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ABSTRACT 

One of the main challenges of modern processor 
designs is the implementation of scalable and 
efficient mechanisms to detect memory access 
order violations as a result of out-of-order 
execution. Conventional structures performing this 
task are complex, inefficient and power-hungry. 
This fact has generated a large body of work on 
optimizing address-based memory disambiguation 
logic, namely the load-store queue. In this paper we 
review the most significant proposals in this 
research field, focusing on our own contributions. 
Keywords: LSQ, Memory Disambiguation, 
Energy-Efficiency, Filtering, Hardware 
Simplification. 
 

1. INTRODUCTION 
With high operation frequency, modern out-of-
order processors often need to buffer a very large 
amount of instructions to be able to overlap useful 
processing with relatively long latencies associated 
with accesses to lower levels of the memory 
hierarchy. Processor features such as multithreading 
further increase the demand on the instruction 
buffering capability. However, increasing the 
number of in-flight instructions requires scaling up 
different microarchitectural structures, which has a 
significant impact on energy consumption, 
especially if the structure is accessed associatively. 
One such example is the logic that enforces correct 
memory-based dependences, commonly referred to 
as the load-store queue (LSQ), and typically 
implemented as two separated queues: the load 
queue (LQ) and the store queue (SQ). Conventional 
implementations of these queues contain complete 
addresses and their entries are allocated in program 
order. To enable early execution of loads without 
compromising program correctness, memory 
instructions are tracked by the two queues and 
associative searches are used to find the correct 
producer or to detect dependence violations. These 
associative search operations are a major concern 
for the scalability of these queues. Not only energy 
consumption increases with the size of the queue, 

the latency of accesses also worsens and may 
present complications in the logic design. As such, 
a range of implementations that avoid associative 
searches have been explored recently. The main 
observation behind these designs is that memory-
based dependencies are very infrequent and hence, 
through clever filtering or prediction, it is posible to 
reduce the number of associative accesses. 
Sections II and III recap the conventional design of 
the LSQ and the main alternatives. Section IV 
explores our proposals. Finally, Section V 
concludes. 
 

2. CONVENTIONAL DESIGN 
Modern out-of-order processors usually employ an 
array of sophisticated techniques to allow early 
execution of loads to improve performance. Almost 
all designs include techniques such as load 
bypassing and load forwarding. Both schemes 
allow early execution of loads when all preceding 
stores have calculated their addresses. More 
aggressive implementations go a step further and 
allow execution of loads when the address of a 
preceding store is not yet resolved. Such 
speculative execution can be premature if an earlier 
store in program order writes to the memory space 
loaded and executes afterwards. Clearly, this 
speculation has to be applied such that program 
correctness is not compromised. Thus, the 
processor needs to detect, squash and re-execute (or 
replay) premature loads and their dependents. To 
simplify implementation, processors typically 
replay many more instructions (such as all 
instructions following the store [1]), as these 
premature loads are rare in general and sometimes 
extra logic is employed to further reduce their 
occurrence [2]. 
The dependence enforcement is achieved using age-
ordered load queue and store queue. A memory 
instruction of one type needs to check the queue of 
the opposite kind in an associative fashion (see 
Figure 1): a load searches the SQ to forward data 
from an earlier, in-flight store and a store searches 
the LQ to identify loads that have executed 
prematurely (wrongly speculated). 
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Figure 1 - Conventional LSQ design 

