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Abstract

Many state-of-the-art ML results have been ob-

tained by scaling up the number of parameters in

existing models. However, parameters and acti-

vations for such large models often do not fit in

the memory of a single accelerator device; this

means that it is necessary to distribute training

of large models over multiple accelerators. In

this work, we propose PipeDream-2BW, a sys-

tem that supports memory-efficient pipeline par-

allelism. PipeDream-2BW uses a novel pipelin-

ing and weight gradient coalescing strategy, com-

bined with the double buffering of weights, to

ensure high throughput, low memory footprint,

and weight update semantics similar to data par-

allelism. In addition, PipeDream-2BW automati-

cally partitions the model over the available hard-

ware resources, while respecting hardware con-

straints such as memory capacities of accelerators

and interconnect topologies. PipeDream-2BW can

accelerate the training of large GPT and BERT

language models by up to 20× with similar final

model accuracy.

1. Introduction

In the quest to achieve higher accuracy across a range of

tasks, DNN models have grown in size, often by scaling up

the number of parameters in existing architectures (Devlin

et al., 2018; Radford et al., 2018; 2019; Brown et al., 2020).

It is challenging to train large models with billions of pa-

rameters. Modern accelerators have limited memory, which

means that the model parameters and intermediate outputs

that need to be in accelerator memory during training might

not fit on a single accelerator. One of the solutions re-

searchers and practitioners have turned to is model-parallel

training (Dean et al., 2012; Chilimbi et al., 2014), where a

model is partitioned over multiple accelerator devices. How-
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ever, model parallelism, when traditionally deployed, can

either lead to resource under-utilization (Narayanan et al.,

2019) or high communication overhead with good scaling

only within a multi-GPU server (Shoeybi et al., 2019), and

consequently an increase in training time and dollar cost.

Recent work has proposed pipelined model parallelism

to accelerate model-parallel training. For example,

GPipe (Huang et al., 2019) and PipeDream (Harlap et al.,

2018; Narayanan et al., 2019) push multiple inputs in se-

quence through a series of workers that each manage one

model partition, allowing different workers to process dif-

ferent inputs in parallel. Naı̈ve pipelining can harm model

convergence due to inconsistent weight versions between

the forward and backward passes of a particular input. Ex-

isting techniques trade off memory footprint and throughput

in different ways to avoid this. GPipe maintains a single

weight version, but has periodic pipeline flushes where the

pipeline is drained of inputs to update weights (Figure 1a);

these flushes limit overall throughput as resources are idle.

PipeDream does not periodically flush the pipeline but stores

multiple weight versions, which increases throughput but

also increases the memory footprint, making the training of

large models infeasible due to memory constraints. Efficient

training of large models requires an approach with both high

throughput and low memory footprint.

Additionally, the performance of a pipeline-parallel system

is dependent on how DNN model operators are partitioned

over workers. This is challenging for three reasons:

• Memory Capacity Constraints: Parameters and inter-

mediate activations associated with a model partition need

to fit in the main device memory of the accelerator.

• Heterogeneous Network Interconnects: Training de-

ployments today feature heterogeneous network topolo-

gies, with higher-bandwidth links between devices on the

same server.

• Large Search Space for Operator Placement: As

model sizes increase, splitting an operator graph becomes

computationally expensive since the number of distinct

partitionings is exponential in the model size.

In this paper, we introduce PipeDream-2BW, a system for

efficient pipeline-parallel training of DNN models with bil-

lions of parameters. PipeDream-2BW achieves high through-
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put and low memory footprint using two key contributions.

First, we propose double-buffered weight updates (2BW),

a technique that reduces the memory footprint of training

while avoiding pipeline flushes. We leverage the fact that

every input’s generated gradient does not need to be ap-

plied to weights immediately, and instead can be accumu-

lated into a “coalesced” gradient to limit the number of

weight versions maintained. Instead of flushing the pipeline

before using newly updated weights, 2BW uses the new

weights for inputs newly admitted into the pipeline, while

using the previous weight version, called the shadow ver-

sion, for already in-flight inputs. This double buffering of

weights at each worker yields a pipelining scheme with

higher throughput than GPipe (no pipeline flushes) and bet-

ter memory efficiency than PipeDream (2 weight versions,

versus worst case of d in PipeDream for a depth-d pipeline).

2BW introduces a constant weight delay term of 1, consis-

tent across stages, while updating weights (weight update

equation of W (t+1) = W (t) − ν · ∇f(W (t−1))), which we

show has empirically similar model convergence to vanilla

weight updates (§5.1). We also present a variant of 2BW

(called PipeDream-Flush) that trades off throughput for

even lower memory footprint and vanilla semantics (weight

update equation of W (t+1) = W (t) − ν · ∇f(W (t))).

