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ABSTRACT

Generating a digital twin of any complex system requires modeling and computational approaches that are efficient, accurate, and modu-
lar. Traditional reduced order modeling techniques are targeted at only the first two, but the novel nonintrusive approach presented in this
study is an attempt at taking all three into account effectively compared to their traditional counterparts. Based on dimensionality reduction
using proper orthogonal decomposition (POD), we introduce a long short-term memory neural network architecture together with a princi-
pal interval decomposition (PID) framework as an enabler to account for localized modal deformation. As an effective partitioning tool for
breaking the Kolmogorov barrier, our PID framework, therefore, can be considered a key element in the accurate reduced order modeling of
convective flows. Our applications for convection-dominated systems governed by Burgers, Navier-Stokes, and Boussinesq equations demon-
strate that the proposed approach yields significantly more accurate predictions than the POD-Galerkin method and could be a key enabler
toward near real-time predictions of unsteady flows.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5128374., s

I. INTRODUCTION

There are a great number of high-dimensional problems in
the field of science and engineering (such as atmospheric flows)
that can be efficiently modeled based on embedded low-dimensional
structures or reduced order models (ROMs).1–3 ROMs have great
promise for flow control,4–11 data assimilation,12–22 parameter esti-
mation,23–25 and uncertainty quantification.26–31 These applications
typically require multiple forward simulations of the problem being
investigated, and even the most powerful supercomputers might fail
to perform these simulations in full order model (FOM) space due
to storage and speed limitations. Also, building of digital twins32–36

requires real-time and many-query responses. A digital twin can
be defined as the virtual representation of a physical object or sys-
tem across its lifecycle using real-time data37 which requires an
efficient and on-the-fly simulation emulator. The concept of using
such interactive computational megamodels often pays off in terms
of accelerated design cycle times, greater efficiency and safety, pre-
dictive maintenance and scheduling, more efficient and informed

decision support systems, real-time monitoring, performance opti-
mization, supervisory control to reduce energy consumption, and
perhaps much beyond.With the recent wave of digitization, reduced
order modeling can be viewed as one of the key enablers to bring the
promise of the digital twinning concept closer to reality.38 Therefore,
there is a continuous demand for the development of accurate ROMs
for complex physical phenomena. In projection-based ROMs,
the most widely used technique, the discrete high-dimensional
operators are projected onto a lower-dimensional space, so that
the problem can be solved more efficiently in this reduced
space.39–44

One of the earliest developed and well-known approaches to
build this reduced space is Fourier analysis. However, it assumes
universal basis functions (or modes) which have no specific relation
to the physical system. On the other hand, snapshot-based model
reduction techniques tailor a reduced space that best fits the prob-
lem by extracting the underlying coherent structures that control
the major dynamical evolution we are interested in. Proper orthog-
onal decomposition (POD) is a very popular and well-established
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approach extracting the modes which contribute the most to the
total variance.45,46 In fluid dynamics applications, where we are
mostly interested in the velocity field, those modes contain the
largest amount of kinetic energy.47,48 That is why POD is usually
classified as an energy-based decompositionmethod. Another popu-
lar approach formodel order reduction is the dynamicmode decom-
position (DMD)49–54 which generates a number ofmodes, each char-
acterized by an oscillating frequency and growth/decay rate. In this
study, we are interested in the application of POD for dimensionality
reduction.

POD generates a set of spatial orthonormal basis functions,
each containing a significant amount of total energy. To obtain a
reduced representation of a system, the first few modes are selected,
and the remaining are truncated assuming their contribution to
the system’s behavior is minimum (i.e., compression). The Kol-
mogorov n-width55,56 provides a mathematical guideline to quantify
the optimal n-dimensional linear subspace and the associated pro-
jection error (i.e., a measure of the system’s linear reducibility). The
Kolmogorov n-width, dn(M), is defined as56–58

dn(M) ∶≙ inf
Sn

sup
q∈M

∥q −ΠSn
q∥

where Sn is a linear n-dimensional subspace, M is the solu-
tion manifold, and ΠSn

is the orthogonal projector onto Sn. The
Kolmogorov n-width is a classical concept of approximation the-
ory which describes the error, in worst-case scenario (therefore,
the supremum appears), that might arise from a projection onto
the best-possible linear subspace of a given dimension n (hence,
the infimum is taken over all n-dimensional subspaces). That is,
the Kolmogorov n-width represents a barrier on the system’s lin-
ear reducibility. If the decay of the Kolmogorov n-width is fast,
then employing a reduced linear subspace is feasible. Unfortu-
nately, this is not generally the case for convection-dominated flows
with severe temporal evolution or equivalently parametric situa-
tions where the solution is highly varying over the parameter space.
In these situations, the decay of n-width is relatively slow, hence
raising the Kolmogorov barrier (i.e., requiring more modes to be
retained in the reduced-space approximation of the underlying
dynamics).

Moreover, snapshots-basedmodel reduction techniques rely, in
principle, on the ergodicity hypothesis. According to this hypothesis,
time average and ensemble average are equal which implies that any
collection of random samples should be able to represent the whole
process. That is the system’s response given certain inputs that are
considered to encapsulate the essential behavior and characteristics
of that system. In literature, a substantial amount of studies have
been devoted to investigate the ergodicity of different fluid flow sys-
tems.59–66 We can see that the flow situations described here (e.g.,
convection-dominated flows) often fail to fulfill this hypothesis. As
a consequence, the resulting intrinsically global POD modes can-
not describe the underlying flow structures. In problems with strong
convective nature, the system’s state is significantly different at dif-
ferent time instances. Consequently, a global POD application on
these systems causes averaging and deformation of POD modes in
such a way that they become no more representative of any of the
system’s states. Principal interval decomposition (PID)67–69 offers
a treatment of this modal deformation by dividing the temporal
space into a few intervals, where POD (or any other decomposition

technique) is applied locally. Therefore, local POD modes are tai-
lored to the specific flow behavior in respective time subintervals.
Similarly, local POD modes can be constructed by partitioning the
physical domain,70,71 state space,72,73 or parameter space. Indeed,
this partitioning approach helps to break the Kolmogorov barrier as
well. Using a single fixed global subspace would necessitate keeping
a larger number of modes to meet accuracy requirements and cap-
ture a certain amount of energy. Alternatively, partitioning allows
the use of several tailored, local, and lower-dimensional subspaces.
Also, Lee and Carlberg74 recently proposed a projection onto non-
linearmanifolds to break the Kolmogorov barrier instead of working
with linear manifolds.

