arbitration and routing logic to share inputs and
connect outputs of the convolvers to other resources. Further-
more, systolic implementations support only convolutions up
to the implemented kernel size, e.g. up to 7x7 convolutions.
When a network requires a reduced kernel size, the hardware
utilization drops. In addition, the amount of utilized reuse is
limited because there is no flexible memory hierarchy with
on-chip buffers. As a result, both accelerators require a high
memory bandwidth to deliver performance. For example, the
accelerator developed by NEC labs requires 3 memory banks,
each with an independent memory port for 5.8 GB/s external
memory bandwidth, whereas our solution requires an external
bandwidth of 150 MB/s.

In our work the kernel size is not restricted, nor does it
influence utilization. This is due to having the convolution
operations performed by Single Instruction Multiple Data
(SIMD) type of Processing Elements (PEs). Moreover, inspired
by the work on memory hierarchies for block matching algo-
rithms [12], we use similar BRAM-based multi-bank on-chip
buffers to minimize the required bandwidth.

We have complemented this technique with a design flow
that uses off-line scheduling to optimize the iteration order
for data reuse from the on-chip buffers. Iteration ordering
to optimize locality for CPU caches has also been studied
by others. The work of [13] demonstrates that nested-loop
applications can be automatically optimized for data locality.
This idea is further extended with multiple transformations
as the polyhedral model from [14]. In [15] the polyhedral
model is used to synthesize optimized accelerators by High
Level Synthesis. However, time consuming empirical tuning
is necessary to optimize the size of the on-chip buffers.
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Fig. 2. CNN speed sign recognition in a video frame with merged feature
extraction layers

Compared to [15], our accelerator is more flexible because it
is programmable with configuration words, such that varying
workloads can be used.

III. RECOGNITION WITH CNN

In this section we outline the feed-forward recognition
phase of the CNN algorithm. The recognition mode is per-
formed on embedded platforms with real-time performance
and energy constraints, which is the part that our work focuses
on. Since training, used to compute the filter kernel coeffi-
cients, is performed off-line, it is not considered in this work.
As a result we assume that a trained network is available for
the feed-forward recognition phase.

A. Algorithm

Traditional vision applications use feature extraction and
classification as two distinct steps. The feature extractor largely
influences the classification accuracy. Because this extractor is
often developed manually, the system performance depends
on the ability of the designer to come up with a set of
rules to extract an appropriate set of features. In contrast,
a CNN combines the two steps in a single trainable model.
We outline the model with an example of a speed sign
recognition application for a car driver support system [6].
The architecture of the model is depicted in Figure 2. First, the
network performs feature extraction by a cascade of trainable
convolution and subsample operations. In these layers simple
features such as edges are extracted, which are combined in the
next layers to detect more complex features such as corners or
crossings. Secondly, the features, represented as feature maps,
are classified by feed forward neural network layers. The final
outputs describe whether there is a sign and to which category
it belongs.

A significant portion of the computational workload occurs
in the feature extraction layers. By merging the convolution
and subsample layers we have demonstrated that the workload
is substantially reduced, with equal recognition accuracy [16].
In addition, the required data transfer for the intermediate re-
sults is reduced. With the algorithmic modification the network
can still be expressed as a series of filters. For example the
operation in layer 1 is given in (1) and can be described as a
2d convolution with a step size of 2 positions.

y[m,n] = φ(b+

K−1∑

k=0

L−1∑

l=0

w[k, l]x[mS + k, nS + l]) (1)

In the expression, the input image is represented by x, the
weight kernel by w, and y is the output feature map. The
subsample factor S is used by the indices of x. This general
expression is used for all layers in the network. Since clas-
sification layers do not use subsampling, the factor S is 1



for layer 3 and 4. The bias value b and the evaluation of the
sigmoid function φ are used in all layers. The kernel size can
vary from layer to layer and is defined by K and L.

In general, a layer in the network converts Q input images
X1...XQ to R output images Y1...YR. For example, in layer 1
the input image is filtered 6 times by (1), each time with a
different weight set. However, in layers 2-4 the network uses
multiple input feature maps to compute each output map. For
this situation, the definition of (1) changes to:

yr = φ(b+
∑

q∈Q

wr,q ∗ xq) (2)

The operator * in (2) represents the parameterized convolution
operation of (1) with subsample factor.

