
MEMORY EFFICIENT SEMI-GLOBAL MATCHING

Heiko Hirschmüller and Maximilian Buder and Ines Ernst

Commission ICWG III/VII

KEY WORDS: Stereoscopic, Matching, Real-time, Robotics, Hardware

ABSTRACT:

Semi-Global Matching (SGM) is a robust stereo method that has proven its usefulness in various applications ranging from aerial image

matching to driver assistance systems. It supports pixelwise matching for maintaining sharp object boundaries and fine structures and

can be implemented efficiently on different computation hardware. Furthermore, the method is not sensitive to the choice of parameters.

The structure of the matching algorithm is well suited to be processed by highly paralleling hardware e.g. FPGAs and GPUs. The

drawback of SGM is the temporary memory requirement that depends on the number of pixels and the disparity range. On the one

hand this results in long idle times due to the bandwidth limitations of the external memory and on the other hand the capacity bounds

are quickly reached. A full HD image with a size of 1920 × 1080 pixels and a disparity range of 512 pixels requires already 1 billion

elements, which is at least several GB of RAM, depending on the element size, wich are not available at standard FPGA- and GPU-

boards. The novel memory efficient (eSGM) method is an advancement in which the amount of temporary memory only depends on

the number of pixels and not on the disparity range. This permits matching of huge images in one piece and reduces the requirements

of the memory bandwidth for real-time mobile robotics. The feature comes at the cost of 50% more compute operations as compared

to SGM. This overhead is compensated by the previously idle compute logic within the FPGA and the GPU and therefore results in

an overall performance increase. We show that eSGM produces the same high quality disparity images as SGM and demonstrate its

performance both on an aerial image pair with 142 MPixel and within a real-time mobile robotic application. We have implemented

the new method on the CPU, GPU and FPGA. We conclude that eSGM is advantageous for a GPU implementation and essential for an

implementation on our FPGA.

1 MOTIVATION

The justification for SGM arises from the limitations of other

global approaches for the real-world applications.

Graph Cuts (Kolmogorov and Zabih, 2001, Szeliski et al., 2008)

is a global stereo method that translates the matching problem

into a graph and seeks a partition, which effectively approxi-

mates the minimization of a global energy. The method is not

only slow, but also quite memory intensive. Belief Propagation

(Felzenszwalb and Huttenlocher, 2004, Szeliski et al., 2008) is

another approach for minimizing a global cost function. It passes

messages iteratively in a three dimensional grid structure for ap-

proximating the global minimum. The size of the temporary

memory is linear to the number of pixels and the disparity range,

as explained above. A Dynamic Programming stereo matching

method (Birchfield and Tomasi, 1998) can be implemented with

much less memory requirements, since the method optimizes the

global function along each scanline separately. Unfortunately,

this leads to streaking artifacts.

The Semi-Global Matching (SGM) method (Hirschmüller, 2008)

minimizes a global cost function only in one dimension like Dy-

namic Programming, but the direction is not oriented along scan-

lines. Instead, it is performed symmetrically from eight direc-

tions towards all pixels in the image. SGM does not suffer from

streaking artifacts like Dynamic Programming and does not re-

quire iterations like Belief Propagation. The rather simple and

regular integer operations of the SGM algorithm make it suitable

for implementations on the GPU (Rosenberg et al., 2006, Gibson

and Marques, 2008, Ernst and Hirschmüller, 2008) and FPGA

(Gehrig et al., 2009, Banz et al., 2010), which permits real-time

performance.

In practice, SGM appears rather robust and insensitive to the

choice of parameters in contrast to other methods like Graph

Cuts. This makes SGM suitable for real world applications like

(tilewise) aerial image matching (Hirschmüller, 2008, Gehrke et

al., 2010) and automotive applications (Steingrube et al., 2009).

The drawback of SGM is its memory consumption that depends,

as for all global methods, on the number of pixels and the dis-

parity range. This limitation may be overcome in principle with

tilling the input data. While this approach is usually sufficient for

CPUs it does not take advantage of the high degree of parallelism

commonly found in FPGAs and GPUs.