POD has been often coupled with Galerkin projection to build
ROMs for linear and nonlinear systems.75–82 In Galerkin projec-
tion, the governing equations are projected onto the POD sub-
space. Through the orthonormality and energy-optimality charac-
teristics of POD modes, a simpler and truncated set of coupled
ordinary differential equations (ODEs) is obtained. The resulting
system is low-dimensional, but it is dense. In other words, it gener-
ates small and full matrices, while the common discretization tech-
niques often lead to large and sparse matrices. Also, the quadratic
nonlinearity and triadic interactions in ROMs lead to a computa-
tional load of an order of O(R3), where R is the number of retained
modes. The discrete empirical interpolation method83 (DEIM), the
discrete version of the empirical interpolation method,84 can be
used to reduce the computational complexity for nonlinear ROMs
where the nonlinear term is approximated with sparse sampling
through projecting it onto a separate reduced subspace, rather
than directly computing it.85–87 However, in this paper, we uti-
lize a tensorial POD projection approach,88 where the projected
spatial variables are stored in tensors and calculated offline. Fur-
thermore, symbolic regression techniques might serve to iden-
tify ROMs from limited sensor data.89 Another class for ROM
which is gaining popularity in recent years is the fully data-driven,
nonintrusive ROM (NIROM).90–98 NIROM is a family of meth-
ods that solely access available datasets to extract and mimic the
system’s dynamics, with little-to-no knowledge of the governing
equations. The nonintrusive approach is sometimes called physics-
agnostic modeling, in contrast to the intrusive physics-informed
approach.

One of the main advantages of a nonintrusive approach is its
portability, which results from the fact that it does not necessar-
ily require the exact form of the equations and the methods used
to solve them to generate the snapshots. This makes the approach
applicable to experimental data where the equations are often not
well established or have huge uncertainties involved in their param-
eters. Together with their modularity and simplicity, nonintrusive
models offer a unique advantage in multidisciplinary collaborative
environments. It is often necessary to share the data or the model
without revealing the proprietary or sensitive information. Differ-
ent departments or subcontractors can easily exchange data (with
standardized I/O) or executables, securing their intangible assets and
intellectual property rights. Furthermore, nonintrusive approaches
are particularly useful when the detailed governing equations of the
problem are unknown. This modeling approach can benefit from the
enormous amount of data collected from experiments, sensor mea-
surements, and large-scale simulations to build a robust and accurate
ROM technology.
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With the growing advancement of artificial neural networks
(ANNs) and other machine learning (ML) techniques and the avail-
ability of massive amounts of data resources from high-fidelity sim-
ulations, field measurements, and experiments, data-driven, non-
intrusive modeling approaches are currently considered some of
the most promising methods across different scientific and research
communities. In the past few years, there has been a significant
amount of research using ANN and ML techniques dedicated to
turbulence modeling.99–108 More details on the influence of ML on
fluid mechanics, specifically turbulence modeling, can be found in
recent studies.109–113 Until recently, the fully nonintrusive model-
ing can be considered the most attractive enabling methodology
to do real-time simulation very efficiently in the context of emerg-
ing digital twin technologies.114 In a complimentary fashion, the
hybrid models115–120 are developed by combining the intrusive and
nonintrusive models in such way that the limitation of one compo-
nent modeling strategy can be addressed by the other component
model.

In this work, we propose a nonintrusive reduced order mod-
eling framework that is best suited for unsteady flows, where the
convective mechanisms are more predominant than the diffusive
ones. The approach is based on principal interval decomposition to
parse the data over time to learnmore localized dominant structures.
This is particularly important for problems where we observe rela-
tively slow decay in the Kolmogorov n-width, which constrains the
feasibility of reduced order approximation. Also, this partitioning
helps to satisfy the ergodicity hypothesis within each local interval
to provide a good approximation of the flow field. We couple this
parsing technique with a long short-term memory (LSTM) neural
network, which is a very efficientML tool for time-series predictions.
The PID-LSTM is compared with its counterpart based on Galerkin
projection (PID-GP). PID-LSTM not only eliminates the need to
access the governing equations, being solely dependent on data, but
also helps to mitigate instabilities in the ROM predictions resulting
from the nonlinear interaction among different fields. We tested the
proposed framework with one-dimensional and two-dimensional
convection-dominated problems, highlighting its benefits over the
standard POD and Galerkin projection approaches.

The rest of the paper is outlined as follows. Section II pro-
vides a brief overview of the mathematical models used to test
the proposed framework. Namely, we describe the one-dimensional
nonlinear advective Burgers problem, a standard benchmark prob-
lem in computational fluid dynamic (CFD) studies. Also, we tested
our framework using the two-dimensional Navier-Stokes equations.
More specifically, we investigate the vortex merger and double shear
layer problems. As a final and more complicated problem, we study
the unsteady lock-exchange flow problem (also known as the Mar-
sigli flow) governed by the two-dimensional Boussinesq equations.
In Sec. III, we describe the classical proper orthogonal decomposi-
tion approach for order reduction. A generalized PID framework, an
approach to construct local basis rather than global ones, is shown
in Sec. IV. The application of PID with classical Galerkin projec-
tion to build intrusive ROMs is outlined in Sec. V. The proposed
approach which incorporates PID while bypassing GP in a nonin-
trusive framework is illustrated in Sec. VI. Results obtained with the
novel proposed method to illustrate its advantages are followed by
relevant discussions in Sec. VII. Finally, conclusions are provided in
Sec. VIII.

II. MATHEMATICAL MODELS

A. 1D Burgers equation

Our first test case is the one-dimensional (1D) viscous Burg-
ers equation. It represents a simple form of Navier-Stokes equa-
tions in 1D setting with similar quadratic nonlinear interaction
and Laplacian dissipation. It is, therefore, considered a stan-
dard benchmark for the analysis of nonlinear advection-diffusion
problems.

The evolution of the velocity field u(x, t), in a dimensionless
form, is given by

∂u

∂t
+ u

∂u

∂x
≙

1

Re

∂
2u

∂x2
, (1)

where Re is the dimensionless Reynolds number, defined as the ratio
of inertial effects to viscous effects.

B. 2D Navier-Stokes equations

The primitive formulation of the two-dimensional (2D)
Navier-Stokes equations, in the dimensionless form with the index
notation, can be written as

∂ui

∂xi
≙ 0, (2)

∂ui

∂t
+ uj

∂ui

∂xj
≙ −

∂p

∂xi
+

1

Re

∂
2ui

∂xj∂xj
, (3)

where ui is the velocity in the i-th direction and p is the pressure.
We note here that the index notation in the above equations follows
the Einstein convention. In particular, the incompressibility condi-
tion [Eq. (2)] can be rewritten as ∇ ⋅u = 0, where u = [u, v]T is the
velocity vector. Alternatively, by taking the curl of Eq. (3), the follow-
ing vorticity-streamfunction formulation of the 2D Navier-Stokes
equation is obtained:

∂ω

∂t
+
∂ψ

∂y

∂ω

∂x
−
∂ψ

∂x

∂ω

∂y
≙

1

Re
(∂2ω

∂x2
+
∂
2ω

∂y2
), (4)

where ω is the vorticity and ψ is the streamfunction. The vorticity
field is defined asω =∇× u. Although the vorticity is a vector field by
definition, we are considering only the z-component in our analysis