B. Practical implications

The huge amount of data reuse in the algorithm has practi-
cal implications that should be considered before implementa-
tion. For example, the ordering of operations and selection of
parallelism are key parameters that influence data transfer and
computational resource usage. The parameter design-space we
consider contains 4 levels:

• Convolution kernel level, the multiplication of a small
window in x with weights in w.

• Neuron level, y[m,n] values in a feature map see (1).

• Input image level, input feature maps that should be
combined as shown in (2).

• Output image level, multiple output feature maps in a
layer.

Each level in the algorithm has a different data transfer pattern
and contains an amount of data reuse. In addition, different
layers or network configurations change the properties of the
4 levels. For example, in figure 3 the first layers have much
parallelism at the kernel level. Layer 4, on the other hand, has
no kernel level parallelism because the kernel size is 1x1. As
a result, an accelerator must be flexible to be efficient for each
CNN layer.

To refer accurately to the different operations in a CNN,
a nested-loop description of each layer is used. An example
description of Layer 3 of the speed sign network is given in
Listing 1. Outer loop r represents the output feature maps
and loop q the connected input feature maps. Additionally,
loop m and n describe the feature map rows and columns,
respectively. Finally, loop k and l describe the rows and
columns, respectively, of the convolution operation.

for(r=0; r<R; r++){ //output feature map

for(q=0; q<Q; q++){ //input feature map

for(m=0; m<M; m++){ //output values in a map

for(n=0; n<N; n++){
if(q==0){Y[r][m][n]=Bias[r];}
for(k=0; k<K; k++){ //kernel operation

for(l=0; l<L; l++){
Y[r][m][n]+=W[r][q][k][l]*X[q][m+k][n+l];

}
}
if(q==Q-1){Y[r][m][n]=sigmoid(Y[r][m][n]);}

}
}

}
}

Listing 1. Example loop-nest representing Layer 3 of the speed sign CNN
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IV. CNN ACCELERATOR TEMPLATE

The accelerator template is presented in a design flow
for Xilinx FPGAs. For control purposes the accelerator is
connected to a MicroBlaze host processor. This processor
sends configuration parameters such as the number of feature
maps and their dimensions. When the accelerator is in oper-
ation, the host processor streams data in and out though Fast
Simplex Link (FSL) connections. A high-level overview of the
accelerator template is given in Figure 3.

Our accelerator template possesses two types of flexibility:
it is configurable, and programmable. Configurability is used to
design accelerators that are matched to the available platform
resources. Programmability is used to maintain performance
with the varying workload over CNN layers. To achieve
these targets a cluster of SIMD type of Multiply Accumulate
(MACC) PE is used to accelerate the convolutions. Each PE
sequentially computes a neuron value in a feature map. Hence,
iterations of loop m and n are divided over different PEs,
and iterations of loop k and l are performed by one PE. To
maximize utilization of the PE cluster we use flexible reuse
buffers that exploit the predictable data access patterns in
a CNN. The sigmoid activation functions are evaluated by
lookup tables.

A. Flexible memory subsystem

The memory subsystem facilitates the flexibility and in-
creases communication bandwidth by exploiting data reuse in
memory access patterns. This is implemented by a series of
dual ported FPGA Block RAMs (BRAMs). In Figure 4 the
communication is depicted in more detail. The example shows
four PEs that compute neighboring output results in a row of
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a feature map (parallel execution of four iterations of loop n).
Because weight values are shared in a feature map, these are
broadcasted to the PEs. The small set of values in the weight
BRAM is reused for the other neurons in the feature map.

1) Row based storage: In addition to the weights, each
cycle the PE require a series of input feature map values, x
in (1). If there is no subsampling, the four PEs first require
[x00 x01 x02 x03], secondly [x01 x02 x03 x04], etc. The read
bandwidth to send the values of x to the PEs is created by using
four BRAM banks. The writing controller is configured to store
successive values cyclic over banks. As depicted in Figure 4,
the read controller is configured to read four addresses that
are rotated in the correct order. Since the buffer for 5x5
convolution should only hold 5 input lines, the values of the
first line that are used can be overwritten by new values located
5 lines further on in the feature map. To support the read and
write patterns, modulo addressing is used in two dimensions:
for the banks, and for input feature map lines.

2) Compute feature maps in parallel: The number of PEs
and BRAM banks can be increased to exploit more parallelism.
For large numbers the rotate logic would become complex. As
a result, parallelism is exploited over output feature maps that
share input feature maps (parallelism over iterations of loop r).
This configuration of the template is depicted in Figure 5.
The number of weight BRAMs increases because each output
feature map requires a different weight kernel. Since input
feature map values are shared, these are broadcasted to both
groups of PEs.

