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Memory Conflict Analysis and Implementation of a  
Re-configurable Interleaver Architecture Supporting 

Unified Parallel Turbo Decoding 

Rizwan Asghar, Di Wu, Johan Eilert, Dake Liu 

 
Abstract − This paper presents a novel hardware interleaver 
architecture for unified parallel turbo decoding. The 
architecture is fully re-configurable among multiple standards 
like HSPA Evolution, DVB-SH, 3GPP-LTE and WiMAX. 
Turbo codes being widely used for error correction in today’s 
consumer electronics are prone to introduce higher latency 
due to bigger block sizes and multiple iterations. Many 
parallel turbo decoding architectures have recently been 
proposed to enhance the channel throughput but the 
interleaving algorithms used in different standards do not 
freely allow using them due to higher percentage of memory 
conflicts. The architecture presented in this paper provides a 
re-configurable platform for implementing the parallel 
interleavers for different standards by managing the conflicts 
involved in each. The memory conflicts are managed by 
applying different approaches like stream misalignment, 
memory division and use of small FIFO buffer. The proposed 
flexible architecture is low cost and consumes 0.085 mm2 area 
in 65nm CMOS process. It can implement up to 8 parallel 
interleavers and can operate at a frequency of 200 MHz, thus 
providing significant support to higher throughput systems 
based on parallel SISO processors. 
 
 
Keywords − Parallel interleaver, Parallel turbo decoding, Block 
interleaver, Multi standard, HSPA, LTE, WiMAX, DVB-SH. 

1 Introduction 

Latest trends in radio communication systems always demand 
for a flexible and general purpose solution for data processing 
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including symbol processing and forward error correction 
(FEC). Turbo Codes [1] are being widely used as a forward 
error correction system in the consumer electronics in order to 
detect and correct the errors during transmission over noisy 
channels. Interleaving plays a vital role in improving the 
performance of Turbo Codes in terms of bit error rate. The 
primary function of the interleaver is to improve the distance 
properties of the coding schemes and to disperse the sequence 
of bits in a bit stream so as to minimize the effect of burst 
errors. At present a number of standards specifications like 
HSPA Evolution [2][3], DVB-SH [4], UMTS-LTE [5] and 
WiMAX [6] have already included the turbo codes. The 
scheme of turbo code adapted is the parallel concatenated code 
with two 8-state constituent encoders and an internal 
interleaver. One turbo code internal interleaver is used in the 
turbo encoder while the turbo decoder uses multiple instances 
of interleaver and de-interleaver to decode the received bits 
iteratively (Figure 1).  

Along with multi-standard support, requirements of higher 
throughput are also emerging in connection with customer 
needs. On the other hand turbo codes in general exhibit latency 
(further reducing throughput) due to bigger block sizes and 
multiple iterations over soft bits needed to reach to a reliable 
hard decision. The latency can increase further if interleaver 
block size is varying in every transmission time interval (TTI) 
with the requirement of some pre-processing while changing 
the block size. The technique of parallel turbo decoding is well 
established to meet the high throughput requirements [7] - [10], 
but it also requires implementation of parallel interleavers. If 
there are P parallel SISO processors then P sub-interleavers 
has to be implemented in parallel and each sub-interleaver will 
be responsible to generate /N P interleaver patterns 
independently where N  is the total block size. The main 
schemes of parallel turbo decoding can be applied to different 
standards without any modifications; however, interleaving 
varies among different standards. Many challenges are 
involved including unified address generation and conflict 
management which restrict the use of same parallel turbo 
decoding architecture for multiple standards. This paper paves 
special focus on handling these challenges and presents an 



implementation of a re-configurable interleaver architecture 
targeting unified parallel turbo decoding.  

The rest of the sections in this paper are organized as 
follows. Section 2 provides a picture of previous work done 
and challenges involved while implementing parallel 
interleaver support for parallel turbo decoding. Sections 3 – 6 
cover the parallel interleaving in HSPA Evolution, DVB-SH, 
3GPP-LTE and WiMAX standards respectively. Following the 
hardware multiplexing methodology, the unified architecture of 
the re-configurable parallel interleaver is presented in 
Section 7. Section 8 provides the implementation results 
followed by a conclusion. 