2 MEMORY EFFICIENT SEMI-GLOBAL MATCHING

The SGM method (Hirschmüller, 2008) aims to minimize the

global cost function

E(D) =
∑

p

(C(p, D(p)) +
∑

q∈Np

P1 T[|D(p) −D(q)| = 1]

+
∑

q∈Np

P2 T[|D(p) −D(q)| > 1]).

(1)

The function consists of one term that sums the matching costs C

over all pixels p, according to given disparities Dp. For rectified

images, the absolute difference would be calculated by

C(p, d) = |IL(p)− IR(p− d)|. (2)

This just serves as an example. In practice, more robust matching

costs should be used (Hirschmüller and Scharstein, 2009). The

second term of (1) sums small penalties P1 for all pixels, where

the disparity difference to the neighbor is at most one pixel. The

last term sums a higher penalty P2 for all pixels with a higher

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-3, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

371

disparity difference to neighboring pixels. The goal is to find the

disparity image D that minimizes this function.

2.1 Review of the SGM Method

In SGM (Hirschmüller, 2008), the minimization of (1) is done by

going along one dimensional paths L in eight directions r through

the image. Thus, at each pixel p, paths from eight directions meet

as shown on the left in Figure 1.

x

y p

8 Paths from all Directions r

x, y

d

r(p, d)Minimum Cost Path L

p

Figure 1: Aggregation of costs in disparity space.

Along each path Lr, the minimum cost to reach all disparities of

a pixel p on the path is computed according to the global cost

function (1). The minimum cost along a path is visualized on the

right in Figure 1. Mathematically, the cost computation is done

by recursively computing

Lr(p, d) =C(p, d) +min(Lr(p− r, d),

Lr(p− r, d− 1) + P1,

Lr(p− r, d+ 1) + P1,

min
i

Lr(p− r, i) + P2)−min
k

Lr(p− r, k).

(3)

Thus, for each pixel p and disparity d, the cost is computed by

the sum of the matching cost and the minimum path cost of the

previous pixel p − r, considering the penalties P1 and P2. The

latter is done by computing the minimum over four values. The

first value is the path cost at the previous pixel at the same dis-

parity. This value is taken without any penalty. The second and

third value is the path cost at the previous pixel with the next

lower and higher disparity. Here, the small penalty P1 is added.

The last value is the minimum cost at the previous pixel over all

disparities with the additional higher penalty P2.

The last term of equation (3) subtracts the minimum cost at the

previous pixel from all costs of the current pixel. This is done for

keeping the values L low for using a small data type. In fact, an

arbitrary value could be chosen, as long as it is constant for all

disparities. The minimum of the previous pixel is used, because

it is already available and subtraction will never make the whole

term negative.

Since disparity changes are usually indicated by intensity changes,

the penalty P2 is adapted to the intensity gradient between the

current and the previous pixel, according to

P2 =
P ′

2

|IL(p)− IL(p− r)|
. (4)

The information from all paths is fused for all pixels and dispari-

ties by

S(p, d) =
∑

r

Lr(p, d). (5)

The disparity for each pixel corresponds to the minimum cost, i.e.

DL(p) = argmin
d

S(p, d). (6)

Subpixel interpolation can be performed by either fitting a parabola

through the neighboring cost values or by using an equiangular

line fit (Shimizu and Okutomi, 2005). The choice depends on the

matching cost.

Unlike Dynamic Programming solutions, the pathwise cost com-

putation does not contain any handling for occlusions. This is

not possible because the paths are not oriented in the direction of

epipolar lines. Therefore, the disparity of the right image DR is

computed by either a diagonal search in S (Hirschmüller, 2008),

or by switching the roles of the left and right image and com-

puting from scratch. A consistency check is performed by com-

paring DL with DR and differing disparities are set to invalid or

interpolated if needed (Hirschmüller, 2008).