3) Partial column based storage: Another modification
to the template involves parallelism over neighboring output
results of a column instead of a row (parallelism over iterations
of loop m). In this configuration, the PEs require patterns
such as [x00 x10 x20 x30], and [x10 x20 x30 x40], etc. To
support this pattern small portions of columns are loaded in
the input feature map buffer. Portions of other required input
feature maps are stored at deeper positions of the buffer. In
Figure 5 this is depicted by column [y00 y10 y20 y30]. Each
extra input feature map in the memory reduces the number of
communications for the temporal result yr in (2) by reuse of
Y over iterations of loop q in Listing 1.

4) Column based storage with subsampling: Due to the
flexibility of the reuse buffers subsampling factors are directly
supported. If (1) contains a subsample factor S > 1 the
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parallel feature map neurons are not direct neighbors. As a
result a different pattern must be send to the PEs, e.g. S=2,
[x00 x20 x40 x60], [x10 x30 x50 x70], etc. Figure 6 shows one
of the possible writing and reading schedules that can be used
to implement a subsample factor of 2.

B. Parameterized HLS Templates

SIMD type of PEs, in combination with programmable
reuse buffers, result in a very flexible accelerator. Multiple pa-
rameters of a CNN are programmed in the execution schedule,
which can change during execution. Examples are: convolution
kernel size (loops k and l), feature map size (loops m and n),
number of input feature maps (loop q), and subsample size.
These parameters ensure that the accelerator supports a variety
of layer configurations. In addition it is possible to configure
parameters of the template that influence the hardware instanti-
ation. These parameters are fixed after synthesis; examples are
the number of PEs, connectivity, supported addressing modes,
buffer configuration, and buffer depth.

For quick evaluation of accelerator configurations we syn-
thesize the template with the Vivado HLS (AutoESL) tools
from Xilinx. This allows us to use a high-level accelerator
description in C, and to use HLS directives to specify the
hardware configuration. The configuration involves partition-
ing of the flexible memory banks, or pipelining of operations
in the MACC PE. Due to size constraints of the paper
we do not further specify these directives, but refer to the
documentation [17] for more information. Modulo addressing
logic is implemented as variable increments and a test for the
used modulo value.

V. DESIGN FLOW

If reuse buffers have enough content the MACC PEs can
continue processing. Because bandwidth towards the buffers
is relatively small, reuse of data is exploited to increase
bandwidth for reading from the buffers. Our design flow
selects the best computation schedules to maximize data reuse
for a buffer size restriction. This goal is achieved by loop
transformations such as interchange and tiling on the nested-
loop description of a CNN layer. A schematic overview of
the design flow is depicted in Figure 7. This section briefly
outlines the design flow, detailed information can be found in
our extended technical report [18].

1) Use memory access function for modeling: The first
steps in the design flow involve the detection of data reuse
patterns in a CNN layer. This is performed by modeling mem-
ory access patterns as affine access functions (linear functions
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of variables and loop iterators with a constant) [13]. Tools
such as PET [19] automatically extract such representations.
We convert access functions into two analytical models that
model the effects of a possible schedule. The first computes
the working set size in the accelerator. The second is a cost
function that models the number of external accesses. The
combination of the two is used to optimize intra- and inter-tile
reuse for a bounded working set size.

2) Memory effects of different schedules: The models are
clarified by the effects of different schedules, as depicted in
Figure 8. It illustrates the data access patterns when reading
an input image for a 3x3 convolution. The real design flow
also models transfer and storage of coefficients, intermediate
results, and outputs. Figure 8(a) illustrates a schedule that starts
four PEs in a 2x2 grid. The bullets represent memory locations,
and the blue ones are the start addresses for the four PEs.
To compute the four results, the working set size spanned by
the green box is required; this defines the accelerator memory
size requirement. In addition, we model the communications
per iteration, defined as: the number loads divided by the
compute iterations. As shown, a reduction of communications
is achieved when successive tiles reuse their overlapping
values. This reuse is illustrated with a purple box, and the
remaining communication by an orange box. Figure 8(b) shows
a better schedule regarding data reuse by maximizing the
overlap between successive tiles. Further more, the memory
footprint is reduced to 15 values instead of 16. This example
shows that the ordering of iterations has a substantial effect
on communications and local memory size.