2 Background and Challenges 

Looking at the implementation aspects recursive systematic 
convolutional encoders are very simple to implement as 
compared to SISO decoding in turbo decoder, but the 
interleavers usually tend to have same complexity on both sides 
because of its variability. The implementation of interleaver on 
decoder side becomes more challenging when parallel 
interleaver implementation is needed in order to support 
parallel SISO processing. Other then the architectural 
complexity for generation of parallel interleaver addresses one 
of the big challenges is to deal with memory conflicts 
associated with multiple writes and reads at the same time. If 
the multiple addresses generated do map to different memories 
i.e. one address for each memory then there is no conflict, but 
on the other hand if two or more addresses are mapped to same 
memory then a situation of conflict occurs (Figure 2) and it 
needs to be resolved on-the-fly.  

The conflict percentage from the parallel generated 
addresses is sometimes very high and no straight forward 
solution exists except using double memory size which is not 
cost efficient. Work in [11] − [13] provide good theoretical 
back ground and also propose the generation of conflict free 

interleavers but they cannot be directly used for already 
existing interleaver algorithm for the standards being 
investigated in this paper. The work presented in [14] − [19] 
covers single address generation supporting maximum of two 
standards but they do not support parallel interleaver address 
generation. Reference [21] provides a parallel interleaver 
architecture for HSPA+ but it does not cover the support for 
multi-mode environment. A good analysis of memory conflicts 
for interleaver in turbo decoder is provided in [22]. The stalling 
mechanism is used to stall the process in MAP decoders when 
a conflict occurs. The main focus of this work has been the 
buffer management. Further the stall process may result in 
additional control complexity. Reference [23] provides a good 
theoretical background along with an interleaver architecture 
supporting parallel turbo decoding. However, it supports only 
one standard i.e. WiMAX Duo-Binary Turbo Decoding. The 
implementation of a parallel interleaver for a multi-mode 
environment appears to be a bottleneck, which also restricts to 
use same turbo decoding core for multiple standards. This 
motivates the work on a re-configurable interleaver 
architecture to support unified parallel turbo decoding. A low 
cost and re-configurable solution for parallel interleaver 
implementation for existing interleaver algorithms can open 
more opportunities to meet the high throughput requirements 
and at the same time it can help to meet fast time-to-market 
requirements from industry and customers. This paper 
addresses the management of memory conflicts and proposes 
certain schemes to reduce them with lower silicon cost 
overheads. By exploiting the hardware re-use methodology 
among different standards a unified architecture is presented 
which is low cost and fully re-configurable to generate the 
parallel interleaving patterns on-the-fly.  

3 Parallel Interleaver for HSPA Evolution 

The throughput requirements for WCDMA based systems have 
been raised in a series of specifications. After addition of 
MIMO and 64 QAM in Release 8 [3] the throughput 
requirements have reached to 43.2 Mbps. The interleaver 
associated with HSPA+ is not inherently designed to support 
parallel SISO processing, but higher throughput requirements 
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Figure 2: A situation of conflict at (T+k). 
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and requirement to change the block size in each transmission 
time interval motivates to have the provision of more than one 
SISO processing in parallel. The interleaving algorithm for 
3GPP-WCDMA is mentioned below. Here N  is the block size, 
R is the row size and C  is the column size in bits. 

 Find number of rows ‘R’, prime number ‘p’ and primitive 
root ‘v’ for particular block size as given in the standard. 

 Col Size :  C = p-1; if ( N ≤ R × (p-1) ) 
  C = p; if ( R × (p-1) < N ≤ R × p) ) 
  C = p+1; if ( R × p < N )   

 Construct intra row permutation sequence S(j) by: 
 S(j) = [ v × S(j-1) ] % p ;  j = 1,2, ……. p-2 

 Determine the least prime integer sequence q(i) for i = 1,2, 
…… R-1 , by taking q(0) = 1, such that g.c.d(q(i),p-1) = 1 
and  q(i) > 6 and q(i) > q(i-1). 