 
3. LSQ: STATE OF THE ART 

The LSQ is a hardware structure that exhibits two 
main problems: 1) its logic is complex as it 
involves associative comparison of wide operands, 
which implies a high energy consumption, and 2) 
the scaling of the LSQ increases its access latency, 
which makes it hard to integrate it in high-
frequency designs. We can identify three different 
approaches to overcome these problems. Based on 
the observed behavior of memory instructions 
(dependences and forwardings are infrequent), 
many researches have proposed filtering techniques 
to reduce the number of associative searches. Other 
designs adopt a two-level approach for 
disambiguation and forwarding. The guiding 
principle is largely the same: use a first level 
structure small but still able to perform a large 
majority of the work. This first level is backed up 
by a much larger second level structure to 
correct/complement its work. Finally, other designs 
try to simplify/remove the associative hardware of 
the LSQ looking for a simpler and cheaper 
management of load store queue operations. 
In the following sub-sections we summarize the 
main contributions. Before reviewing them, we’ll 
start with the most important memory dependence 
prediction techniques. Memory dependence 
predicition is an important alternative to address-
based mechanisms to allow aggressive speculation 
and yet avoid penalties associated with squashing. 
It allows to establish guidelines in the out-of-order  
memory accessing of load instructions The key 
insight is that memory-based dependences can be 
predicted independently on the actual address of 
each instance of memory instructions and this 
prediction allows for stream-lined communication 
between likely predicted store-load pairs. 
 
Memory Dependence Prediction 
Moshovos et al. [3] propose techniques that attempt 
to predict those instructions whose immediate 
execution is going to violate a true dependence, and 

delay the execution of those instructions as long as 
necessary to avoid the mis-speculation. They 
observe that the static store-load instruction pairs 
that cause most of the dynamic data mis-
speculations are relatively few and exhibit temporal 
locality. This observation suggests using past 
history to dinamically identify such pairs and a 
storage structure to cache the information. Thus, 
when a load speculatively issues and violates a true 
dependency with an older store, the program 
counters (PC) of the load and the store are recorded 
in a table. Subsequent executions of the load 
instruction will check the table to see if they have 
conflicted with a store in the past. If so, the load 
will also check the SQ to see if that store is present. 
If the store is present in the store queue, then the 
load must wait until the store has been issued.  
Chrysos et al. in [4] propose another technique to 
predict dependences between memory instructions. 
The proposed memory dependence predictor is 
based upon the concept of store sets. A store set of 
a specific load is the set of all stores (identified by 
their PC) upon which the load has ever depended. 
When a program begins executing, all of the loads 
have empty store sets, and the processor allows 
naive speculation of loads around the stores. When 
a load and a store execute in the wrong order, 
causing a violation, the store PC is added to the 
load’s store set. Thus, when a load is fetched, the 
processor will determine which stores in the load’s 
store set are recently fetched but not yet issued, and 
create a dependence upon those stores. Loads that 
never cause memory order violations will have no 
imposed memory dependencies, and will execute as 
soon as possible. 
Subramaniam et al. [5] use the idea of dependency 
vectors from matrix schedulers applied to non-
memory instructions and adapt them to implement a 
new dependence prediction algorithm. The 
dependency vector is an alternative scheduler 
topology designed to be significantly more scalable. 
Goshima et al. [6] proposed to replace CAM 
structures of a conventional scheduler with two 
dependency matrices to illustrate memory 
dependences. For a N entry scheduler, each matrix 
has N rows and N columns; one for each 
instruction. If instruction i is data-dependent on 
instruction j, then the matrix entry at row i and 
column j is set to one. So long as instruction i has a 
bit set in its row, then the corresponding input 
dependency has not been resolved. When 
instruction j issues, it clears all bits in column j, 
thus notifying any dependents in the window that 
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the parent instruction has been scheduled. Store 
vectors are different than the load-store pairs and 
store sets approaches in that store vectors do not 
explicitly track the PCs of stores that collide with 
loads. Instead, the authors implicitly track load-
store dependencies based on the relative age of a 
store. Thus, a load’s store vector records the 
relative positions or ages of all stores that were 
involved in previous memory ordering violations. 
The store vector algorithm has three main steps: 
update, prediction and scheduling. Initially, all 
loads are allowed to execute as soon as their 
addresses are known, so all store vectors are 
initialized to zero. When load-store ordering 
violations occur, the store vectors are updated. In 
the prediction phase each load obtains its own 
vector; in the scheduling step loads wait until all 
bits in its vector are zero to proceed to execution. 
Fang et al. [7] apply a form of memory distance, 
called store distance defined as the number of store 
instructions between a load and the previous store 
accessing the same memory location. Through 
profiling, the instruction-based store distance 
distribution is analized and a representative store 
distance is generated for each static load 
instruction. Then, a cost effective microachitecture 
mechanism is developed for the processor to 
determine accurately on which specific store 
instruction a load depends according to its distance 
annotation. 
 