Second, PipeDream-2BW provides a planning algorithm that

yields effective parallelization schemes for many of today’s

large model architectures. PipeDream-2BW’s planner parti-

tions DNN operators over the available workers while taking

into account the memory capacities of the accelerator de-

vices, and addresses the three challenges highlighted earlier.

PipeDream-2BW’s planner exploits the repetitive structure of

large DNNs, e.g., transformer layers in BERT (Devlin et al.,

2018), to explore the space of schedules where each stage

in the pipeline is replicated equally. This choice reduces

the size of the search space explored drastically compared

to existing work like PipeDream and FlexFlow (Jia et al.,

2018), while still providing effective model splits in prac-

tice. PipeDream-2BW’s planner determines the size of each

model partition, batch size, and whether to use memory-

saving optimizations like activation recomputation (Chen

et al., 2016; Griewank & Walther, 2000). PipeDream-2BW’s

planner considers the impact of these decisions on both

throughput and memory footprint, unlike PipeDream and

FlexFlow. Finally, the planner tries to ensure expensive com-

munication stays on high-speed intra-server interconnects.

We find that the Adam optimizer with 2BW has a similar

training loss trajectory to vanilla Adam with the same batch

size, with similar accuracy on downstream finetuning tasks.

PipeDream-2BW achieves end-to-end speedups of 1.3× to

20× for various GPT models compared to an optimized

model-parallel baseline. PipeDream-2BW is up to 3.2×
faster than GPipe, and is able to train large transformer

models that vanilla PipeDream cannot fit in memory.

2. Background

In this section, we provide a brief overview of related tech-

niques for distributed training of DNN models.

Data Parallelism. Data parallelism is used to scale up

model training. With data parallelism (Xing et al., 2015),

every worker has a copy of the entire model and the input

dataset is sharded across workers. Data parallelism cannot

be used to train large models that do not fit on a single

worker, but can be used on smaller model partitions.

Model Parallelism. Model parallelism is used traditionally

to train large models that do not fit on a single worker. With

model parallelism (Dean et al., 2012; Chilimbi et al., 2014),

the weight parameters in a model are split over available

workers, with intermediate activations and gradients com-

municated across workers. Inter-layer model parallelism

underutilizes resources since at most a single worker is

active at any point in time. Tensor (intra-layer) model par-

allelism (Shoeybi et al., 2019) leads to expensive all-to-all

communication in the critical path, limiting the number of

model partitions to the number of GPUs in a single server.

FlexFlow (Jia et al., 2018) shows how to split a model graph

using model and data parallelism, but still suffers from poor

resource utilization when model parallelism is used.

Pipeline Parallelism. To address the shortcomings of

model parallelism, recent work like PipeDream and GPipe

have proposed pipeline parallelism. With pipeline paral-

lelism, multiple inputs (instead of 1) are injected into a

pipeline composed of inter-layer model partitions. This en-

sures that compute resources are better utilized. However,

naive pipelining can lead to weight version mismatches be-

tween forward and backward passes for a particular input.

Specifically, if weight updates are immediately applied to

the latest weight version, then an input might see weight up-

dates in the backward pass that it did not see in the forward

pass, leading to incorrect gradient computations.

GPipe maintains a single version of the model’s weights.

An input batch is split into smaller microbatches. Weight

gradients are accumulated and not applied immediately, and

the pipeline is periodically flushed to ensure that multiple

weight versions do not need to be maintained. GPipe pro-

vides weight update semantics similar to data parallelism.

Figure 1a shows a timeline of GPipe execution. The periodic

pipeline flushes can be expensive, limiting throughput. One

way to mitigate this overhead is to perform additional accu-

mulation within the pipeline, but this is not always practical:

a) at large scale factors, the minimum supported batch size is

large (proportional to the scale factor), and large batch sizes

affect convergence for all models (e.g., Megatron (Shoeybi

et al., 2019) uses a batch size of 1024 for BERT and 512 for

GPT with 512 GPUs), b) GPipe needs to maintain activation

stashes proportional to the batch size.
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Figure 1. Timelines of different pipeline-parallel executions. Without loss of generality, forward and backward passes are assumed to take

twice as long as forward passes; forward passes are shown in blue and backward passes are shown in green. Numbers indicate microbatch

ID, time is shown along x-axis, per-worker utilization is shown along the y-axis. GPipe maintains a single weight version, but periodically

flushes the pipeline. PipeDream does not introduce periodic pipeline flushes, but maintains multiple weight versions.

PipeDream uses a weight stashing scheme to ensure that

the same weight version is used in both the forward and

backward passes for the same input (Figure 1b). The total

number of weight versions stashed is d in the worst case,

where d is the pipeline depth, which is too high for large

models. With PipeDream’s default weight update semantics,

weight updates at each stage have different delay terms, and

no accumulation is performed within the pipeline.

