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Abstract: A witness of non-Markovianity based on the Hilbert–Schmidt speed (HSS), a special type of
quantum statistical speed, has been recently introduced for low-dimensional quantum systems. Such
a non-Markovianity witness is particularly useful, being easily computable since no diagonalization
of the system density matrix is required. We investigate the sensitivity of this HSS-based witness
to detect non-Markovianity in various high-dimensional and multipartite open quantum systems
with finite Hilbert spaces. We find that the time behaviors of the HSS-based witness are always in
agreement with those of quantum negativity or quantum correlation measure. These results show
that the HSS-based witness is a faithful identifier of the memory effects appearing in the quantum
evolution of a high-dimensional system with a finite Hilbert space.

Keywords: non-Markovianity; Hilbert–Schmidt speed; high-dimensional system; multipartite open
quantum systems; memory effects

1. Introduction

The unavoidable interaction of quantum systems with their environments induces
decoherence and dissipation of energy. Recently, because of important developments
in both theoretical and experimental branches of quantum information theory, studies
of memory effects (non-Markovianity) during the evolution of quantum systems have
attracted much attention (see Refs. [1–3] for some reviews). Some approaches used for a
quantitative description of non-Markovian processes are either related to the presence of
information backflows [4] or to the indivisibility of the dynamical map [5]. However, while
well-defined for classical evolution, the notion of non-Markovianity appears to still lack a
unique definition in the quantum scenario [6].

Non-Markovian processes, exhibiting quantum memory effects, have been charac-
terized and observed in various realistic systems such as quantum optical systems [7–12],
superconducting qubits [13,14], photonic crystals [15–17], light-harvesting complexes [18],
and chemical compounds [19,20]. Moreover, it is known that non-Markovianity can be
a resource for quantum information tasks [21–25]. Accordingly, various witnesses have
been proposed to identify non-Markovianity based on, for example, distinguishability
between evolved quantum states of the system [4], fidelity [26–28], quantum relative
entropies [29,30], quantum Fisher information [31], capacity measure [32–34] and Bloch
volume measure [35–37].

It has been shown that the nonmonotonic behavior of quantum resources such as
entanglement [5], quantum coherence [38–41] and quantum mutual information [42] can
be interpreted as a witness of quantum non-Markovianity. Using entanglement to witness
non-Markovianity was first proposed in Ref. [5]. This proposal has been theoretically
investigated for qubits coupled to bosonic environments [43–45], for a damped harmonic
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oscillator [46], and for random unitary dynamics and classical noise models [47–49]. It is
also shown that entanglement cannot capture all the quantumness of correlations because
there are some separable mixed states with vanishing entanglement, which can nevertheless
have have nonzero quantum correlations [50]. Therefore, quantum correlations are more
robust than entanglement [51–54], while entanglement may suffer sudden death [55,56].
Consequently, many methods to quantify quantum correlations have been provided, among
which quantum discord [57,58] and measurement-induced disturbance [59] are proper for
any bipartite state.

Recently, Hilbert–Schmidt speed (HSS) [60], a measure of quantum statistical speed
which has the advantage of avoiding diagonalization of the evolved density matrix, has
been proposed and employed as a faithful witness of non-Markovianity in Hermitian
systems [61–64] and an efficient tool in quantum metrology [65,66]. These studies are so
far especially limited to low-dimensional systems, while high-dimensional ones have not
been investigated in detail. We know that high-dimensional systems play a crucial role in
increasing the security in quantum cryptography [67,68], as well as in enhancing quantum
logic gates, fault-tolerant quantum computation and quantum error correction [69]. This
motivates us to check the sensitivity of HSS-based witness to detect non-Markovianity in
high-dimensional and multipartite open quantum systems.

In this work, we analyze the validity of our HSS-based witness in various examples of
high-dimensional open quantum systems with finite Hilbert spaces, such as qudits and
hybrid qubit–qutrit systems. In particular, we consider a single qudit (spin-S systems)
subject to a squeezed vacuum reservoir [70], and hybrid qubit–qutrit system coupled
to quantum as well as classical noises [71]. We observe that the HSS-based witness is
consistent with established non-Markovianity quantifiers based on dynamical breakdown
of monotonicity for the quantum information resources.

The paper is organized as follows: In Section 2, we briefly review the definition of
quantifiers. In Section 3, the sensitivity of HSS-based witness in high-dimensional and
multipartite open quantum systems with finite Hilbert spaces through various examples is
studied. Finally, Section 4 summarizes the main results and prospects.

2. Preliminaries

In this section, we briefly review the relevant quantifiers and concepts employed in
this paper.

2.1. Non-Markovinity Definition

A classical Markov process is described by a family of random variables {X(t), t ∈ I ⊂
R}, for which the probability that X takes a value xn at any arbitrary time tn ∈ I, provided
that it took value xn−1 at some previous time tn−1 < tn, can be determined uniquely
and may not be influenced by the possible values of X at times prior to tn−1. It can be
formulated in terms of conditional probabilities as follows: P(xn, tn|xn−1, tn−1; . . . ; x0, t0) =
P(xn, tn|xn−1, tn−1) for all {tn ≥ tn−1 ≥ ... ≥ t0} ⊂ I. Roughly speaking, its concept is
connected with the memorylessness of the process and informally encapsulated by the
statement that “a Markov process has no memory of the history of past values of X, i.e., the
future of the process is independent of its history”.

To achieve a similar formulation in the quantum scenario we should find a way to
define P(xn, tn|xn−1, tn−1; . . . ; x0, t0) for quantum systems. In the classical realm, we may
sample a stochastic variable without affecting its posterior statistics. However, ’sampling’ a
quantum system requires measuring process, and hence disturbs the state of the system,
affecting the subsequent outcomes. Therefore, P(xn, tn|xn−1, tn−1; . . . ; x0, t0) depends on
not only the dynamics but also the measurement process. Since in such a case the Markovian
character of a quantum dynamical system is dependent on the the measurement scheme,
chosen to obtain P(xn, tn|xn−1, tn−1; . . . ; x0, t0), a definition of quantum Markovianity in
terms of which is a challenging task. In fact, a reliable definition of quantum Markovianity
should be independent of what is required to verify it.
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The aforesaid problem may be solved by adopting a different approach focusing
on studying one-time probabilities P(x, t). For these, in linear quantum evolutions, the
definition of Markovianity reduces to the concept of divisibility defined without any ex-
plicit reference to measurement processes in the quantum scenario [1]. To introduce the
divisibility concept, let us assume that the inverse of a quantum dynamical map Et exists
for all times t ≥ 0. Then it is possible to define a two-parameter family of maps by means
of Et,s = EtE−1

s (t ≥ s ≥ 0) such that Et,0 = Et and Et,0 = Et,sEs,0. It should be noted that
the existence of the inverse for all positive times guarantees the possibility of introducing
the notion of divisibility, while Et,0 and Es,0 are required to be completely positive by
construction, the map Et,s need not be completely positive and not even positive. It stems
from the fact that the inverse E−1

s of a completely positive map Es need not be positive. The
family of dynamical maps is called (C)P divisible when Et,s is (completely) positive for all
t ≥ s ≥ 0.

The trace norm given by ‖ ρ ‖= Tr
√

ρ†ρ = ∑
k

√
ak, in which ak’s represent the eigen-

values of ρ†ρ, leads to an important measure called trace distance, D(ρ1, ρ2) = 1
2 ‖ ρ1 − ρ2 ‖,

for the distance between two quantum states ρ1 and ρ2. The trace distance D(ρ1, ρ2) is
interpreted as the distinguishability between states ρ1 and ρ2. Moreover, it is contractive
for any completely positive and trace preserving (CPTP) map E affecting two arbitrary
quantum states ρ1,2, i.e., D

(
E(ρ1), E(ρ2)

)
≤ D(ρ1, ρ2) [3]. Because the dynamics of an open

quantum system is described by a CPTP map Et, the trace distance between the initial
states is always larger than the trace distance between the time-evolved quantum states.
Nevertheless, this fact does not mean that D

(
ρ1(t), ρ2(t)

)
, in which ρ1,2(t) ≡ Et(ρ1,2(0)),

exhibits a monotonically decreasing function versus time [72].
There are various ways to define and detect non-Markovianity or memory effects in

quantum mechanics (see [1] for a review). In Refs. [4,29], Breuer–Laine–Piilo (BLP) pro-
posed one of the most well-known approaches, based on the variation in distinguishability
of quantum states, to characterize the non-Markovian feature of the system dynamics. This
is the non-Markovianity definition which we mention in our paper. According to BLP
measure, for a Markovian process, the distinguishability between any two initial states of
the open system, continuously diminishes over time. In other words, a quantum evolution,
mathematically described by a quantum dynamical map Et, is called Markovian if, for
any arbitrary pair of initial quantum states ρ1(0) and ρ2(0), the evolved trace distance
D
(
ρ1(t), ρ2(t)

)
monotonically decreases with time. Hence, quantum Markovian dynamics

exhibits a continuous loss of information from the open system to the environment. Con-
sequently, a non-Markovian evolution is defined as a process in which, for certain time
intervals, dD

(
ρ1(t), ρ2(t)

)
/dt > 0, usually interpreted as the information flowing back

into the system temporarily. Provided that Et is invertible, one can show that the quantum
process is BLP Markovian if and only if Et is P-divisible [3,73].