3) Scheduling Design Space Exploration: The space of
possible accelerator schedules is large, especially if the al-
lowed buffer size is increased. This search space increases
exponentially with the number of CNN dimensions (or loop
dimensions in Listing 1). In practice the optimization prob-
lem is manageable because the memory size constraint is a

TABLE I. OPTIMAL SCHEDULE PER LOCAL MEMORY SIZE

CONFIGURATION

mem. size 32 64 128 256 512 1k 2k 4k

tile dir. n n n n n n n n
r 1 1 3 3 3 7 7 14
q 3 1 1 2 4 4 8 8
m 1 3 4 5 5 9 10 20
n 1 1 1 1 1 1 1 1
k 1 5 5 5 5 5 5 5
l 5 5 5 5 5 5 5 5

access/iter. 0.356 0.176 0.109 0.066 0.046 0.029 0.019 0.014

set size 31 63 127 255 495 1023 2030 4040
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monotonic function. As a result it is not necessary to check
all configurations, because many are invalid regarding memory
size. On a standard laptop the optimization procedure for a
series of memory sizes, as depicted in Table I, is performed in
two seconds. The table present the optimal schedules that mini-
mize external accesses for layer 3 of the speed sign recognition
CNN. Each column represents a schedule that corresponds to a
memory size constraint. Furthermore, it contains the modeled
number of external communications per iteration.

4) Pipelined Tile Processing: The proposed schedules are
implemented as a pipelined communication stream. A control
part of the schedule runs on a MicroBlaze host processor,
it communicates the required data for a tile to the accelera-
tor. Because communication goes through FIFO based FSL
connections, it is possible to overlap communication and
computation. A graphical representation of the communication
flow is depicted in Figure 9. The control part starts by loading
a parameter set in the accelerator. Next, the prolog part is
communicated: it fills the buffers with the data that is required
before processing can start. Finally, a number of stream
communications is performed, and as a result the accelerator
returns the results. This sequence is repeated until a CNN layer
is complete and a new parameter set must be communicated.

A. Accelerator Instantiation

To instantiate the accelerator template with the obtained
schedules, an HW/SW integration flow is used. Figure 10 gives
an overview of the flow that configures the HW template of
Section IV. The top left part contains the scheduling design
space exploration, from which the optimal schedules are used
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Fig. 10. Accelerator design, mapping and configuration flow.
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to select the template parameters. The parameter set and
the hardware template are manually converted into a HLS
instantiation of the accelerator. In the left part of the design
flow the selected schedule is manually converted to control
software for the MicroBlaze host processor.

VI. EXPERIMENTAL EVALUATION

For evaluation of our method we analyze the effect of
different schedules on the external memory accesses. The
SLO [7] reuse profiling tool is used to compare the original
schedule of Listing 1, with the optimized schedules of Table I.
The results are depicted in Figure 11, for the original iteration
order the external communications are reduced when a new
loop level fits in the buffer. The memory accesses estimations
of the model, and the simulations of the schedules are plotted
in the same figure. The graph indicates that our models
are somewhat pessimistic compared to the simulated results.
However, the substantial reduction of external communications
and buffer size is remarkable.

A. Accelerator performance

To quantify the performance of the improved schedules,
we compare with the original schedule. The differences are
measured by mapping with the accelerator template to a Xilinx
ML-605 Virtex 6 FPGA board. The system clock frequency of
presented results is 150 MHz.

1) Original schedule: For the mapping, two degrees of
freedom are evaluated: the amount of parallelism (MACC PE),
and local buffer size. Parallelism influences the compute time,
and buffer size the data transfer time. For the buffer size three
interesting design points are extracted from Figure 11. These
points mark buffer sizes where reuse of a new loop level is
utilized; they are annotated as loop m, q, and r.

Figure 12 shows the execution time of the mappings
versus the number of instantiated MACC PEs. Obviously,
the execution time does not scale well with the amount of
parallelism that is used, and in particular the data transfer time
is responsible. In addition, the mapping that utilizes all reuse
with big local buffers (loop r) does not scale well beyond 8
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MACC PEs. This is due to big local memory structures, which
have significant read and write delays.

The FPGA resource usage for the three accelerator configu-
rations are depicted in Figure 13. The resource usage is defined
as: the maximum of the percentages for instantiated DSPs,
BRAMs, LUTs and flip-flops of the total available for each
category. The text label next to each design point indicates
which resource is critical. The accelerator designs of loop q
and r, are dominated by BRAMs because the local buffers
store 55000 and 500000 elements, respectively.