Filtering techniques 
Sethumadhavan et al. [8] propose a type of filtering 
scheme named search filtering, which uses hashing 
to reduce both the number of lookups to the LSQ 
and the number of entries that must be searched. 
Two Bloom Filters [9] are employed, one for loads 
and another for stores. Those filters are made up of 
a table of counters. Store and load instructions, 
when issued to execution, index (address-based) an 
entry of its corresponding filter, incrementing the 
counter. At commit time, the instruction decrements 
the counter. Besides, at issue time, the instruction 
accesses the opposite filter, in order to check if a 
potential memory dependence violation exists. If 
the stored value into the corresponding counter is 
bigger than 0, there is a possible memory 
dependence, and the store/load performs an 
associative search to the LQ/SQ. If it is 0, then we 
know for sure that there is no match between 
memory addresses, and the LQ/SQ search is 
avoided, filtering this way a large number of 
associative accesses.  

Park et al. [10] propose two techniques to reduce 
the search bandwidth requeriment on the LQ/SQ. 
The first one extends the store set predictor [4] to 
predict the matches between loads and stores. They 
called their scheme store-load pair predictor. A 
load will search the store queue only when the 
store-load pair predictor predicts that there is a 
potentially-dependent store in the queue and tells 
the load to obtain its value from the SQ. While the 
store-set predictor detects only those store-load 
pairs that cause dependencies violations, their 
store-load pair predictor detects all matching pairs 
of loads and stores regardless of whether they cause 
violations. To detect potential mispredictions stores 
search the load queue for matching load at commit 
time. The second one reduces the search bandwidth 
demand on the load queue. For this propose, they 
introduce the load buffer, which is a small buffer to 
hold loads that are issued out of order. The key idea 
is that for detecting load-load order violations 
(multiprocessors), each load should only check 
those adresses corresponding to loads issued out of 
order. The authors highlight that this kind of loads 
are rare. This way, just adding a small buffer to the 
LQ, when a load executes, instead of checking the 
entire load queue, it has to check only the load 
buffer, reducing search time and energy 
consumption. 
Sha et al. [11] propose the improvement of the SQ 
scalability by implementing store-load forwarding 
using speculative indexed access -store queue index 
prediction (SQIP) -, rather than associative search. 
This technique uses prediction to identify the single 
SQ entry from which each dynamic load is most 
likely to forward. A forwarding mis-prediction, 
detected by pre-commit filtered load re-execution, 
results in a pipeline flush. To predict forwarding 
SQ entries, they use a two-table predictor that is an 
adaptation of store sets [4]. The first table maps 
each dynamic load to a small set of static stores 
from which it has forwarded in the past; the second 
table maps each of these static stores to the SQ 
index of its youngest in-flight instance. The 
predictor selects the youngest of these indices.  
 