3. PipeDream-2BW System Design

PipeDream-2BW uses memory-efficient pipeline parallelism

to train large models that do not fit on a single accelerator. Its

double-buffered weight update (2BW) and flush mechanisms

ensure high throughput, low memory footprint, and weight

update semantics similar to data parallelism. PipeDream-

2BW splits models into stages over multiple workers, and

replicates each stage an equal number of times (with data-

parallel updates across replicas of the same stage). Such

parallel pipelines work well for models where each layer is

repeated a fixed number of times (e.g., transformer models).

3.1. Double-Buffered Weight Updates (2BW)

PipeDream-2BW uses a novel double-buffered weight up-

date (2BW) scheme in conjunction with 1F1B schedul-

ing (Narayanan et al., 2019), where each worker alternates

between forward and backward passes for different inputs,

to ensure that the same weight version is used in both the for-

ward and the backward pass for a particular input (Figure 2).

2BW has a lower memory footprint than PipeDream and

GPipe, and also avoids GPipe’s expensive pipeline flushes.

Gradients are computed at the granularity of smaller mi-

crobatches. For any input microbatch, PipeDream-2BW

uses the same weight version for an input’s forward and

backward passes. Updates are accumulated over multiple

microbatches before being applied at the granularity of a

batch, limiting the number of weight versions generated and

maintained. Figure 2 shows an example timeline of 2BW.

PipeDream-2BW generates a new weight version once every

m microbatches (m ≥ d, the pipeline depth). For simplicity,

we will initially assume that m = d (d = 4 in Figure 2). A

new weight version cannot be used immediately. In particu-

lar, in-flight inputs cannot use the newest weight version for

their backward passes (for example, input 7 on worker 3 at

t = 21), since the forward pass for these inputs was already

initiated using an older weight version on a different stage.

Thus, newly generated weight versions need to be buffered

for future use. However, the total number of weight versions

that need to be maintained is at most 2, since the weight

version used to generate a new weight version can immedi-

ately be discarded (no future inputs that pass through that

stage use the old weight version any longer). For example,

in Figure 2, each worker can discard W
(0)
i

once they are

done processing the backward pass for input 8 since all

subsequent inputs use a later weight version for both their

forward and backward passes.

The weight version a given input microbatch k (1-indexed)

uses is max(⌊(k−1)/m⌋−1, 0), where m is the number of

microbatches in a batch (4 in Figure 2). This weight version

is the same for both the forward and backward passes for

input k. m can be any number ≥ d; additional gradient

accumulation (larger m) increases the global batch size.

Memory Footprint. PipeDream-2BW maintains 2 weight

versions, and activation stashes for all in-flight microbatches.

The number of in-flight microbatches at any stage is at

most the pipeline depth (d). With activation recomputation,

PipeDream-2BW’s memory footprint can be decreased, since

only input activations (as opposed to the full intermediate ac-

tivation) need to be maintained for all in-flight microbatches.

With activation recomputation, PipeDream-2BW’s worst-

case memory footprint is
2|W |
d

+ |Atotal(b)|
d

+ d|Ainput(b)|.
|W | is the size of weight parameters for the full model,

|Atotal(b)| is the size of intermediate activations for micro-

batch size b for the full model, and |Ainput(b)| is the size of
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Figure 2. Timeline showing PipeDream-2BW’s double-buffered weight update (2BW) scheme with time along x-axis. Without loss of

generality, backward passes are assumed to take twice as long as forward passes. PipeDream-2BW only stashes two weight versions at

every worker, reducing the total memory footprint while no longer requiring expensive pipeline stalls. W
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indicates weights on worker i

with version v (contains weight gradient generated from input v). New weight versions are generated in checkered green boxes; W
(4)
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first used for input 9’s forward pass.
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Figure 3. Timelines of GPipe and PipeDream-Flush for 2 stages.

Both GPipe and PipeDream-Flush use pipeline flushes; PipeDream-

Flush alternates between forward and backward passes in steady

state to keeping memory footprint low compared to GPipe by

limiting activation stashes to only in-flight microbatches.

input activations for microbatch size b for a pipeline stage.

In comparison, GPipe needs to checkpoint potentially a

much larger number of input activations – proportional to

the total number of microbatches accumulated within the

pipeline before applying a weight update (m). With ac-

tivation recomputation, GPipe’s memory footprint with a

per-GPU microbatch size b is
|W |
d

+ |Atotal(b)|
d

+m|Ainput(b)|.
Since |W | ≪ |A(b)| for even small b for most models (Jain

et al., 2018), the memory savings from maintaining one

fewer weight version is small. To achieve high throughput,

GPipe must use a large value of m to amortize away the

cost of pipeline flushes; at such high m, its memory foot-

print is higher than PipeDream-2BW. Additionally, due to its

higher memory footprint, GPipe must always use activation

recomputation. Activation recomputation, however, reduces

throughput by about 33%, and should be avoided if possible.