2.2. HSS-Based Witness of Non-Markovianity

Considering the distance measure [60]

[d(p, q)]2 =
1
2 ∑

x
|px − qx|2, (1)

where p = {px}x and q = {qx}x denote the probability distributions, one can quantify the
distance between infinitesimally close distributions taken from a one-parameter family
px(φ) and then define the classical statistical speed as

s
[
p(φ0)

]
=

d
dφ

d
(

p(φ0 + φ), p(φ0)
)
. (2)

These classical notions can be generalized to the quantum case by taking a pair of
quantum states ρ and σ, and writing px = Tr{Exρ} and qx = Tr{Exσ} which represent the
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measurement probabilities corresponding to the positive-operator-valued measure (POVM)
defined by {Ex ≥ 0} satisfying ∑

x
Ex = I.

The associated quantum distance, which is called Hilbert–Schmidt distance [74], can
be achieved by maximizing the classical distance over all possible choices of POVMs [75]

D(ρ, σ) ≡ max
{Ex}

d(p, q) =

√
1
2

Tr
[
(ρ− σ)2

]
. (3)

Consequently the HSS, i.e. the corresponding quantum statistical speed, is defined
as follows:

HSS
(
ρφ

)
≡ HSSφ ≡ max

{Ex}
s
[
p(φ)

]
=

√√√√1
2

Tr

[(
dρφ

dφ

)2
]

, (4)

which can be easily computed without the diagonalization of dρφ/dφ.
The recently proposed protocol, completely consistent with the BLP witness and used

to detect non-Markovianity based on the HSS, is now briefly recalled [61]. We consider an
n-dimensional quantum system whose initial state is given by

|ψ0〉 =
1√
n
(
eiφ|ψ1〉+ . . . + |ψn〉

)
, (5)

where φ is an unknown phase shift and {|ψ1〉, . . . , |ψn〉} denotes a complete and orthonor-
mal set (basis) for the corresponding Hilbert spaceH. Given this initial state, the HSS-based
witness of non-Markovianity is defined by

Non-Markovianity Witness : χ(t) ≡
dHSS

(
ρφ(t)

)
dt

> 0, (6)

in which ρφ(t) is the evolved state of the system.

2.3. Quantum Entanglement Measure

Quantum entanglement is a kind of quantum correlations which, from an operational
point of view, can be defined as those correlations between different subsystems which
cannot be generated by local operations and classical communication (LOCC) procedures.
We use negativity [76] to quantify the quantum entanglement of the state, which is a reliable
measure of entanglement in the case of qubit–qubit and qubit–qutrit systems [77].

For any bipartite state, ρAB, the negativity is defined as

N (ρAB) = ∑
i
|λi|, (7)

where λi is the negative eigenvalue of ρTk , with ρTk denoting the partial transpose of the
density matrix ρAB with respect to subsystem k = A, B. Negativity can also be computed
by the formula [78]

N (ρAB) =
1
2

(∥∥∥ρTk
∥∥∥− 1

)
, (8)

in which the trace norm of ρTk is equal to the sum of the absolute values of its eigenval-
ues [79], that is ∥∥∥ρTk

∥∥∥ = ∑
i
|µi|, (9)

where the spectral decomposition of ρTk is given by ∑i µi |i〉 〈i|.

2.4. Quantum Correlation Quantifier: Measurement-Induced Disturbance

We use measurement-induced disturbance MID [59] as an alternative nonclassicality
indicator for quantifying the quantum correlations of the bipartite quantum systems. It is
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defined as the minimum disturbance caused by local projective measurements leaving the
reduced states invariant.

Considering the spectral resolutions of the reduced density states ρA = ∑i pA
i ΠA

i and
ρB = ∑j pB

j ΠB
i , one can compute the MID as follows:

M(ρAB) = IρAB − I(Π(ρAB)), (10)

where I is the mutual quantum information given by

I(ρAB) = S(ρA) + S(ρB)− S(ρAB), (11)

in which S(ρ) = −trρ log (ρ) denotes the von Neumann entropy and

Π(ρAB) = ∑
i,j

(
ΠA

i ⊗ΠB
j

)
ρAB

(
ΠA

i ⊗ΠB
j

)
. (12)

3. Analyzing the Efficiency of the HSS Witness in High-Dimensional Systems with
Finite Hilbert Spaces

In this section, we check the sanity of HSS-based witness through several paradigmatic
high-dimensional quantum systems with finite Hilbert spaces. The analyses are based on
the fact that for systems in which the corresponding subsystems are coupled to independent
environments, the oscillations of quantum correlations with time are associated with the
non-Markovian evolution of the system [12,47,80], resulting in the transfer of correlations
back and forth among the various parts of the total system. Moreover, by comparing
the results presented in Refs. [10,61,81,82], we can demonstrate that the BLP measure of
non-Markovianity can be used as a valid definition of non-Markovianity, when we intend
to detect non-Markovianity by revivals of quantum correlations.

In particular, we consider a single qudit subject to a quantum environment, and a
hybrid qubit-qutrit system coupled to independent as well as common quantum and
classical noises. We show that the oscillation of the HSS-based witness is in qualitative
agreement with nonmonotonic variations of the quantum resources, and hence it can be
introduced as a faithful identifier of non-Markovianity in such high-dimensional systems
with finite Hilbert spaces.

It should be noted that the efficiency of the HSS-based witness in detecting the non-
Markovian nature of the dynamics directly depends on adopting the correct parametriza-
tion of the initial state of Equation (5), as discussed in Ref. [61]. However, often choosing the
computational basis as the complete orthonormal set {|ψ1〉, . . . , |ψn〉} is enough to capture
the non-Markovianity, as shown in this paper. In all examples discussed below, the HSS is
computed for the pure initial states while the quantum correlations may be calculated for
mixed ones to illustrate the general efficiency off the HSS-based witness.

3.1. Single-Qudit Interacting with a Quantum Environment
3.1.1. Coupling to a Thermal Reservoir

Let consider the spin-S systems interacting with a thermal reservoir modeled by an
infinite chain of quantum harmonic oscillators with ωk, bk, and b†

k being, respectively, the
frequency, annihilation, and creation operators for the k-th oscillator. The total Hamiltonian
of the system is given by

H = ω0Sz + ∑
k

ωkb†
k bk + ∑ Sz(gkb†

k + g∗k bk), (13)

in which ω0 denote the transition frequency between any neighboring energy states of the
spin, and Sz, the z component of spin operator, can be represented by a diagonal matrix
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Sz = diag[s, s− 1, . . . ,−s] in the eigen-basis {|i〉, i = s, . . . ,−s}. In the interaction picture
Equation (13) into is expressed as

HI = ∑ Sz(gkb†
k eiωkt + g∗k bke−iωkt), (14)

where gk denotes the coupling strength between the spin and the environment through the
dephasing interaction. Up to an overall phase factor, the corresponding unitary propagator
is obtained as

V(t) = exp

[
1
2

Sz∑
k

(
αkb†

k − α∗bk

)]
, (15)

where αk = 2gk
(
1− eiωkt)/ωk.

It is assumed that the initial state of the spin-bath system is in a product state
ρT(0) = ρ(0)⊗ ρB in which ρ(0) denotes the initial state of spin, and

ρB =
1

ZB
e−β ∑k ωKb†

k bk (16)

represents the thermal equilibrium state of the bath with partition function ZB and inverse
temperature β = 1

kBT . The evolved state of the system can be calculated by [83]

ρnm(t) = ρnm(0) exp [−(n−m)2Γ(t)], (17)

where n, m = −s,−s + 1, . . . , 0, . . . , s− 1, s and, in the continuum-mode limit, the decoher-
ence function is given by

Γ(t) =
∫ ∞

0
J(ω) coth

(
ω

2kbT

)
1− cos(ωt)

ω2 dω, (18)

with spectral density J(ω) = ∑k |gk|2δ(ω−ωk).
The Γ(t) behavior closely depends on the characteristics of the environment. Here we

consider the Ohmic-like reservoirs with spectral density

J(ω) = α
ωs

ωs−1
c

exp
(
−ω

ωc

)
, (19)

where α represents a dimensionless coupling strength, and ωc denotes the cutoff frequency
of the bath. Changing the Ohmic parameter s, one can obtain sub-Ohmic (0 < s < 1),
Ohmic (s = 1) and super-Ohmic (s > 1) reservoirs.

