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Abstract

Computational imaging systems jointly design computation

and hardware to retrieve information which is not tradition-

ally accessible with standard imaging systems. Recently,

critical aspects such as experimental design and image pri-

ors are optimized through deep neural networks formed

by the unrolled iterations of classical physics-based recon-

structions (termed physics-based networks). However, for

real-world large-scale systems, computing gradients via

backpropagation restricts learning due to memory limita-

tions of graphical processing units. In this work, we propose

a memory-efficient learning procedure that exploits the re-

versibility of the network’s layers to enable data-driven de-

sign for large-scale computational imaging. We demonstrate

our methods practicality on two large-scale systems: super-

resolution optical microscopy and multi-channel magnetic

resonance imaging.

1. Introduction

Computational imaging systems (tomographic systems,

computational optics, magnetic resonance imaging, to name

a few) jointly design software and hardware to retrieve in-

formation which is not traditionally accessible on standard

imaging systems. Generally, such systems are characterized

by how the information is encoded (forward process) and

decoded (inverse problem) from the measurements. The

decoding process is typically iterative in nature, alternat-

ing between enforcing data consistency and image prior

knowledge. Recent work has demonstrated the ability to

optimize computational imaging systems by unrolling the

iterative decoding process to form a differentiable Physics-

based Network (PbN) (1; 2; 3) and then relying on a dataset

and training to learn the system’s design parameters, e.g.

experimental design (3; 4; 5), image prior model (1; 2; 6; 7).

PbNs are constructed from the operations of reconstruc-

tion, e.g. proximal gradient descent algorithm. By including

known structures and quantities, such as the forward model,

gradient, and proximal updates, PbNs can be efficiently
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parameterized by only a few learnable variables, thereby

enabling an efficient use of training data (6) while still retain-

ing robustness associated with conventional physics-based

inverse problems.

Training PbNs relies on gradient-based updates computed

using backpropagation (an implementation of reverse-mode

differentiation (8)). Most modern imaging systems seek to

decode ever-larger growing quantities of information (giga-

bytes to terabytes) and as this grows, memory required to

perform backpropagation is limited by the memory capacity

of modern graphical processing units (GPUs).

Methods to save memory during backpropagation (e.g. for-

ward recalculation, reverse recalculation, and checkpoint-

ing) trade off spatial and temporal complexity (8). For a PbN

with N layers, standard backpropagation achieves O(N)
temporal and spatial complexity. Forward recalculation

achieves O(1) memory complexity, but has to recalculate

unstored variables forward from the input of the network

when needed, yielding O(N2) temporal complexity. For-

ward checkpointing smoothly trades off temporal, O(NK),
and spatial,O(N/K), complexity by saving variables every

K layers and forward-recalculating unstored variables from

the closest checkpoint.

Reverse recalculation provides a practical solution to beat

the trade off between spatial vs. temporal complexity by

calculating unstored variables in reverse from the output

of the network, yielding O(N) temporal and O(1) spatial

complexities. Recently, several reversibility schemes have

been proposed for residual networks (9), learning ordinary

differential equations (10), and other specialized network

architectures (11; 12).

In this work, we propose a memory-efficient learning pro-

cedure for backpropagation for the PbN formed from prox-

imal gradient descent, thereby enabling learning for many

large-scale computational imaging systems. Based on the

concept of invertibility and reverse recalculation, we detail

how backpropagation can be performed without the need to

store intermediate variables for networks composed of gradi-

ent and proximal layers. We highlight practical restrictions

on the layers and introduce a hybrid scheme that combines

our reverse recalculation methods with checkpointing to

mitigate numerical error accumulation. Finally, we demon-

strate our method’s usefulness to learn the design for two
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practical large-scale computational imaging systems: super-

resolution optical microscopy (Fourier Ptychography) and

multi-channel magnetic resonance imaging.