Semantics. We can also formalize the semantics of 2BW.
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W
id

th
 𝑤
=
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Input minibatch split 

over pipelines

Partitioned into 

parallel pipelines

Stage 3
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Figure 4. Example PipeDream-2BW (2, 3) configuration. The

model is partitioned into 3 stages (d = 3) and each pipeline

is replicated twice (w = 2). Each pipeline replica is shown in a

different color.

For this discussion, we assume an unreplicated pipeline with

d stages. If b is the per-GPU microbatch size, then gradients

are averaged over m microbatches; thus, the effective batch

size is B = b ·m.

We denote W (t) as the weight version after t batches of size

B. ∇f(W ) is the gradient averaged over the B samples in

the batch. Vanilla minibatch SGD (f is the loss function, ν
is the learning rate) then has the following weight update

equation: W (t+1) = W (t) − ν · ∇f(W (t)). 2BW’s weight

update semantics (with a delay term of 1 across all stages)

are almost unchanged:

W (t+1) = W (t) − ν · ∇f(W (t−1)).

We show that this delay term does not affect model con-

vergence significantly in §5.1. Intuitively, the parameters

of the model do not change significantly across single it-

erations, so W (t) ≈ W (t−1). The semantics with a repli-

cation factor greater than 1 is similar, with the batch size

multiplied by the number of replicas (as with regular data

parallelism). Other momentum-based optimizers such as

Adam can be similarly analyzed (momentum term uses a

weight gradient computed on a 1-stale weight version in-

stead of latest version). Extra shadow variables are not

needed. For example, mt in minibatch SGD with mo-

mentum can be computed as (ignoring bias corrections)
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mt = β ·mt−1 + (1− β) · ∇f(W (t−1)). The final weight

update equation is then W (t+1) = W (t) − ν ·mt.

3.2. Weight Updates with Flushes (PipeDream-Flush)

We also propose a second memory-efficient pipeline sched-

ule called PipeDream-Flush. It has lower memory footprint

than 2BW and vanilla optimizer semantics, at the cost of

lower throughput. This schedule reuses the 1F1B schedule

from PipeDream (Narayanan et al., 2019), but maintains

a single weight version and introduces periodic pipeline

flushes to ensure consistent weight versions across weight

updates. Timelines for PipeDream-Flush and GPipe with 2

pipeline stages are shown in Figure 3.

Memory Footprint. With PipeDream-Flush, the total num-

ber of in-flight “active” input activations is less than or equal

to the pipeline depth, giving it lower memory footprint than

GPipe, which has to maintain input activations proportional

to the number of microbatches over which gradients are

averaged (m). PipeDream-Flush’s memory footprint is also

lower than PipeDream-2BW since it only needs to maintain

a single weight version (versus 2 with PipeDream-2BW).

Semantics. Periodic pipeline flushes ensure that weight

updates can be performed with gradients computed using

the latest weight version. This results in weight updates of

the form W (t+1) = W (t) − ν · ∇f(W (t)). We compare

2BW’s statistical efficiency (rate of model convergence) to

the vanilla semantics of PipeDream-Flush, GPipe, and data

parallelism, in §5.1.

3.3. Equi-replicated Stages (Parallel Pipelines)

PipeDream-2BW executes DNN training using a hybrid par-

allelization scheme which combines data and model par-

allelism with input pipelining. Since large deep models

today feature extremely repetitive structures, with the same

block repeated multiple times, a simple way of load balanc-

ing computation and communication involves breaking up

a model into stages with an equal number of blocks and

replication factors. Model training in PipeDream-2BW can

thus be thought of as a collection of parallel pipelines (Fig-

ure 4), where inputs and intermediate output activations

within a pipeline do not ever need to be sent to workers

responsible for a different pipeline. Intermediate activations

and gradients can be communicated within a pipeline using

point-to-point communication primitives, such as send and

recv. As with PipeDream, weight gradients need to be

aggregated across stage replicas in different pipelines. Fig-

ure 4 shows an example: each model copy is split across 3

workers (number of stages or depth, d = 3), and each stage

is replicated twice (number of pipelines or width, w = 2).

Stage replicas can be placed on the same server so that ex-

pensive all-reduce updates are between GPUs on the same

server with high-bandwidth interconnects.

4. Planner

PipeDream-2BW’s planner determines how to split a model

over the available compute devices by exhaustively search-

ing over the reduced search space of all possible parallel-

pipeline configurations. The planner also determines

whether memory-saving optimizations should be deployed,

and the per-GPU microbatch size and degree of gradient

accumulation, given a maximum safe global batch size veri-

fied to not compromise model convergence (e.g., determined

from past hyperparameter sweeps without pipelining).