Aggregation can be performed in two passes. The first pass goes

from the top left pixel line wise through the image and computes

the path from left, diagonally from top-left, from top and diag-

onally from top-right. For each pixel, the four paths are contin-

ued from the previous pixels to the current pixel according to (3)

as shown on the left in Figure 2. This requires storing the path

costs Lr for the previous pixels for all disparities for each direc-

tion separately. Consequently, the required memory has a size of

3 × w × dmax + dmax elements, with w as width of the image

and dmax as disparity range. After computing the four pathwise

costs for a pixel, the result is added according to (5) to the array

S, which has the size w × h× dmax elements.

Figure 2: Calculation of the eight path directions in a top-down

pass (left) and a bottom-up pass (right).

Thereafter, a second pass is required that starts from the bottom,

right pixel and goes upwards for computing the remaining four

paths. This completes the computation of S. The disparity image

is derived from S immediately according to equation (6). Thus,

the total temporary memory requirement of SGM is

Msgm = w × h× dmax + 3× w × dmax + dmax. (7)

The main problem is the memory size of S as it depends on the

width, height and disparity range. In contrast, the memory for

pathwise costs only depends on the width and disparity range.

Since a disparity range that is larger than the total image size

does not make sense, the required memory will be at most in the

order of the size of the input image.

2.2 The Novel eSGM Method

In the SGM algorithm, the disparity is determined as the index

that corresponds to minimum cost of all disparities of a pixel (6).

However, each of the eight paths that contribute to the cost for

a pixel, carries its own preference for the location of the mini-

mum. Figure 3 shows the costs of the eight paths from different

directions at pixel p for all disparities. Ideally, the location of the

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-3, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

372

minimum of the eight paths would be the same disparity. How-

ever, we have to anticipate that paths from some directions may

be disturbed, e.g. near depth discontinuities. Nevertheless, at

least one path should predict the disparity correctly. The idea is

to focus only at the locations of S, where the eight paths have

their minima. These are at most eight distinct places. For all

other disparities, the costs need not to be stored. Thus, S be-

comes a sparse S′, whose size does not depend on the number of

disparities any more.

L0 L1 L3 L4 L7L6L5L2

d

S

Minimum

+ + + + + + + =

Figure 3: Costs for all disparities of a certain pixel from paths of

eight different directions that are summed to S. The minimum of

S may differ from the minima of the pathwise costs.

The immediate question is if we do not reduce the number of pos-

sible disparities too early? What if the minimum of S is at a dif-

ferent location than the minimum of any of the eight paths? The

answer is that it is very unlikely that true disparity is not detected

by any of the paths and at the same time appears as minimum in

S. We claim that if the minimum of S is at a different place than

any of the eight pathwise minima, then it can only be the correct

disparity by pure chance. Thus, the new eSGM method should

have qualitatively the same output as the SGM method.

The new method can be implemented with three passes. The first

pass works like in the original method, except for storing the re-

sult to S. Instead of storing the costs for all disparities, for each

pixel the four minima of the four paths that meet in this pixel are

determined and the costs are only stored for these four dispari-

ties. For subpixel interpolation, the costs of the next lower and

higher disparity is stored as well. Figure 4 shows the values that

need to be stored for one pixel. The second pass computes the

remaining four paths from the bottom up. The costs are added at

the places that were identified by the first pass. These four places

are complete, which allows the computation of an intermediate

result by choosing the lowest cost among the four and calculat-

ing the sub-pixel disparity position. This frees the memory of the

four minima of the first pass. The memory is used for storing the

costs at the four minima of the paths from the second pass, which

are in general different to the minima of the first pass. The aggre-

gation is completed by a third pass that computes the same paths

as in the first pass, but adds the costs at the minima that where

identified in the second pass. The final minima of each pixel can

then be selected among these four minima and the intermediate

result of the second pass.

S(d0−1)

S(d0+1)

d0

S(d0)

S(d3−1)

S(d3+1)

d3

S(d3) S(dint)

dint

...

Figure 4: Definition of 18 data elements that need to be stored for

each pixel in the eSGM method.

Thus, for this algorithm, the amount of temporary memory is just

Mesgm = w × h× 18 + 3× w × dmax + dmax. (8)

Obviously, the computational effort of eSGM is increased by 50%

in comparison to SGM due to the necessary third pass.