 Apply inter row permutations to q(i) to find r(i) = T ( q(i) ) 

 Perform the intra row permutations Ui,j; for i = 0,1,... R-1 
and  j = 0,1, ... p-2; 

 If (C=p) :  Ui,j =S [ (j×r(i)) mod (p-1) ] and  
  Ui,(p-1)=0; 
 If (C=p+1) : Ui,j =S [ (j×r(i)) mod (p-1) ] , and  
  Ui,(p-1) = 0; Ui,p = p; and if (N = R × C) 
  then exchange U(R-1,0) with U(R-1,p)  
 If (C=p-1) : Ui,j =S [ (j×r(i)) mod (p-1) ] – 1 ; 

 Perform the inter row permutations 

 Read the address columns wise 

The complication in the implementation is evident due to the 
presence of complex functions like modulo computation, intra-
row and inter-row permutations, multiplications, finding least 
prime integers, and computing greatest common divisor. After 
applying the intra-row and inter-row permutations a block of 
random addresses denoted by ky  appears as shown below: 
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The output from the interleaver is the sequence read column-
wise from the permuted matrix. The output address kY  within 
the matrix can be expressed as: 

( 1)

: 1
: 1

k i R j

loop i to C
loop j to R

Y y  
 

Generating two addresses 1
kY  and 2

kY  at the same time will 
reduce the overall loop size to half as follows: 
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The two addresses generated simultaneously are used to write 
two data values in two memory locations. In case of a conflict 
while writing into same memory, it needs to be resolved on-
the-fly. The following sub-section provides a comprehensive 
analysis to reduce the memory conflicts associated with whole 
range of block sizes in HSPA+. 

3.1 Memory Conflict Analysis 

The number of conflicts for HSPA+ interleaver reaches to 50% 
of the data size as shown in Figure 3. One way to reduce the 
number of conflicts is to introduce a misalignment in the 
generation of two addresses (Figure 4). The misalignment can 
be achieved by introducing a delay line to one set of addresses 
and data values. It introduces the latency on one of the two 
sequences, thus the arbitrary value called misalignment factor 
(MF) cannot be very large. There are three possible values for 
R (number of rows) in the prescribed interleaver i.e. 5, 10 or 20 
and good MF must be within the total number of rows. It is 
observed that the inter-row permutation patterns for R=5 or 10 
are supportive to misalignment technique but the permutation 
patterns for R=20 are not very much supportive. The best MF 
found is 3 for R=5 or R=10 and 5 for R=20. Using these values 
of MF the conflicts are reduced to around 10 % as shown in 
Figure 3. Still the conflict count is high enough that it cannot 
be managed without the support of extra memories. 
Alternately, a large amount of buffer registers can be used to 
handle this situation but it involves higher latency.  

Another approach might be to split the memory banks into 
relatively smaller sub-memories to reduce the number of 
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conflicts. Up to 8 memories are already needed for 8 parallel 
turbo interleavers in this design, thus we can divide each 
memory bank required for HSPA+ into 3 sub-memories. By 
applying this configuration to the interleaver address 
generation and data writing the amount of conflicts for most of 
the block sizes reduced to zero (Figure 3), but still many block 
sizes face some conflicts. However, the amount of conflicts is 
very small and it can be handled by using buffer registers. The 
number of FIFO buffers can further be reduced by applying the 
progressive write during the conflict occurrences in the other 
memory bank. The total number of FIFO buffers needed for 
each memory after memory division is plotted in Figure 5 with 
maximum of 12 FIFO registers required for memory M3.  

3.2 Pre-Processing 

In order to make the interleaver architecture fully autonomous, 
the parameters like R, C  , ( )q i , ( )T i , ( )S j , p and v are needed to 
be computed in hardware. Some of these parameters can be 
computed using lookup tables while the others need some close 
loop or recursive computations. The most critical parameter 
consuming more clock cycles and more hardware to compute is 
the intra-row permutation pattern ( )S j . The function to be 
computed for all the permutations is: 

 ( ) ( 1) %S j v S j p    (1) 

Where 1,2,..... 2j p  . This function exhibits un-known clock 
cycle delay due to the reason that the value ( 1)S j   is not 
known with each j, therefore targeting low cost 
implementation it is computed beforehand recursively and the 
results are stored in a small RAM called intra-row permutation 
RAM (IRP_RAM). One way of computing this parameter is 
using the Interleaved Modulo Multiplication Algorithm [20] 
which needs more than one clock cycle to compute one value. 
The hardware to compute ( )S j  using modulo multiplication 
algorithm is shown in Figure 6 (a). Looking at the maximum 
size of v which is 5 bits this algorithm can take 5 clock cycles 
to compute each ( )S j  recursively.  