PipeDream-2BW’s planner uses a cost model for the com-

pute times and memory footprints of individual blocks in the

model. Time and memory cost functions allow PipeDream-

2BW to reason about the impact of pipeline width / depth and

memory-saving optimizations (such as activation recompu-

tation) on throughput and memory footprint. For example, a

deeper configuration has additional memory capacity, allow-

ing for a larger maximum per-GPU microbatch size; this can

increase the arithmetic intensity (number of floating point

operations performed per memory load) of kernels (Jouppi

et al., 2017), and consequently throughput. Communication

times for tensors can be estimated by dividing the size of

the tensor by the respective bandwidth. Expensive commu-

nication (e.g., large tensors, or all-reduce communication

needed to coalesce weight gradients across stage replicas)

can be placed on high-bandwidth links within the server by

orienting pipelines appropriately.

Profiling for cost modeling can be done in two ways: end-

to-end for each distinct configuration, or extrapolating from

an individual block’s measurements. End-to-end profiling

is cheap (2 to 3 minutes per configuration), which means

total profiling time is still a couple of hours (compared to

the days to weeks needed for model training). Optimal

configurations can be reused for a given server and model

deployment. We describe how per-block time and memory

measurements can be extrapolated in Appendix §A – this

is even cheaper, but provides less accurate cost estimates.

The highest-throughput-configuration is chosen that also fits

within the memory capacity of the target accelerators.

4.1. Activation Recomputation

Activation recomputation is a common technique (Huang

et al., 2019; Chen et al., 2016; Griewank & Walther, 2000)

that trades off extra computation for a lower memory foot-

print. With activation recomputation, activation stashes are

not left materialized on the device between forward and

backward passes; instead, only input activations on each

stage are stashed, and the remaining activations needed in

the backward pass are recomputed when required by re-

running the forward pass. Activation recomputation trades

off extra computation for a lower memory footprint.
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Activation recomputation is useful for two reasons: it can

enable larger per-GPU microbatch sizes to fit in memory,

which can improve device throughput by increasing the

arithmetic intensity of kernel. It can also enable the train-

ing of large models. Concretely, in some cases, the target

accelerator device does not have sufficient memory capacity

to store full activation stashes for all in-flight microbatches.

This is especially true for deep pipelines, since the num-

ber of in-flight inputs is proportional to the depth of the

pipeline (Narayanan et al., 2019).

4.2. Partitioning Algorithm

Putting it all together, given a total memory capacity M ,

PipeDream-2BW’s planner first determines the largest per-

GPU microbatch size that fits on a given worker (and the

corresponding throughput) with and without each memory-

savings optimization deployed using a memory cost func-

tion. The partitioning algorithm also verifies that the re-

sulting global batch size is lower than the maximum safe

batch size B . Each memory-savings optimization can be

integrated into PipeDream-2BW’s planner by specifying a

corresponding throughput and memory cost function.

PipeDream-2BW’s planner then sweeps all (w, d) values to

determine the best pipeline configuration for a given model

and hardware deployment. Configurations with memory

footprint higher than the memory capacity M of the device

(modeled by the MEMORY(.) cost function) are discarded.

Gradient accumulation can be used to increase the batch

size to B. The partitioning algorithm aims to pick a con-

figuration that has a high compute-to-communication ratio,

while accounting for the communication time across stages

in the same pipeline and across replicated stages (modeled

by the THROUGHPUT(.) cost function). The full algorithm

is shown in Appendix §A.

5. Evaluation

In this section, we show that the Adam optimizer with 2BW

has similar semantics to vanilla Adam, and that PipeDream-

2BW and PipeDream-Flush are able to train large models

faster than existing model-parallel approaches including

Megatron (Shoeybi et al., 2019), and existing pipelining

approaches like GPipe (Huang et al., 2019).

Hardware. We show results on two different hardware

setups on AWS: eight 8×V100 servers (64 GPUs) with

NVLink and 16GB of per-GPU memory, and a single

8×V100 server. We use p3.16xlarge instances.

Implementation. Our implementation uses PyTorch and

is adapted from the Megatron repository (meg); we veri-

fied that single-worker performance with this implementa-

tion achieves about 45 TFLOPS on a 355M-parameter GPT

model and is competitive with existing state-of-the-art open
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Figure 5. Training and validation loss when pre-training BERT and

GPT models with vanilla Adam and Adam with 2BW.

source implementations from NVIDIA (nvi). All results

shown are with mixed precision.

Models. We evaluate PipeDream-2BW on BERT (De-

vlin et al., 2018) and GPT (Radford et al., 2019), large

transformer-based language models used for a number of

NLP applications. In particular, most of our experiments are

performed with GPT models with 1.3, 2.2, and 3.9 billion

parameters, with similar layer dimensions to those used in

the Megatron paper (Shoeybi et al., 2019).