The new eSGM method does not allow the direct derivation of the

right disparity image from the cost array S by a diagonal search

(Hirschmüller, 2008). Therefore, we suggest another kind of fast

consistency check that projects DL directly into DR by consid-

ering the costs that are available at the disparities of DL. For

rectified images it can be written as DR(x − DL(x, y), y) :=
DL(x, y). Double mappings are resolved by storing the disparity

with the lower associated cost into DR.

The reasoning behind the new method permits the derivation of

matching confidence as the number of paths that have the min-

imum at the same disparity as the final disparity. Obviously, if

paths from all directions have the same minimum, then the trust

in the found disparity is very high. In contrast, if other path di-

rections suggest a different disparity, then the confidence in the

correctness of the match is lower. Computing this confidence

number is computationally very cheap, because the eSGM algo-

rithm already computes the individual minima of all paths.

3 IMPLEMENTATIONS

We have implemented the new method on different hardware plat-

forms for different applications. As matching cost, we have fo-

cused on Census, since this matching cost appears to have the

highest radiometric robustness (Hirschmüller and Scharstein, 2009).

3.1 CPU

We have implemented the SGM and eSGM method on the CPU as

explained in Section 2 using unsigned integer values with 16 bit

as basic elements. The pathwise cost calculation loop is com-

puted using SSE2 vector commands. In case of SGM, the Census

matching cost was computed only once and the pairwise match-

ing costs stored for each pixel and disparity, which doubles the

memory requirement, but offers fastest processing. Thus, the to-

tal temporary memory requirement in bytes of our SGM imple-

mentation is four times equation (7).

Our eSGM implementation uses unsigned 16 bit integer values as

well and computes the Hamming distance of Census transformed

images for each of the three passes, using xor and popcnt com-

mands, that are part of the SSE 4.2 or SSE 4a specification. Thus,

the total amount temporary memory in bytes is two times equa-

tion (8).

3.2 GPU

The GPU implementation of eSGM uses conventional OpenGL/Cg

(Segal and Akeley, 2009, NVI, 2009) programming techniques

(Rosenberg et al., 2006, Ernst and Hirschmüller, 2008). Several

render buffers of an OpenGL frame buffer object keep the data

in a 16 bit float data format while the arithmetic operations are

usually done in 32 bit float precision. All the work is carried out

through the execution of OpenGL rendering commands with spe-

cialized fragment and vertex shaders. With respect to the mem-

ory bandwidth, necessary for direct matching cost calculation, we

have chosen a Census cost function with a 5× 5 window and al-

ternatively Mutual Information as matching cost (Hirschmüller

and Scharstein, 2009). Mutual Information requires a hierarchi-

cal eSGM algorithm.

Due to the two-step approach, the computing time for the path

cost values is theoretically doubled as compared to SGM. It can

be reduced if the minimal path cost values are saved during the

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-3, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

373

first step for the second one. The memory size for S′ with eight

values per pixel and the data structures for storing the minimal

path cost indices and values is sufficient for computing images

up to 2048× 2048 pixels on a GPU with OpenGL/Cg. A dispar-

ity range of up to 2048 pixels is only limited by the 16 bit float

data format of the buffers. For consistency checking on the GPU,

the right disparity image is calculated from scratch with swapped

input images. Alternatively the fast consistency check method of

Section 2.2 can be used.

3.3 FPGA

Programmable hardware like FPGAs have been used for stereo

methods like SGM (Banz et al., 2010, Gehrig et al., 2009). FP-

GAs have a low power consumption and high computational power

that make them suitable for energy aware embedded systems that

demand real-time image processing. A FPGA implementation of

the original SGM algorithm on a high-end FPGA board matches

two pairs of 320x200 images at 27 frames/s using ZSAD as match-

ing cost (Gehrig et al., 2009). During our FPGA implementation

efforts it became clear that the required memory bandwidth is the

limiting factor for increased image resolutions or deploying low

cost FPGAs in mass production.

