
Memory Disambiguation Hardware: a Review

Fernando Castro, Daniel Chaver, Luis Piñuel, Manuel Prieto and Francisco Tirado
ArTeCS Group, Department of Computer Arquitecture, Complutense University

Madrid, Spain
fcastror@fis.ucm.es, {dani02, lpinuel, mpmatias, ptirado}@dacya.ucm.es

ABSTRACT

One of the main challenges of modern processor
designs is the implementation of scalable and
efficient mechanisms to detect memory access
order violations as a result of out-of-order
execution. Conventional structures performing this
task are complex, inefficient and power-hungry.
This fact has generated a large body of work on
optimizing address-based memory disambiguation
logic, namely the load-store queue. In this paper we
review the most significant proposals in this
research field, focusing on our own contributions.
Keywords: LSQ, Memory Disambiguation,
Energy-Efficiency, Filtering, Hardware
Simplification.

1. INTRODUCTION
With high operation frequency, modern out-of-
order processors often need to buffer a very large
amount of instructions to be able to overlap useful
processing with relatively long latencies associated
with accesses to lower levels of the memory
hierarchy. Processor features such as multithreading
further increase the demand on the instruction
buffering capability. However, increasing the
number of in-flight instructions requires scaling up
different microarchitectural structures, which has a
significant impact on energy consumption,
especially if the structure is accessed associatively.
One such example is the logic that enforces correct
memory-based dependences, commonly referred to
as the load-store queue (LSQ), and typically
implemented as two separated queues: the load
queue (LQ) and the store queue (SQ). Conventional
implementations of these queues contain complete
addresses and their entries are allocated in program
order. To enable early execution of loads without
compromising program correctness, memory
instructions are tracked by the two queues and
associative searches are used to find the correct
producer or to detect dependence violations. These
associative search operations are a major concern
for the scalability of these queues. Not only energy
consumption increases with the size of the queue,

the latency of accesses also worsens and may
present complications in the logic design. As such,
a range of implementations that avoid associative
searches have been explored recently. The main
observation behind these designs is that memory-
based dependencies are very infrequent and hence,
through clever filtering or prediction, it is posible to
reduce the number of associative accesses.
Sections II and III recap the conventional design of
the LSQ and the main alternatives. Section IV
explores our proposals. Finally, Section V
concludes.

2. CONVENTIONAL DESIGN
Modern out-of-order processors usually employ an
array of sophisticated techniques to allow early
execution of loads to improve performance. Almost
all designs include techniques such as load
bypassing and load forwarding. Both schemes
allow early execution of loads when all preceding
stores have calculated their addresses. More
aggressive implementations go a step further and
allow execution of loads when the address of a
preceding store is not yet resolved. Such
speculative execution can be premature if an earlier
store in program order writes to the memory space
loaded and executes afterwards. Clearly, this
speculation has to be applied such that program
correctness is not compromised. Thus, the
processor needs to detect, squash and re-execute (or
replay) premature loads and their dependents. To
simplify implementation, processors typically
replay many more instructions (such as all
instructions following the store [1]), as these
premature loads are rare in general and sometimes
extra logic is employed to further reduce their
occurrence [2].
The dependence enforcement is achieved using age-
ordered load queue and store queue. A memory
instruction of one type needs to check the queue of
the opposite kind in an associative fashion (see
Figure 1): a load searches the SQ to forward data
from an earlier, in-flight store and a store searches
the LQ to identify loads that have executed
prematurely (wrongly speculated).

