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Abstract

This paper analyzes memory access scheduling and vir-
tual channels as mechanisms to reduce the latency of main
memory accesses by the CPU and peripherals in web
servers. Despite the address filtering effects of the CPU’s
cache hierarchy, there is significant locality and bank par-
allelism in the DRAM access stream of a web server, which
includes traffic from the operating system, application, and
peripherals. However, a sequential memory controller
leaves much of this locality and parallelism unexploited, as
serialization and bank conflicts affect the realizable latency.

Aggressive scheduling within the memory controller to
exploit the available parallelism and locality can reduce the
average read latency of the SDRAM. However, bank con-
flicts and the limited ability of the SDRAM’s internal row
buffers to act as a cache hinder further latency reduction.
Virtual channel SDRAM overcomes these limitations by pro-
viding a set of channel buffers that can hold segments from
rows of any internal SDRAM bank. This paper presents
memory controller policies that can make effective use of
these channel buffers to further reduce the average read la-
tency of the SDRAM.

1 Introduction

Network server performance has improved substantially
in recent years, largely due to scalable event notification
mechanisms, careful thread and process management, and
zero-copy I/O techniques. These techniques use the proces-
sor and memory more efficiently, but main memory is still a
primary bottleneck at higher performance levels. Latency to
main memory continues to be a problem for both the CPU
and peripherals because the speed of the rest of the sys-
tem increases at a much faster pace than SDRAM latency
decreases. Despite this continuing trend, very little empha-
sis has been placed on architectural techniques to reduce
DRAM latency. Rather, significant effort has been spent
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developing techniques to minimize the number of DRAM
accesses, to issue those accesses early, or to tolerate their
latency. However, since DRAM technology improvements
are unable to lower memory latency enough to keep up with
increased processing speeds, an increasing burden is placed
on these techniques to prevent DRAM latency from becom-
ing even more of a performance bottleneck.

This paper analyzes memory controller policies to re-
order memory accesses to the SDRAM and to manage vir-
tual channel SDRAM in order to reduce the latency of main
memory accesses in modern web servers. SDRAMs are
composed of multiple internal banks, each with a row buffer
that caches the most recently accessed row of the bank.
This allows concurrent access and lower access latency to
rows in each row buffer. Virtual channel SDRAM pushes
this concept further by providing a set of channel buffers
within the SDRAM to hold segments of rows for faster ac-
cess and greater concurrency. By providing more channels
than banks in the SDRAM, more useful memory is avail-
able for fast access at any given time. However, the mem-
ory controller must successfully exploit the features of both
conventional and virtual channel SDRAM in order to de-
liver high memory bandwidth and low memory latency.

In a modern web server with a 2 GHz processor and
DDR266 SDRAM, memory references (including operating
system, application, and peripheral memory traffic) arriveat
the memory controller approximately once every 90–100ns.
At this rate, a simple memory controller is able to satisfy
both CPU and DMA accesses with an average read latency
of 35–39ns for CPU loads and 24–27ns for DMA reads.
In such a system, reordering accesses to the SDRAM does
not reduce the average read latency despite the available lo-
cality and concurrency in the access stream. However, with
virtual channel SDRAM, a memory controller that manages
the channels efficiently and uses a novel design to restore
updated segments can reduce the DRAM latency by 9–12%
for CPU loads and by 12–14% for DMA reads.

As the disparity between CPU speed and DRAM latency
increases, scheduling memory accesses and exploiting vir-
tual channels will become more important in keeping mem-



ory latency low. When references arrive at the memory
controller at a rate of approximately once every 40ns (still
slightly higher than the average latency when the references
arrive more slowly), then references begin to queue up in the
memory controller. At this rate, memory access schedul-
ing can reduce the average latency of CPU and DMA read
accesses by up to 86%. This reduction in latency is accom-
plished almost entirely by overlapping operations within the
internal SDRAM banks, as the row hit rate increases by less
than 1% over sequential access. A memory controller that
efficiently exploits virtual channel SDRAM, however, can
achieve substantially higher segment hit rates, resultingin a
reduction of the average CPU and DMA read latencies by
28–34% and 25–28%, respectively, below the lowest laten-
cies that can be achieved with conventional SDRAM and
memory access scheduling.

These results stress that as CPU speeds continue to in-
crease at a faster pace than SDRAM latency decreases, in-
corporating latency reduction mechanisms into the mem-
ory controller is critical. A memory controller that exploits
the structure of well designed SDRAM can dramatically re-
duce the achieved memory latency, which will lead to more
efficient use of the CPU core and increased overall perfor-
mance. Such mechanisms are complementary to existing
latency reduction and tolerance techniques, and provide la-
tency reductions that cannot be achieved by SDRAM tech-
nology improvements alone.

The following section discusses dual in-line mem-
ory modules (DIMMs) and the organization of modern
SDRAM. Section 3 discusses the characteristics of the
memory accesses that occur in a web server. Then, Sec-
tion 4 explains the concepts of memory access schedul-
ing and virtual channels. Section 5 discusses how the web
server access traces were used to evaluate these mecha-
nisms, and Section 6 analyzes their performance. Section 7
discusses related work, and Section 8 concludes the paper.

2 Modern DIMMs

A modern dual in-line memory module (DIMM) for high
performance systems is composed of multiple double data
rate (DDR) SDRAM chips. These SDRAMs are internally
organized as multiple (typically four) independent mem-
ory banks. Each bank contains a two-dimensional array of
memory cells that must be accessed an entire row at a time.
An ACTIVATE command to the SDRAM moves the indi-
cated row from the memory array to a dedicated row buffer
for that bank. Row activation is a destructive operation, so
the row must ultimately be written back to the bank. Once
a row is active in the row buffer, any number ofWRITE and
READ commands can be issued in order to transfer columns
of the active row into and out of the SDRAM. The width
of each column is equal to the number of data pins, and
columns are transferred on both the rising and falling edges

of the DDR SDRAM clock. Furthermore, eachREAD or
WRITE operation must transfer multiple columns of data,
typically 2, 4, or 8. Finally, after the desired column op-
erations are performed, aPRECHARGE command to the
SDRAM restores the row in the indicated bank’s row buffer
back to the memory array and precharges the bank for the
next row activation. A more detailed overview of several
different modern SDRAM types and organizations as well
as an analysis of the impact of main memory organization
on system performance can be found in [4] and [5].