3.1.2. Coupling to a Squeezed Vacuum Reservoir

In the case that the spin system is coupled to a squeezed vacuum reservoir, the
reduced density-matrix elements are similar to the ones presented in Equation (17) when
the decoherence function Γ(t) is replaced by

γ(t) =
∫ ∞

0
J(ω)

(1− cos (ωt))
ω2 [cosh (2r)− sinh (2r) cos (ωt− θ)]dω, (20)

where r is the squeezed amplitude parameter, and θ denotes the squeezed angle.
Because the structures of the density matrices are the same in both scenarios (coupling

to thermal and squeezed vacuum reservoirs), we only focus on the interaction of the system
with the squeezed vacuum reservoir, noting that the general results also holds for the
thermal reservoir.

We take the qudit in the pure initial state

|ψ〉 = 1√
2s + 1

(eiφ|s〉+ |s− 1〉+ |s− 2〉+ · · ·+ | − s〉), (21)
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which leads to the evolved state ρ(t) given by

ρ(t) =
1

2s + 1


1 e−γ(t)eiφ · · · e−(2s)2γ(t)eiφ

e−γ(t)e−iφ 1 · · · e−(2s−1)2γ(t)

e−4γ(t)e−iφ e−γ(t) · · · e−(2s−2)2γ(t)

... 1
. . .

e−(2s)2γ(t)e−iφ e−(2s−1)2γ(t) · · · 1

. (22)

Therefore, the time derivative of the HSS-based witness is obtained as

χ(t) = − 1
2s + 1

∂γ(t)
∂t

∑2s
k=1 k2e−2k2γ(t)

∑2s
k=1 e−2k2γ(t)

. (23)

The HSS-based witness χ(t) > 0 tells us that the process is non-Markovian whenever
∂γ(t)

∂t < 0, which corresponds to time intervals in which the decoherence function decreases,
leading to the re-coherence phenomenon. As known, in this system the non-Markovian
effects, originating from the non-divisible maps, appear when the decoherence function
temporarily decays with time [84]. Therefore, our witness correctly predicts the intervals
at which the memory effects arise in this single-qudit system. Moreover, when γ(t) is a
monotonous increasing function of time, the dynamics is Markovian because the coherence
decays monotonously with time.

3.2. Hybrid Qubit–Qutrit System Interacting with Various Quantum and Classical Environments

The composite hybrid qubit(A)–qutrit(B) system consists of a spin– 1
2 subsystem

(qubit A) and a spin-1 subsystem (qutrit B). In the following, we study the interaction
of this composite system with local non-Markovian environments A and B, or with a
common environment C modeling quantum or classical noises. The theoretical schematic
of this system is depicted in Figure 1.

3.2.1. Coupling to Independent Squeezed Vacuum Reservoirs

Now we investigate the scenario in which each of the subsystems, i.e., the qubit A
(sA = 1

2 ) and qutrit B (sB = 1), interacts independently with its local squeezed vacuum
reservoir. For simplicity we assume that the characteristics of the reservoirs are similar.
Equation (17), with the decoherence factor introduced in Equation (20), gives the reduced
density matrices of the subsystems. Computing them and applying the method presented
in [81], one can obtain the elements of the evolved density matrix of the composite system
as [85]

ρABnm(t) = ρABnm(0) exp [−(nA −mA)
2 − (nB −mB)

2]γ(t), (24)

BA

Environment 

A
Environment B

𝑠 =
1

2 𝑠 = 1

Environment C

Figure 1. Illustration of the composite qubit(A)-qutrit(B) system; Blue dashed lines represent entan-
glement between the subsystems. The bipartite system can interact either with independent local
environments EA, EB or with a common environment EC.
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where nA, mA = −sA, . . . , sA and nB, mB = −sB, . . . , sB.
Pure initial state. We take the hybrid qubit–qutrit system initially in a pure state given

by [61]

|ψ〉 = 1√
6

(
eiφ|00〉+ |01〉+ |02〉+ |10〉+ |11〉+ |12〉

)
, (25)

which leads to a dynamics of the system described by the evolved reduced density matrix
ρ(t) whose elements are presented in Appendix A.1. Then, the HSS is obtained as

HSS =
1
6

√
2e−2γ(t) + e−4γ(t) + e−8γ(t) + e−10γ(t). (26)

The dynamics of negativity, MID and HSS computed by the evolved state of the system
are plotted in Figure 2. We find that each of the measures initially decreases with time, then
starts to increase, and finally remains approximately constant over time, a behavior known
as the freezing phenomenon [86–92]. As discussed, the revival of the quantum correlation
measures can be attributed to the non-Markovian evolution of the system [47]. We see
that the behaviors of the HSS, negativity and quantum correlation exhibit an excellent
qualitative agreement. Consequently, the HSS-based witness can precisely capture the
non-Markovian dynamics of the composite system.

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 2. Evolution of the negativity, MID and HSS as a function of dimensionless time τ = ω0t when
each subsystem of the hybrid qubit–qutrit system, starting from the initial pure state, is independently
subject to a squeezed vacuum reservoir. The values of the other parameters are α = 0.1, ωc = 20ω0,
r = 0.3, φ = π and s = 3.

Mixed initial state. The non-Markovianity of the system, as faithfully individuated
by quantum correlation measures, may in general depend on the initial state. It is thus
important to investigate whether the HSS witness, obtained from the initial pure state
of Equation (25) by definition, is capable to identify the non-Markovian character of the
system dynamics also when the system starts from a mixed state. We shall study this aspect
here and in all the other environmental conditions considered hereafter (see sections below
devoted to a mixed initial state).
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We consider the one-parameter mixed entangled state as the initial state of the hybrid
qubit–qutrit system [93]

ρ0(p) =
p
2
(|01〉〈01|+ |11〉〈11|) + p|ψ+〉〈ψ+|+ (1− 2p)|ψ−〉〈ψ−|, (27)

where

|ψ+〉 = 1√
2
(|00〉+ |12〉),

|ψ−〉 = 1√
2
(|02〉+ |10〉),

(28)

in which the entanglement parameter p varies from 0 to 1 such that ρ(p) is entangled except
for p = 1

3 . We point out that such a state is taken as the initial state of the system for the
dynamics of the quantum correlation quantifiers, namely negativity and MID. We find that
Equation (27) leads to the evolved state of the system

ρ(t) =



p
2 0 0 0 0 p

2F
0 p

2 0 0 0 0
0 0 1−2p

2
1−2p

2 F 0 0
0 0 1−2p

2 F
1−2p

2 0 0
0 0 0 0 p

2 0
p
2F 0 0 0 0 p

2


, (29)

where F = e−5γ(t). Then, the negativity is given by [71]

N =
(p− 1)

2
+

1
4
|p + (1− p)F|+ 1

4
|p− (1− p)F|+ 1

4
|p− (1− 2p)F|+

1
4
|p + (1− 2p)F|.

(30)

Moreover, using Equation (10) we can compute the MID as

M =
(1− p)

2
[(1 +F ) log (1 +F ) + (1−F ) log (1−F )]. (31)

In Figure 3, we compare the evolution of HSS, obtained from the initial pure state of
Equation (25), with the dynamics of negativity and MID, computed for the mixed initial
state of Equation (15), for different values of p. The dynamics of the HSS is again in perfect
agreement with that observed for the entanglement and quantum correlations as quantified
by the negativity and MID, respectively. Therefore, the HSS-based witness, computed
versus the phase parameter encoded into an initial pure state of the system, can efficiently
detect the non-Markovian dynamics even in the case when the initial state of our high-
dimensional system is not pure. It should be noted that in the presence of sudden death of
entanglement, which occurs for some values of the entanglement parameter (for example,
for p = 0.4), only the HSS and MID show the same dynamics. Hence, the negativity
cannot be used as a faithful witness of non-Markovianity when it exhibits the sudden
death phenomenon.

In the case of initially entangled noninteracting qubits in independent non-Markovian
quantum environments, entanglement or quantum correlation revivals can be explained in
terms of transfer of correlations back and forth from the composite system to the various
parts of the total system. This is due to the back-action via the environment on the system,
which creates correlations between qubits and environments and between the environments
themselves. Accordingly, in this case the non-Markovianity is defined as backflow of
information from the environment(s) to the system(s).
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Figure 3. Comparing the evolution of negativity and MID computed for the initial mixed state of the
hybrid qubit–qutrit system, when each subsystem is independently coupled to a squeezed vacuum
reservoir, with HSS (obtained from the initial pure state) for different values of the entanglement
parameter p. In all plots the remaining parameters are α = 0.1, s = 3, ωc = 20 ω0, r = 0.3.