FPGA or

GPUFPGAGPU

census

transform

census

transform

eSGM

L/R check

post

processing

rectification

/distortion

correction

rectification

/distortion

correction

sensor

data

sensor

data

disparity

map

Figure 5: Overview of the functional blocks and the underlying

heterogeneous hardware platform.

Unlike other FPGA implementations (Gehrig et al., 2009) we are

using Census as matching cost, as it is well suited for hardware

realization and because of superior performance under realistic

conditions (Hirschmüller and Scharstein, 2009, Hirschmüller and

Gehrig, 2009). The window size of the Census transform can be

set to any arbitrary size. For our real-time setup, the census size

was chosen to be 5 × 5, since we found that it gives the best

trade-off between hardware impact and image quality.

All hardware components are designed with the hardware de-

scription language VHDL, following a hardware operating sys-

tem concept (HW-OS). The HW-OS allows for a fast interchange

of already deployed and proven hardware modules, at the expense

of 5-10 % additional resource utilization. The eSGM core is cus-

tomizable to any disparity and image resolution, which must be a

power of two. Our hardware platform consists of a mid-sized

Xilinx Virtex 5 FPGA (XC5VSX95T) with a PCI express in-

terface to the image sensors and a GPU. The GPU is used for

pre- and post-processing as shown in Figure 5. Based on this

hardware environment, a stereo image pair with a resolution of

1024 × 1024 pixels and a maximum of 64 disparity steps can be

processed at nearly 10 Hz. VGA sized image pairs are processed

at 33 Hz with the same disparity range. The consistency check

doubles the execution time. A second independent matching core

may be instantiated in a FPGA with more logic resources. The

novel eSGM method has also proven its feasibility on low cost

Xilinx Spartan Devices.

4 RESULTS

We have tested our implementations of SGM and eSGM against

each other on a standard test set, on huge images and on different

platforms for finding out the advantageous and disadvantageous

of our new method.

4.1 Evaluation on Middlebury Datasets

Figure 6 shows the standard data sets from the Middlebury web

page (Scharstein and Szeliski, 2010, Scharstein and Szeliski, 2002,

Scharstein and Szeliski, 2003). We used the same parameter set-

tings for SGM and eSGM and for all images. The consistency

check was used for identifying occlusions, which were interpo-

lated as explained in Section 2.1.

The disparity images of SGM and eSGM are almost identical. In

contrast, eSGM with the fast consistency check produces worse

results. The last row of Figure 6 shows the confidence images

that were computed by eSGM as explained in the end of Section

2.2. Obviously, lower confidence is estimated near object bor-

ders, which is in fact the place where most errors occur.

All pixels that differ by more than one pixel from the ground

truth are counted as error. Table 1 shows the results over all non-

occluded pixels. The performance of SGM and eSGM is very

similar, which confirms that the eSGM method produces virtually

the same output as the SGM method. The original SGM imple-

mentation is listed as SemiGlob in the table. The difference to

our implementation is the matching cost. We have used Census.

In contrast SemiGlob uses Mutual Information, which is slightly

inferior (Hirschmüller and Scharstein, 2009).

The runtime is given in the last column of Table 1. We have

measured it on a Xeon X5570 CPU with 3 GHz. The implemen-

tation is single threaded, thus only one CPU core was used. In

this example, eSGM is 56% slower than SGM, which confirms

the theoretical runtime overhead of 50%.

4.2 Matching of Huge Images

The main advantage of SGM is the possibility to match huge

images in one piece without tiling. Figure 7 shows a rectified

aerial image pair. Both images have a size of 9782 × 14580 =
142 MPixel. The disparity range in this example is 1788 to 2300,

thus 512 pixels, mainly due to the tower, which has a height of

≈ 370 m in reality.

eSGM computed the disparity and confidence image, as shown in

Figure 7, in one piece using 4.8 GB of temporary memory. It re-

quired 72 Minutes on a Xeon X5570 CPU with 3 GHz in a single

threaded implementation. The SGM implementation would re-

quire 272 GB of memory for computing the whole image, which

is absolutely unrealistic. Instead the disparity image is computed

in 7×11 tiles of the size 1478×1406 pixels and required 4 GB of

temporary memory. Thus, the tiles have an overlap of 40 pixels.