A DIMM is composed of several of these DDR
SDRAMs that share address lines. The data lines of each
SDRAM are concatenated with each other to form a wider
data interface than any single SDRAM could support due
to packaging constraints. Therefore, all of the SDRAMs
perform exactly the same operations at the same time, ef-
fectively acting as one large, wide SDRAM. For example,
the Kingston KVR266X72RC25 is a 1 GB PC2100 ECC
DIMM which contains 18 DDR SDRAM chips [8]. The
achievable access latency of such a DIMM is highly depen-
dent on the amount of bank parallelism that is exploited and
the number of column accesses per row access.

The latency of the SDRAM operations provides ample
opportunity for exploiting parallelism among the banks. For
example, aREAD command could be issued to an active row
of bank 0 on one cycle, and anACTIVATE command could
be issued to bank 1 on the next cycle. The read data transfer
and row activation would then occur in parallel. Another
READ command could be issued to bank 1 once the row is
activated. If the timing is right, then the second read could
begin to use the data pins as soon as the first read is com-
plete. In this manner, parallelism can be exploited within
the SDRAM to increase bandwidth and reduce latency.

3 Memory Behavior

The memory access pattern within a web server is deter-
mined by the operating system, web server application, and
peripheral devices. Since modern web server applications
actually have a very small memory footprint, especially
those that utilize zero-copy I/O, the operating system and
peripherals must be considered to get an accurate picture of
memory system performance.

3.1 Web Server Traces

To analyze the behavior of the external memory in a web
server, memory traces were collected from a functional full
system simulation approximating a system composed of an
AMD Athlon XP processor with 2 GB of physical memory
and a 3Com 720024 Gigabit network interface card. The
simulator accurately models the behavior of the system, but
does not include any timing information. The simulated
Athlon processor includes independent 2-way set associa-
tive L1 instruction and data caches, each with a capacity



Table 1. Web trace characteristics.

CS IBM SPEC WC

HTTP Throughput (Mbps) 934 634 358 907
Connections/second 1258 2030 1064 1790
Requests/second 3349 27447 2904 16549
Packets/second (Transmit) 87277 79445 35006 88932
Packets/second (Receive) 48222 48701 34616 52111
IPC 0.25 0.31 0.27 0.30

of 64 KB and a line size of 64 bytes. There is also a uni-
fied L2 cache that is 16-way set associative with a capacity
of 256 KB and a line size of 64 bytes. All three caches
use a write-back policy, and the L2 cache also performs
next line prefetching on a miss. The traces were generated
using Simics [11] running the FreeBSD 4.7 operating sys-
tem and the event-driven Flash web server [16]. Flash uses
sendfile for zero-copy I/O,kqueue for scalable event
notification, and helper threads for disk I/O. The memory
traces include all operating system, application, and periph-
eral traffic. For each trace, approximately one billion to-
tal memory operations were simulated after the system was
warmed up, resulting in about 10 million SDRAM accesses.

Three actual web traces and a SPEC WEB99 run with
1000 connections (SPEC) were used to access the web
server while the memory traces were collected. The three
real traces are from the Rice Computer Science Department
web site (CS), an IBM web site (IBM), and the 1998 Soccer
World Cup web site (WC). The three real traces were re-
played bysclient, a synthetic web trace replayer that uses an
infinite demand model to stress the bandwidth capabilities
of the server [1]. SPEC WEB99 uses a connection-oriented
model to determine how many simultaneous connections a
server can handle. These traces all have working set sizes
that fit within 2 GB of memory, so they include very few
disk accesses after the file cache is warmed up.

Table 1 shows the characteristics of the web traces when
they access a real web server matching the configuration
that was used to collect the memory traces. The server
contains an Athlon XP 2600+, 2 GB of DDR SDRAM,
and a 3Com 720024 Gigabit network interface card. The
table shows the rate at which connections are established
and HTTP requests are made, as well as the rate at which
packets are sent and received by the server. The server
achieves near the peak bandwidth of the Gigabit Ethernet
link for the CS and WC traces. In contrast, the HTTP
throughput is much lower for the IBM and SPEC traces.
For the IBM trace, the processing required by the connec-
tion and request rates limits the achieved bandwidth. For
the SPEC trace, the memory capacity and the processing to
generate dynamic content limits the connection rate and the
achieved bandwidth. The table also shows the achieved IPC
of these benchmarks, measured using the Athlon’s perfor-
mance counters. These IPC values will be used to estimate
the average time between SDRAM accesses in the traces.

Table 2. Breakdown of SDRAM accesses.

Trace
Instr. Access Reads Writes

(1000s) Type 1000s MB 1000s MB

CS 580,927
CPU 7,022 428.6 2,256 137.7
DMA 2,266 132.6 159 6.4

IBM 602,714
CPU 5,151 314.4 1,732 105.7
DMA 1,208 69.8 136 6.2

SPEC 569,254
CPU 6,478 395.4 1,780 108.6
DMA 1,503 86.6 437 23.6

WC 533,967
CPU 5,136 313.5 1,790 109.3
DMA 1,719 100.0 148 6.3

3.2 SDRAM Access Characteristics

Table 2 shows the characteristics of the SDRAM access
stream for the four web server simulations. These traces
include all memory activity from the entire system. As indi-
cated by the table, approximately 80% of the SDRAM refer-
ences originate at the CPU, with the remaining 20% coming
from peripheral DMA transfers. Furthermore, read accesses
dominate write accesses by a factor of 3.6. All CPU traffic
is for 64B blocks (the L2 cache line size) whereas DMA
transfers are for differing lengths. For three of the traces,
21–24% of the CPU read accesses are for instructions, and
35% are for instructions in the SPEC trace.