3.2.2. Coupling to Classical Environments

Here we assume that the hybrid qubit-qutrit system is affected by a classical environ-
ment implemented by random telegraph noise (RTN) with a Lorentzian spectrum. It is
a famous class of non-Gaussian noises used to generate the low-frequency 1

f α noise both
theoretically and experimentally. It is also responsible for coherent dynamics in quantum
solid-state nanodevices [94–96]. Physically, the RTN may result from one of the following
scenarios: (i) charges flipping between two locations in space (charge noise); (ii) electrons
trapping in shallow subgap formed at the boundary between a superconductor and an
insulator (noise of critical current); and (iii) spin diffusion on a superconductor surface
generated by the exchange mediated by the conduction electrons (flux noise) [97,98]. The
Hamiltonian of the qubit–qutrit system under the RTN is given by

H(t) =H0 +HI

H0 = ∑
k=A,B

εkSZ
k ,HI = ∑

k=A,B
[JkLk(t) + JcC(t)]Sk

z, (32)

where εk denote the energy of an isolated qubit (qutrit), SA
z = σz and SB

z represent the spin
operators of, respectively, the qubit and the qutrit in the z-direction. Moreover, Jk and Jc
represent the coupling strengths of each marginal system to the local and non-local RTN,
such that we consider two types of system-environment interactions, namely

(1) Local or independent environments (ie): Jk = ν 6= 0 and Jc = 0;
(2) Non-local or common environments (ce): Jk = 0 and Jc = ν 6= 0.

Furthermore, Lk(t) and C(t) denote the random variables used to introduce the
stochastic processes. They are used to describe the different conditions under which
the subsystems undergo decoherence due to the environment. Here, they represent clas-
sical random fluctuating fields such as bistable fluctuators flipping between two fixed
values ±m at rates γk and γ, respectively. For simplicity, we assume that γk = γ.
For the autocorrelation function of the random variable η(t) = {Lk(t); C(t)} we have
〈δη(t)δη(t′)〉 = exp[−2γ|t− t′|] with a Lorentzian power spectrum S(ω) = 4γ

ω2+γ2 . Defin-
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ing the parameter q = γ
ν , we can identify two regimes for the dynamics of quantum

correlations: the Markovian regime (q � 1: fast RTN), and the non-Markovian regime
(q� 1: slow RTN). The time-evolving state of the system under the influence of the RTN is
given by

ρ({η}, t) = U({η}, t)ρ(0)U†({η}, t). (33)

in which the time-evolution operator U({η}, t) called the stochastic unitary operator in the
interaction picture is given by

U({η}, t) = exp
[
−i
∫ t

0
HI
(
t′
)
dt′
]

. (34)

where η(t) = {Lk(t); C(t)} stands for the different realizations of the stochastic process.
Because U({η}, t) depends on the noise, we should perform the ensemble average over the
noise fields to obtain the reduced density matrix of the open system, i.e.,

ρie(ce) = 〈ρ({η}, t)〉η(t). (35)

The evolved state of the system in the presence of independent environments (ie) and
collective environments (ce) is obtained as

ρie(t) = 〈〈ρ(θA(t), θB(t), t)〉θA〉θB

ρce(t) = 〈ρ(θ(t), t)〉θ ,
(36)

where θk(t) = ν
∫ t

0 Lk(t′)dt′ (k = A, B) and θ(t) = ν
∫ t

0 C(t′)dt. Calculation of the above
terms requires the computation of averaged terms of the type 〈e±inθ〉 (n ∈ N) given by [99]

〈einθ〉 = Dn(τ) = 〈cos (nθ)〉 ± i〈sin (nθ)〉,
〈sin (nθ)〉 = 0,

(37)

〈cos (nθ)〉 =

e−qτ
[
cosh

(
ξqnτ

)
+ q

ξqn
sinh

(
ξqnτ

)]
, q > n

e−qτ
[
cos

(
ξnqτ

)
+ q

ξnq
sin
(
ξnqτ

)]
, q < n

where ξab =
√

a2 − b2 ((a, b) = n, q), and τ = νt denotes the scaled (dimensionless)
time [71].

Pure initial state in the presence of independent classical environments. Here, we
assume that each of the qubits and qutrits interact locally with local RTN, while the
composite system starts with the pure initial state in Equation (25). For this case, the
elements of evolved density matrix are given in Appendix A.2. Then the HSS is obtained as

HSS =
1
6

√
D2

1(τ) + 2D2
2(τ) + D2

2(τ)D2
1(τ) + D4

2(τ). (38)

In Figure 4, we illustrate the time behaviors of the negativity, MID and HSS in the
non-Markovian regime as a function of the dimensionless time. It is clear that when the
entanglement sudden death occurs, the HSS and MID synchronously oscillate with time as
they are suppressed to the minimum value and then rise. Moreover, at the first revival of
the measures, the minimum point of the HSS exactly coincides with that of the negativity.
After that moment we see that maximum (minimum) points of the HSS are in complete
coincidence with maximum (minimum) points of the negativity as well as the MID. This
perfect qualitative agreement between HSS and entanglement or quantum correlations is
evidence that the HSS-based witness can precisely detect non-Markovianity in the presence
of classical noises.
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Figure 4. Evolution of negativity, MID and HSS as a function of dimensionless time τ = νt when each
subsystem of the hybrid qubit–qutrit system, starting from the initial pure state, is independently
subject to a random telegraph noise in non-Markovian regime q = 0.1.

Mixed initial state in the presence of independent classical environments. Now we
compare the dynamics of the HSS, obtained from the initial pure state of Equation (25),
with the evolution of the negativity and quantum correlation computed for the initial
mixed state of Equation (27). The evolved density matrix, the corresponding negativity and
quantum correlation are obtained from, respectively, Equations (29)–(31) replacing F with
D2(τ)

2.
Figure 5 exhibits this comparison for different values of the entanglement parameter p.

Not considering the periods when the sudden death of the entanglement occurs, we observe
that the maximum and minimum points of the measures are very close to each other and
small deviations originate from the fact that the initial state, used for computation of the
HSS-based measure, should be optimized over all possible parametrizations. Therefore,
the HSS-based measure remains as a valid non-Markovianity identifier in the presence of
the classical noises.

Mixed initial state in the presence of a common classical environment. Let us now
compare the dynamics of the HSS, obtained as usual from the initial pure state of Equa-
tion (25) by definition, with the evolution of the negativity and quantum correlation
computed for the initial mixed state of Equation (27), when both the qubit and the qutrit
are embedded into a common RTN source in the non-Markovian regime. The elements
of the evolved dynamical density matrix are given in Appendix A.3. Then, one can easily
determine the HSS as

HSS =
1
6

√
D1(τ)

2 + 2D2(τ)
2 + D3(τ)

2 + D4(τ)
2. (39)
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Figure 5. Comparing the evolution of negativity and MID computed for the initial mixed state of the
hybrid qubit–qutrit system, when each subsystem is independently coupled to a random telegraph
noise, with HSS (obtained from the initial pure state) for different values of the entanglement
parameter p in the non-Markovian regime: q = 0.1.

Moreover, the evolved density matrix of the hybrid qubit–qutrit system for the initial
mixed state of Equation (27) is obtained as

ρ(t) =



p
2 0 0 0 0 p

2F eiφ

0 p
2 0 0 0 0

0 0 1−2p
2

1−2p
2 0 0

0 0 1−2p
2

1−2p
2 0 0

0 0 0 0 p
2 0

p
2F e−iφ 0 0 0 0 p

2


, (40)

where F = D4(τ).
As a consequence, we find that the negativity and MID are, respectively,

N =
1
4
[(p− 1) + |3p− 1|+ |(1− 2p)− pF|+ |(1− 2p) + pF|], (41)

M =(1− 2p) +
p
2
(1 +F ) log (1 +F ) + p

2
(1−F ) log (1−F ). (42)

For common environments, we know that mutual interaction between subsystems,
induced by the common environment, may lead to the preservation of correlations or even
result in creation of quantum correlations between the subsystems [82,100–102]. Therefore,
revivals of the quantum correlations cannot be necessarily linked to pure non-Markovianity
effects and hence we do not expect complete consistency between the HSS and quantum
correlations behaviors (see Figure 6 demonstrating this feature of common environments
causing the MID to fail in detecting non-Markovianity). Except for these situations, we see
that the maximum (minimum) points of the HSS computed for the initial pure state are
very close to those of the MID calculated for the initial mixed state.

It should be noted that the classical environments cannot store any quantum correla-
tions on their own, and hence they do not become entangled with their respective quantum
systems. Accordingly, common interpretation of non-Markovianity in accordance with
inflow (outflow) of information to (from) the system may be problematic in the presence of
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the RTN and other similar classical noises [47,103]. In other words, it is somewhat mislead-
ing to talk about information flow from the system(s) to the environment(s) or information
backflow from the environment(s) to the system(s). The better interpretation is to say that
the quantum system has a recording memory of the events affecting its dynamics. When
the quantum memory starts remembering, the information about the past events becomes
accessible, leading to revival of the quantum correlations and hence to the appearance of
quantum non-Markovianity [104].
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Figure 6. Comparing the evolution of negativity and MID computed for the initial mixed state of
the hybrid qubit–qutrit system, when its subsystems are subject to a common RTN source, with HSS
(obtained from the initial pure state) for different values of the entanglement parameter p in the
non-Markovian regime: q = 0.1.