(i.e., ω ≙ ω ⋅ k̂, where k̂ is a unit vector in the z-direction). Since we
are dealing with 2D flows in the x-y plane, only the z-component
becomes nontrivial. Streamfunction is a scalar field, defined for two-
dimensional flows as u ≙ ∇× ψk̂, specifically,

u ≙
∂ψ

∂y
, v ≙ −

∂ψ

∂x
. (5)

The vorticity-streamfunction formulation has several compu-
tational advantages over the primitive variable formulation. It pre-
vents the odd-even decoupling issues that might arise between pres-
sure and velocity components. Therefore, a collocated grid can
be used instead of using a staggered one without producing any
spurious modes. Also, it automatically enforces the incompress-
ibility condition. The kinematic relationship between vorticity and
streamfunction is given by the following Poisson equation:

∂
2ψ

∂x2
+
∂
2ψ

∂y2
≙ −ω. (6)
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This relationship implies that the streamfunction is not a prognos-
tic variable and can be computed from the vorticity field at each
timestep. We will also use this property in our development of the
intrusive ROMs with Galerkin projection in Sec. V. To shorten our
notation, we can define the Jacobian, J(f, g), and the Laplacian, ∇2f,
operators as follows:

J( f , g) ≙ ∂f

∂x

∂g

∂y
−
∂f

∂y

∂g

∂x
, (7)

∇
2
f ≙

∂
2f

∂x2
+
∂
2f

∂y2
. (8)

Equations (4) and (6) can be rewritten as

∂ω

∂t
+ J(ω,ψ) ≙ 1

Re
∇

2ω, (9)

∇
2ψ ≙ −ω. (10)

This form of the 2D Navier-Stokes equations will be used in the
remaining text.

C. 2D Boussinesq equations

Boussinesq equations represent a simple approach for model-
ing geophysical waves such as oceanic and atmospheric circulations
induced by temperature differences.121 The Boussinesq approxima-
tion enables us to solve nonisothermal flows (e.g., natural convec-
tion), without having to solve for the full compressible formulation
of Navier-Stokes equations. Also, it can be equally useful for other
situations, such as isothermal flows with density stratification. In
this approximation, variations of all fluid properties other than the
density are ignored completely. Moreover, the density dependence
is ignored in all terms except for gravitational force (giving rise
to buoyancy effects). As a result, the continuity equation is used
in its constant density form, and the momentum equation can be
simplified significantly.

The dimensionless form of the 2D incompressible Boussi-
nesq equations on a domain Ω in vorticity-streamfunction for-
mulation is given by the following two coupled scalar transport
equations:122,123

∂ω

∂t
+ J(ω,ψ) ≙ 1

Re
∇

2ω + Ri
∂θ

∂x
, (11)

∂θ

∂t
+ J(θ,ψ) ≙ 1

RePr
∇

2θ, (12)

where θ is the temperature. In Boussinesq flow systems, there are
three leading physical mechanisms, namely, viscosity, conductivity,
and buoyancy. Equations (11) and (12) include three dimensionless
numbers: Re, Ri, and Pr. Re is the dimensionless Reynolds number,
relating viscous effects and inertial effects as defined in Sec. II A.
The Richardson number, Ri, is the ratio of buoyancy force to iner-
tial force, and the Prandtl number, Pr, is the ratio between kine-
matic viscosity and heat conductivity. Boussinesq approximation
underlies the statement that dynamical similarity of free convective
flows depends on the Grashof and Prandtl numbers,124 where the
Grashof number, Gr, is defined as Gr = RiRe2. In natural convec-
tion heat transfer, other relevant dimensionless numbers are often

used, such as Rayleigh number, Ra = GrPr, and Péclet number,
Pe = RePr.

III. PROPER ORTHOGONAL DECOMPOSITION

In POD, the dominant spatial subspaces are extracted from a
given dataset. In other words, POD computes the dominant coher-
ent directions in an infinite space, which best describe the spatial
evolution of a system. POD-ROM is closely related to either singular
value decomposition or eigenvalue decomposition of the snapshot
matrix (in the finite-dimensional case). However, in most fluid flow
simulations of interest, the number of degrees of freedom (number
of grid points) is often orders of magnitude larger than the number
of collected datasets. This results in a tall and skinny matrix, which
makes the conventional direct decomposition inefficient, as well as
time and memory consuming. Therefore, we follow the method of
snapshots, proposed by Sirovich,125 to generate the POD bases effi-
ciently. A number of snapshots (or realizations),Ns, of the flow field,
denoted as u(x, tn), are stored at consecutive times tn for n = 0, 1, 2,
. . ., Ns. The field u(x, tn) is assumed to be square-integrable in the
Hilbert space, u(x, tn) ∈ L2(D,T ) with x ∈ RN ,N ≙ 1, 2, 3, . . . and
tn ∈ T ≙ ∥0,T∥. From a physical point of view, square-integrability
corresponds to a finite amount of kinetic energy in the field. The
time-averaged field, called “base flow,” can be computed as

ū(x) ≙ 1

Ns

Ns

∑
n=0

u(x, tn). (13)

The mean-subtracted snapshots, also called anomaly or fluctuation
fields, are then computed as the difference between the instanta-
neous field and the mean field,

u
′(x, tn) ≙ u(x, tn) − ū(x). (14)

This subtraction has been common in ROM community, and it
guarantees that ROM solution would satisfy the same boundary con-
ditions as the full order model (FOM).51 This anomaly field proce-
dure can also be interpreted as a mapping of snapshot data to their
origin.

Then, an Ns × Ns snapshot data matrix A = [aij] is computed
from the inner product of mean-subtracted snapshots,

aij ≙ ⟨u′(x, ti);u′(x, tj)⟩, (15)

where the angle-parenthesis denotes the inner product defined as

⟨q1(x); q2(x)⟩ ≙ ∫
Ω
q1(x)q2(x)dx. (16)

It turns out that A is a nonnegative, positive-semidefinite Hermitian
matrix, also called the Gramian matrix. An eigenvalue decomposi-
tion of A is carried out as

AV ≙ VΛ, (17)

where Λ is a diagonal matrix whose entries are the nonnegative
eigenvalues λk of A, and V is a matrix whose columns vk are the
corresponding eigenvectors. It should be noted that these eigen-
values need to be arranged in a descending order (i.e., λ1 ≥ λ2
≥ ⋅ ⋅ ⋅ ≥ λNs ) for proper selection of the POD modes. In gen-
eral, the eigenvalues, λk, represent the respective POD mode
contribution to the total variance. In the case of velocity time series,
it represents the turbulent kinetic energy. The POD modes ϕk are
then computed as
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ϕk(x) ≙ 1√
λk