Figure 1 shows the cumulative distribution of the reuse
distances for rows, segments, and 256 byte blocks of these
SDRAM access traces. The reuse distance is the number
of unique locations (row, segment, or block) accessed be-
tween accesses to a particular location. Since this data is
collected using memory traces these accesses could occur in
a slightly different order in a real system because of timing
issues. However, the figure shows some very clear trends.
Figure 1A shows the reuse distance for 32 KB blocks, which
is equivalent to the row size in a 1 GB DIMM. For these
rows, 51–59% of the accesses have reuse distances between
0 and 3, indicating that there is a good chance of getting a
row hit in the SDRAM. Furthermore, about 6% more of the
accesses have a reuse distance between 4 and 15, and fully
92–97% of the accesses have a reuse distance less than 512.
So, there is significant locality in row accesses to SDRAM
in actual web servers. In fact, less than 0.1% of the accesses
in these traces were to rows that had not previously been ac-
cessed in the trace.

Figure 1B shows the reuse distance for segments, which
is one quarter of a row (8 KB). Such segments are used in
virtual channel SDRAM, which will be described in Sec-
tion 4.2. The accesses with very short reuse distances re-
main about the same: 50–58% of the accesses have reuse
distances between 0 and 3. However, only 83–88% of the
accesses have a reuse distance less than 512, so there is
slightly less segment locality than row locality.

Finally, Figure 1C shows the reuse distance for 256 byte
blocks. Such blocks could be used to form a cache in the
memory controller or SDRAM. As the figure shows, how-
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Figure 1. Cumulative distribution of SDRAM access reuse dis tances.

ever, most of the spatial reuse occurs at a much larger gran-
ularity. For instance, even a 2 MB fully-associative cache
would have less than a 30% hit rate, since fewer than 30%
of the accesses have reuse distances of 8092 or less. This
shows that a small cache, either on the SDRAM chip or
in the memory controller, would not be effective. Rather,
a true L3 cache would be necessary to capture reuse us-
ing such small blocks. Furthermore, the graphs indicate
that the larger block sizes (segments and rows) only reuse
small portions of the data. So, constructing a cache outside
of the SDRAM with large block sizes would waste critical
SDRAM bandwidth.

4 Locality and Parallelism

Figure 1 suggests that a memory controller that sends ac-
cesses to the SDRAM in the order they arrive would achieve
significant row hit rates. However, the figure also suggests
that there is much additional locality available in the mem-
ory access stream. Furthermore, banks can be precharged
and rows can be activated in the background, while the
oldest reference is being serviced. Exploiting this paral-
lelism can improve both the bandwidth and latency of the
SDRAM, as about 40% of the accesses have row reuse
distances greater than 15, limiting the benefits of exploit-
ing locality alone. This section discusses two complemen-
tary techniques to increase locality and parallelism in the
SDRAM: memory access scheduling and virtual channels.

4.1 Memory Access Scheduling

Several mechanisms exist to reorder memory references in
order to increase locality and parallelism in SDRAM [3, 12,
17]. Briefly, a memory controller that performs memory
access scheduling accepts memory accesses (from either
the CPU or peripherals in a network server), buffers them,
and sends them to the SDRAM in an order designed to im-
prove the performance of the SDRAM. By taking advantage
of the internal structure of the SDRAM, described in Sec-
tion 2, significant improvements are possible. However, it
is widely believed that these techniques are only applicable

to the domains in which they were originally proposed—
media processing and scientific computing—which exhibit
stream oriented access patterns and have high latency tol-
erance. While the characteristics of the memory traffic are
different for a network server than in those domains, Sec-
tion 3 shows that there is significant locality in the memory
traffic of a web server. This strongly suggests that these
techniques can be effective.

Table 3 describes the scheduling algorithms considered
in this paper. Thesequential, bank sequential, and first
ready schedulers are self-explanatory. However, therow
andcolumnschedulers also need a policy to decide whether
or not to leave a row open within the row buffer after all
pending accesses to the row have been completed. If the
row is left open, future references to that row will be able
to complete with lower latency. However, if future refer-
ences target other rows in the bank, they will complete with
lower latency if the row has been closed by a bank precharge
operation. These schedulers will be prefixed withopenor
closedbased on this completed row policy. Further details
on these algorithms and the mechanisms for performing
such reordering can be found in [12] and [17].

4.2 Virtual Channels

No matter how well a memory access scheduler reorders
memory references, it cannot prevent a sequence of ac-
cesses from conflicting within a memory bank. When this
occurs, performance will be limited if there are not enough
accesses to other banks, as the latency of activating different
rows within the bank will be exposed. Even with sufficient
bank parallelism, the average access latency will still be in-
creased over what it could have been if the accesses had hit
in the active row. In order to keep pace with future systems,
new memory architectures are needed to further reduce la-
tency. As shown in Figure 1C, small caches on the SDRAM
or within the memory controller will not help.

NEC developed virtual channel SDRAM in the late
1990s in order to alleviate the problem caused by bank con-
flicts [15]. Virtual channel SDRAM was marketed at the
time as a solution for I/O intensive systems, since the I/O



Table 3. Memory Access Scheduling Policies.
Policy Description

Sequential
Accesses are sent to the SDRAM in the order they
arrive, which does not take advantage of any paral-
lelism within the SDRAM.