JCS&T Vol. 8 No. 3 October 2008

132

Figure 1 - Conventional LSQ design

3. LSQ: STATE OF THE ART

The LSQ is a hardware structure that exhibits two
main problems: 1) its logic is complex as it
involves associative comparison of wide operands,
which implies a high energy consumption, and 2)
the scaling of the LSQ increases its access latency,
which makes it hard to integrate it in high-
frequency designs. We can identify three different
approaches to overcome these problems. Based on
the observed behavior of memory instructions
(dependences and forwardings are infrequent),
many researches have proposed filtering techniques
to reduce the number of associative searches. Other
designs adopt a two-level approach for
disambiguation and forwarding. The guiding
principle is largely the same: use a first level
structure small but still able to perform a large
majority of the work. This first level is backed up
by a much larger second level structure to
correct/complement its work. Finally, other designs
try to simplify/remove the associative hardware of
the LSQ looking for a simpler and cheaper
management of load store queue operations.
In the following sub-sections we summarize the
main contributions. Before reviewing them, we’ll
start with the most important memory dependence
prediction techniques. Memory dependence
predicition is an important alternative to address-
based mechanisms to allow aggressive speculation
and yet avoid penalties associated with squashing.
It allows to establish guidelines in the out-of-order
memory accessing of load instructions The key
insight is that memory-based dependences can be
predicted independently on the actual address of
each instance of memory instructions and this
prediction allows for stream-lined communication
between likely predicted store-load pairs.

Memory Dependence Prediction
Moshovos et al. [3] propose techniques that attempt
to predict those instructions whose immediate
execution is going to violate a true dependence, and

delay the execution of those instructions as long as
necessary to avoid the mis-speculation. They
observe that the static store-load instruction pairs
that cause most of the dynamic data mis-
speculations are relatively few and exhibit temporal
locality. This observation suggests using past
history to dinamically identify such pairs and a
storage structure to cache the information. Thus,
when a load speculatively issues and violates a true
dependency with an older store, the program
counters (PC) of the load and the store are recorded
in a table. Subsequent executions of the load
instruction will check the table to see if they have
conflicted with a store in the past. If so, the load
will also check the SQ to see if that store is present.
If the store is present in the store queue, then the
load must wait until the store has been issued.
Chrysos et al. in [4] propose another technique to
predict dependences between memory instructions.
The proposed memory dependence predictor is
based upon the concept of store sets. A store set of
a specific load is the set of all stores (identified by
their PC) upon which the load has ever depended.
When a program begins executing, all of the loads
have empty store sets, and the processor allows
naive speculation of loads around the stores. When
a load and a store execute in the wrong order,
causing a violation, the store PC is added to the
load’s store set. Thus, when a load is fetched, the
processor will determine which stores in the load’s
store set are recently fetched but not yet issued, and
create a dependence upon those stores. Loads that
never cause memory order violations will have no
imposed memory dependencies, and will execute as
soon as possible.
Subramaniam et al. [5] use the idea of dependency
vectors from matrix schedulers applied to non-
memory instructions and adapt them to implement a
new dependence prediction algorithm. The
dependency vector is an alternative scheduler
topology designed to be significantly more scalable.
Goshima et al. [6] proposed to replace CAM
structures of a conventional scheduler with two
dependency matrices to illustrate memory
dependences. For a N entry scheduler, each matrix
has N rows and N columns; one for each
instruction. If instruction i is data-dependent on
instruction j, then the matrix entry at row i and
column j is set to one. So long as instruction i has a
bit set in its row, then the corresponding input
dependency has not been resolved. When
instruction j issues, it clears all bits in column j,
thus notifying any dependents in the window that

LQ

Addr.Data ¿Squash?

SQ

Addr.Data ¿Forwarding?

Associative
Logic

Associative
Logic

JCS&T Vol. 8 No. 3 October 2008

133

the parent instruction has been scheduled. Store
vectors are different than the load-store pairs and
store sets approaches in that store vectors do not
explicitly track the PCs of stores that collide with
loads. Instead, the authors implicitly track load-
store dependencies based on the relative age of a
store. Thus, a load’s store vector records the
relative positions or ages of all stores that were
involved in previous memory ordering violations.
The store vector algorithm has three main steps:
update, prediction and scheduling. Initially, all
loads are allowed to execute as soon as their
addresses are known, so all store vectors are
initialized to zero. When load-store ordering
violations occur, the store vectors are updated. In
the prediction phase each load obtains its own
vector; in the scheduling step loads wait until all
bits in its vector are zero to proceed to execution.
Fang et al. [7] apply a form of memory distance,
called store distance defined as the number of store
instructions between a load and the previous store
accessing the same memory location. Through
profiling, the instruction-based store distance
distribution is analized and a representative store
distance is generated for each static load
instruction. Then, a cost effective microachitecture
mechanism is developed for the processor to
determine accurately on which specific store
instruction a load depends according to its distance
annotation.