2. Background

Computational imaging systems are described by how

sought information is encoded to and decoded from a set of

measurements. The encoding of information, x into mea-

surements, y, is given by

y = A(x) + n, (1)

where A is the forward model that characterizes the mea-

surement system physics and n is random system noise.

The forward model is a continuous process, but is often

approximated by a discrete representation. The retrieval of

information from a set of measurements, i.e. decoding, is

commonly structured using an inverse problem formulation,

x⋆ = argmin
x
D(x;y) + P(x), (2)

where D(·) is a data fidelity penalty and P(·) is a prior

penalty. When n is governed by a known noise model,

the data consistency penalty can be written as the negative

log-likelihood of the appropriate distribution. When P(·)
is a non-smooth prior (e.g. ℓ1, total variation), proximal

gradient descent (PGD) and its accelerated variants are often

efficient algorithms to minimize the objective in Eq. 2 and

are composed of the following alternating steps:

z(k) = x(k) − α∇xD(x
(k);y), (3)

x(k+1) = proxP(z
(k)), (4)

where α is the gradient step size,∇x is the gradient operator,

prox
P

is a proximal function that enforces the prior (13),

and x(k) and z(k) are intermediate variables for the kth

iteration.

The structure of the PbN is determined by unrolling N iter-

ations of the optimizer to form the N layers of a network

(Eq. 3 and Eq. 4 form a single layer). Specifically, the input

to the network is the initialization of the optimization, x(0),

and the output is the resultant, x(N). The learnable parame-

ters are optimized using gradient-based methods. Common

machine learning toolboxes’ (e.g. PyTorch, Tensor Flow,

Caffe) auto-differentiation functionalities are used to com-

pute gradients for backpropagation. Auto-differentiation ac-

complishes this by creating a graph composed of the PbN’s

operations and storing intermediate variables in memory.

3. Methods

Our main contribution is to improve the spatial complexity

of backpropagation for PbNs by treating the larger single

graph for auto-differentiation as a series of smaller graphs.

Specifically, consider a PbN, F , composed of a sequence of

layers,

x(k+1) = F (k)
(

x(k); θ(k)
)

, (5)

where x(k) and x(k+1) are the kth layer input and output,

respectively, and θ(k) are its learnable parameters. When

performing reverse-mode differentiation, our method treats

a PbN of N layers as N separate smaller graphs, processed

one at a time, rather than as a single large graph, thereby

saving a factor N in memory. As outlined in Alg. 1, we

first recalculate the current layer’s input, x(k−1), from its

output, x(k), usingF
(k−1)
inverse , and then form one of the smaller

graphs by recomputing the output of the layer, v(k), from the

recalculated input. To compute gradients, we then rely on

auto-differentiation of each layer’s smaller graph to compute

the gradient of the loss, L, with respect to x(k) (denoted

q(k)) and ∇θ(k)L. The procedure is repeated for all N
layers in reverse order.

Algorithm 1 Memory-efficient learning for physics-based

networks
1: procedure MEMORY-EFFICIENT BACKPROPAGA-

TION(x(N),q(N))

2: k ← N
3: for k > 0 do

4: x(k−1) ← F
(k−1)
inverse (x

(k); θ(k−1))
5: v(k) ← F (k−1)(x(k−1); θ(k−1))

6: q(k−1) ← ∂v
(k)

∂x(k−1)q
(k)

7: ∇θ(k)L ← ∂v
(k)

∂θ(k) q
(k)

8: k ← k − 1
9: end for

10: return {∇θ(k)L}N−1
k=0

11: end procedure

In order to perform the reverse-mode differentiation effi-

ciently, we must be able to compute each layer’s inverse

operation, F
(k−1)
inverse . The remainder of this section overviews

the procedures to invert gradient and proximal update layers.

3.1. Inverse of gradient update layer

A common interpretation of gradient descent is as a forward

Euler discretization of a continuous-time ordinary differen-

tial equation. As a consequence, the inverse of the gradient

step layer (Eq. 3) can be viewed as a backward Euler step,

x(k) = z(k) + α∇xD(x
(k);y). (6)

This implicit equation can be solved iteratively via the back-

ward Euler method using the fixed point algorithm (Alg. 2).