The computation time was 51 Minutes. The resulting disparity

image looks the same as the eSGM result and is therefore omit-

ted. The problem of tiling is the definition of the overlap. For

well textured, rather flat scenes, as the current one, a low overlap

of 20-40 pixels is sufficient. However, low-textured scenes, water

or high depth differences require a higher overlap. With eSGM,

this problem is avoided.

In this example, eSGM is 41% slower than SGM. In practive,

even higher disparity ranges are typical, because the disparity

range is not known and therefore is often overestimated for being

on the safe side. Furthermore, the ground resolution in the ex-

ample was 15 cm/pixel, but 5 cm/pixel can be obtained by aerial

cameras, which increases the disparity range by factor 3 on scene

with the same relative depths. Finally, scenes with mountains and

canyons will have larger depth ranges. Thus, disparity ranges of

thousands of pixels have to be considered in aerial image match-

ing. For tiled processing, it means using much smaller tiles. In

contrast, eSGM does not have this problem.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-3, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

374

eSGM

confidence

eSGM (fast)

eSGM

SGM

Dataset

Figure 6: Comparison of our SGM and eSGM implementation on the Middlebury datasets.

4.3 Computation Time on Different Hardware

As discussed before, we have implemented the new method on

three different hardware platforms. All implementations use Cen-

sus as matching cost and a full consistency check. The CPU ver-

sion runs single threaded on one CPU core. Parallelization into

several threads appears feasible, but is not used. Table 2 shows

the runtime using two different image configurations.

Table 2: Runtime in seconds of SGM and eSGM on one CPU

core (Xeon X5570, 3 GHz), GPU (NVidia GeForce G280) and

FPGA (Xilinx Virtex 5, 125 MHz).

Method (Hardware) 640× 480× 64 2k × 2k × 1k

SGM (CPU) 1.11 s 150.9 s

SGM (GPU) 0.13 s -

eSGM (CPU) 2.14 s 250.9 s

eSGM (GPU) 0.24 s 26.5 s

eSGM (FPGA) 0.06 s -

These results show that eSGM has special advantageous on the

GPU and the FPGA, because these platforms typically have not

as much memory available as the CPU implementation and the ra-

tio between computation power and memory bandwidth is worse.

On the GPU, especially the memory size is a problem. An image

of size 2048× 2048 pixels and 1024 pixel disparity range cannot

be computed by SGM, but by eSGM. On the FPGA, the mem-

ory size as well as the memory bandwidth is a problem, which is

relaxed by the eSGM method.

5 CONCLUSION

We have shown that the novel eSGM method improves the SGM

algorithm by making its temporary memory requirement inde-

pendent from the disparity range without sacrificing matching

quality. The novel feature comes at the cost of around 50% more

computation time as compared to SGM.

We have argued that memory efficiency is very important for ap-

plying global stereo methods to real world problems. As the im-

age resolution increases in future, the disparity range increases as

well. This means that the problem will become worse in future,

if the main memory does not increase over-proportional to the

image resolution.

The novel eSGM method permits matching of huge images up

to several hundred MPixel in one piece on the CPU, which is

not possibly by any other similarly accurate stereo method. The

benefit of eSGM is even higher on the GPU and the FPGA as the

main memory size is more limited on these devices and the ratio

between computational power to memory bandwidth is worse.

REFERENCES

Banz, C., Hesselbarth, S., Flatt, H., Blume, H. and Pirsch, P.,
2010. Real-time stereo vision system using semi-global match-

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-3, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

375

Table 1: Errors in non-occluded areas of the Middlebury datasets using the standard threshold of one pixel.