Another approach to compute the modulo function is the 
segmentation based modulo computation (SBMC). The idea is 
to use only addition functions or shift-left by one in series 
followed by a modulo addition. This method might not be 
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Table 1: HSPA+ Pre-processing cycle cost comparison (cycles). 

Block Size Ref. [14] Ref. [16] Ref. [18]† Proposed 

40 317 15 19 11 

41 295 23 31 14 

5040 3587 802 821 303 

5114 3048 563 583 310 

† Values computed by using the methodology given in [18] 
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Figure 4: Misalignment of address and data to reduce memory conflicts.



hardware efficient when the multiplication terms are wide 
range; however, it is beneficial if any one of the multiplication 
term is relatively smaller in range. Here parameter v is having 
limited number of values i.e. 2,3,5,6,7 or 19. Thus SBMC can 
be optimized to achieve low cost solution. The hardware for 
computing the intra-row permutation using SBMC is shown in 
Figure 6(b). The main advantage of using this scheme over 
Modulo Multiplication Algorithm is the single clock cycle 
execution for finding each new ( )S j , which gives a big saving 
of pre-processing cycle cost over the previous proposed 
designs (see Table 1). While supporting the generation of two 
interleaved addresses per clock cycle, two parallel IRP_RAMs 
each having size 256 x 8b are required to store the intra-row 
permutation patterns. Keeping in view the hardware in-
efficiency only one can be used with size 128x16b and the 16 
bit data output is further divided to be used for two different 
sections of address generation. The second address with which 
the data has to be merged is computed by: 

%
2aux

C
j j p

   
   

(2) 

The parameters j and auxj  are compared and smaller one is used 
to write the data. The same expression and comparison is used 
to resolve the data distribution after reading the data. The other 
parameters to be computed in the pre-processing phase are 
prime number p, associated integer v and total number of 
columns C . The parameter p is stored in a lookup table with a 
smaller sub-lookup table for parameter v. The lookup table is 
addressed via a counter and against each value of p the 
condition ( )p R N R    is tested using a comparator. Once p 
is found, C  can have only three values i.e. 1,p   p or 1p  , thus 

requiring at most three clock cycles. The hardware used during 
the pre-processing phase remains idle during the execution 
phase; therefore it can be reused to reach to a low cost solution. 

3.3 HW for Parallel Interleaver in HSPA+ 

The parallel processing of turbo decoder with parallel SISO 
blocks requires the interleaver to generate more than one 
address every clock cycle and at the same time resolve the 
memory conflicts. The computation of final interleaved address 
requires that the intra-row permutation data must be obtained 
in correct order from IRP_RAM. The data output from the 
RAM is denoted as ( , )U i j  and it is given by: 

   , ( )%( 1)U i j S j r i p    (3) 

The address (RA) to the RAM i.e. ( )%( 1)j r i p   involves 
modulo function. We present here three alternates to compute 
the RAM address. The first method involves recursive 
computation of addresses as shown in Figure 8. The data is 
written into memory row wise but when reading back column 
wise, the IRP_RAM address of previous column is used to find 
next address. The recursive function is given by: 

        , , 1 % 1RA i j RA i j qmod i p     (4) 

The parameter  qmod i  is computed from the least prime 

numbers sequence ( )q i  by   ( )%( 1)qmod i q i p  . With the 

condition i.e. ( ) 2( 1)q i p   only a subtraction can be used to 
obtain  qmod i . The computational part associated with 

recursive approach is very small and limited to just few adders, 
but it needs a circular buffer of size 20 x 8b (Figure 6 (a)) in 
order to keep the old address of whole column. This approach 
is low cost and can operate at very high clock rate due to 
smaller critical path.  Using the same hardware for computing 

( )S j  requires five clock cycles. To reduce it to single clock 
cycle we need to use the mix of the recursive approach and the 
segmentation based modulo computation (Figure 6(b)). This 
second approach is not very much hardware efficient but gives 
the benefit to reduce the pre-processing time.  
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The third approach is completely based on segmentation 
based modulo computation and it is a non-recursive way to 
compute the address RA. It can directly be applied to the term 