Baselines. We compare PipeDream-2BW to two types of

baselines: (a) model parallelism without pipelining (tensor

model parallelism used in Megatron, and inter-layer model

parallelism); and (b) GPipe (we extend GPipe to use parallel

pipelines, and refer to this enhanced version as GPipe in

the rest of this paper), which performs pipeline parallelism.

We do not compare to PipeDream or data parallelism for

the entire model since they cannot fit the above models in

memory when using 16-GB V100 GPUs. With 64 GPUs,

we use data parallelism across stages to scale up training.

Main Takeaways. We make the following observations:

• Quality of Convergence: 2BW weight update semantics

yield pre-trained models which produce comparable ac-

curacy on downstream finetuning tasks to vanilla Adam

(GPipe and PipeDream-Flush) with the same batch size.

• Comparison to Model Parallelism: PipeDream-2BW is

able to train a 3.8 billion-parameter GPT model up to

20× faster compared to non-pipelining approaches.

• Comparison to Other Pipelined Approaches:

PipeDream-2BW is up to 3.2× faster than GPipe.

5.1. Quality of Convergence of 2BW

We pre-trained 355M-parameter BERT and GPT models

with vanilla Adam and Adam with 2BW; we then finetuned
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Task Metric Vanilla Vanilla (90%) 2BW

MNLI Overall Acc. 87.77% N/A 87.82%
RACE Overall Acc. 80.06% 79.30% 79.48%

Table 1. Comparison of BERT models pre-trained with vanilla (all

and 90% of iterations) and 2BW optimizers on finetuning tasks.

the resulting BERT models. We note that GPipe, PipeDream-

Flush, and DP have identical semantics, and hence are equiv-

alent baselines (“Vanilla”). To provide a fair comparison,

we use the same hyperparameters, including batch size, used

by Megatron (Shoeybi et al., 2019) to train these BERT and

GPT models. For BERT, we use a batch size of 1024, and

for GPT, we use a batch size of 512. We use the Adam opti-

mizer with standard hyperparameters (learning rate of 10−4

with initial warmup and subsequent linear decay, maximum

sequence length of 512), and mixed precision. We used

the OpenWebText dataset (ope) for pretraining. Figure 5

shows the training and validation loss for the two models.

The training and validation losses for the 2BW runs track the

vanilla runs almost identically after the first 100k iterations

(when the model is changing more rapidly and the delay

term matters more).

To further validate the quality of the pre-trained model, we

finetuned the pre-trained vanilla and 2BW BERT models on

downstream MNLI and RACE tasks (Wang et al., 2019; Lai

et al., 2017). Both pre-training and fine-tuning were per-

formed with the same hyperparameter and training setups,

and we did not perform hyperparameter tuning for either –

our goal here is to show that 2BW has nearly identical se-

mantics to the corresponding vanilla optimizer. As shown

in Table 1, the accuracy on each of these tasks is similar

after finetuning. We also evaluated the vanilla and 2BW

GPT models on the Wikitext-103 test dataset and got similar

test perplexities (19.28 vs. 19.56); test perplexities match

exactly when “Vanilla” is run for 20% fewer iterations.

5.2. Throughput

Figure 6 shows the throughputs of various PipeDream-2BW,

PipeDream-Flush, and baseline configurations using 8 and

64 V100s with a sequence length of 512 for various large

GPT models. Results with BERT models are similar and

included in Appendix §B.1. We compare to two different

forms of model parallelism, as well as GPipe. Data paral-

lelism is not a viable baseline for these large models due to

its high memory overhead. In these experiments, we use ac-

tivation recomputation, and the largest per-GPU microbatch

size that fits on the 16-GB V100 GPUs. We use the best

configuration recommended by PipeDream-2BW’s planner

for all comparisons: 8-deep configurations for the model

with 2.2 billion parameters, and 16-deep configurations for

the model with 3.8 billion parameters. For each model, we

show two different batch sizes to show the impact of batch
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(c) GPT, 3.8B, 16-way model parallelism (64×V100s).

Figure 6. Throughput of various systems for different batch sizes

for GPT models, using 8×16GB-V100 servers.

size on throughput for approaches that use periodic flushes.

Model Parallelism without Pipelining: We compare

against two model parallelism approaches: tensor model

parallelism used by Megatron (Shoeybi et al., 2019) where

each layer is divided among all model-parallel workers, and

inter-layer model parallelism where layers are sharded over

the workers but inputs are not pipelined. On a single node,

PipeDream-2BW is faster than tensor MP by 1.3×. This

grows to 20× on 64 GPUs for the model with 3.8 billion pa-

rameters, when the all-to-all communication used by tensor

MP needs to be performed across servers, which is expen-

sive using AWS instances (bandwidth across multi-GPU

servers is much lower than the bandwidth within server).