Convergence is guaranteed if

Lip (α∇xD(x;y)) < 1, (7)



where Lip(·) computes the Lipschitz constant of its argu-

ment (14). In the setting when D(x;y) = ‖Ax− y‖2 and

A is linear this can be ensured if α < 1
σmax(AHA)

, where

σmax(·) computes the largest singular value of its argument.

Finally, as given by Banach Fixed Point Theorem, the fixed

point algorithm (Alg. 2) will have an exponential rate of

convergence (14).

Algorithm 2 Inverse for gradient layer

1: procedure FIXED POINT METHOD(z, T )

2: x← z

3: for t < T do

4: x← z+ α∇xD(x;y)
5: t← t+ 1
6: end for

7: return x

8: end procedure

3.2. Inverse of proximal update layer

The proximal update (Eq. 4) is defined by the following

optimization problem (13):

prox
P
(z(k)) = argmin

v

1

2
‖v − z(k)‖22 + P(v). (8)

For differentiable P(·), the optimum of which is,

x(k+1) = z(k) −∇xP(x
(k+1)). (9)

In contrast to the gradient update layer, the proximal update

layer can be thought of as a backward Euler step (13). This

allows its inverse to be expressed as a forward Euler step,

z(k) = x(k+1) +∇xP(x
(k+1)), (10)

when the proximal function is bijective (e.g. prox
ℓ2

). If the

proximal function is not bijective (e.g. prox
ℓ1

) the inversion

is not straight forward. However, in many cases it is pos-

sible to substitute it with a bijective function with similar

behavior.

4. Hybrid Reverse Recalculation and

Checkpointing

Reverse recalculation of the unstored variables is non-exact

as the operations to calculate the variables are not identical

to forward calculation. The result is numerical error be-

tween the original forward and reverse calculated variables

and as more iterations are unrolled, numerical error can

accumulate.

To mitigate these effects, some of the intermediate variables

can be stored from forward calculation, referred to as check-

points. Memory permitting, as many checkpoints should

be stored as possible to ensure accuracy while performing

reverse recalculation. While most PbNs cannot afford to

store all variables required for reverse-mode differentiation,

it is often possible to store a few.

5. Results

5.1. Learned experimental design for super resolution

optical microscopy

Standard bright-field microscopy offers a versatile system

to image in vitro biological samples, however, is restricted

to imaging either a large field of view or a high resolution.

Fourier Ptychographic Microscopy (FPM) (15) is a super

resolution (SR) method that can create gigapixel-scale im-

ages beating this trade off on a standard optical microscope

by acquiring a series of measurements (up to hundreds)

under various illumination settings on an LED array mi-

croscopy (16) and combining them via a phase retrieval

based optimization. The system’s dependence on many

measurements inhibits its ability to image live fast-moving

biology. Reducing the number of measurements is possible

using linear multiplexing (17) and state of the art perfor-

mance is achieved by forming a PbN and learning its exper-

imental design (4; 3), however, is currently limited in scale

due to GPU memory constraints (terabyte-scale memory is

required for learning the full measurement system). With

our proposed memory-efficient learning framework, we re-

duce the required memory to only a few gigabytes, thereby

enabling the use of consumer-grade GPU hardware.

To evaluate accuracy we compare standard learning with

our proposed memory-efficient learning on a problem that

fits in standard GPU memory. We reproduce results in

(4) where the number of measurements are reduced by a

factor of 10 using 6.26GB of memory using only 0.627GB

and time is only increased by a factor of 2. To perform

memory-efficient learning, we set T = 4 and checkpoint

every 10 unrolled iterations. The testing loss between our

method and standard learning are comparable (Fig. 1a). In

addition, we qualitatively highlight equivalence of the two

methods, displaying SR reconstructions with learned design

using standard (Fig. 1d) and memory-efficient (Fig. 1e)

methods. For relative comparison, we display a single low

resolution measurement (Fig. 1b) and the ground truth SR

reconstruction using all measurements (Fig. 1c).