Bank Sequential

The memory accesses are separated according to
the SDRAM bank they target. For each bank, the
accesses are still sent to the SDRAM sequentially.
However, commands to multiple banks can be over-
lapped with each other, significantly increasing the
parallelism within the SDRAM.

First Ready

An operation is sent to the SDRAM for the oldest
pending memory access that is ready to do so. This
increases parallelism and reduces latency by over-
lapping operations within the SDRAM.

Row

Row operations (either precharge or activate) that
are needed for the pending accesses are sent to the
SDRAM first. This reduces latency by initiating
row operations as early as possible to increase bank
parallelism. If no row operations are necessary,
then column operations are performed.

Column

Column operations (either read or write) that will
be needed for the pending accesses are sent to the
SDRAM first. This reduces latency by transferring
data into or out of the SDRAM as early as possi-
ble. If no column operations can be performed, ei-
ther because the data pins are already in use or the
appropriate rows are not activated, then row opera-
tions are performed.

and CPU access streams could potentially conflict with each
other in the SDRAM banks. Virtual channels have also been
proposed as one possible addition to the DDR2 standard [6].
Virtual channels provide additional storage on the SDRAM
chip, which acts as a small row buffer cache that is man-
aged by the memory controller. The memory controller can
use these virtual channels to avoid bank conflicts, leading to
lower achieved memory latencies.

Figure 2 shows the internal organization of a virtual
channel SDRAM. The structure of the actual memory array
remains unchanged, with multiple banks and a row buffer
for each bank. However, column accesses may no longer be
made from the row buffers. Instead,segmentscan be trans-
ferred between a row buffer and a channel. As shown in
the figure, segments are one quarter of a row in the origi-
nal NEC virtual channel SDRAM. APREFETCHcommand
transfers one segment out of an active row in a row buffer
to one virtual channel. Once stored in a channel, column
accesses may be made to the segment. The memory con-
troller must return the segment to the appropriate row of the
SDRAM, if it is modified, using theRESTOREcommand to
transfer the virtual channel to one segment of a row in the
row buffer. This potentially requires that row to be activated
and then precharged after theRESTOREcommand. Note
that if the bank is precharged after thePREFETCH com-
mand, then the row data is restored to the memory array,
as in a conventional SDRAM. Therefore, segments that are
read but not written never need to be transferred back to
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Figure 2. Virtual Channel SDRAM organiza-
tion ( N Banks and M Channels).

the row buffer, since the memory array already holds the
correct data after the precharge operation. Furthermore, the
bank may be precharged and other rows may be activated
while a segment from that bank is in a channel. This allows
each channel to service column accesses, regardless of the
state of the bank from which it came. Furthermore, it allows
opportunities for greater parallelism, as bank operationscan
occur in the background for all of the banks, while column
operations are occurring to active segments.

NEC’s original virtual channel SDRAM contained 64Mb
organized into two banks of 8192 4Kb rows. This SDRAM
had 16 channels that could each hold a single segment of
1Kb. NEC also included a dummy channel that allowed
data to be written directly to a row buffer, bypassing the
channels. Any SDRAM interface, such as double data rate
or Rambus, could be augmented with virtual channels to
improve access parallelism and locality.

4.3 Exploiting Virtual Channels

Unlike row buffers, which are specifically tied to a memory
bank, virtual channels can be used to store any segment of
the SDRAM. So, the memory controller must select a chan-
nel in which to store a segment before that segment can be
accessed, and modified segments must be restored to the
appropriate bank before the channel can be reused. The fol-
lowing proposed techniques effectively manage these seg-
ments in order to increase parallelism and reduce latency.

As with conventional SDRAM, virtual channel SDRAM
will also benefit from memory access scheduling, since the
underlying organization of the memory arrays remains sim-
ilar. Scheduling accesses, however, now has the additional
component of allocating channels. Most of the scheduling
algorithms presented in Table 3 still apply to virtual channel
SDRAM. However, therow policy would consider segment
operations along with row operations first. Furthermore, the
bank sequentialalgorithm is no longer useful, as column ac-
cesses to one segment of a bank can occur in parallel with
row operations for another segment of the same bank, which
was not possible with conventional SDRAM.

The memory access scheduling algorithm must be aug-
mented with a channel selection algorithm, as all accesses



utilize a virtual channel. Channel selection policies have
not been explored in the past; rather, specific channels
were dedicated to each memory consumer. However, fairly
straightforward policies can be quite effective at reducing
memory latency. Three effective policies are to use the
channels in a round-robin fashion (RR), to use the least re-
cently used channel (LRU), or to favor unmodified chan-
nels which do not need to be written back into the SDRAM
banks (Unmodified). The RRpolicy does not consider lo-
cality at all, but rather simply exploits the large number of
channels to improve parallelism and locality. TheLRUpol-
icy utilizes the channels in a similar manner to a cache, but
would require enough resources to track the use of all of
the channels in the system, so is likely only practical for
small numbers of channels. Finally, theUnmodifiedpolicy
seeks to minimize the overhead of additionalACTIVATE ,
RESTORE, and PRECHARGE operations since unmodified
channels may simply be overwritten with new segments.

The major drawback of virtual channel SDRAM is an
increased worst case latency. If an access references a col-
umn which is not available in the row buffers of a conven-
tional SDRAM, potentially aPRECHARGE, ACTIVATE , and
column operation would be required. In a virtual channel
SDRAM, however, potentially aPRECHARGE, ACTIVATE ,
PREFETCH, and column operation would be required. Since
the SDRAMs are organizationally the same, the precharge,
activate, and column latencies would be identical, so the
additional latency of the prefetch operation is the only ad-
ditional overhead. However, when a modified channel is
selected, then that channel will need to be restored first,
potentially requiring aPRECHARGE, ACTIVATE , RESTORE,
and PRECHARGEoperation. The increased latency to re-
store modified channels can significantly hamper perfor-
mance. All of the channel selection policies suffer from this
problem, to varying degrees, depending on the frequency of
writes to the SDRAM and on whether unmodified channels
are favored.