Compared to inter-layer MP, pipelining with flushes in-

creases throughput by up to 4.1× for small batch sizes,

and by up to 5.3× for large batch sizes, on the 2.2-billion

model. 2BW is up to 6.1× faster than inter-layer MP.

GPipe: PipeDream-2BW outperforms corresponding GPipe

configurations at the same global batch size by up to 3.2×
due to the lack of periodic pipeline flushes. GPipe natively

has high memory footprint due to a large number of acti-

vation stashes: consequently, the maximum number of mi-

crobatches it can admit is small, leading to a larger pipeline

bubble and 2.1× worse throughput than PipeDream-Flush

at low batch sizes, and 3× at high batch sizes.

PipeDream-Flush and PipeDream-2BW: Figure 6 also

compares PipeDream-2BW and PipeDream-Flush for two

different batch sizes with different numbers of microbatches

over which gradients are averaged (m = d · g) within the

pipeline. At low batch size, PipeDream-2BW is up to 1.6×
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Figure 7. Worst-case memory footprint (in GB) of various systems

with 8 V100 GPUs for a GPT model with 2.2 billion parameters.
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Figure 8. Throughput of two PipeDream-2BW configurations vs.

global batch size for a 1.3-billion parameter GPT model using 64

V100 GPUs. The legend shows (d, b): the number of pipeline-

parallel stages and the microbatch size.

faster. With more gradient accumulation (batch size of

2048), this speedup drops to 15%. However, high g is not

always practical. Both PipeDream-Flush and PipeDream-

2BW have weight updates with a batch size of b · w · d · g,

where the total number of workers is w · d. For a large

number of workers (≫ 64), the batch size is high even

with g = 1,m = d, making additional gradient accumu-

lation infeasible (batch size cannot scale to ∞ without af-

fecting model convergence). Indeed, systems like Mega-

tron (Shoeybi et al., 2019), that train large transformer mod-

els using 512 GPUs, show state-of-the-art results across

tasks using a global batch size ≤ 1024.

5.3. Memory Footprint

We measured the worst-case memory footprint of different

systems on a GPT model, shown in Figure 7. GPipe runs

out of memory at a batch size of 64, due to a larger num-

ber of activation stashes from its all-forward-all-backward

schedule, even with activation recomputation (worst case

of m input activation stashes with activation recomputation,

compared to d for PipeDream-Flush). PipeDream-Flush

has a slightly higher memory footprint compared to inter-

layer model parallelism, since it needs to maintain activation

stashes for more in-flight microbatches. PipeDream-2BW

has a higher memory footprint than PipeDream-Flush due to

an additional weight version (but still lower than GPipe’s).

5.4. Planning Decisions

In this sub-section, we analyze the implications of pipeline

depth and width on performance. We show experiments

demonstrating the impact of activation recomputation on

performance in Appendix §B.2. Figure 8 shows the through-

puts of two PipeDream-2BW configurations for different

batch sizes. We highlight relevant takeaways below.

1 2 4 8 16 32 64
Model parallel size

0
5

10
15
20
25
30

M
ax

im
um

 m
od

el
 s

iz
e

(b
ill

io
n 

pa
ra

m
et

er
s)

Figure 9. Maximum model size supported by various pipeline-

parallel depths with 64 16-GB V100 GPUs.

Inter-Stage Communication: As the global batch size in-

creases with gradient accumulation, throughput for each

configuration increases due to less communication across

stage replicas. This is especially true for configurations with

communication across servers (w > 8, d < 8 for 8-GPU

servers, e.g. d = 4) where inter-stage all-to-all communica-

tion is cross-node and more expensive.

Compute-Communication Ratio: Increasing the pipeline

depth decreases the amount of computation in each pipeline

stage while keeping the number of bytes communicated

between stages constant. This makes the pipeline more

communication-bound, decreasing throughput.

Maximum Per-GPU Microbatch Size: Increasing the

pipeline depth increases the maximum microbatch size that

fits in GPU memory. This leads to possibly higher arithmetic

intensity and throughput. In Figure 8, we show through-

put for two microbatch sizes for the d = 8 configuration;

the larger microbatch size (b = 32) has higher throughput.

Smaller pipeline depths cannot fit large microbatch sizes.

Maximum Model Size: Deeper pipelines support the train-

ing of larger models. We show the empirically measured

maximum model size that can be trained with 2BW using

different values of d in Figure 9.

These observations illustrate the complexity in picking a

configuration. For example, increasing pipeline depth leads

to two effects (decreased compute-communication ratio

within the pipeline and increased arithmetic intensity) that

have opposing effects on throughput. PipeDream-2BW’s

planner automates this process for each combination of

model, batch size, and number of GPUs.

5.5. Maximum Model Size Supported

Figure 9 shows the empirically measured maximum model

size supported by various pipeline depths while using 2BW.