5.2. Learned priors for multi-channel MRI

MRI is a powerful Fourier-based medical imaging modality

that non-invasively captures rich biophysical information

without ionizing radiation. Since MRI acquisition time is

directly proportional to the number of acquired measure-

ments, reducing measurements leads to immediate impact

on patient throughput and enables capturing fast-changing



Figure 1. Super-resolution Microscopy: Comparison between (a) mean testing loss for standard and memory-efficient learning techniques.

Visualization of (b) low-resolution, (c) ground truth reconstruction using all (89) measurements, and reconstruction using 8 measurements

learned using (d) standard (with 6.26 GB and 20:10 min) and (e) memory-efficient learning (with 0.627 GB and 51:52 min).

Figure 2. Multi-channel MRI: Comparison between (a) mean training loss for standard and memory-efficient learning techniques.

Visualization of (b) zero-filled reconstruction, (c) ground truth reconstruction using fully sampled measurements, and PbN reconstruction

learned using (d) standard (with 10.77 GB and 3:50 hours) and (e) memory-efficient learning (with 2.11 GB and 8:25 hours).

physiological dynamics. Multi-channel MRI is the stan-

dard of care in clinical systems and uses multiple receive

coils distributed around the body to acquire measurements

in parallel, thereby reducing the total number of required

acquisition frames for decoding (18). By additionally modi-

fying the measurement pattern to take advantage of image

prior knowledge, e.g. through compressed sensing (19), it is

possible to dramatically reduce scan times. As with experi-

mental design, PbNs with learned deep image priors have

demonstrated state-of-the-art performance for multi-channel

MRI (20; 6), but are limited in network size and number

of unrolled iterations due to memory required for training.

Our memory-efficient learning reduces memory footprint at

training time, thereby enabling learning for larger problems.

To evaluate our proposed memory-efficient learning, we re-

produce the results in (6) for the “SD-ET-WD” PbN, which

is equivalent to PGD (10 unrolled iterations) where the prox-

imal update is replaced with a learned invertible residual

convolutional neural network (RCNN) (21; 11; 9). We com-

pare training with full backpropagation, requiring 10.77GB

of memory and 3:50 hours, versus memory-efficient learn-

ing, requiring 2.11GB and 8:25 hours. We set T = 6 and

do not use checkpointing. As Fig. 2 shows, the training

loss is comparable across epochs, and inference results are

similar on one image in the training set, with normalized

root mean-squared error of 0.03 between conventional and

memory-efficient learning.

6. Remarks

Discussion: Our proposed memory-efficient learning opens

the door to applications that are not otherwise possible to

train due to GPU memory constraints, without a large in-

crease in training time. While we specialized the procedure

to PGD networks, similar approaches can be taken to invert

other PbNs with more complex subroutines such as solving

linear systems of equations. However, sufficient conditions

for invertibility must be met. This limitation is clear in

the case of a gradient descent block with an evolving step

size, as the Lipschitz constant may no longer satisfy Eq. 7.

Furthermore, the convergent behavior of optimization to

minima makes accurate reverse recalculation of unstored

variables severely ill-posed and can cause numerical error

accumulation. Checkpoints can be used to improve the ac-

curacy of reverse recalculated variables, though most PbN

are not deep enough for numerical convergence to occur.

Conclusion: In this communication, we presented a practi-

cal memory-efficient learning method for large-scale compu-

tational imaging problems without dramatically increasing

training time. Using the concept of reversibility, we imple-

mented reverse-mode differentiation with favorable spatial

and temporal complexities. We demonstrated our method on

two representative applications: SR optical microscopy and

multi-channel MRI. We expect other computational imaging

systems to nicely fall within our framework.
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