The decision of whether or not to restore a channel is
similar to that of whether or not to keep a row open in con-
ventional SDRAM. However, a segment is not lost when
the channel is restored to the SDRAM. Therefore, modified
channels can opportunistically be restored to the memory
arrays when no other operations can be performed for the
set of pending memory accesses. Dead memory controller
cycles, in which no other commands could be given, are
thereby effectively used to restore modified channels to the
SDRAM banks. This can potentially completely hide the
latency of restoring those channels without affecting the ac-
cess latency of other references. This is similar to an eager
writeback cache, in which dirty cache lines are written back
to the DRAM before being evicted [9].

A memory controller enhanced with the novel policies
described here can overcome the additional latency of vir-

Table 4. DDR SDRAM parameters [14].

Parameter Value Units

Clock cycle (tCK) 7.5 ns
Precharge latency (tRP) 20 ns
Activate latency (tRCD) 20 ns
CAS (read) latency 2 cycles
Write latency (tDQSS) 1 cycle
Burst length 8 columns
Write to read delay (tWTR) 1 cycle
Active to precharge (tRAS) 40 ns
Activate to activate (tRRD) 15 ns
Write recovery time (tWR) 15 ns
Refresh latency (tRFC) 75 ns
Average refresh interval (tREFI) 7812.5 ns

tual channels. The controller can keep multiple segments
from the same bank active at the same time in order to cap-
ture additional locality in the memory access stream. Fur-
thermore, row activations can occur while these segments
are satisfying column accesses, leading to increased paral-
lelism even when there are bank conflicts that would force
serialization in a conventional SDRAM. This provides far
greater opportunities to reduce latency than in a conven-
tional SDRAM.

5 Experimental Setup

A cycle accurate SDRAM simulator,dsim, written by the
author was used to evaluate the performance of memory
access scheduling and virtual channels for web servers.
The simulator accurately models the behavior of the mem-
ory controller and the SDRAM, including all resource con-
tention, latencies, and bandwidth limitations. The SDRAM
model accurately simulates all timing parameters, includ-
ing command latencies, all required delays between par-
ticular commands, and refresh intervals. The simulator is
parameterized by the SDRAM timing parameters taken di-
rectly from the SDRAM data sheet. The memory controller
within the simulator obeys all of these timing constraints
when selecting commands to send to the SDRAM. The se-
lected command is based upon the set of pending memory
accesses and the particular policies that are being evaluated.

The experiments were run using a model of two 1 GB
DIMMs, each consisting of 18 Micron MT46V128M4-75Z
DDR SDRAMs [14]. The important timing parameters of
this SDRAM are presented in Table 4. When part of a
PC2100 DIMM, these DRAMs operate at 133 MHz and
transfer data at 266 MHz. Two such 1GB DIMMs are the
equivalent of a 72-bit wide DRAM (64 data bits and 8 ECC
bits) with 8 internal banks, 4 from each DIMM. Physical
addresses, which are 31 bits for the 2 GB address space, are
mapped to the SDRAM as follows: the least significant 3
address bits are the offset into the 8 byte column, the next
12 bits are the column address, the next 3 bits are the bank
address, and the 13 most significant bits are the row address.



Previous research has found that if the bank address is
taken from bits that fall within the L2 set index, then write-
backs will always cause bank conflicts [10, 19]. This is not
an issue for such an Athlon-based system, as the set index
and offset of the 256 KB, 16-way set associative cache with
64 byte lines only requires 14 bits. So, the bank address is
already taken from the L2 tag. In systems where this is not
true, the techniques described here should be augmented by
using the XOR of bits from the row address with the bank
address to generate a better bank mapping [10, 19].

To evaluate virtual channels, the Micron DDR SDRAM
was modified to include virtual channels, using an original
NEC virtual channel SDRAM data sheet as a guide [15]. A
single set of unpipelined wires is available to transfer seg-
ments between the channels and the row buffers. The la-
tency of such transfers was set at 2 cycles (1 cycle less than
the activate latency of the SDRAM). A new segment opera-
tion, either aPREFETCHor RESTORE, can be initiated every
2 cycles. All other timing parameters remain the same. The
virtual channel SDRAMs include 16 virtual channels. Each
channel can hold a segment that is one fourth the size of
a row (1024 4-bit columns per DRAM). The dummy write
channel from the original NEC variants is not modeled.

The interaction between the operating system, web
server application, and peripherals is quite complex and
time varying. To understand the effects of any modifica-
tions to the memory system, the full system must be simu-
lated in order to account for the activity from each of these
three sources. No sufficiently detailed cycle accurate full
system simulator exists that can boot an operating system
and accurately model the behavior of peripherals. Regard-
less, such a simulator would be too slow to simulate any
reasonable period of time. This would lead to significant
inaccuracies, since the amount and type of memory traffic
generated by the operating system, application, and periph-
erals varies greatly over time. To address this limitation,
memory traces were collected from a functional full system
simulator, as described in Section 3. These traces include
all of the references made by the operating system, applica-
tion, and peripherals.

Since the memory access traces were collected from a
functional simulator, they contain no timing information.
However, the rate at which memory references arrive at the
memory controller can be estimated using the measured IPC
values in Table 1, the instruction count of the simulations
from Table 2, and the clock rate of the processor (2 GHz).
Assuming that the measured average IPC corresponds to
the average IPC of the simulated instructions, these simu-
lations represent between 0.89 and 1.16 seconds of actual
time. Given the number of references, this means that ref-
erences arrive at the memory controller approximately once
every 100 nanoseconds. Since the memory controller oper-
ates at the frequency of the SDRAM’s data rate, 266 MHz,
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Figure 3. Average read latencies for sequen-
tial scheduling with inter-access times of 10–
25 memory controller cycles. The achieved
row hit rate is printed at the top of each bar.

this corresponds to one access every 26 or 27 memory con-
troller cycles.