Filtering techniques
Sethumadhavan et al. [8] propose a type of filtering
scheme named search filtering, which uses hashing
to reduce both the number of lookups to the LSQ
and the number of entries that must be searched.
Two Bloom Filters [9] are employed, one for loads
and another for stores. Those filters are made up of
a table of counters. Store and load instructions,
when issued to execution, index (address-based) an
entry of its corresponding filter, incrementing the
counter. At commit time, the instruction decrements
the counter. Besides, at issue time, the instruction
accesses the opposite filter, in order to check if a
potential memory dependence violation exists. If
the stored value into the corresponding counter is
bigger than 0, there is a possible memory
dependence, and the store/load performs an
associative search to the LQ/SQ. If it is 0, then we
know for sure that there is no match between
memory addresses, and the LQ/SQ search is
avoided, filtering this way a large number of
associative accesses.

Park et al. [10] propose two techniques to reduce
the search bandwidth requeriment on the LQ/SQ.
The first one extends the store set predictor [4] to
predict the matches between loads and stores. They
called their scheme store-load pair predictor. A
load will search the store queue only when the
store-load pair predictor predicts that there is a
potentially-dependent store in the queue and tells
the load to obtain its value from the SQ. While the
store-set predictor detects only those store-load
pairs that cause dependencies violations, their
store-load pair predictor detects all matching pairs
of loads and stores regardless of whether they cause
violations. To detect potential mispredictions stores
search the load queue for matching load at commit
time. The second one reduces the search bandwidth
demand on the load queue. For this propose, they
introduce the load buffer, which is a small buffer to
hold loads that are issued out of order. The key idea
is that for detecting load-load order violations
(multiprocessors), each load should only check
those adresses corresponding to loads issued out of
order. The authors highlight that this kind of loads
are rare. This way, just adding a small buffer to the
LQ, when a load executes, instead of checking the
entire load queue, it has to check only the load
buffer, reducing search time and energy
consumption.
Sha et al. [11] propose the improvement of the SQ
scalability by implementing store-load forwarding
using speculative indexed access -store queue index
prediction (SQIP) -, rather than associative search.
This technique uses prediction to identify the single
SQ entry from which each dynamic load is most
likely to forward. A forwarding mis-prediction,
detected by pre-commit filtered load re-execution,
results in a pipeline flush. To predict forwarding
SQ entries, they use a two-table predictor that is an
adaptation of store sets [4]. The first table maps
each dynamic load to a small set of static stores
from which it has forwarded in the past; the second
table maps each of these static stores to the SQ
index of its youngest in-flight instance. The
predictor selects the youngest of these indices.

Split/two-level LSQ structure
Baugh et al. [12] propose an alternative LSQ
organization that separates the time-critical
forwarding functionality from the process of
checking that loads received their correct values.
Two main techniques are exploited: first, the store-
forwarding logic is accessed only by those loads
and stores that are likely to be involved in

JCS&T Vol. 8 No. 3 October 2008

134

forwarding, and second, the checking structure is
banked by address. The result of these techniques is
that the LSQ can be implemented by a collection of
small, low-bandwidth structures yielding to a
significant reduction in LSQ dynamic power. They
propose the usage of a new structure, the store-
forwarding buffer (SFB), that is much like a
traditional store queue but with fewer entries and
fewer ports, yielding a reduction in access time and
a significant reduction in power consumption. The
size of the structure is reduced by allocating entries
for only those stores predicted to require
forwarding. Similarly, required bandwidth is
reduced by snooping only for those loads that are
predicted to require forwarding. Because these
predictions can be wrong, a mechanism is required
to detect faulty predictions. This is performed by a
second structure, called MVQ (memory validation
queue), that is the responsible for detecting load-
store ordering violations, consistency violations and
forwarding mispredictions. This structure must
observe all in-flight loads and stores to identify
violations. To efficiently implement this structure,
it is banked by address. As a large fraction of static
instructions are never involved in forwarding, a
single bit per static instruction is sufficient to
effectively predict the forwarding behavior of an
instruction. Only marked stores are allocated in the
SFB. The MVQ, in addition, must detect situations
in which load-store forwarding should have been
performed on unmarked loads or stores.
Roth [13] proposes a new load-store unit design in
which the demand for SQ search bandwidth is
reduced. A single bit per load is used to represent
the past behavior about forwardings. Marked loads
(forwarding in the past) access the SQ, unmarked
loads do not. Detecting wrong SQ non-accesses is
done by re-executing filtered loads prior to
retirement. A load whose re-executed value differs
from the one stored in its LQ entry elicits a squash
similar to one triggered by a misprediction branch
and it is also marked.
Stone et al. [14] propose that the functions of store-
to-load forwarding, memory disambiguation and in-
order retirement of stores were divided among three
structures: an address-indexed store forwarding
cache (SFC), an address-indexed memory
disambiguation table (MDT) and a store FIFO.
Because these structures do not include CAMs or
priority encoders, they scale readily as the number
of in-flight loads and stores increases. The SFC is a
small cache to which stores write their values as
they complete, and from which loads may obtain