3.2.3. Composite Classical-Quantum Environments

Here we investigate a hybrid system formed by a qubit subjected to a random tele-
graph noise and a qutrit independently subjected to a squeezed vacuum reservoir. The
Hamiltonian of such a system can be written as

H = Hqb(t)⊗ Iqt + Iqb ⊗Hqt(t). (43)

where Iqb(qt) denotes the identity operator acting on the subspace of the qubit (qutrit).
Moreover, the Hamiltonians of the local interaction of the qubit and qutrit, Hqb(t) and
Hqt(t), as well as their corresponding evolution operators, Uqb(θ, t) and Uqt(θ, t) can be
extracted from Sections 3.2.2 and 3.1. In addition, one can consider the unitary evolution
operator of the system as U = Uqb(θ, t)⊗ Uqt(t). Then, the evolved density matrix of the
this system can then be obtained by averaging the unitary evolved density matrix over the
stochastic process induced by the RTN.

Pure initial state. The elements of the evolved density matrix when starting from the
pure state of Equation (25) are given in Appendix A.4, leading to the following expression
for the HSS:

HSS =
1
6

√(
e−2γ(t) + e−8γ(t)

)(
1 + D2(τ)

2
)
+ D2(τ)

2. (44)

The time behaviors of negativity, MID and HSS are shown in Figure 7 illustrating that
all measures exhibit simultaneous oscillations with time such that their maximum and
minimum points exactly coincide. This excellent agreement confirms the faithfulness of the
HSS-based measure to detect memory effects.
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Figure 7. Evolution of negativity, MID and HSS as a function of dimensionless time τ when the
subsystems of the hybrid qubit–qutrit system, starting from the initial pure state, are independently
subject to composite classical-quantum environments. The values of the other parameters are given
by α = 0.1, ωc = 20 ω0, r = 0.3, and ν = 100.

Mixed initial state. Using Equation (27) as the initial state and computing the evolved
state of the system (see Appendix B.4), we find that the the negativity and MID, respectively,
are in the form of Equations (30) and (31) with F = D2(τ)e−4γ(t). In Figure 8, the dynamics
of negativity and MID, obtained for the initial mixed state, has been compared with that of
the HSS (computed for the initial pure state) in the non-Markovian regime.
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Figure 8. Comparing the evolution of the negativity and MID, computed for the initial mixed state
of the hybrid qubit–qutrit system, when the subsystems are independently subject to composite
classical-quantum environments, with the HSS obtained from the initial pure state for different values
of the entanglement parameter p in the non-Markovian regime: q = 0.1. The values of the other
parameters are given by α = 0.1, s = 3, ωc = 20 ω0, p = 0 and v = 100.
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The related analyses are similar to those in the above discussed scenarios, showing
that the HSS-based witness may be a proper non-Markovianity identifier even if the initial
state of high-dimensional systems is not pure.

4. Conclusions

Recently, the HSS-based witness, a quantifier of quantum statistical speed which has
the advantage of avoiding the diagonalization of the evolved density matrix, has been
introduced as a trustful witness of non-Markovianity in low-dimensional systems [61]. In
this work, we have generalized this result showing that the proposed witness is a bona-
fide identifier of non-Markovianity for high-dimensional and multipartite open quantum
systems with finite Hilbert spaces. This result stems from the observation that the HSS-
based witness is in perfect agreement with established non-Markovianity identifiers based
on the dynamical breakdown of monotonicity for quantum information resources, such
as negativity and measurement-induced disturbance. We have found that, despite the
common interpretation of non-Markovianity in terms of backflow of information from the
environment to the system may be problematic [6], the HSS-based witness is capable to
detect memory effects of the evolved quantum system.

In order to construct a non-Markovianity measure on the basis of a geometric distance
between two quantum states, one of desirable properties is that the distance is contractive,
i.e., nonincreasing under any completely positive trace preserving (CPTP) map. It has
been shown that the HSS is contractive under CPTP maps in low-dimensional Hermitian
systems [61]. Checking all of the dynamical cases presented here, we have found that the
contractivity of the HSS holds not only in low dimensional systems but also in finite high-
dimensional ones. Recently, an HSS-like measure has been used to analyze the quantum
speed limit for continuous-variable systems following Gaussian preserving dynamics [105].
Therefore, our results also motivate further studies about HSS applications in detecting
non-Markovianity in continuous variable systems.

By definition, the HSS-based witness of memory effects is obtained by maximizing
the speed of a classical distance measure between the probability distributions, over all
quantum measurements. This, as a prospect, may induce the idea of the the possibility to
use classical-like description of density matrix properties in probability representation of
quantum mechanics.

Recently, K. Goswami et al. [106] have reported a quantum-optics experimental setup
to implement a non-Markovian process—specifically, a process with initial classical correla-
tions between system and environment. It should be noted that in all systems investigated
in this paper we have adopted the usual assumption that the system and its environment
are initially uncorrelated. It would be interesting to generalize the application of the HSS-
based non-Markovianity witness to scenarios in which initial correlations between the
system and environment rise. This will be studied in detail in our future work.
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Appendix A. Pure Hybrid Qubit–Qutrit Evolved Density Matrix

This appendix presents the elements of the evolved density matrix of hybrid qubit–
qutrit system, starting from the initial pure state of Equation (25), in the presence of quantum
and classical noises. This evolved state is required for the assessment of non-Markovianity
via the HSS-based witness.

Appendix A.1. Squeezed Vacuum Reservoirs

The elements of the evolved density matrix, when each subsystem of the hybrid qubit–
qutrit system is independently subject to a squeezed vacuum reservoir, in the computational
basis |00〉 , |01〉 , |02〉 , |10〉 , |11〉 , |12〉 are given by

ρ11(t) = ρ22(t) = ρ33(t) = ρ44(t) = ρ55(t) = ρ66(t) =
1
6

,

ρ12(t) = ρ14(t) = ρ∗21(t) = ρ∗41(t) =
1
6

eiφe−γ(t),

ρ13(t) = ρ∗31(t) =
1
6

eiφe−4γ(t), ρ15(t) = ρ∗51(t) =
1
6

e−2γ(t),

ρ16(t) = ρ∗61(t) = eiφe−5γ(t),

ρ23(t) = ρ25(t) = ρ32(t) = ρ36(t) = ρ45(t) = ρ52(t) = ρ54(t) = ρ56(t) (A1)

= ρ63(t) = ρ65(t) =
1
6

e−γ(t),

ρ46(t) = ρ64(t) =
1
6

e−4γ(t),

ρ24(t) = ρ26(t) = ρ35(t) = ρ42(t) = ρ53(t) = ρ62(t) =
1
6

e−2γ(t),

ρ34(t) = ρ43(t) =
1
6

e−5γ(t).

Appendix A.2. Independent Random Telegraph Noise

The elements of the evolved density matrix, when each subsystem of the hybrid
qubit–qutrit system is independently subject to the classical random telegraph noise, can
be obtained as

ρ11(t) = ρ22(t) = ρ33(t) = ρ44(t) = ρ55(t) = ρ66(t) =
1
6

ρ12(t) = ρ∗21(t) =
1
6

eiφD1(τ)

ρ23(t) = ρ32(t) = ρ45(t) = ρ54(t) = ρ56(t) = ρ65(t) =
1
6

D1(τ)

ρ13(t) = ρ14(t) = ρ∗31(t) = ρ∗41(t) =
1
6

eiφD2(τ)

ρ25(t) = ρ36(t) = ρ46(t) = ρ52(t) = ρ63(t) = ρ64(t) =
1
6

D2(τ) (A2)

ρ15(t) = ρ∗51(t) =
1
6

eiφD2(τ)D1(τ)

ρ24(t) = ρ26(t) = ρ35(t) = ρ42(t) = ρ53(t) = ρ62(t) =
1
6

D2(τ)D1(τ)

ρ16(t) = ρ∗61(t) =
1
6

eiφD2
2(τ)

ρ34(t) = ρ43(t) =
1
6

D2
2(τ).
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Appendix A.3. Common Random Telegraph Noise

The elements of the evolved density matrix, when the qubit and qutrit are subject to a
common RTN source, are given by

ρ11(t) = ρ22(t) = ρ33(t) = ρ44(t) = ρ55(t) = ρ66(t) =
1
6

ρ12(t) = ρ∗21(t) =
1
6

eiφD1(τ)

ρ23(t) = ρ32(t) = ρ24(t) = ρ42(t) = ρ35(t) = ρ53(t) =

ρ45(t) = ρ54(t) = ρ56(t) = ρ65(t) =
1
6

D1(τ)

ρ13(t) = ρ14(t) = ρ∗31(t) = ρ∗41(t) =
1
6

eiφD2(τ)

ρ25(t) = ρ36(t) = ρ46(t) = ρ52(t) = ρ63(t) = ρ64(t) =
1
6

D2(τ) (A3)

ρ15(t) = ρ∗51(t) =
1
6

eiφD3(τ)

ρ24(t) = ρ26(t) = ρ35(t) = ρ42(t) = ρ53(t) = ρ62(t) =
1
6

D2(τ)D1(τ)

ρ16(t) = ρ∗61(t) =
1
6

eiφD4(τ)

ρ34(t) = ρ43(t) =
1
6

.