Ns

∑
n=0

v
n
ku
′(x, tn), (18)

where vnk is the n-th component of the eigenvector vk. The scaling
factor, 1/√λk, is to guarantee the orthonormality of POD modes,
i.e., ⟨ϕi; ϕj⟩ = δij, where δij is the Kronecker delta. Using these basis
functions, we can represent our reduced-order approximation of the
field as follows:

u(x, tn) ≙ ū(x) + R

∑
k=1

αk(tn)ϕk(x), (19)

αk(tn) ≙ ⟨u(x, tn) − ū(x);ϕk(x)⟩, (20)

where R is the number of retained modes (R ≪ Ns ≪ N), Ns is
the number of collected snapshots, and N is the spatial dimension
(number of grid points). POD is optimal in the sense that it provides
the most efficient way (with respect to other linear representations)
of capturing the dominant components of an infinite-dimensional
process with only finite, and few, modes. The POD modes can be
interpreted geometrically as the principal axes of the cloud of data
points, {u(x, tn)}Ns

n=0, in the N-dimensional vector space.
From a mathematical perspective, the set of POD modes,

Φ ≙ {ϕk}Rk=1, represents the solution of the following optimization
problem:45

max
{ϕk}

R
k=1

Ns

∑
n=0

R

∑
k=1

∣⟨u′(x, tn);ϕk(x)⟩∣2,
subject to ϕk ∈ L

2(D), ⟨ϕi;ϕj⟩ ≙ δij.
Amore in-depth discussion about mathematical aspects of POD and
its optimality can be found in the rigorous discussions by Berkooz
et al.126 and Holmes et al.127

IV. PRINCIPAL INTERVAL DECOMPOSITION

The classical POD approach, presented in Sec. III, produces a
set of modes, or bases, that contains the largest amount of snap-
shot energy, but in average sense. Intrinsically, this results in global
modes that are most similar to the overall flow. In general, POD-
based ROMs work well for relatively smooth and ergodic systems
with rapid decay in the Kolmogorov n-width. For those, only the first
few R modes are sufficient to represent the system with acceptable
accuracy, where R ≪ Ns ≪ N, and the remaining (Ns − R) modes
are truncated with minimal effect. However, in nonlinear convective
flow problems, this is not always the case. As a consequence, energy
is widely distributed over a large number of modes. Therefore, the
truncated modes possess a significant amount of total energy, and
an increased number of modes need to be retained in order to
describe the system in hand properly. Closure models and stabiliza-
tion schemes were proven to improve the performance of ROMs via
approximating the effects of truncatedmodes.128–132 Despite this, the
accuracy gain from closure and stabilization only is limited in these
scenarios.

A major source of accuracy loss in the application of POD in
convection-dominated flows comes from the global nature of the
POD approach, which results in overall deformation of the obtained
modes by the rapidly varying flow field states. As a result, the con-
structed POD modes do not resemble any of the flow states and

cannot capture any dominant structure at all. Furthermore, excur-
sions in state space that contain a small amount of energy can be
overlooked by POD because their contribution to the total energy
may be negligible. These excursions can, however, be of interest and
have significant impact on the dynamical evolution (see Cazemier
et al.133 for example). To address these issues, we follow and extend
the principal interval decomposition (PID) approach, first presented
by IJzerman.134 The main purpose of PID is to replace the global
POD modes, with localized ones. This is accomplished by dividing
the whole time domain T into a number Np of nonoverlapping time

windows, τ1, τ2, . . . , τNp , where T ≙ ∪
Np

p=1τp. We denote κ(p) as the
index of the time instance at the interface between the consecutive
subintervals τp and τp+1 (i.e., τp ∩ τp+1 ≙ tκ(p) , p = 1, 2, . . ., Np − 1).
That is,

τp ≙ ∥tκ(p−1) , tκ(p)∥. (21)

Here, we restrict ourselves to equally spaced time intervals although
an adaptive partitioning approach may be performed.135 A set of

local basis functions Φ(p) ≙ {ϕ(p)
k
}R(p)k=1 is constructed for each time

window τp, following the same standard procedure described in

Sec. III, within each subinterval, where ϕ(p)
k

is the k-th mode in the

p-th interval and R(p) is the number of modes in this interval. Even
though the approach is applicable for different number of modes in
each interval, we will continue our discussion assuming a fixed num-
ber of modes per interval [i.e., R(p) = R, p = 1, 2, . . ., Np]. It should
be noted that local mean fields are also constructed within each
interval as

ū
(p)(x) ≙ 1

Ns/Np

κ(p)

∑
n=κ(p−1)

u(x, tn), (22)

where ū(p)(x) is the mean field over the subinterval τp. Our reduced-
rank approximation becomes

u(x, tn) ≙ ū(p)(x) + R

∑
k=1

α
(p)

k
(tn)ϕ(p)k

(x), (23)

α
(p)

k
(tn) ≙ ⟨u(x, tn)− ū(p)(x);ϕ(p)k

(x)⟩, ∀ tκ(p−1) ≤ tn ≤ tκ(p) . (24)

Although it might seem that PID would be more computationally
costly (implementing the standard POD procedure Np times), the
actual time to perform PID is reduced, as reported in Sec. VII. This
is caused by solving a number Np of smaller (Ns/Np ×Ns/Np) eigen-
value problems rather than solving one big (Ns × Ns) eigenvalue
problem.68

V. INTRUSIVE REDUCED ORDER MODELING

In order to build intrusive reduced order models, we apply the
standard Galerkin projection to our nonlinear systems presented in
Sec. II. First, the governing equations [i.e., Eqs. (1), (9), (11), and
(12)] need to be rearranged in semidiscretized form using linear and
nonlinear operators as follows:

∂q

∂t
≙ L +N, (25)

where q is u in the Burgers equation,ω in theNavier-Stokes problem,
and [ω, θ] in the Boussinesq case. The linear and nonlinear operators
are summarized in Table I. Then, the reduced order approximation
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TABLE I. Linear and nonlinear operators for mathematical models introduced in
Sec. II.

q L N

1D Burgers

u
1

Re

∂
2u

∂x2
−u

∂u

∂x

2D Navier-Stokes

ω
1

Re
∇

2ω −J(ω, ψ)

2D Boussinesq

ω
1

Re
∇

2ω + Ri
∂θ

∂x
−J(ω, ψ)

θ
1

RePr
∇

2θ −J(θ, ψ)

[i.e., Eq. (19) or Eq. (23)] is plugged into Eq. (25), and Galerkin
projection is applied by multiplying Eq. (25) with the basis func-

tions ϕ(p)
k

and integrating over the domain. The orthonormality
property of POD modes can be used to reduce the equations into
a set of coupled ordinary differential equations (ODEs) in the POD
coefficients, αk.