( )%( 1)j r i p   to get the address for register file. Here we 
know that the parameter ( )r i  can have only 22 values of prime 
numbers up to 89, thus SBMC approach can be used after 
applying some optimizations. The hardware required to 
compute the function ( )%( 1)j r i p   using SBMC approach is 
shown in Figure 7. It needs more additions then the recursive 
approach; however, it can directly be used to compute intra-
row permutation patterns in the pre-processing phase, thus 
providing single clock cycle support for computing each 
permutation pattern ( )S j . This approach cannot be better for 
very high clock frequency due to longer critical path. 
Pipelining can improve the performance of this scheme but at 
the same time introduces higher control complexity. 

The computed address is used to get the correct intra-row 
permutation ( , )U i j  from the RAM. It also needs to pass 
through some exception handling logic to correct itself for 
special cases associated with C p , 1C p   or 1C p   as 
given in the algorithm. The final interleaved addresses 1

,i jY  and 
2
,i jY  can be found by combining the inter-row permutation with 

intra-row permutation as follows: 

 1 1
, U ( , )( )i j C r iY i j  (5) 

 2 2
, U ( , )( )i j C r iY i j  (6) 

The complete hardware for the generation of parallel 
interleaved addresses and data handling is shown in Figure 9. 
A FIFO buffer of size 12 is needed as discussed in previous 
sub-section to handle the conflicts. The generation of 
interleaved address during run time is two addresses per clock 
cycle, except the case when block size is not exactly equal to 
R C . In this case data written into RAM is zero padded and 
data pruning is performed using the comparators.  

4 Parallel Interleaver for DVB-SH 

With improvements in DVB-H, DVB-SH standard 
specification provides satellite services to handheld devices. 
Along with other improvements, the FEC is also improved with 
inclusion of turbo coding. The interleaving associated with 
turbo code is to write whole block of information sequentially 
into an array and reading the information in an order defined 
by the interleaving algorithm. The flow for interleaver address 
computation is shown in Figure 10. There are only two 
possible block sizes i.e. N = 1146 or N = 12282 with parameter 
n having condition as the largest value such that 52nN  . Two 
lookup tables each having 32 entries, are also provided to be 
used in interleaving. The interleaving algorithm can be 
described as follows: 

 Find the parameter n such that 52nN  . 

 Initialize an (n+5) bit counter (called Z here). 

 Find T = Truncate (Z[(n+4):5]+1) to n bits. 

 Obtain the table lookup output (L); L = LUT{Z[4:0]}. 

 Multiply and truncate to find M = Truncate (T × L) to n bits. 

 Find bit reverse BR = BitReverse{Z[4:0]}. 

 Find Tentative Address by concatenation TA = {BR, M}. 

 Compare the TA and prune out the addresses if TA N  

The latency in turbo coding can be higher due to bigger block 
size of 12282 which demands the provision of parallel SISO 
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Figure 9: HW for parallel interleaver address generation in HSPA+. 
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processing. The parallel address generation involves a number 
of conflicts which need to be resolved on-the-fly. The final 
architecture proposed can support up to 8 parallel SISO blocks. 
The following sub-sections provide the detailed conflict 
analysis and the hardware for parallel interleaver address 
generation in DVB-SH. 

4.1 Memory Conflict Analysis for DVB-SH Interleaver 

The parallel generated interleaved addresses for DVB-SH are 
not conflict free. Figure 11 shows the number of conflicts for 
the two blocks sizes. Applying the method of misaligning on 
the address and data streams, it is observed that the conflict 
percentage reduces significantly.  

Further analysis of conflicts (N=12282 only) on each 
memory is provided in detail in Figure 12 and Figure 13. In 
contrary to conflict reduction due to applying misalignment the 
number of FIFO registers required to handle the number of 

conflicts are more. The analysis reveals that the distribution of 
conflicts for a particular memory over a range of block size 
becomes irregular with misalignment which increases the 
requirement of FIFO cells. On the other hand although the 
number of conflicts are huge but they are uniformly distributed 
among different memories and hence it becomes more 
hardware efficient to use the scheme without misalignment.  