their values as they execute. Both loads and stores
access the SFC speculatively and out-of-order, but
the SFC does not rename stores to the same
address. Therefore, violations of true, anti, or
output memory dependences can cause loads to
obtain incorrect values from this cache. For this
reason, the authors employ another structure,
named MDT, to detect memory dependences
violations. This table buffers the sequence numbers
of the latest load and store to each in-flight
memory. The processor assigns these numbers that
impose a total ordering on all in-flight loads and
stores. Thus, just with simple comparisons between
sequence numbers the MDT can detect memory
dependence violations; if so, it initiates recovery by
flushing all instructions subsequent to the load or
store whose late execution caused the dependence
violation.
Akkary et al. [15] propose a hierarchical store
queue organization to mitigate the bottleneck that
supposes the implementation of store-to-load
forwarding, since the store queue must provide the
dependent load with data within the data cache
access time. The hierarchical proposed store queue
splits SQ into two levels: a fast and small first level
backed by a much larger and slower second level.
The level one buffers the last n stores. Since stores
typically forward to nearby loads, most forwardings
occurs from the first level. When the first level is
full, the oldest store is removed and moved into the
second level. The level two has membership test
buffer (MTB) structures (similar to Bloom filters)
to quickly determining wether a given load address
matches a store entry in this second level. Thus,
when a store is removed form the first level and
allocated in the second one, the corresponding
MTB entry is incremented. When a store retires and
is removed form level two, the corresponding MTB
entry is decremented. When a load is issued, the
first SQ level and the MTB are accessed in parallel.
If the load hits level one, the store data is forwarded
to the load. If the load misses the first level and the
MTB entry is zero, the data is forwarded to the load
from the data cache. If the load misses level one
and the MTB is not zero (potential match), the load
is penalized a data cache miss penalty to allow
sufficient time to acces SQ level 2 and resolve the
dependency (if the load hits second level, data is
supplied from this level 2; otherwise the data is
forwarded from the data cache).
Torres et al. [16] propose a two-level SQ well
suited to first-level multibanked data caches. The
goal is to forward data from in-flight stores to

JCS&T Vol. 8 No. 3 October 2008

135

dependent loads with the latency of a cache bank.
For that they introduce a particular two-level SQ
design in which forwarding is done speculatively
from a distributed first level made of extremely
small banks, while a centralized, second level
checks its correctness and enforces correct store-
load ordering a few cycles later.
Sethumadhavan et al. in [17] propose a new LSQ
implementation to improve area and efficiency by
allocationg entries when instructions are issued
rather than when they are dispatched. This requires
the entries in the LSQ to be unordered with respect
to age. To compensate the lack of ordering, the
design determines the age by explicitly storing the
it in a separate age CAM. To support commits, the
age CAM is associatively searched with the age
supplied by the ROB. The address and data from
the exact matching entry are read out from the
CAM and RAM respectively, and sent to the
caches. To support violation detection, when a store
arrives it searches the address CAM to identify
matching loads, and searches the age CAM to
identify younger loads. The LSQ then performs a
logical or of the results of the two searches to flag a
violation.