Appendix A.4. Composite Classical-Quantum Environments

The elements of the evolved density matrix, when the qubit and qutrit are indepen-
dently subject to, respectively, random telegraph noise channel and squeezed vacuum
reservoirs, can be obtained as

ρ11(t) = ρ22(t) = ρ33(t) = ρ44(t) = ρ55(t) = ρ66(t) =
1
6

ρ12 = ρ∗21 =
1
6

eiφe−γ(t)

ρ23(t) = ρ32(t) = ρ45(t) = ρ54(t) = ρ56(t) = ρ65(t) =
1
6

e−γ(t)

ρ13(t) = ρ∗31(t) =
1
6

eiφe−4γ(t)

ρ14(t) = ρ∗41(t) =
1
6

eiφD2(τ)

ρ15(t) = ρ∗51(t) =
1
6

eiφD2(τ)e−γ(t) (A4)

ρ16(t) = ρ∗61(t) =
1
6

eiφD2(τ)e−4γ(t)

ρ25(t) = ρ36(t) = ρ52(t) = ρ63(t) =
1
6

D2(τ)

ρ24(t) = ρ26(t) = ρ35(t) = ρ42(t) = ρ53(t) = ρ62(t) =
1
6

D2(τ)e−γ(t)

ρ34(t) = ρ43(t) =
1
6

D2(τ)e−4γ(t)

ρ46(t) = ρ64(t) =
1
6

e−4γ(t).



Entropy 2022, 24, 395 19 of 23

Appendix B. Mixed Hybrid Qubit–Qutrit Evolved Density Matrix

This appendix presents the elements of the evolved density matrix of hybrid qubit–
qutrit system, starting from the initial mixed state of Equation (27), in the presence of
quantum and classical noises.

Appendix B.1. Squeezed Vacuum Reservoirs

The elements of the evolved density matrix, when each subsystem of the hybrid
qubit–qutrit system is independently subject to a squeezed vacuum reservoir, are given by

ρ(t) =



p
2 0 0 0 0 p

2F
0 p

2 0 0 0 0
0 0 1−2p

2
1−2p

2 F 0 0
0 0 1−2p

2 F
1−2p

2 0 0
0 0 0 0 p

2 0
p
2F 0 0 0 0 p

2


, (A5)

and the partial transpose with respect to the subsystem A is

(
ρ(t)AB

)TA
=



p
2 0 0 0 0 1−2p

2 F
0 p

2 0 0 0 0
0 0 1−2p

2
p
2F 0 0

0 0 p
2F

1−2p
2 0 0

0 0 0 0 p
2 0

1−2p
2 F 0 0 0 0 p

2


, (A6)

where the F = e−5γ((t)).

Appendix B.2. Independent Random Telegraph Noise

The elements of the evolved density matrix, when each subsystem of the hybrid qubit–
qutrit system is independently subject to the classical random telegraph noise, are given by
Equation (A5) with F = D2(τ)

2.

Appendix B.3. Common Random Telegraph Noise

The evolved density matrix, when the qubit and qutrit are subject to a common RTN
source, is given by

ρ(t) =



p
2 0 0 0 0 p

2F
0 p

2 0 0 0 0
0 0 1−2p

2
1−2p

2 0 0
0 0 1−2p

2
1−2p

2 0 0
0 0 0 0 p

2 0
p
2F 0 0 0 0 p

2


, (A7)

where F = D4(τ).

Appendix B.4. Composite Classical-Quantum Environments

The elements of the evolved density matrix, when the qubit and qutrit are indepen-
dently subject to, respectively, random telegraph noise channel and squeezed vacuum
reservoirs, are given by Equation (A5) with F = D2(τ)e−4γ(t).
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32. Bylicka, B.; Chruściński, D.; Maniscalco, S. Non-Markovianity as a resource for quantum technologies. arXiv 2013, arXiv:1301.2585.
33. Benedetti, C.; Paris, M.G.A.; Maniscalco, S. Non-Markovianity of colored noisy channels. Phys. Rev. A 2014, 89, 012114. [CrossRef]
34. Addis, C.; Brebner, G.; Haikka, P.; Maniscalco, S. Coherence trapping and information backflow in dephasing qubits. Phys. Rev. A

2014, 89, 024101. [CrossRef]
35. Lorenzo, S.; Plastina, F.; Paternostro, M. Geometrical characterization of non-Markovianity. Phys. Rev. A 2013, 88, 020102.

[CrossRef]
36. Tufarelli, T.; Kim, M.S.; Ciccarello, F. Non-Markovianity of a quantum emitter in front of a mirror. Phys. Rev. A 2014, 90, 012113.

[CrossRef]
37. Apollaro, T.J.G.; Lorenzo, S.; Di Franco, C.; Plastina, F.; Paternostro, M. Competition between memory-keeping and memory-

erasing decoherence channels. Phys. Rev. A 2014, 90, 012310. [CrossRef]
38. Baumgratz, T.; Cramer, M.; Plenio, M.B. Quantifying Coherence. Phys. Rev. Lett. 2014, 113, 140401. [CrossRef]
39. Winter, A.; Yang, D. Operational Resource Theory of Coherence. Phys. Rev. Lett. 2016, 116, 120404. [CrossRef]
40. Chitambar, E.; Streltsov, A.; Rana, S.; Bera, M.N.; Adesso, G.; Lewenstein, M. Assisted Distillation of Quantum Coherence. Phys.

Rev. Lett. 2016, 116, 070402. [CrossRef]
41. Streltsov, A.; Adesso, G.; Plenio, M.B. Colloquium: Quantum coherence as a resource. Rev. Mod. Phys. 2017, 89, 041003. [CrossRef]
42. Luo, S.; Fu, S.; Song, H. Quantifying non-Markovianity via correlations. Phys. Rev. A 2012, 86, 044101. [CrossRef]
43. Zeng, H.S.; Tang, N.; Zheng, Y.P.; Wang, G.Y. Equivalence of the measures of non-Markovianity for open two-level systems. Phys.

Rev. A 2011, 84, 032118. [CrossRef]
44. Uchiyama, C. Exploring initial correlations in a Gibbs state by application of external field. Phys. Rev. A 2012, 85, 052104.

[CrossRef]
45. Lorenzo, S.; Plastina, F.; Paternostro, M. Role of environmental correlations in the non-Markovian dynamics of a spin system.

Phys. Rev. A 2011, 84, 032124. [CrossRef]
46. Vasile, R.; Galve, F.; Zambrini, R. Spectral origin of non-Markovian open-system dynamics: A finite harmonic model without

approximations. Phys. Rev. A 2014, 89, 022109. [CrossRef]
47. Lo Franco, R.; Bellomo, B.; Andersson, E.; Compagno, G. Revival of quantum correlations without system-environment

back-action. Phys. Rev. A 2012, 85, 032318. [CrossRef]
48. D’Arrigo, A.; Lo Franco, R.; Benenti, G.; Paladino, E.; Falci, G. Recovering entanglement by local operations. Ann. Phys. 2014,

350, 211–224. [CrossRef]
49. D’Arrigo, A.; Benenti, G.; Lo Franco, R.; Falci, G.; Paladino, E. Hidden entanglement, system-environment information flow and

non-Markovianity. Int. J. Quant. Infor. 2014, 12, 1461005. [CrossRef]
50. Datta, A.; Shaji, A.; Caves, C.M. Quantum Discord and the Power of One Qubit. Phys. Rev. Lett. 2008, 100, 050502. [CrossRef]
51. Streltsov, A.; Kampermann, H.; Bruß, D. Behavior of Quantum Correlations under Local Noise. Phys. Rev. Lett. 2011, 107, 170502.