Split/two-level LSQ structure 
Baugh et al. [12] propose an alternative LSQ 
organization that separates the time-critical 
forwarding functionality from the process of 
checking that loads received their correct values. 
Two main techniques are exploited: first, the store-
forwarding logic is accessed only by those loads 
and stores that are likely to be involved in 
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forwarding, and second, the checking structure is 
banked by address. The result of these techniques is 
that the LSQ can be implemented by a collection of 
small, low-bandwidth structures yielding to a 
significant reduction in LSQ dynamic power. They 
propose the usage of a new structure, the store-
forwarding buffer (SFB), that is much like a 
traditional store queue but with fewer entries and 
fewer ports, yielding a reduction in access time and 
a significant reduction in power consumption. The 
size of the structure is reduced by allocating entries 
for only those stores predicted to require 
forwarding. Similarly, required bandwidth is 
reduced by snooping only for those loads that are 
predicted to require forwarding. Because these 
predictions can be wrong, a mechanism is required 
to detect faulty predictions. This is performed by a 
second structure, called MVQ (memory validation 
queue), that is the responsible for detecting load-
store ordering violations, consistency violations and 
forwarding mispredictions. This structure must 
observe all in-flight loads and stores to identify 
violations. To efficiently implement this structure, 
it is banked by address. As a large fraction of static 
instructions are never involved in forwarding, a 
single bit per static instruction is sufficient to 
effectively predict the forwarding behavior of an 
instruction. Only marked stores are allocated in the 
SFB. The MVQ, in addition, must detect situations 
in which load-store forwarding should have been 
performed on unmarked loads or stores.  
Roth [13] proposes a new load-store unit design in 
which the demand for SQ search bandwidth is 
reduced. A single bit per load is used to represent 
the past behavior about forwardings. Marked loads 
(forwarding in the past) access the SQ, unmarked 
loads do not. Detecting wrong SQ non-accesses is 
done by re-executing filtered loads prior to 
retirement. A load whose re-executed value differs 
from the one stored in its LQ entry elicits a squash 
similar to one triggered by a misprediction branch 
and it is also marked. 
Stone et al. [14] propose that the functions of store-
to-load forwarding, memory disambiguation and in-
order retirement of stores were divided among three 
structures: an address-indexed store forwarding 
cache (SFC), an address-indexed memory 
disambiguation table (MDT) and a store FIFO. 
Because these structures do not include CAMs or 
priority encoders, they scale readily as the number 
of in-flight loads and stores increases. The SFC is a 
small cache to which stores write their values as 
they complete, and from which loads may obtain 

their values as they execute. Both loads and stores 
access the SFC speculatively and out-of-order, but 
the SFC does not rename stores to the same 
address. Therefore, violations of true, anti, or 
output memory dependences can cause loads to 
obtain incorrect values from this cache. For this 
reason, the authors employ another structure, 
named MDT, to detect memory dependences 
violations. This table buffers the sequence numbers 
of the latest load and store to each in-flight 
memory. The processor assigns these numbers that 
impose a total ordering on all in-flight loads and 
stores. Thus, just with simple comparisons between 
sequence numbers the MDT can detect memory 
dependence violations; if so, it initiates recovery by 
flushing all instructions subsequent to the load or 
store whose late execution caused the dependence 
violation. 
Akkary et al. [15] propose a hierarchical store 
queue organization to mitigate the bottleneck that 
supposes the implementation of store-to-load 
forwarding, since the store queue must provide the 
dependent load with data within the data cache 
access time. The hierarchical proposed store queue 
splits SQ into two levels: a fast and small first level 
backed by a much larger and slower second level. 
The level one buffers the last n stores. Since stores 
typically forward to nearby loads, most forwardings 
occurs from the first level. When the first level is 
full, the oldest store is removed and moved into the 
second level. The level two has membership test 
buffer (MTB) structures (similar to Bloom filters) 
to quickly determining wether a given load address 
matches a store entry in this second level. Thus, 
when a store is removed form the first level and 
allocated in the second one, the corresponding 
MTB entry is incremented. When a store retires and 
is removed form level two, the corresponding MTB 
entry is decremented. When a load is issued, the 
first SQ level and the MTB are accessed in parallel. 
If the load hits level one, the store data is forwarded 
to the load. If the load misses the first level and the 
MTB entry is zero, the data is forwarded to the load 
from the data cache. If the load misses level one 
and the MTB is not zero (potential match), the load 
is penalized a data cache miss penalty to allow 
sufficient time to acces SQ level 2 and resolve the 
dependency (if the load hits second level, data is 
supplied from this level 2; otherwise the data is 
forwarded from the data cache). 
Torres et al. [16] propose a two-level SQ well 
suited to first-level multibanked data caches. The 
goal is to forward data from in-flight stores to 
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dependent loads with the latency of a cache bank. 
For that they introduce a particular two-level SQ 
design in which forwarding is done speculatively 
from a distributed first level made of extremely 
small banks, while a centralized, second level 
checks its correctness and enforces correct store-
load ordering a few cycles later.  
Sethumadhavan et al. in [17] propose a new LSQ 
implementation to improve area and efficiency by 
allocationg entries when instructions are issued 
rather than when they are dispatched. This requires 
the entries in the LSQ to be unordered with respect 
to age. To compensate the lack of ordering, the 
design determines the age by explicitly storing the 
it in a separate age CAM. To support commits, the 
age CAM is associatively searched with the age 
supplied by the ROB. The address and data from 
the exact matching entry are read out from the 
CAM and RAM respectively, and sent to the 
caches. To support violation detection, when a store 
arrives it searches the address CAM to identify 
matching loads, and searches the age CAM to 
identify younger loads. The LSQ then performs a 
logical or of the results of the two searches to flag a 
violation.  
 