Algorithm Tsukuba Venus Teddy Cones Average error Runtime for Teddy

AdaptingBP (Klaus et al., 2006) 1.11 0.10 4.22 2.48 4.23 (unknown)

eSGM 3.25 0.60 5.38 2.87 7.16 0.95 s

SGM 3.26 0.61 5.41 2.85 7.17 0.61 s

SemiGlob (Hirschmüller, 2008) 3.26 1.00 6.02 3.06 7.50 (unknown)

eSGM (fast) 2.98 1.49 6.36 3.57 8.84 0.54 s

Figure 7: Left and right rectified aerial image with 142 MPixel, disparity image by eSGM and corresponding confidence image.

ing disparity estimation: Architecture and fpga-implementation.
In: IEEE Conference on Embedded Computer Systems: Archi-
tectures, Modeling and Simulation.

Birchfield, S. and Tomasi, C., 1998. Depth discontinuities by
pixel-to-pixel stereo. In: ICCV, Mumbai, India, pp. 1073–1080.

Ernst, I. and Hirschmüller, H., 2008. Mutual information based
semi-global stereo matching on the gpu. In: ISVC, Vol. LNCS
5358, Part 1, Las Vegas, NV, USA, pp. 228–239.

Felzenszwalb, P. F. and Huttenlocher, D. P., 2004. Efficient belief
propagation for early vision. In: IEEE CVPR.

Gehrig, S., Eberli, F. and Meyer, T., 2009. A real-time low-power
stereo vision engine using semi-global matching. In: ICVS, Vol.
LNCS 5815, Liege, Belgium, pp. 134–143.

Gehrke, S., Morin, K., Downey, M., Boehrer, N. and Fuchs, T.,
2010. Semi-global matching: An alternative to lidar for dsm gen-
eration? In: Canadian Geomatics Conference and Symposium of
Commission I, ISPRS, Calgary, Canada.

Gibson, J. and Marques, O., 2008. Stereo depth with a unified
architecture gpu. In: IEEE CVPR.

Hirschmüller, H., 2008. Stereo processing by semi-global match-
ing and mutual information. IEEE TPAMI 30(2), pp. 328–341.

Hirschmüller, H. and Gehrig, S., 2009. Stereo matching in the
presence of sub-pixel calibration errors. In: IEEE CVPR, Miami,
FL, USA, pp. 437–444.

Hirschmüller, H. and Scharstein, D., 2009. Evaluation of stereo
matching costs on images with radiometric differences. IEEE
TPAMI 31(9), pp. 1582–1599.

Klaus, A., Sormann, M. and Karner, K., 2006. Segment-based
stereo matching using belief propagation and a self-adapting dis-
similarity measure. In: ICPR.

Kolmogorov, V. and Zabih, R., 2001. Computing visual corre-
spondence with occlusions using graph cuts. In: ICCV, Vol. 2,
pp. 508–515.

NVI, 2009. CG Reference Manual. 2.2 edn.

Rosenberg, I. D., Davidson, P. L., Muller, C. M. R. and Han,
J. Y., 2006. Real-time stereo vision using semi-global matching
on programmable graphics hardware. In: SIGGRAPH.

Scharstein, D. and Szeliski, R., 2002. A taxonomy and evalua-
tion of dense two-frame stereo correspondence algorithms. IJCV
47(1/2/3), pp. 7–42.

Scharstein, D. and Szeliski, R., 2003. High-accuracy stereo depth
maps using structured light. In: IEEE CVPR, Vol. 1, Madison,
Winsconsin, USA, pp. 195–202.

Scharstein, D. and Szeliski, R., 2010. Middlebury stereo website.
www.middlebury.edu/stereo.

Segal, M. and Akeley, K., 2009. The OpenGL Graphics System:
A Specification.

Shimizu, M. and Okutomi, M., 2005. Sub-pixel estimation error
cancellation on area-based matching. IJCV 63(6), pp. 207–224.

Steingrube, P., Gehrig, S. and Franke, U., 2009. Performance
evaluation of stereo algorithms for automotive applications. In:
ICVS, Vol. LNCS 5815, Liege, Belgium.

Szeliski, R., Zabih, E., Scharstein, D., Veksler, O., Kolmogorov,
V., Agrawala, A., Tappen, M. and Rother, C., 2008. A com-
parative study of energy minimization methods for markov ran-
dom fields with smoothness-based priors. IEEE TPAMI 30(6),
pp. 1068–1080.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-3, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

376