A summary of the obtained ROM equations from applying the
principal interval decomposition approach with Galerkin projection
(PID-GP) is given below. Details of the derivation can be found
elsewhere.68,132,136

A. 1D Burgers equation

The reduced-rank approximation for the Burgers problem
along with the dynamical evolution equation for the temporal coef-
ficients using the PID approach coupled with Galerkin projection
(PID-GP) can be written as

u(x, t) ≙ ū(p)(x) + R

∑
k=1

α
(p)

k
(t)ϕ(p)

k
(x) ∀ tκ(p−1) ≤ t ≤ tκ(p),

(26)

dα(p)
k

dt
≙B

(p)

k
+

R

∑
i=1

L
(p)

i,k α
(p)
i +

R

∑
i=1

R

∑
j=1

N
(p)

i,j,kα
(p)
i α

(p)
j , k ≙ 1, 2, . . . ,R,

(27)

where B, L, and N are predetermined model coefficients corre-
sponding to constant, linear, and nonlinear terms, respectively. They
are precomputed only once during the offline training phase as
follows:

B
(p)

k
≙ ⟨ 1

Re

∂
2ū(p)

∂x2
− ū
(p) ∂ū

(p)

∂x
; ϕ(p)

k
⟩,

L
(p)

i,k ≙ ⟨ 1

Re

∂
2ϕ
(p)
i

∂x2
− ū
(p) ∂ϕ

(p)
i

∂x
− ϕ
(p)
i

∂ū(p)

∂x
; ϕ(p)

k
⟩,

N
(p)

i,j,k ≙ ⟨−ϕ(p)i

∂ϕ
(p)
j

∂x
; ϕ(p)

k
⟩.

For the sake of brevity in 2D cases, we shall drop the superscript (p)
in the ROM equations below, but it should be noted that they are
applicable intervalwise similar to the equations above.

B. 2D Navier-Stokes equations

In 2D Navier-Stokes equations, similar reduced-rank approx-
imation and temporal evolution can be written as follows [after
dropping the superscript (p)]:

ω(x, y, t) ≙ ω̄(x, y) + R

∑
k=1

αk(t)ϕωk (x, y), (28)

ψ(x, y, tn) ≙ ψ̄(x, y) + R

∑
k=1

αk(t)ϕψk (x, y), (29)

dαk
dt
≙Bk +

R

∑
i=1

Li,kαi +
R

∑
i=1

R

∑
j=1

Ni,j,kαiαj, (30)

where

Bk ≙ ⟨ − J(ω̄, ψ̄) + 1

Re
∇

2ω̄;ϕωk ⟩,
Li,k ≙ ⟨ − J(ω̄,ϕψi ) − J(ϕωi , ψ̄) + 1

Re
∇

2ϕωi ;ϕ
ω
k ⟩,

Ni,j,k ≙ ⟨ − J(ϕωi ,ϕψj );ϕωk ⟩.
We can observe that the vorticity and streamfunction share the same
time-dependent coefficients because they are related through a kine-
matic relationship, given by Eq. (6). Moreover, the mean field and
spatial POD modes for streamfunction can be obtained from solv-
ing the following Poisson equations during the offline stage as POD
preserves linear properties:

∇
2ψ̄(x, y) ≙ −ω̄(x, y), (31)

∇
2ϕ

ψ

k
(x, y) ≙ −ϕωk (x, y), k ≙ 1, 2, . . . ,R. (32)

This results in a set of basis functions for the streamfunction that
are not necessarily orthonormal. The same procedure will be used in
the 2D Boussinesq problem since it is also represented in vorticity-
streamfunction formulation.

C. 2D Boussinesq equations

For 2D Boussinesq equations, the vorticity, streamfunction,
and temperature fields can be written as

ω(x, y, t) ≙ ω̄(x, y) + R

∑
k=1

αk(t)ϕωk (x, y), (33)

ψ(x, y, tn) ≙ ψ̄(x, y) + R

∑
k=1

αk(t)ϕψk (x, y), (34)

θ(x, y, tn) ≙ θ̄(x, y) + R

∑
k=1

βk(t)ϕθk(x, y), (35)

where the temporal coefficients αk(t) and βk(t) can be calculated
from the following ODEs:
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dαk
dt
≙B

(ω)
k

+
R

∑
i=1

L
(ω,ψ)
i,k αi +

R

∑
i=1

L
(ω,θ)
i,k βi

+
R

∑
i=1

R

∑
j=1

N
(ω,ψ)
i,j,k αiαj, (36)

dβk
dt
≙B

(θ)
k

+
R

∑
i=1

L
(θ,ψ)
i,k αi +

R

∑
i=1

L
(ψ,θ)
i,k βi

+
R

∑
i=1

R

∑
j=1

N
(θ,ψ)
i,j,k αiβj, (37)

where the predetermined coefficients are calculated as

B
(ω)
k
≙ ⟨ −J(ω̄, ψ̄) + 1

Re
∇

2ω̄ + Ri
∂θ̄

∂x
;ϕωk ⟩,

B
(θ)
k
≙ ⟨ −J(θ̄, ψ̄) + 1

RePr
∇

2θ̄;ϕθk⟩,
L
(ω,ψ)
i,k ≙ ⟨ 1

Re
∇

2ϕωi − J(ϕωi , ψ̄) − J(ω̄,ϕψi );ϕωk ⟩,
L
(ω,θ)
i,k ≙ ⟨Ri ϕθi

∂x
;ϕωk ⟩,

L
(θ,ψ)
i,k ≙ ⟨ −J(θ̄,ϕψi );ϕθk⟩,

L
(ψ,θ)
i,k ≙ ⟨ 1

RePr
∇

2ϕθi −J(ϕθ, ψ̄);ϕθk⟩,
N
(ω,ψ)
i,j,k ≙ ⟨ −J(ϕωi ,ϕψj );ϕωk ⟩,

N
(θ,ψ)
i,j,k ≙

⟨ −J(ϕθi ,ϕψj );ϕθk⟩.
For all cases, the initial conditions to initiate the ODE solver are
obtained by projecting the initial field (mean-subtracted) onto the
POD space of the first subinterval as

α
(p=1)
k
(t0) ≙ ⟨u(x, t0) − ū(p=1)(x);ϕ(p=1)k

(x)⟩. (38)

The only remaining part to close this section is to determine how
to update the working manifold at the interface when moving from
the p-th interval to the (p + 1)-th interval [i.e., when t ≙ tκ(p) ]. Once
ROM solver reaches the end of the current interval, a reconstruction
back to FOM space should be done. Subsequently, this reconstructed
field is projected back onto the new basis functions. These two steps
can be summarized as follows:

(1) u(x, tκ(p)) ≙ ū(p)(x) + R

∑
k=1

α
(p)

k
(tκ(p))ϕ(p)(x),

(2) α
(p+1)
k
(tκ(p)) ≙ ⟨u(x, tκ(p)) − ū(p+1)(x);ϕ(p+1)k

⟩,
where the update step (manifold transfer) can be summarized as

α
(p+1)
k
(tκ(p)) ≙ ⟨ū(p)(x) − ū(p+1)(x);ϕ(p+1)k

⟩
+ ⟨ R

∑
k=1

α
(p)

k
(tκ(p))ϕ(p)(x);ϕ(p+1)k

⟩. (39)

This allows us to reinitiate our solver at the first timestep of the
new time interval. Mathematically, this corresponds to imposing the
following condition at the interface:135

⟨u(p)(x, tκ(p)) − u(p+1)(x, tκ(p));ϕ(p+1)k
⟩ ≙ 0. (40)

VI. NONINTRUSIVE REDUCED ORDER MODELING

In this section, we devise the proposed nonintrusive PID-
LSTM framework for unsteady convective flows. To illustrate the
PID-LSTM framework, we depict a workflow schematic diagram in
Fig. 1 for any arbitrary two-dimensional unsteady flow problem.
In our two-dimensional representation of the PID-LSTM frame-
work, U denotes any arbitrary two-dimensional field, for exam-
ple, ω in Navier-Stokes and θ in Boussinesq test problems dis-
cussed in this study. However, with proper modification in the
LSTM architecture, this framework can be utilized for any three-
dimensional field data and one-dimensional field data, for example,
the 1D Burgers case in our study. Also, this PID-LSTM frame-
work is parallelization friendly (e.g., using the parareal frame-
work137,138). As shown in Fig. 1, the first two stages of the offline
training phase in the PID-LSTM framework are similar to the
intrusive PID-GP framework described in Sec. V that we first split
the stored high-fidelity field data snapshots into a desired num-
ber of intervals and then generate the basis functions as well as
the true modal coefficients locally for each interval [i.e., using
Eq. (24)].

For ROM dynamics, we replace the Galerkin projection of the
PID-GP approach with an LSTM recurrent neural network (RNN)
architecture to make the framework fully nonintrusive or data-
driven. There have been a number of research efforts which showed
that RNN, specifically LSTM as a variant of RNN, is capable of
predicting the dependencies among temporal data sequences.139–144

Hence, we utilize the LSTM neural network architecture to model
and predict the time-varying modal coefficient data sequences for
our nonintrusive ROM framework. In our PID-LSTM formula-
tion, we train individual LSTM architectures for the modal coef-
ficients from each interval which gives us the individual LSTM
model for the respective PID interval. It should be noted that
training the LSTM architectures is the computationally heaviest
part of the overall framework which is done in the offline phase
(the top-right box in Fig. 1). Before describing the online testing
phase, we briefly describe the LSTM architecture utilized in our
study.

The standard RNN architecture suffers from issues such as
vanishing gradient problem145 which led to the development of
improved RNN architectures. LSTM is one of the most success-
ful upgrades of the traditional RNN architecture which can learn
and predict the temporal dependencies between the given data
sequence based on the input information and previously acquired
information.146,147 The conventional LSTM operates by the cell
states stored in the memory blocks and gating mechanisms to con-
trol the flow of information. Each memory block has an input
gate controlling the flow of input activations into the cell, a for-
get gate for adaptive forgetting and resetting the cell’s memory
(to prevent overfitting by processing continuous inflow of input
streams), and an output gate controlling the output flow of cell
activations into the next cell. To demonstrate our LSTM architec-
ture of this study, we can focus on the first interval only where
the input sequential data matrix for training can be denoted as Xk

and the output sequential data matrix Yk. Each sample of the input

training matrix Xk is constructed as {α(1)1 (tn−η+1), . . . ,α(1)R (tn−η+1);
. . . ;α(1)1 (tn−1), . . . ,α(1)R (tn−1);α(1)1 (tn), . . . ,α(1)R (tn)}, and the cor-
responding output sample in the output sequential data matrix Yk is
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FIG. 1. The proposed nonintrusive principal interval decomposition LSTM framework for unsteady nonergodic flows.

{α(1)1 (tn+1), . . . ,α(1)R (tn+1)}. Here, η is the time history over which

the LSTMmodel does the training and prediction recursively, called
the number of lookbacks. In our study, a constant value of η is
set as 5 for the test cases to avoid complexity while analyzing the
results.

To illustrate the data stream flow through a standard LSTM cell,
we have shown the sketch of a typical LSTM cell unit in Fig. 2. The
basic LSTM equations to compute the gate functions can be given by

F
(1)
k
(tn) ≙ ξ(Wfhh

(1)
k
(tn−1) +WfXX

(1)
k
(tn) + bf ), (41)

I
(1)
k
(tn) ≙ ξ(Wihh

(1)
k
(tn−1) +WiXX

(1)
k
(tn) + bi), (42)

O
(1)
k
(tn) ≙ ξ(Wohh

(1)
k
(tn−1) +WoXX

(1)
k
(tn) + bo), (43)

where I, F, and O represent the input, forget, and output gates,
respectively. The LSTM cell output activation vector or the hidden
state vector is denoted as h, while ξ represents the logistic sigmoid
function, b denotes the bias vectors, and W represents the weight
matrices for each gate. Assuming the cell activation vector or inter-
nal cell state vector as C, the internal cell state equation can be
expressed as

C
(1)
k
(tn) ≙ F (1)k

(tn)⊙ C
(1)
k
(tn−1) + I

(1)
k
(tn)⊙ C̃, (44)

where C̃ ≙ tanh(Wchh
(1)
k
(tn−1) +WcXX

(1)
k
(tn) + bc) and ⊙ is the

Hadamard product of two vectors. The output state of each LSTM
cell is given by

h
(1)
k
(tn) ≙ O(1)k

(tn)⊙ tanh(C(1)
k
(tn)). (45)

We utilize Keras API to design the LSTM architecture for our
PID-LSTM framework.148 The hyperparameters that we used in
our numerical experiments implementing PID-LSTM are listed in
Table II. The mean-squared error (MSE) is chosen as the loss func-
tion for weight-optimization, and an optimizer based on a vari-
ant of the stochastic gradient descent method, called ADAM,149 is
used to optimize the mean-squared loss. We utilize the tanh acti-
vation function in each LSTM layer. We select randomly 20% of
the training data for validation during training. We maintain a con-
stant hyperparameter setup to fairly compare the results for different
numerical experiments. The training data are normalized by the
minimum and maximum of each time series to be in between the
range [−1, +1].