[CrossRef] [PubMed]
52. Ciccarello, F.; Giovannetti, V. Creating quantum correlations through local nonunitary memoryless channels. Phys. Rev. A 2012,

85, 010102. [CrossRef]
53. Maziero, J.; Céleri, L.C.; Serra, R.M.; Vedral, V. Classical and quantum correlations under decoherence. Phys. Rev. A 2009,

80, 044102. [CrossRef]
54. Bellomo, B.; Compagno, G.; Lo Franco, R.; Ridolfo, A.; Savasta, S. Dynamics and extraction of quantum discord in a multipartite

open system. Int. J. Quant. Infor. 2011, 9, 1665–1676. [CrossRef]
55. Yu, T.; Eberly, J. Sudden death of entanglement. Science 2009, 323, 598–601. [CrossRef]
56. Almeida, M.P.; de Melo, F.; Hor-Meyll, M.; Salles, A.; Walborn, S.; Ribeiro, P.S.; Davidovich, L. Environment-induced sudden

death of entanglement. Science 2007, 316, 579–582. [CrossRef] [PubMed]
57. Ollivier, H.; Zurek, W.H. Quantum discord: A measure of the quantumness of correlations. Phys. Rev. Lett. 2001, 88, 017901.

[CrossRef]
58. Henderson, L.; Vedral, V. Classical, quantum and total correlations. J. Phys. A Math. Gen. 2001, 34, 6899. [CrossRef]
59. Luo, S. Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 2008,

77, 022301. [CrossRef]
60. Gessner, M.; Smerzi, A. Statistical speed of quantum states: Generalized quantum Fisher information and Schatten speed. Phys.

Rev. A 2018, 97, 022109. [CrossRef]
61. Rangani Jahromi, H.; Mahdavipour, K.; Khazaei Shadfar, M.; Lo Franco, R. Witnessing non-Markovian effects of quantum

processes through Hilbert-Schmidt speed. Phys. Rev. A 2020, 102, 022221. [CrossRef]
62. Rangani Jahromi, H.; Lo Franco, R. Searching for exceptional points and inspecting non-contractivity of trace distance in

(anti-)PT-symmetric systems. arXiv 2021, arXiv:2101.04663.
63. Rangani Jahromi, H. Remote sensing and faithful quantum teleportation through non-localized qubits. Phys. Lett. 2022,

424, 127850. [CrossRef]

http://dx.doi.org/10.1103/PhysRevA.83.022109
http://dx.doi.org/10.1103/PhysRevA.82.042103
http://dx.doi.org/10.1103/PhysRevA.89.012114
http://dx.doi.org/10.1103/PhysRevA.89.024101
http://dx.doi.org/10.1103/PhysRevA.88.020102
http://dx.doi.org/10.1103/PhysRevA.90.012113
http://dx.doi.org/10.1103/PhysRevA.90.012310
http://dx.doi.org/10.1103/PhysRevLett.113.140401
http://dx.doi.org/10.1103/PhysRevLett.116.120404
http://dx.doi.org/10.1103/PhysRevLett.116.070402
http://dx.doi.org/10.1103/RevModPhys.89.041003
http://dx.doi.org/10.1103/PhysRevA.86.044101
http://dx.doi.org/10.1103/PhysRevA.84.032118
http://dx.doi.org/10.1103/PhysRevA.85.052104
http://dx.doi.org/10.1103/PhysRevA.84.032124
http://dx.doi.org/10.1103/PhysRevA.89.022109
http://dx.doi.org/10.1103/PhysRevA.85.032318
http://dx.doi.org/10.1016/j.aop.2014.07.021
http://dx.doi.org/10.1142/S021974991461005X
http://dx.doi.org/10.1103/PhysRevLett.100.050502
http://dx.doi.org/10.1103/PhysRevLett.107.170502
http://www.ncbi.nlm.nih.gov/pubmed/22107493
http://dx.doi.org/10.1103/PhysRevA.85.010102
http://dx.doi.org/10.1103/PhysRevA.80.044102
http://dx.doi.org/10.1142/S0219749911008283
http://dx.doi.org/10.1126/science.1167343
http://dx.doi.org/10.1126/science.1139892
http://www.ncbi.nlm.nih.gov/pubmed/17463284
http://dx.doi.org/10.1103/PhysRevLett.88.017901
http://dx.doi.org/10.1088/0305-4470/34/35/315
http://dx.doi.org/10.1103/PhysRevA.77.022301
http://dx.doi.org/10.1103/PhysRevA.97.022109
http://dx.doi.org/10.1103/PhysRevA.102.022221
http://dx.doi.org/10.1016/j.physleta.2021.127850


Entropy 2022, 24, 395 22 of 23

64. Rangani Jahromi, H.; Haseli, S. Quantum memory and quantum correlations of Majorana qubits used for magnetometry. Quant.
Inf. Comput. 2020, 20, 935. [CrossRef]

65. Rangani Jahromi, H.; Lo Franco, R. Hilbert–Schmidt speed as an efficient figure of merit for quantum estimation of phase encoded
into the initial state of open n-qubit systems. Sci. Rep. 2021, 11, 7128. [CrossRef]

66. Rangani Jahromi, H.; Radgohar, R.; Hosseiny, S.M.; Amniat-Talab, M. Estimating energy levels of a three-level atom in single and
multi-parameter metrological schemes. arXiv 2021, arXiv:2110.10256.

67. Bruß, D.; Macchiavello, C. Optimal Eavesdropping in Cryptography with Three-Dimensional Quantum States. Phys. Rev. Lett.
2002, 88, 127901. [CrossRef] [PubMed]

68. Cerf, N.J.; Bourennane, M.; Karlsson, A.; Gisin, N. Security of Quantum Key Distribution Using d-Level Systems. Phys. Rev. Lett.
2002, 88, 127902. [CrossRef] [PubMed]

69. Gottesman, D. Fault-Tolerant Quantum Computation with Higher-Dimensional Systems. In Quantum Computing and Quantum
Communications; Williams, C.P., Ed.; Springer: Berlin/Heidelberg, Germany, 1999; pp. 302–313.

70. Ji, Y.; Hu, J. Control of quantum correlation of high dimensional system in squeezed vacuum reservoir. Optik 2020, 208, 164088.
[CrossRef]

71. Tchoffo, M.; Tsokeng, A.T.; Tiokang, O.M.; Nganyo, P.N.; Fai, L.C. Frozen entanglement and quantum correlations of one-
parameter qubit-qutrit states under classical noise effects. Phys. Lett. 2019, 383, 1856–1864. [CrossRef]

72. Breuer, H.P. Foundations and measures of quantum non-Markovianity. J. Phys. 2012, 45, 154001. [CrossRef]
73. Wißmann, S.; Breuer, H.P.; Vacchini, B. Generalized trace-distance measure connecting quantum and classical non-Markovianity.

Phys. Rev. A 2015, 92, 042108. [CrossRef]
74. Ozawa, M. Entanglement measures and the Hilbert–Schmidt distance. Phys. Lett. 2000, 268, 158–160. [CrossRef]
75. Luo, S.; Zhang, Q. Informational distance on quantum-state space. Phys. Rev. A 2004, 69, 032106. [CrossRef]
76. Plenio, M.B. Logarithmic negativity: A full entanglement monotone that is not convex. Phys. Rev. Lett. 2005, 95, 090503.

[CrossRef] [PubMed]
77. Nakahara, M. Quantum Computing: From Linear Algebra to Physical Realizations; CRC Press: Boca Raton, FL, USA, 2008.
78. Jaeger, G. Quantum Information; Springer: Berlin/Heidelberg, Germany, 2007.
79. Wilde, M.M. Quantum Information Theory; Cambridge University Press: Cambridge, UK, 2013.
80. Tong, Q.J.; An, J.H.; Luo, H.G.; Oh, C.H. Mechanism of entanglement preservation. Phys. Rev. A 2010, 81, 052330. [CrossRef]
81. Bellomo, B.; Lo Franco, R.; Compagno, G. Non-Markovian Effects on the Dynamics of Entanglement. Phys. Rev. Lett. 2007,

99, 160502. [CrossRef] [PubMed]
82. Lo Franco, R.; Bellomo, B.; Maniscalco, S.; Compagno, G. Dynamics of quantum correlations in two-qubit systems within

non-Markovian environments. Int. J. Mod. Phys. 2013, 27, 1345053. [CrossRef]
83. Fan, Z.L.; Tian, J.; Zeng, H.S. Entanglement and non-Markovianity of a spin-S system in a dephasing environment. Chin. Phys.

2014, 23, 060303. [CrossRef]
84. Fanchini, F.F.; de Oliveira Soares-Pinto, D.; Adesso, G. Lectures on General Quantum Correlations and Their Applications; Springer:

Berlin/Heidelberg, Germany, 2017.
85. Ji, Y.; Ke, Q.; Hu, J. Quantum correlation of high dimensional system in a dephasing environment. Phys. Low-Dimens. Syst.