4.2 HW for Parallel Interleaver in DVB-SH 

As there are many invalid addresses computed by the algorithm 
so the total number of clock cycles needed to complete one 
block is much high than the block size. The simulation reveals 
that the block size N=1146 needs 2045 cycles whereas 
N=12828 needs 16382 cycles to get the valid values equal to 
block sizes. Our first target is to reduce the invalid 
computations and then generate the parallel addresses to further 
enhance the throughput. Instead of considering a long array of 
information we consider it as a block of information with total 
number of rows R as 32 (corresponding to 32 entries in the 
lookup table) and total number of columns C  as 64 and 512 for 
N = 1146 and 12282 respectively. The generation of valid 
addresses within one row appears to be very much systematic 
which can be utilized to reduce the number of invalid 
addresses. Simulation results have proven that about 14 
computations for N = 1146 and 8 computations for N = 12282 
within a row can be completely discarded. This also reduces 
the lookup table requirement to 18 and 24 entries for N = 1146 
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Table 2: Lookup Table for Basic and Parallel Address Generation (DVB).

No N = 1146  N = 12282 

(j) Effective Rc Tbas Taux Inc.  Effective Rc Tbas Taux Inc. 
0 0 3 3 1  0 13 5 1 
1 1 27 3 1  1 335 7 1 
2 2 15 7 2  2 87 7 2 
3 4 29 5 2  4 15 7 1 
4 6 1 1 2  5 1 1 1 
5 8 3 3 2  6 333 5 2 
6 10 15 7 2  8 13 5 1 
7 12 17 1 2  9 1 1 1 
8 14 39 7 2  10 121 1 2 
9 16 19 3 1  12 1 1 1 
10 17 27 3 1  13 175 7 1 
11 18 15 7 2  14 421 5 2 
12 20 45 5 2  16 509 5 1 
13 22 33 1 2  17 215 7 1 
14 24 13 5 2  18 47 7 2 
15 26 15 7 2  20 295 7 1 
16 28 17 1 2  21 229 5 1 
17 30 15 7 2  22 427 6 2 
18 -- -- -- --  24 409 1 1 
19 -- -- -- --  25 387 6 1 
20 -- -- -- --  26 193 1 2 
21 -- -- -- --  28 501 5 1 
22 -- -- -- --  29 313 1 1 
23 -- -- -- --  30 489 1 2 
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and N=12282 respectively. The new lookup tables ( basT ) and the 
corresponding increment step for row counter are given in 
Table 2. After skipping the un-necessary computations which 
appear on regular intervals we end up with total computations 
of 1152 and 12288 for N = 1146 and 12282 respectively. There 
are only six extra computations needed to get the whole range 
of addresses and at the same time we get the block sizes which 
exactly divide by 8. 

While working for the parallel address generation, the 
computation intensive part is to compute M  in the algorithm. 
Using the straight forward method generation of 8 parallel M  
values requires up to 8 multipliers. We present here a novel 
approach of using recursive computation for computation of 
M . After getting the parameter M  for the first SISO, the rest of 
the M  values for parallel addresses can be computed 
recursively over the whole column size as shown in Figure 8. 
The lookup table entries required to produce the correct M  
values for parallel addresses at each row instant are named as 

auxT  and are given in the Table 2. The modified algorithm 
supporting generation of 8 parallel addresses ( mI ) is given as 
Algorithm 1 and the hardware for computing parallel addresses 
is shown in Figure 14.  

5 Parallel Interleaver for 3GPP-LTE 

The channel coding in LTE involves Turbo Code with an 
internal interleaver which is based on quadratic permutation 
polynomial (QPP). QPP interleavers have very compact 

representation methodology and also inhibit a structure that 
allows the easy analysis for its properties.  

The internal interleaver for turbo code is specified by the 
following quadratic permutation polynomial: 

 2
2

( ) 1. . %xI f x f x N   (7) 

Here  0,1, 2, ( 1)x N    , where  N  is block size. This 
polynomial provides deterministic interleaver behavior for 
different block sizes with appropriate values of 1f  and 2f . 
Direct implementation of the permutation polynomial given in 
eq. (7) is in-efficient due to multiplications, modulo function 
and bit growth problem. The simplified hardware solution is to 
use recursive approach described in the following sub-section. 