To simulate the behavior of the memory system, the trace
driven simulator feeds the accesses in the traces to the mem-
ory controller at a rate of once every 20 to 30 memory
controller cycles. To approximate the variability of a real
system, the inter-arrival time is randomly generated in that
range. To show that these techniques become more impor-
tant as the disparity between CPU speed and DRAM latency
is increased, additional simulations show the average laten-
cies when memory accesses arrive at the memory controller
at the rate of one access every 15–25 cycles, 10–20 cycles,
and 5–15 cycles. As CPU performance has increased at a
faster rate than DRAM latency has decreased, these scenar-
ios are likely predictors of future behavior. To smooth out
any anomalies generated by randomly selecting inter-arrival
times, all reported results are the average latencies of ten
simulations using ten different random seeds.

All latencies in the results are measured from the time an
access arrives at the memory controller until the first data
is transferred to or from the SDRAM for that access. The
memory controller can handle up to 16 concurrent accesses,
but if the memory controller cannot satisfy the accesses fast
enough, the trace is stalled until resources become available.

6 Results

Figure 3 shows the baseline performance of a sequential
memory controller on the web server memory traces when
memory references arrive at the memory controller on av-
erage every 10, 15, 20, and 25 cycles. As the figure shows,
the row hit rate for CPU accesses is 44–54% and the row hit
rate for DMA accesses is 54–81%. This suggests that bank
conflicts rarely prevent the memory controller from exploit-
ing the short reuse distances found in Section 3.2. When
accesses arrive at the memory controller every 25 cycles on
average, the memory controller is able to achieve an average
CPU read latency of 35–39ns and an average DMA read la-
tency of 24–27ns. The DMA read latency is lower because
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Figure 4. Average read latencies (ns) using memory access sc heduling. In subfigure (A), the high
latency of the sequential and first ready schedulers results in truncated bars. The achieved row hit
rate is printed at the top of each bar.

of the higher row hit rate achieved by sequential DMA ac-
cesses. As the average inter-access time decreases from 25
cycles to 15 cycles, the memory controller is still able to
handle the access stream, but at an increased latency. The
row hit rates remain largely the same, but queuing delays in-
crease the average CPU read latency to as high as 81ns, and
the average DMA read latency to as high as 43ns. When the
average inter-access time decreases to 10 cycles, the mem-
ory controller and DRAM become overwhelmed, causing
the average latencies to increase to as much as 766ns for
CPU accesses and 520ns for DMA accesses. In a real sys-
tem, the CPU and peripherals would slow down in response
to the queuing delays in the memory controller. Therefore,
the overall system would slow down significantly because
of this memory bottleneck.

6.1 Memory Access Scheduling

Figure 4 shows the effect of memory access scheduling on
the read latency and row hit rate of the SDRAM. Six dif-
ferent scheduling policies are used in order to evaluate the
effectiveness of the technique. For comparison, the base-
line sequential scheduler is also shown in the figure. As the
figure shows, the first ready scheduler achieves better row
hit rates than the sequential scheduler. This leads to latency
reductions with low inter-access times, but it actually in-
creases the average latency for the longer inter-access times
of 20 and 25 cycles. The latency increase at the slower ac-
cess rates results from the fact that the first ready scheduler
naively reduces the latency of some accesses by increasing

the row hit rate, while significantly increasing the latency
of others, causing a net increase in the average latency.
While it does not increase the row hit rate, the very sim-
ple bank sequential scheduler reduces the average access
latency by increasing bank parallelism within the DRAM.
The latency is reduced more for the faster access rates, as
there is more available parallelism. Quite significantly, un-
like the sequential scheduler, both the first ready and bank
sequential schedulers are able to handle the access rate for
the case where the average inter-access time is 10 cycles,
albeit with high average latencies.

The more aggressive scheduling policies are able to fur-
ther reduce the average memory latency for the cases with
low average inter-access times. As would be expected, the
policies that leave rows open (open rowandopen column)
are able to obtain up to about a 2% higher row hit rate
than the baseline sequential controller, whereas the policies
that aggressively close rows (closed rowandclosed column)
achieve much lower hit rates, approaching 0% for the cases
with high average inter-access times. In almost all cases,
the policies that aggressively close rows yield significantly
higher DMA read latencies. This is a direct result of the
fact that DMA accesses have higher inter-access rates and
are frequently sequential. So, rows must be held open after
DMA accesses are completed in order to exploit the locality
in the access stream. Similarly, the policies that keep rows
open also benefit CPU latency, due to the reference locality
found in Section 3.2.

In almost all cases, theopen columnpolicy minimizes
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Figure 5. Average read latencies (ns) using virtual channel s with an LRU channel selection policy.
In subfigure (A), the high latency of several configurations r esults in truncated bars. The achieved
segment hit rate is printed at the top of each bar.

both the average CPU and DMA read latencies, so it is
clearly the best policy across a wide range of traces and con-
ditions. When the inter-access time averages 10 cycles, the
open columnscheduler reduces the average CPU read la-
tency by 86% and the average DMA read latency by about
85% below the average read latencies achieved by the se-
quential scheduler. When the inter-access time increases to
an average of 15 cycles, theopen columnscheduler reduces
the average CPU and DMA read latencies by 26–31% and
14–23%, respectively, compared to the sequential sched-
uler. As the inter-access time increases further, theopen
columnscheduler is only able to reduce the average read
latencies by 3% at most, due to the decrease of available
bank parallelism at any given time. So, while current sys-
tems will benefit very little from memory access scheduling,
as CPU speeds increase relative to DRAM speeds, memory
controllers will need to incorporate memory access schedul-
ing to keep read latencies low.