Removing LQ/SQ
Cain and Lipasti [18] propose to solve the
associative load queue scalability problem by
completely eliminating the associative load queue.
Instead, data dependences and memory consistency
constraints are enforced by simply re-executing
load instructions in program order prior to
retirement. Authors propose a mechanism named
value-based replay, that performs re-execution of
load operation in program order prior to commit. If
both loads read the same value, then the load
correctly resolved its memory dependences;
otherwise a violation occurred either due to an
incorrect reordering with respect to a prior store or
a potential violation of the memory consistency
model. Instructions that have already consumed the
load’s incorrect value are squashed.
Roth [19] proposes a new mechanism to
significantly reduces the re-execution requirements
in those schemes similar to [18] that allow a first
speculative load access and perform another access
prior to commit to compare values obtained and
verify the correctness of the first execution. The
autor introduces the store vulnerability window
(SVW), a filter that reduces the number of loads
that must re-execute to support a given load
optimization. SVW assigns each dynamic store a

monotonically increasing sequence number. This
number is used to associate with each dynamic load
a dynamic window of stores to which that load is
made vulnerable (potentially dependent). For
convenience, this load’s SVW is defined as the
sequence number of the youngest older store to
which the load is not vulnerable. Using a Bloom
filter that stores in each entry the sequence number
of the last retired store to write to any partially
matching address, a violation can be ruled out
simply comparing the load’s SVW and the
corresponding sequence number stored in the
Bloom filter. This way the number of loads that
need to be re-executed significantly reduces.
Subramaniam et al. [20] propose a mechanism
similar to the store queue index prediction (SQIP)
[11], in which for each load the SQ index of a
sourcing store is predicted. The reason why SQIP
works is that those loads that receive data directly
from stores will usually receive the data from the
same store each time. [20] takes a slightly different
view on the underlying observation used by SQIP: a
store that forwards data to a load ususally forwards
to the same load each time. To implement this
technique, that results in the complete elimination
of the SQ, any store that forwards data to a load
will use a predicted LQ index to directly write the
value to the LQ entry without any associative logic.
Any mispredictions/misforwardings are detected by
a low-overhead pre-commit re-execution
mechanism.

4. AUTHORS’ CONTRIBUTIONS
In this section we summarize our main LSQ
techniques recently introduced: Split-LQ, IMDC
(Issue-time Memory Dependence Checking) and
DMDC (Delayed Memory Dependence Checking).

Split-LQ
Our first proposal [21] uses a split-LQ design where
the conventional associative load queue is replaced
with a smaller associative LQ (ALQ) and a banked
non-associative LQ (BNLQ). Loads are processed
differently and accommodated in different queues
(see Figure 2) based on the prediction whether they
are dependent on an in-flight store. We hold the
CAM structure for the ALQ and the predictor
allocates in this queue only the loads predicted to
communicate with an in-flight store. Loads
predicted to be independent are allocated in a
simple FIFO buffer. Dependence enforcement for
the ALQ is the same as in a conventional design,
whereas that for the BNLQ is done through a

JCS&T Vol. 8 No. 3 October 2008

136

Bloom filter, named EBF, which is inexact and
conservative but energy-efficient for the common
case where there is no dependence.
Our work exhibits certain similarity with [12] in
which both designs splits an associative structure
into two parts -one associative and another that
does not have this kind of logic- employing a
backup mechanism to perform its function. One
difference between these works is that we focus on
the LQ whereas Baugh et al. on the SQ.
Furthermore, there are significant differences in the
backup mechanism: we just need to check if the
value in our EBF is zero, while employing a MVQ
a comparison between addresses and sequence
numbers is needed.

Figure 2 – Split-LQ design

IMDC
The key difference between our IMDC [22][24]
design and the conventional design is that we
explicitly assign and track the age of loads.
Conventional design allocates an LQ entry for each
load at dispatch time in program order thereby
implicitly encoding the age information within the
position of the entry. IMDC, by explicitly encoding
and tracking the age, does not need to allocate an
entry for every load at the early stage of dispatch.
Instead, we use a simple hash table –named load
table- that replaces the associative LQ. Upon
execution, (see Figure 3) each load uses the address
to hash into the table and records its age. When a
store executes, the address is also used to hash into
the table. If the age recorded in the entry is younger
than that of the store, then the load and store
executed out of order with respect to each other, so
a potential memory dependence violation occurred.
To enforce sequential semantics, a replay is needed,
thus we simply replay from the instruction
following the store in program order.