5.1 Basic Interleaver 

Eq. (7) can be re-written for recursive computation as: 

 ( 1) ( ) ( ) %x x xI I g N    (8) 

Where  ( ) 1 2 22. . %xg f f f x N   , which can also be 

computed recursively as  ( 1) ( ) 22. %x xg g f N   . The two 

recursive terms ( 1)xI   and ( 1)xg   are easy to compute and they 

provide the basic interleaver functionality for LTE.  

5.2 HW for Parallel Interleaver in UMTS-LTE 

The interleaver used in LTE is special in the sense that it is 
conflict free inherently when parallel interleaving is required, 
thus providing ease of implementation for parallel turbo 
decoding. Generation of parallel interleaver addresses can be 
achieved with the replication of the hardware shown in Figure 
15 and getting support from a LUT providing the starting 
values. In this case a total of 32 additions are needed; however, 
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Algorithm 1: Modified Algorithm for Parallel Address Generation 
in DVB-SH. 
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to achieve a low cost solution we present here the hardware 
with first part being reused for multiple stages. This optimized 
hardware uses 18 additions in total to generate 8 parallel 
interleaver addresses, thus saving 14 additions. 

6 Parallel Interleaver for WiMAX 

IEEE-802.16e standard [6] called WiMAX provides the 
mobility features to broadband technology with higher 
transmission speed i.e. upto 70 Mb/sec. Convolutional turbo 
coding (CTC) is adopted in the FEC block, which requires an 
internal interleaver.  

6.1 CTC Interleaver 

CTC, also termed as duo-binary turbo codes can offer many 
advantages like performance, over the classical single-binary 
turbo codes. Work in [19] uses some algorithmic 
simplifications to implement the CTC interleaver, which makes 
it possible to compute the interleaver address recursively. The 
interleaver in the duo-binary turbo codes works on pairs of bits. 
Presence of CTC interleaver guarantees that the two output 
parts, systematic output and parity output become completely 
un-correlated during transmission. Parameters to define the 
interleaver function as described in [6] are designated as 

0 1 2, ,P P P  and 3.P  Two steps of interleaving are described below: 

 Step 1: Let the incoming sequence be 

       0 0 0 1 1 2 2 1 1, , , , , ,.... ,N Nu A B A B A B A B      

for 0..... 1,x N    if        %2 1 , ,i i i ii then A B B A  .  

The new sequence is 

       1 0 0 1 1 3 3 1 1, , , , , ,.... ,N Nu A B B A A B B A    , 

 Step 2: The function ( )xI  providing the mapping address is 
defined by a set of 4 expressions with a switch selection: 

for 0...... 1x N  ,  switch  % 4x  

case 0:  ( %4 0) 0 . 1 %xI P x N    

case 1:  ( %4 1) 0 12. 1 %N
xI P x P N      

case 2:  ( %4 2) 0 2. 1 %xI P x P N     

case 3:  ( %4 3) 0 32. 1 %N
xI P x P N      

Combining the four equations ( )xI  becomes: 

 ( ) %x x xI Q N   (9) 

Where x  can be computed using recursion i.e. 
 ( 1) 0 %x x P N     by initializing  0 0   and xQ  is given by: 

1
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P if j
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As range of x  and xQ  is less then N , thus xI  can be computed 
by using additions only.  
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Figure 15: HW for parallel interleaving in 3GPP-LTE. 
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6.2 HW for Parallel Interleaver in WiMAX 

The maximum block size in the normal transmission scheme 
(i.e. non H-ARQ) is 240, thus in order to achieve sufficient 
bandwidth, up to 4 parallel SISO processors are enough. On 
the other hand H-ARQ involves bigger block sizes (max. of 
2400) thus up to 8 parallel SISO processors are useful to 
reduce the latency and enhance the overall bandwidth. While 
generating parallel interleaver addresses the only case which 
differs in terms of memory conflict is the block size N=108 
(corresponding to QPSK rate:3/4 or 64-QAM rate:3/4). All the 
other block sizes are supportive to parallelism and are 
inherently conflict free. The number of conflicts and optimal 
size of FIFO registers required to handle the conflicts are 
shown in Figure 16. 