The memory controller could give priority to read ac-
cesses over write accesses in an attempt to further reduce
the average read latency. However, this is not that effec-
tive, as there is little or no effect when the average inter-
access time is high, and at most a 10% improvement when
the inter-access time is low.

6.2 Virtual Channels

Aggressive memory access scheduling can potentially re-
duce the read latency of the SDRAM, but does not increase
the row hit rate. Therefore, memory access scheduling re-

duces latency by overlapping operations to the SDRAM,
not by exploiting the locality that was shown to exist in
Section 3.2. This leaves an opportunity for virtual channel
SDRAM to further reduce average latency. To evaluate the
performance of virtual channel SDRAM, four memory ac-
cess scheduling policies are used:first ready, row/segment
first, column first, and column first giving priority to read
operations (read column). Only theLRU channel selection
policy is discussed here, as theRRscheduling policy per-
forms slightly worse in all cases. Again, all memory access
scheduling policies and channel selection policies are able
to handle the access rate, except for therow/segment first
policy at the highest access rate.

Figure 5 shows the achieved read latencies of virtual
channel SDRAM. As expected from the reuse distances
shown in Section 3, the segment hit rate is noticeably higher
than the row hit rate of conventional SDRAM, even with the
best scheduling policy. Theopen columnpolicy achieved a
44–56% row hit rate for CPU accesses and a 54–82% row
hit rate for DMA accesses, as shown in Figure 4. The best
policy for virtual channel SDRAM,read columnschedul-
ing, achieves a 53–65% segment hit rate for CPU accesses
and a 61–89% segment hit rate for DMA accesses, as shown
in Figure 5. Therefore, virtual channels allow the mem-
ory controller to exploit additional locality beyond what is
possible with conventional SDRAM. It would be difficult
to capture this locality any other way. Bandwidth limita-
tions prevent caching solutions that store segments outside
of the SDRAM, and limited block reuse limits the utility of
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Figure 6. Virtual channel read latencies with read column sc heduling and opportunistic channel
restoration. The achieved segment hit rate is printed at the top of each bar.

caching data either within the SDRAM or the memory con-
troller, as discussed in Section 3. However, despite the in-
creased hit rate, the benefit of virtual channels over conven-
tional SDRAM with the best scheduling policy is limited.
When accesses arrive at the memory controller once every
10 cycles on average,read columnscheduling reduces the
average read latency by 5–16% for the CPU and by 2–11%
for DMA accesses. When the access rate decreases, how-
ever, the average latency for CPU accesses increases over
the best scheduling policy for conventional SDRAM by up
to 13% in the worst case. In all cases, the average latency
of DMA accesses is decreased, by at most 6%.

6.3 Channel Selection and Restoration

The schedulers evaluated in Section 6.2 are not able to
achieve latencies as low as aggressive memory access
scheduling with conventional SDRAM because of the in-
creased latency required to restore modified channels be-
fore they can be reclaimed for reuse. In order to alleviate
this problem, two techniques can be used, as described in
Section 4.3. First, the channel selection algorithm can fa-
vor unmodified channels, so they do not have to be restored
before reuse. Remember that the memory array within the
SDRAM has already been restored, so channels can be over-
written if they do not contain new data. Second, modified
channels can opportunistically be restored to the memory
arrays when no other operations can be performed for the
set of pending memory accesses.

Figure 6 shows the performance of virtual channel
SDRAM with these optimizations to the memory controller.
In all cases, a memory controller with these policies can

handle the access rate. Furthermore, they also all signifi-
cantly outperform the best scheduling policy with conven-
tional SDRAM. Segment hit rate is not sacrificed by oppor-
tunistically restoring modified channels during free com-
mand cycles. This is because aRESTOREcommand to the
SDRAM does not destroy the data in the channel. So, it re-
mains available and may continue to be used until a new
segment is moved to the channel via aPREFETCH com-
mand. However, by restoring segments in the background,
a channel can be overwritten immediately when it is re-
claimed. As the figure shows, this obviates the need for
the channel selection policy to favor unmodified channels,
as theLRU and Unmodifiedpolicies perform identically.
The Unmodifiedpolicy offers no advantage because mod-
ified (dirty) channels get restored in the background before
they become the least recently used channel. Furthermore,
the simpleRRpolicy performs almost as well as theLRU
policy, so the complexity of LRU is unnecessary.

Recall from Figure 4 that with an average inter-access
time of 25 cycles theopen columnpolicy achieves average
CPU read latencies of 35–39ns and average DMA read la-
tencies of 24–27ns. As Figure 6 shows, theread column
scheduler withLRU channel selection for virtual channel
SDRAM reduces these latencies by 9–12% for CPU reads
to 30–35ns and by 12–14% for DMA reads to 21–23ns. As
the inter-access time is decreased, such a memory controller
is able to decrease the average read latency by even larger
amounts compared to the best scheduling policy for conven-
tional SDRAM. The average CPU read latency decreases
by 12–15% when the inter-access time averages 20 cycles,
by 17–20% when the inter-access time averages 15 cycles,



and by 28–34% when the inter-access time averages 10 cy-
cles. Similarly, the average DMA read latency decreases by
13–14% when the inter-access time averages 20 cycles, by
16–17% when the inter-access time averages 15 cycles, and
by 25–28% when the inter-access time averages 10 cycles.
In all cases, the average DMA read latency is lower than
the average CPU read latency because of the greater access
locality of DMA transfers.

With the appropriate access scheduling and channel se-
lection policies, virtual channel SDRAM allows signifi-
cantly lower average read latencies for web servers. Virtual
channel SDRAM allows the memory controller to exploit
increased amounts of locality in the access stream and par-
allelism within the SDRAM to reduce the average memory
latency. As CPU and peripheral speeds increase, it becomes
increasingly important to reduce SDRAM latency. Fortu-
nately, the improvement becomes even more pronounced as
the load on the memory system is increased.