Nanostruct. 2018, 99, 139–144. [CrossRef]
86. Mazzola, L.; Piilo, J.; Maniscalco, S. Sudden Transition between Classical and Quantum Decoherence. Phys. Rev. Lett. 2010,

104, 200401. [CrossRef] [PubMed]
87. Bromley, T.R.; Cianciaruso, M.; Adesso, G. Frozen Quantum Coherence. Phys. Rev. Lett. 2015, 114, 210401. [CrossRef] [PubMed]
88. Aaronson, B.; Lo Franco, R.; Adesso, G. Comparative investigation of the freezing phenomena for quantum correlations under

nondissipative decoherence. Phys. Rev. A 2013, 88, 012120. [CrossRef]
89. Aaronson, B.; Lo Franco, R.; Compagno, G.; Adesso, G. Hierarchy and dynamics of trace distance correlations. New J. Phys. 2013,

15, 093022. [CrossRef]
90. Cianciaruso, M.; Bromley, T.R.; Roga, W.; Lo Franco, R.; Adesso, G. Universal freezing of quantum correlations within the

geometric approach. Sci. Rep. 2015, 5, 10177. [CrossRef] [PubMed]
91. Haikka, P.; Johnson, T.H.; Maniscalco, S. Non-Markovianity of local dephasing channels and time-invariant discord. Phys. Rev. A

2013, 87, 010103. [CrossRef]
92. Lo Franco, R. Nonlocality threshold for entanglement under general dephasing evolutions: A case study. Quant. Inf. Proc. 2016,

15, 2393–2404. [CrossRef]
93. Karpat, G.; Gedik, Z. Correlation dynamics of qubit–qutrit systems in a classical dephasing environment. Phys. Lett. 2011,

375, 4166–4171. [CrossRef]
94. Galperin, Y.M.; Altshuler, B.L.; Bergli, J.; Shantsev, D.V. Non–Gaussian Low-Frequency Noise as a Source of Qubit Decoherence.

Phys. Rev. Lett. 2006, 96, 097009. [CrossRef]
95. Burkard, G. Non-Markovian qubit dynamics in the presence of 1/ f noise. Phys. Rev. B 2009, 79, 125317. [CrossRef]
96. Benedetti, C.; Buscemi, F.; Bordone, P.; Paris, M.G.A. Dynamics of quantum correlations in colored-noise environments. Phys.

Rev. A 2013, 87, 052328. [CrossRef]
97. Faoro, L.; Ioffe, L.B. Microscopic Origin of Low-Frequency Flux Noise in Josephson Circuits. Phys. Rev. Lett. 2008, 100, 227005.

[CrossRef] [PubMed]

http://dx.doi.org/10.26421/QIC20.11-12-2
http://dx.doi.org/10.1038/s41598-021-86461-2
http://dx.doi.org/10.1103/PhysRevLett.88.127901
http://www.ncbi.nlm.nih.gov/pubmed/11909501
http://dx.doi.org/10.1103/PhysRevLett.88.127902
http://www.ncbi.nlm.nih.gov/pubmed/11909502
http://dx.doi.org/10.1016/j.ijleo.2019.164088
http://dx.doi.org/10.1016/j.physleta.2019.03.022
http://dx.doi.org/10.1088/0953-4075/45/15/154001
http://dx.doi.org/10.1103/PhysRevA.92.042108
http://dx.doi.org/10.1016/S0375-9601(00)00171-7
http://dx.doi.org/10.1103/PhysRevA.69.032106
http://dx.doi.org/10.1103/PhysRevLett.95.090503
http://www.ncbi.nlm.nih.gov/pubmed/16197196
http://dx.doi.org/10.1103/PhysRevA.81.052330
http://dx.doi.org/10.1103/PhysRevLett.99.160502
http://www.ncbi.nlm.nih.gov/pubmed/17995229
http://dx.doi.org/10.1142/S0217979213450537
http://dx.doi.org/10.1088/1674-1056/23/6/060303
http://dx.doi.org/10.1016/j.physe.2018.01.023
http://dx.doi.org/10.1103/PhysRevLett.104.200401
http://www.ncbi.nlm.nih.gov/pubmed/20867012
http://dx.doi.org/10.1103/PhysRevLett.114.210401
http://www.ncbi.nlm.nih.gov/pubmed/26066419
http://dx.doi.org/10.1103/PhysRevA.88.012120
http://dx.doi.org/10.1088/1367-2630/15/9/093022
http://dx.doi.org/10.1038/srep10177
http://www.ncbi.nlm.nih.gov/pubmed/26053239
http://dx.doi.org/10.1103/PhysRevA.87.010103
http://dx.doi.org/10.1007/s11128-016-1290-3
http://dx.doi.org/10.1016/j.physleta.2011.10.017
http://dx.doi.org/10.1103/PhysRevLett.96.097009
http://dx.doi.org/10.1103/PhysRevB.79.125317
http://dx.doi.org/10.1103/PhysRevA.87.052328
http://dx.doi.org/10.1103/PhysRevLett.100.227005
http://www.ncbi.nlm.nih.gov/pubmed/18643450


Entropy 2022, 24, 395 23 of 23

98. Yoshihara, F.; Harrabi, K.; Niskanen, A.O.; Nakamura, Y.; Tsai, J.S. Decoherence of Flux Qubits due to 1/ f Flux Noise. Phys. Rev.
Lett. 2006, 97, 167001. [CrossRef] [PubMed]

99. Tsokeng, A.T.; Tchoffo, M.; Fai, L.C. Quantum correlations and decoherence dynamics for a qutrit-qutrit system under random
telegraph noise. Quant. Inf. Proc. 2017, 16, 191. [CrossRef]

100. Mazzola, L.; Maniscalco, S.; Piilo, J.; Suominen, K.A.; Garraway, B.M. Sudden death and sudden birth of entanglement in common
structured reservoirs. Phys. Rev. A 2009, 79, 042302. [CrossRef]

101. Benatti, F.; Floreanini, R.; Piani, M. Environment Induced Entanglement in Markovian Dissipative Dynamics. Phys. Rev. Lett.
2003, 91, 070402. [CrossRef] [PubMed]

102. Braun, D. Creation of Entanglement by Interaction with a Common Heat Bath. Phys. Rev. Lett. 2002, 89, 277901. [CrossRef]
103. Lo Franco, R.; Compagno, G. Overview on the phenomenon of two-qubit entanglement revivals in classical environments. In

Lectures on General Quantum Correlations and Their Applications; Springer: Berlin/Heidelberg, Germany, 2017; pp. 367–391.
104. Rangani Jahromi, H.; Amniat-Talab, M. Precision of estimation and entropy as witnesses of non-Markovianity in the presence of

random classical noises. Ann. Phys. 2015, 360, 446–461. [CrossRef]
105. Poggi, P.M.; Campbell, S.; Deffner, S. Diverging Quantum Speed Limits: A Herald of Classicality. PRX Quantum 2021, 2, 040349.

[CrossRef]
106. Goswami, K.; Giarmatzi, C.; Monterola, C.; Shrapnel, S.; Romero, J.; Costa, F. Experimental characterization of a non-Markovian

quantum process. Phys. Rev. A 2021, 104, 022432. [CrossRef]

http://dx.doi.org/10.1103/PhysRevLett.97.167001
http://www.ncbi.nlm.nih.gov/pubmed/17155426
http://dx.doi.org/10.1007/s11128-017-1645-4
http://dx.doi.org/10.1103/PhysRevA.79.042302
http://dx.doi.org/10.1103/PhysRevLett.91.070402
http://www.ncbi.nlm.nih.gov/pubmed/12934997
http://dx.doi.org/10.1103/PhysRevLett.89.277901
http://dx.doi.org/10.1016/j.aop.2015.05.022
http://dx.doi.org/10.1103/PRXQuantum.2.040349
http://dx.doi.org/10.1103/PhysRevA.104.022432

	Introduction
	Preliminaries
	Non-Markovinity Definition
	HSS-Based Witness of Non-Markovianity
	Quantum Entanglement Measure
	Quantum Correlation Quantifier: Measurement-Induced Disturbance

	Analyzing the Efficiency of the HSS Witness in High-Dimensional Systems with Finite Hilbert Spaces
	Single-Qudit Interacting with a Quantum Environment
	Coupling to a Thermal Reservoir
	Coupling to a Squeezed Vacuum Reservoir

	Hybrid Qubit–Qutrit System Interacting with Various Quantum and Classical Environments
	Coupling to Independent Squeezed Vacuum Reservoirs
	Coupling to Classical Environments
	Composite Classical-Quantum Environments


	Conclusions
	Pure Hybrid Qubit–Qutrit Evolved Density Matrix
	Squeezed Vacuum Reservoirs
	Independent Random Telegraph Noise
	Common Random Telegraph Noise
	Composite Classical-Quantum Environments

	Mixed Hybrid Qubit–Qutrit Evolved Density Matrix
	Squeezed Vacuum Reservoirs
	Independent Random Telegraph Noise
	Common Random Telegraph Noise
	Composite Classical-Quantum Environments

	References