Our design is conceptually close to [14], since our
load table is similar to Stone’s MDT. Nevertheless,
our table is much simpler. Thus, the MDT needs to
employ associative hardware to mitigate the effect
of collisions.

Figure 3 – IMDC design

DMDC
This design [23][24] replaces the LQ with an
address-based table in which only write a very
small fraction of all stores. The scheme works in a
decoupled way, so that in the first step an age-based
filtering is performed. To do that we employ just a
simple register, named YLA, comparing the age of
each store upon execution with the age of the
youngest issued load stored in the mentioned YLA.
As result of this process, store instructions
potentially dependent with some in-flight load are
marked. Furthermore, using this YLA register, a
instruction’s window containing potential offending
loads is delimited. In the second phase (previous to
commit time), simple addresses comparisons are
established between both kind of instructions. For
that purpose, a small and very simple hast table is
used. In case of conflict in the table, a potential
memory dependence violation is detected and the
corresponding re-execution of offending
instructions in triggered.
Our filtering effect is similar to [8], but our YLA
significantly ouptperforms the Setumadavan’s
results. Other mechanisms propose to delay the
dependence checking to commit phase too, but all
of them imply a load re-execution prior to
retirement, something that does not occur in our
design. Only the SVW [19] exhibits certain
similarity with our work, but the nature of triggered
windows is significantly different.

5. CONCLUSIONS
Many proposals to simplify the management and
the hardware of conventional LSQ have been
introduced recently. We have reviewed the main
techniques of memory dependence prediction, the

ALQ

SQ

Addr.Data

Addr.Data

BNLQ

Addr.Data

EBF

Hash

Hash

¿Squash?

¿Forwarding? ¿Squash ?

+ 1

Predictor

Load

Associative
Loagic

Associative
Logic

Load Table

¿Squash?

SQ

Addr.Data ¿Forwarding?

Associative
Logic

Load’s Age

Load Addr. Store’s Age

Check

Update

Store Addr.

JCS&T Vol. 8 No. 3 October 2008

137

schemes that reduce the check frequency through
clever filtering and the mechanisms that modify
substantially the conventional structure of the LSQ.
Finally, we have recapped our own contributions.

ACKNOWLEDGMENTS
This work has been supported in part by Spanish
government through the research contract CYCIT-
TIN 2005/5619, Consolider Ingenio 2010
2007/20811 and the Hipeac2 European Network of
Excellence.

6. REFERENCES
[1] J. Tendler, J. Dodson, J. Fields, H. Le and B.
Sinharoy, “Power4 System Microarchitecture”, IBM
Journal of Research and Development, Vol 46, No. 1,
2002, pp. 5-25.
[2] R. Kessler, “The Alpha 21264 Microprocessor”, IEEE
Micro, Vol. 9, No. 2, 1999, pp. 24-36.
[3] A. Moshovos, S. Breach, T. Vijaykumar and G. Sohi.
“Dynamic Speculation and Synchronization of Data
Dependences”. In Int’l Symp. on Computer Architecture,
1997, pp. 181-193.
[4] G. Chrysos and J. Emer. “Memory Dependence
Prediction using Store Sets”. In Int’l Symp. on Computer
Architecture, 1998, pp. 142-153.
[5] S. Subramaniam and G. Loh. “Store Vectors for
Scalable Memory Dependence Prediction and
Scheduling”. In Int’l Symp. on High-Performance
Computer Architecture, 2006, pp. 65-76.
[6] M. Goshima, K. Nishino, Y. Nakashima, S. Mori, T.
Kitamura and S. Tomita. “A High-Speed Dynamic
Instruction Scheduling Scheme for Superescalar
Processors. In Int’l Symp. on Microarchitecture, 2001,
pp. 225-236.
[7] C. Fang, S. Carr, S. Onder and Z. Wang. “Feedback-
Directed Memory Disambiguation through Store
Distance Analysis”. In Int’l Conference on
Supercomputing, 2006, pp. 278-287.
[8] S. Sethumadhavan, R. Desikan, D. Burger, C. R.
Moore, S. W. Keckler. “Scalable Hardware Memory
Disambiguation for High ILP Processors”. In Int’l Symp.
on Microarchitecture, 2003, pp. 399-410.
[9] B. Bloom, “Space/Time Trade-offs in Hash Coding
with Allowable Errors”, Communications of the ACM,
Vol. 13, No. 7, 1970, pp. 422-426.
[10] I. Park, C. L. Ooi, T. N. Vijaykumar. “Reducing
Design Complexity of the Load-Store Queue”. In Int’l
Symp. on Microarchitecture, 2003, pp. 411-422.
[11] T. Sha, M. M. K. Martin, A. Roth. “Scalable Store–
Load Forwarding via Store Queue Index Prediction”. In
Int’l Symp. on Microarchitecture, 2005, pp. 159-170.