In the online testing phase, we use the generated basis functions
and trained LSTMmodels for each interval from the given snapshot
data to recursively predict the coefficients until final time. For test-
ing, the input of the first trained model will be the initial states of
the first interval [see Eq. (38)]. When the online prediction reaches
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FIG. 2. Schematic of a typical LSTM cell unit.

the end of the subinterval, a manifold transfer is done at the inter-
face by following Eq. (39) and the framework switches to the next
LSTM model. By performing this procedure recursively, the modal
coefficients until final time can be determined and then the field can
be reconstructed at any time from the predicted coefficients at the
relevant interval by using Eq. (23). Because the LSTM framework
can have a wider interface than the PID-GP framework (i.e., for η
> 1), a buffer zone can be defined at the interface, where Eq. (39) is
applied for tκ(p) , tκ(p)−1, . . . , tκ(p)−η+1. This would be the input for the
subsequent LSTMmodel to predict α(tκ(p)+1).

Before we demonstrate our framework using the test cases in
Sec. VII, we would like to mention that our framework also helps
in augmenting the stability of ROMs. This point is three-folds.

First, regular Galerkin ROMs usually require closure/stabilization
approaches to account for the effect of truncated modes due to
the inherent nonlinearity. Second, for problems where more flow
field variables are involved, the system becomes highly coupled and
the instabilities and/or inaccuracies in any of these variables can
result in further instabilities and/or inaccuracies in other flow vari-
ables. These two issues are mitigated using nonintrusive ROMs since
the training/testing solely depends on the modal coefficients of the
retainedmodes. Also, the mutual interactions between different flow
variables can be diminished using different LSTMs for the vari-
able of interest. Third, PID addresses the modal deformation and
allows us to use a fewer number of modes in the ROM, which
in turn reduces the modal truncation error and relevant instabili-
ties. Indeed, we highlight that the accuracy gain due to closure in
the investigated scenarios is minimum since the POD approxima-
tion with optimal modal coefficients (denoted as true POD) cannot
reconstruct the high-fidelity flow fields if we just consider one global
interval. So, it is basically a representability problem, rather than a
closure one. Meanwhile, closure/stabilization techniques can sup-
plement the proposed framework based on PID for even further
stabilized or improved reduced order approximations. In our con-
text, closure modeling can be referred to retaining R modes in the
model and incorporating the effects of the remaining modes into
the model dynamics. In this study, we generate ROMs without con-
sidering any additional stabilization or closure modeling approach.
Instead, we include the true projection results, which can be con-
sidered an ultimate limit of the projection ROM with an optimal
closure. This pertains to an analogy that can be made with optimal
large eddy simulation methods.150

In other words, for example, for a fixed number of snapshots,
we can consider two representation approaches. First, in a closure
approach, we might compute first 6 POD modes from all snapshots
and build a global model for using these modes and incorporate the
effects of the remaining modes in the R = 6 model. If the closure
model is perfect (i.e., ideal ROM), we will be able to obtain the true
projection results. Alternatively, in the second approach, we might
compute the first 6 POD modes from the first half of the snapshots
and then another 6 POD modes from the remaining half and gener-
ate a locally partitioned R = 6 model by using only 6 modes for each
partition. In our results, we illustrate that the second approach with

TABLE II. A list of hyperparameters utilized to train the LSTM network for all numerical experiments.

Variables Burgers Vortex merger Double shear layer Boussinesq

Number of hidden layers 3 3 4 3
Number of neurons in each hidden layer 80 80 80 80
Batch size 64 64 64 64
Epochs 100 1000 1000 100
Activation functions in the LSTM layers tan h tan h tan h tan h
Validation data set (%) 20 20 20 20
Loss function MSE MSE MSE MSE
Optimizer ADAM ADAM ADAM ADAM
Learning rate 0.001 0.001 0.001 0.001
First moment decay rate 0.9 0.9 0.9 0.9
Second moment decay rate 0.999 0.999 0.999 0.999
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6 modes often yields significantly more accurate results than the first
approach even if we use the perfect closure (i.e., when we model the
effects of all the remaining modes into the low-dimensional model
considering the first 6 modes). Furthermore, we demonstrate that
the representation capability of a ROMmodel with 2 partitions (each
having 6 modes) might be even much superior to a ROM of higher
degrees of freedom (e.g., with 12 modes) with one partition in solv-
ing convective flow problems. This makes our PID-LSTM approach
very attractive not only for the representation quality but also for the
computational performance since a ROM with 12 modes requires
8 times more computational overhead than a ROM with 6 modes
(e.g., computational run time cost of the Galerkin ROM scales with
R3 for systems with quadratic nonlinearity). It might be also inter-
preted that the proposed PID-LSTM framework converts the linear
storage cost of saving basis functions into the cubic rate of computa-
tional speed-up of the model. Therefore, we consider the PID frame-
work as an effective partitioning method to break the Kolmogorov
barrier.

VII. RESULTS

For all test cases, we apply both the intrusive and nonin-
trusive frameworks, discussed in Secs. V and VI, respectively. A
total number of 800 snapshots, or strobes, are collected from FOM
simulations. A summary of the data generation characteristics as
well as CPU time for constructing basis functions, implemented in
FORTRAN, is given in Table III. As mentioned in Sec. IV, the PID

algorithm reduces the computational cost for basis generation. It
is evident that the CPU time for basis construction decreases with

increasing Np. The size of the matrix A in PID is (Ns

Np
×

Ns

Np
), so

increasing the number of intervals decreases the size of this matrix
and makes the solution of the corresponding eigenvalue problem
faster.

For numerical computations, we use a family of fourth order
compact schemes for spatial derivatives151 and a third order Runge-
Kutta scheme for temporal integration.152 The time domain is
decomposed into 2, 4, 8, and 16 subintervals. The CPU times of
PID-LSTM training and testing stages (in Python) are summa-
rized in Table IV for different number of intervals. It should be
noted that the most expensive stages of the PID-LSTM approach
are performed offline, where the online prediction is relatively fast.
Although the PID increases the computational overhead for online
prediction (almost linearly with the number of intervals), speedups
of several orders of magnitudes compared to FOM are still accom-
plished. Prediction and reconstruction accuracies are computed
and compared with the case without interval decomposition (i.e.,
a single global interval) in order to illustrate the effects of noner-
godicity and assess the PID contribution to mitigate those effects.
Also, the predictive performance of the LSTM-based approach
is compared with the GP-based one to demonstrate its capabil-
ity to bypass the Galerkin projection step and provide accurate
predictions without prior information of the underlying complex
physical system.

TABLE III. A summary of data generation characteristics for the full order models and their required CPU times (in seconds). We document the corresponding speedup reached
by the PID-GP model. We note that the CPU time assessments documented in this table are based on FORTRAN executions.