7 Related Work

Several studies have proposed reordering memory accesses
to increase effective memory bandwidth in stream-oriented
systems [13, 17]. McKee, et al. show that for scien-
tific and multimedia applications, a streaming memory con-
troller can successfully reorder memory accesses to increase
the row hit rate and therefore increase the achieved mem-
ory bandwidth [13]. Memory access scheduling also in-
creases the achieved memory bandwidth of the Imagine me-
dia processor [17]. Both of these studies consider applica-
tions with high latency tolerance that are limited by memory
bandwidth, so increasing the effective memory bandwidth
improves performance in both cases. Neither study, how-
ever, considers the average latency of memory accesses and
how to decrease them for applications which are not stream-
oriented and have far less latency tolerance.

Several studies have also proposed to remap addresses
and to utilize the cache hierarchy more efficiently in order
to reduce the number of accesses to the DRAM, thereby im-
proving its performance. Most notably, the Impulse mem-
ory controller attempts to improve the performance of the
overall memory system by eliminating unnecessary DRAM
accesses and increasing cache efficiency [2]. Such schemes
do not necessarily improve the utilization of the SDRAM,
but rather decrease the number of SDRAM accesses.

Impulse has also been augmented with a parallel vector
access unit that allows commands to be sent to the mem-
ory controller. These commands expand to a stream of ac-
cesses and allow memory reordering similar to McKee’s
streaming memory controller [12]. Like the parallel vec-
tor access unit, the command vector memory system also
sends commands to the memory controller that expand to a
stream of accesses [3]. Additionally, the command vector
memory system further reorders memory accesses to im-

prove DRAM performance given the accesses generated by
the commands. Again, however, the parallel vector access
unit and command vector memory system focus on applica-
tions with high latency tolerance that are limited by memory
bandwidth and do not consider average memory latency for
latency limited applications.

There have been numerous proposals to add logic and
storage to SDRAM devices. The two most relevant to
this work are NEC’s virtual channel DRAM and Wong and
Baer’s DRAM caching [15, 18]. NEC originally developed
virtual channel DRAM to enhance traditional single data
rate SDRAM and has also proposed the addition of virtual
channels to DDR2 SDRAM [6, 15]. Davis has performed a
limited evaluation of such virtual channel DDR2 SDRAM
without exploring aggressive memory access scheduling
and channel selection policies [7]. Wong and Baer pro-
pose the addition of a small cache on the DRAM itself to
reduce latency. The reuse data in Figure 1 shows that such
caches are far less effective than techniques such as virtual
channels at exploiting locality. Furthermore, the memory
controller has information about what references are pend-
ing, which makes it desirable for the memory controller to
manage the memory on the SDRAM.

8 Conclusions

Operating system, application, and peripheral memory traf-
fic within a web server combine to place considerable de-
mands on the system’s main memory. The need for low
memory access latency and the internal structure of mod-
ern SDRAM motivate the use of aggressive techniques to
exploit locality and concurrency within the SDRAM. By
scheduling the accesses to the SDRAM to give priority to
column accesses to open rows, the average read latency for
both CPU and DMA reads can be reduced. In current sys-
tems, the reduction is modest. However, as CPU speeds
increase and reduce the inter-access time to an average of
15 cycles, such a memory controller reduces CPU read la-
tency by 26–34% and DMA read latency by 14–23%. Fur-
thermore, when the inter-access time decreases to 10 cy-
cles, the CPU and DMA read latencies can be reduced up
to 86%. These decreases in latency are accomplished by
increasing parallelism among the internal SDRAM banks,
since the row hit rate increased by less than 1%.

Virtual channel SDRAM provides additional opportuni-
ties for latency reduction. First, virtual channels allow ad-
ditional parallelism within the SDRAM. The effect of bank
conflicts is minimized, as precharge and activate operations
can occur to banks with open segments within the channels.
Second, virtual channels allow the memory controller to
capture additional locality within the SDRAM. By allowing
multiple active segments from any bank, segments can re-
main active longer and more of the locality available within
the access trace can be used to allow memory accesses to be



satisfied with fast column accesses. A column first schedul-
ing policy that favors read accesses along with a LRU pol-
icy to select virtual channels further reduces the average la-
tency achieved below the best scheduling policy using con-
ventional SDRAM. In order to offset the increased worst
case latency of virtual channel SDRAM, however, channels
must be opportunistically restored in the background. By
doing so, in current systems, the average latency of CPU
read accesses is reduced by 9–12%, and the average latency
of DMA read accesses is reduced by 12–14% below the la-
tency of conventional SDRAM. Also, as the inter-access
times decrease, virtual channels are even more effective,
yielding decreases of up to 28–34% in CPU read latency
and 25–28% in DMA read latency. All of these latency re-
ductions are accomplished both by increasing parallelism
within the SDRAM and by increasing the segment hit rate
beyond what was possible with conventional SDRAM.

With the appropriate access scheduling and channel
selection policies, virtual channel SDRAM yields sig-
nificantly lower average read latencies than conventional
SDRAM. Such an external memory system can benefit a
wide range of applications that have multiple competing
outstanding accesses to DRAM. In the future, as CPU and
peripheral speeds continue to rise, reducing DRAM latency
will become increasingly important. To maximize system
performance, techniques such as those described here must
be employed, since technology constraints prevent memory
speeds from keeping up with increases in processor perfor-
mance. As the results in this paper have shown, the novel
polices introduced for accessing and managing resources on
the SDRAM continue to be effective as the demands on ex-
ternal memory increase. Furthermore, these mechanisms
are complementary to existing latency reduction and toler-
ance techniques, and should increase the effectiveness of
those techniques.
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