The generation of parallel interleavers other then the basic 
interleaver can be done by successive computations based on 
the result from the predecessor as given in Algorithm 2. The 
hardware for the generation of up to 8 parallel interleaved 
addresses for WiMAX is shown in Figure 17. While generating 
8 parallel addresses for the block sizes supported by H-ARQ, 
some permutation among the generated address is required for 
selected block sizes (N=480 & N=960) as shown in Table 3. 
All the other block sizes have the straight one-to-one mapping 
on different memories. 

7 Unified Parallel Interleaver Architecture 

The interleaver parallelism for individual standards has been 
explored in detail in the earlier sections and the number of 
parallel SISO processors to be supported is summarized in 
Table 4. The main focus of the work has been to adopt a 

methodology which results in common computing elements, 
thus preparing grounds for efficient hardware multiplexing. As 
a result we reach to the conclusion that an accumulation 
followed by modulo logic (acc_mod) is the common 
computing element. Therefore forming an array of acc_mod 
with re-configurability for different combinations can serve as 
a main part in the complete computing core along with an 
auxiliary part consisting of a multiplication and comparator. As 
a mandatory part for some of the applications a circular buffer 
of size 24 is also needed to be incorporated with 
acc_mod_array. The address computation follows the conflict 
resolution which mainly comprises of multiplexers and shift 
registers. The complete hardware block diagram for the re-
configurable parallel address generation is shown in Figure 18.  

The second part of the conflict management is to apply FIFO 
register bank dedicated for each memory. The size of the FIFO 
register bank could have been very large but we reduced it 
using the progressive writes during a situation of conflict in 
other memories. Covering all the standards, the FIFO size 
requirement after applying progressive writes for different 
memories is given in Table 5. The role of controller is very 
important to achieve this goal as it checks continuously the 
empty slots for the corresponding memory. If some other 
memory has the conflict at certain time instant so that the 
corresponding memory is free, the controller initiates the left 
over writes for this memory. The other main tasks handled by 
controller are to control the sequence of operations during pre-
processing and execution phase. The pre-processing includes 
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Table 3: Permutations for Correct Memory Mapping in WiMAX. 

Parallel Address Generation Sequence I1 I2 I3 I4 I5 I6 I7 I8 

Permutation for N = 480 & N = 960 1 6 3 8 5 2 7 4 
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computation of necessary parameters while changing the 
standard or block size. During the execution phase the 
controller keeps track of block size employing row and column 
counters, thus providing the block synchronization required for 
each type of interleaver implementation. 

There are 8 memories (M1 – M8) being considered as part 
of interleaver, each having a size of 1536 x 5b to cover the 
complete range of block sizes for all standards. The memory 
selection is mainly made by using MSB part of the generated 
address or though comparison. 

8 Implementation Results 

By exploiting the hardware re-use for different 
implementations the final architecture shown in Figure 18 
achieves the objective of being low cost. The design is 
specified in Verilog HDL and synthesized using 65nm CMOS 
technology. The synthesis results for two cases i.e. with 6K 
memory and 12K memory are summarized in Table 6. The 6K 
memory size covers all the cases except one i.e. N=12282 for 
DVB-SH, thus if specifically this block size is required then 

bigger memory can be used. The chip core layout is shown in 
Figure 19 and it utilizes 20.085mm  area in total for 6K memory 
case. It can operate at a frequency of 200 MHz and consumes 
12mW  power in total where most of the power utilization is 
from memories. The address generation hardware for re-
configurable parallel interleaver is very much silicon efficient 
and low power consuming which makes it a good choice for all 
future implementations targeting the multi-mode operation. 

9 Conclusion 

In this paper a multi-mode parallel interleaver architecture 
targeting parallel SISO decoding for different standards has 
been presented. The design is low cost and supports high 
frequency at low power. The conflicts, occurring while 
generating parallel addresses, have been managed by 
incorporating different schemes. The interleaver address 
generation hardware for different standards has been modified 
in the way that efficient hardware multiplexing can be 
achieved. The functionally of parallel turbo decoder for 
different standards is more or less same, but parallel 
interleaving appears to be the bottleneck to reach to a unified 
version of parallel turbo decoding. The proposed architecture 
plays a vital role to achieve unified parallel turbo decoding 
with multi-standard support by using the existing architectures. 
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