Removing LQ/SQ  
Cain and Lipasti [18] propose to solve the 
associative load queue scalability problem by 
completely eliminating the associative load queue. 
Instead, data dependences and memory consistency 
constraints are enforced by simply re-executing 
load instructions in program order prior to 
retirement. Authors propose a mechanism named 
value-based replay, that performs re-execution of 
load operation in program order prior to commit. If 
both loads read the same value, then the load 
correctly resolved its memory dependences; 
otherwise a violation occurred either due to an 
incorrect reordering with respect to a prior store or 
a potential violation of the memory consistency 
model. Instructions that have already consumed the 
load’s incorrect value are squashed. 
Roth [19] proposes a new mechanism to 
significantly reduces the re-execution requirements 
in those schemes similar to [18] that allow a first 
speculative load access and perform another access 
prior to commit to compare values obtained and 
verify the correctness of the first execution. The 
autor introduces the store vulnerability window 
(SVW), a filter that reduces the number of loads 
that must re-execute to support a given load 
optimization. SVW assigns each dynamic store a 

monotonically increasing sequence number. This 
number is used to associate with each dynamic load 
a dynamic window of stores to which that load is 
made vulnerable (potentially dependent). For 
convenience, this load’s SVW is defined as the 
sequence number of the youngest older store to 
which the load is not vulnerable. Using a Bloom 
filter that stores in each entry the sequence number 
of the last retired store to write to any partially 
matching address, a violation can be ruled out 
simply comparing the load’s SVW and the 
corresponding sequence number stored in the 
Bloom filter. This way the number of loads that 
need to be re-executed significantly reduces. 
Subramaniam et al. [20] propose a mechanism 
similar to the store queue index prediction (SQIP) 
[11], in which for each load the SQ index of a 
sourcing store is predicted. The reason why SQIP 
works is that those loads that receive data directly 
from stores will usually receive the data from the 
same store each time. [20] takes a slightly different 
view on the underlying observation used by SQIP: a 
store that forwards data to a load ususally forwards 
to the same load each time. To implement this 
technique, that results in the complete elimination 
of the SQ, any store that forwards data to a load 
will use a predicted LQ index to directly write the 
value to the LQ entry without any associative logic. 
Any mispredictions/misforwardings are detected by 
a low-overhead pre-commit re-execution 
mechanism. 
 

4. AUTHORS’ CONTRIBUTIONS 
In this section we summarize our main LSQ 
techniques recently introduced: Split-LQ, IMDC 
(Issue-time Memory Dependence Checking) and 
DMDC (Delayed Memory Dependence Checking).  
 