As can be seen in the figure, deeper configurations provide

additional memory capacity. PipeDream-2BW is able to

train models of up to almost 30 billion parameters using

64 16-GB GPUs. As a point of comparison, Megatron-

LM (Shoeybi et al., 2019) was able to train a model with 8.3

billion parameters with 8 32-GB GPUs (2× more memory).
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6. Related Work and Discussion

In this section, we expand on work related to PipeDream-

2BW, and place PipeDream-2BW’s speedups in context.

Model Parallelism in Real Deployments. NVIDIA used

a custom intra-layer model parallelism scheme in its Mega-

tron system (Shoeybi et al., 2019) to train a GPT-2 model

with 8.3 billion parameters on 64 32-GB V100 servers by

parallelizing matrix multiplications across multiple workers.

This approach can be combined with data parallelism. All-

reductions are needed to coalesce partial results produced

on different GPUs, thus making training communication-

bound at high numbers of model partitions. In comparison,

PipeDream-2BW trades off additional memory footprint (an

extra weight version) for lower communication overhead

(20× faster training when using multiple multi-GPU servers

on Amazon AWS with limited inter-node bandwidth).

Pipeline Parallelism. We discussed the existing ap-

proaches to pipeline parallelism in §2, and showed quan-

titative comparisons in §5.2. PipeDream-2BW trains large

models up to 3.2× faster than GPipe at low batch sizes, due

to a lack of periodic pipeline flushes, and lower memory

footprint that allows more input microbatches to be pushed

into the pipeline. PipeDream cannot train these large models.

PipeDream-2BW’s lower memory footprint does come with

tradeoffs, however – PipeDream-2BW accumulates weight

gradients over multiple microbatches, increasing the min-

imum batch size that PipeDream-2BW supports. Thus, for

models that only support very small batch sizes, PipeDream-

2BW, PipeDream-Flush, and GPipe, which perform gradient

accumulation within the pipeline, may not be viable.

PipeMare (Yang et al., 2019) uses asynchronous pipeline

parallelism to provide high throughput (no pipeline flushes)

with asynchronous weight update semantics. PipeMare of-

fers two theoretically-motivated techniques to ensure good

statistical efficiency. In contrast, PipeDream-2BW and all

the baselines we compare against in the paper (traditional

data parallel training, PipeDream, GPipe), use synchronous

execution where the weights used for computation during

forward propagation are the same as those used during

backward propagation. PipeDream-2BW’s double buffered

weight updates use a 1-stale gradient update that does not

require any hyperparameter tuning to generate comparable

results. PipeMare also does not describe how computation

should be partitioned among the available workers.

Memory-Saving Optimizations. A rich line of work at-

tempts to decrease the memory footprint of DNN training.

Gist (Jain et al., 2018) employs lossless and lossy layer-

specific encoding schemes to compress stashed activations.

Systems such as Checkmate (Jain et al., 2020) systemati-

cally determine when activation recomputation (Chen et al.,

2016; Griewank & Walther, 2000) should be performed.

DeepSpeed (Rajbhandari et al., 2019) partitions optimizer

state over data-parallel replicas instead of replicating it, us-

ing a technique called ZeRO. Such orthogonal optimizations

can be combined and incorporated in PipeDream-2BW.

Planning Algorithms. PipeDream, DAPPLE (Fan et al.,

2021), and FlexFlow (Jia et al., 2018) use planning algo-

rithms to partition operator graphs over multiple accelera-

tors to maximize throughput. Unfortunately, these planners

do not exploit the repetitive nature of modern transformer-

based models. For example, PipeDream’s planner explores

O(n3m2) configurations (assuming n layers in the model

and m workers). Furthermore, these planners do not con-

sider the effect of memory-saving optimizations, which are

critical for training large models efficiently (e.g., always

applying activation recomputation can make the system

1.33× slower). PipeDream-2BW’s planner, on the other

hand, performs an exhaustive search of a much reduced

search space since it only considers parallel pipelines (all

possible (w, d) pairs with m workers is O(m2)). Given

this small number of explored configurations, Bagpipe’s

planner takes a fraction of a second with a closed-form cost

model; PipeDream’s partitioning algorithm with the same

cost model takes about 30 minutes for large models.

7. Conclusion

In this work, we proposed and implemented PipeDream-

2BW, a system for memory-efficient pipeline-parallel train-

ing that achieves high throughput, low memory footprint,

and data parallelism-like semantics through a novel weight

update double buffering strategy called 2BW. PipeDream-

2BW also uses a planner to determine how to partition a

model’s operator graph over training resources in a memory-

aware way. PipeDream-2BW accelerates the training of

models with billions of trainable parameters by up to 20×
compared to model-parallel baselines, and by up to 3.2×
compared to GPipe, on commodity hardware.
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