2) Optimized schedules: Figure 14 shows the execution
time of mappings generated with locality optimized schedules.
Each line in the graph represents a column of Table I. The
scaling in execution times shows that more buffer size is
required when the number of PEs is increased. Since this
reduces the compute time, it becomes impossible to overlap
data transfer, and as a result data transfer becomes dominant.
Since, the external bandwidth is known, it is possible to predict
data transfer problems in advance. Table II shows the compute
time for one single MACC PE and predicted data transfer time
for an accelerator with 32 or 64 entry local buffer sizes. If data
transfer time is smaller than compute time, total execution time
is close to the theoretical optimum. This happens because the
accelerator overlaps data transfer and compute time. This also
holds for mappings with large local memories e.g., for the
4096 entry mapping compute and transfer times are balanced
for 20 PEs, but for 40 PEs there is an imbalance that saturates
execution time.

TABLE II. THE MODELED BALANCE BETWEEN COMPUTE AND

TRANSFER TIME

Compute Data transfer Data transfer Compute

1 PE acc 32 acc 64 acc 4096 20 PE 40 PE

5828 ms 8225 ms 4066 ms 323 ms 291 ms 146 ms

The FPGA resource usage for optimized accelerators is de-
picted in Figure 15. For these designs, the amount of required
BRAMs, DSPs, LUTs and flip-flops are better balanced. To
compare resource efficiency with the original iteration order,
the pareto-points of Figure 15 are plotted in Figure 13. The
comparison shows that locality optimized accelerators can
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Fig. 14. Accelerator performance for optimal iteration orders



0.25

0.5

1

2

4

8

16

32

0.5 1.0 2.0 4.0 8.0 16.0 32.0

Ex
ec

ut
io

n 
Ti

m
e 

[s
]

FPGA Resources Used [%]

acc 32
acc 64
acc 128
acc 256
acc 512
acc 1024
acc 2048
acc 4096

Fig. 15. FPGA resource utilization for optimal iteration orders

gain up to 11x better performance with equal resource cost.
Furthermore, locality optimized accelerators require up to 13x
fewer resources with equal performance.

B. Memory bandwidth limitations

Due to the small memory bandwidth of the MicroBlaze
core, the accelerator of the previous section does not scale
beyond 20 MACC PEs. By packing multiple memory accesses
in larger words, the theoretical bandwidth is increased from
37.5 MB/s to 150 MB/s. For this case, the 32-bit width
of the FSL link is the limiting factor. The dashed lines in
Figure 16 show the scaling improvement that is achieved by
packing memory accesses. With 150 MB/s, the accelerator can
efficiently utilize 140 MACC PE for the convolutions.

VII. CONCLUSION

In this paper we demonstrated that a memory-centric design
method for CNN accelerators can achieve a substantial perfor-
mance increase. This increase is mainly caused by efficiency
improvements in the data access patterns. As a result, resource
costs such as external memory bandwidth and FPGA resources
are modest. By using an HLS accelerator template with a
flexible memory hierarchy, we ensure that a broad range of
CNN configurations is supported. In addition, our design flow
for on-chip buffer management is novel, since our optimization
flow quickly analyzes the possible scheduling alternatives and
returns the best schedules that minimize external communica-
tions and buffer size. The accelerator template and the design-
flow are combined into an end-to-end solution that drastically
reduces development time for efficient CNN accelerators for
an embedded vision platform. As a result we were able to
analyze and verify our method extensively on a Virtex 6 FPGA
board with the Xilinx tool chain. For the analysis we used a
CNN vision application for speed sign recognition on a 720p
HD video. The CNN model does not change over varying
vision applications. Only the network configuration and weight
coefficients change if a different application is started. Due
to the flexibility of our template and mapping flow, CNN
accelerators prove to be suitable for many types of vision
tasks. This opens new possibilities for flexible smart camera
platforms that can perform a range of vision tasks on efficient
hardware.

A. Future work

Although the presented design flow is complete, some
elements need to be added. This mainly involves engineering
work to increase the ease of use. For example the construction
of the HSL instantiation of the accelerator requires manual
code transformations of the template and the parameter set.
In our future work the generation of HLS instantiations will
be automated by C++ template functions. Furthermore, the
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Fig. 16. Accelerator performance with memory access grouping

external memory transfers of the platform are facilitated by
a MicroBlaze soft core. In our future work these transfers are
performed by a dedicated DMA controller in the system. This
will further improve scaling to use many more PEs efficiently.
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