[12] L. Baugh and C. Zilles, “Decomposing the Load-
Store Queue by Function for Power Reduction and
Scalability”, IBM Journal of Research and Development,
Vol. 50, No. 2-3, 2006, pp. 287-298.
[13] A. Roth. “A High-Bandwidth Load-Store Unit For
Single- and Multi- Threaded Processors”. Technical
report (CIS), Development of Computer and Information
Science, University of Pennsylvania, 2004.
[14] S. S. Stone, K. M. Woley and M. I. Frank. “Address-
Indexed Memory Disambiguation and Store-to-Load
Forwarding”. In Int’l Symp. on Microarchitecture, 2005,
pp. 171-182.
[15] H. Akkary, R. Rajwar and S. Srinivasan.
“Checkpoint Processing and Recovery: Towards Scalable
Large Instruction Window Processors”. In Int’l Symp. on
Microarchitecture, 2003, pp. 423-434.
[16] E. Torres, P. Ibañez, V. Viñals and J. Llaberia.
“Store Buffer Design in First-Level Multibanked Data
Caches”. In Int’l Symp. on Computer Architecture, 2005,
pp. 469-480.
[17] S. Sethumadhavan, F. Roesner, J. S. Emer, D.
Burger and S. W. Keckler. “Late-Binding: Enabling
Unordered Load-Store Queues. In Int’l Symp. on
Computer Architecture, 2007, pp. 347-357.
[18] H. W. Cain and M. H. Lipasti. “Memory Ordering: a
Value-Based Approach”. In Int’l Symp. on Computer
Architecture, 2004, pp. 90-101.
[19] A. Roth. “Store Vulnerability Window (SVW): Re-
Execution Filtering for Enhanced Load Optimization”. In
Int’l Symp. on Computer Architecture, 2005, pp. 458-
468.
[20] S. Subramaniam and G. Loh. “Fire-and-Forget:
Load-Store Scheduling with no Store Queue”. In Int’l
Symp. on Microarchitecture, 2006, pp. 273-284.
[21] F. Castro, D. Chaver, L. Piñuel, M. Prieto, M. Huang
and F. Tirado “Load-Store Queue Management: an
Energy-Efficient Design Based on a State-Filtering
Mechanism”. In Int’l Conference on Computer Design,
2005, pp. 617-624.
[22] A. Garg, F. Castro, M. Huang, L. Piñuel, D. Chaver
and M. Prieto. “Substituting Associative Load Queue
with Simple Hash Table in Out-of-Order
Microprocessors”. In Int’l Symp. on Low-Power
Electronics, 2006, pp. 268-273.
[23] F. Castro, L. Piñuel, D. Chaver, M. Prieto, M. Huang
and F. Tirado “DMDC: Delayed Memory Dependence
Checking through Age-Based Filtering”. In Int’l
Symposium on Microarchitecture, 2006, pp. 297-308.
[24] F. Castro, R. Noor, A. Garg, D. Chaver, M. Huang,
L. Piñuel, M. Prieto and F. Tirado. “Replacing
Associative Load Queues: a Timing-Centric Approach”.
To appear in IEEE Transactions on Computers, 2008.

JCS&T Vol. 8 No. 3 October 2008

138