Split-LQ 
Our first proposal [21] uses a split-LQ design where 
the conventional associative load queue is replaced 
with a smaller associative LQ (ALQ) and a banked 
non-associative LQ (BNLQ). Loads are processed 
differently and accommodated in different queues 
(see Figure 2) based on the prediction whether they 
are dependent on an in-flight store. We hold the 
CAM structure for the ALQ and the predictor 
allocates in this queue only the loads predicted to 
communicate with an in-flight store. Loads 
predicted to be independent are allocated in a 
simple FIFO buffer. Dependence enforcement for 
the ALQ is the same as in a conventional design, 
whereas that for the BNLQ is done through a 
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Bloom filter, named EBF, which is inexact and 
conservative but energy-efficient for the common 
case where there is no dependence.  
Our work exhibits certain similarity with [12] in 
which both designs splits an associative structure 
into two parts -one associative and another that 
does not have this kind of logic- employing a 
backup mechanism to perform its function. One 
difference between these works is that we  focus on 
the LQ whereas Baugh et al. on the SQ. 
Furthermore, there are significant differences in the 
backup mechanism: we just need to check if the 
value in our EBF is zero, while employing a MVQ 
a comparison between addresses and sequence 
numbers is needed.  
 

 
Figure 2 – Split-LQ design 

 
IMDC 
The key difference between our IMDC [22][24] 
design and the conventional design is that we 
explicitly assign and track the age of loads. 
Conventional design allocates an LQ entry for each 
load at dispatch time in program order thereby 
implicitly encoding the age information within the 
position of the entry. IMDC, by explicitly encoding 
and tracking the age, does not need to allocate an 
entry for every load at the early stage of dispatch. 
Instead, we use a simple hash table –named load 
table- that replaces the associative LQ. Upon 
execution, (see Figure 3) each load uses the address 
to hash into the table and records its age. When a 
store executes, the address is also used to hash into 
the table. If the age recorded in the entry is younger 
than that of the store, then the load and store 
executed out of order with respect to each other, so 
a potential memory dependence violation occurred. 
To enforce sequential semantics, a replay is needed, 
thus we simply replay from the instruction 
following the store in program order.  

Our design is conceptually close to [14], since our  
load table is similar to Stone’s MDT. Nevertheless, 
our table is much simpler. Thus, the MDT needs to 
employ associative hardware to mitigate the effect 
of collisions. 
 

 
Figure 3 – IMDC design 

 
DMDC 
This design [23][24] replaces the LQ with an 
address-based table in which only write a very 
small fraction of all stores. The scheme works in a 
decoupled way, so that in the first step an age-based 
filtering is performed. To do that we employ just a 
simple register, named YLA, comparing the age of 
each store upon execution with the age of the 
youngest issued load stored in the mentioned YLA.  
As result of this process, store instructions 
potentially dependent with some in-flight load are 
marked. Furthermore, using this YLA register, a 
instruction’s window containing potential offending 
loads is delimited. In the second phase (previous to 
commit time), simple addresses comparisons are 
established between both kind of instructions. For 
that purpose, a small and very simple hast table is 
used. In case of conflict in the table, a potential 
memory dependence violation is detected and the 
corresponding re-execution of offending 
instructions in triggered.  
Our filtering effect is similar to [8], but our YLA 
significantly ouptperforms the Setumadavan’s 
results. Other mechanisms propose to delay the 
dependence checking to commit phase too, but all 
of them imply a load re-execution prior to 
retirement, something that does not occur in our 
design. Only the SVW [19] exhibits certain 
similarity with our work, but the nature of triggered 
windows is significantly different.  
 

5. CONCLUSIONS 
Many proposals to simplify the management and 
the hardware of conventional LSQ have been 
introduced recently.  We have reviewed the main 
techniques of memory dependence prediction, the 
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schemes that reduce the check frequency through 
clever filtering and the mechanisms that modify 
substantially the conventional structure of the LSQ. 
Finally, we have recapped our own contributions. 
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