Variables Burgers Vortex merger Double shear layer Boussinesq

FOM relevant parameters

Grid resolution 1024 1024 × 1024 1024 × 1024 4096 × 512
Time step, Δt 1.00 × 10−4 1.00 × 10−3 1.00 × 10−3 5.00 × 10−4

Maximum simulation time, tmax 2.00 40.00 40.00 8.00
CPU time required for FOM simulation 3.43 1.20 × 105 1.20 × 105 7.38 × 104

Offline data preparation

Number of snapshots collected, Ns 800 800 800 800
CPU time for generating POD bases (Np = 1) 7.21 × 101 3.31 × 104 3.27 × 104 1.18 × 105

CPU time for generating POD bases (Np = 2) 7.70 8.15 × 103 8.17 × 103 2.93 × 104

CPU time for generating POD bases (Np = 4) 9.33 × 10−1 2.15 × 103 2.15 × 103 7.64 × 103

CPU time for generating POD bases (Np = 8) 1.53 × 10−1 5.70 × 102 5.70 × 102 1.96 × 103

CPU time for generating POD bases (Np = 16) 2.98 × 10−2 1.22 × 102 1.25 × 102 4.55 × 102

PID-GP online phase

Number of modes retained, R 6 6 6 6
CPU time for PID-GP [speedup] (Np = 1) 0.14 [25] 0.03 [4 × 106] 0.03 [4 × 106] 0.06 [1 × 106]
CPU time for PID-GP [speedup] (Np = 2) 0.13 [26] 0.13 [9 × 105] 0.12 [1 × 106] 0.43 [2 × 105]
CPU time for PID-GP [speedup] (Np = 4) 0.11 [31] 0.30 [4 × 105] 0.32 [4 × 105] 1.16 [6 × 104]
CPU time for PID-GP [speedup] (Np = 8) 0.07 [49] 0.63 [2 × 105] 0.64 [2 × 105] 2.61 [3 × 104]
CPU time for PID-GP [speedup] (Np = 16) 0.11 [31] 1.27 [9 × 104] 1.27 [9 × 104] 4.97 [1 × 104]
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TABLE IV. CPU time (in seconds) of PID-LSTM training (offline) and testing (online)
stages. We note that the CPU time assessments documented in this table are based
on Python executions.

Np Training time Testing time

1D Burgers

1 17.62 2.04
2 30.18 1.98
4 61.88 3.78
8 132.70 11.28
16 304.40 41.09

2D vortex merger

1 125.51 2.03
2 248.57 4.52
4 533.28 11.00
8 1399.11 35.80
16 2379.21 79.74

2D double shear layer

1 161.76 2.40
2 333.11 5.51
4 809.51 15.17
8 1435.85 31.36
16 3655.18 94.85

2D Boussinesq

1 17.36 2.61
2 36.01 7.55
4 82.86 20.55
8 238.22 57.90
16 347.09 116.52

A. 1D Burgers problem

For 1D Burgers simulation, we consider the following initial
condition:153

u(x, 0) ≙ x

1 + exp(Re
16
(4x2 − 1)) , (46)

with x ∈ [0, 1]. Also, we assume Dirichlet boundary conditions,
where u(0, t) = u(1, t) = 0. We solve the problem for the Reynolds
number, Re = 1000, using 1024 grid spacings in the x-direction and a
timestep of 10−4 for t ∈ [0, 2].We would like tomention here that the
1D Burgers equation with the above initial and boundary conditions
has an analytic solution,153 but we prefer to solve it numerically for
consistent comparison with ROMs. The solution u(x, t) represents
a traveling wave along a flat horizontal bottom, shown at different
times in Fig. 3.

In order to demonstrate the benefits of the PID approach con-
structing localized basis functions, we provide the true projection
of the final field (at t = 2) and compared to the FOM solution
in Fig. 4. We can easily observe that using only a single global

FIG. 3. Velocity field at different time instances for the Burgers equation for Re
= 1000 using a 1024 grid and Δt = 0.0001.

interval (i.e., Np = 1) gives inaccurate solution with oscillations that
do not exist at any instance of the flow. This is due to the deforma-
tion and smoothing-out of the global modes by the rapidly evolving
flow. This also supports the claim that the accuracy gain due to
closure techniques in the investigated convection-dominated flows
would be minimum as the true projection fields represent the max-
imum attainable accuracy with closure. The procedures of intrusive
and nonintrusive ROMs are applied to evaluate the temporal coeffi-
cients α(t). Results are shown in Figs. 5 and 6 with a zoomed-in view
in Fig. 7. Similar observations can be obtained regarding the effects
of the number of intervals on the accuracy of the ROM approx-
imation. However, it can be easily seen that the oscillations are

FIG. 4. Final velocity field (i.e., at t = 2) for the Burgers problem from true projection
using different number of intervals compared to FOM solution.
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FIG. 5. Final velocity field (i.e., at t = 2) for the Burgers problem from PID-GP
prediction using different number of intervals compared to FOM solution.

amplified in PID-GP results compared to PID-LSTM results. This
is mainly due to the nonlinear interactions in the governing equa-
tion [i.e., Eq. (1)], where the lower modes interact strongly with the
higher modes. Truncation of the lower modes simply ignores these

FIG. 6. Final velocity field (i.e., at t = 2) for the Burgers problem from PID-LSTM
prediction using different number of intervals compared to FOM solution.

interactions in the projection-based ROM, given as Eq. (27), and
results in a deviation of the ROM dynamics from the true one.
Hence, the nonintrusive character of the proposed framework miti-
gates these instability issues.

FIG. 7. Comparison between the final
velocity fields for the Burgers problem
obtained from different approaches using
different number of intervals.

Phys. Fluids 31, 126602 (2019); doi: 10.1063/1.5128374 31, 126602-12

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 8. Relative information content (RIC) for the Burgers problem, using one, two,
and four intervals.

A simple eigenvalue analysis of the Burgers problem can help in
demonstrating the idea behind interval decomposition. In POD, the
percentage modal energy is computed using the following relative
information content (RIC) formula:154

RIC(R) ≙ ⎛⎝∑
R
j=1 λj

∑Ns

j=1 λj

⎞⎠ × 100. (47)

TheRIC plot is shown in Fig. 8 for different number of intervals. One
can easily observe that this interval decomposition produces local
POD modes with more concentrated energy content, compared to a
single interval giving global modes with more distributed energies.
For example, if we are interested in capturing 98% of the total energy
(snapshot variance), we will need at least 8 POD modes in the case

FIG. 9. Comparison of true projection of the final velocity field onto global POD
modes (i.e., Np = 1) with different number of modes vs local modes with Np = 8
and R = 6.

of using a single wider interval. On the other hand, if we decom-
pose our interval into two partitions, we will need 6 modes, and if we
decompose into 4 subintervals, 4 modes will be more than enough.
Although this might imply more memory requirements, significant
computational gains can be obtained. For instance, if we follow the
classical POD-GP approach, the computational cost isO(R3). There-
fore, using 4 modes instead of 8 modes would be around 8 times
faster.

To demonstrate the benefit of the PID framework, Fig. 9 illus-
trates a comparison of ideal/optimal predictive performance of a
ROM (with Np = 8 and R = 6) against a single partitioned global
ROM with higher degrees of freedom (R = 6, 12, 24, and 48). It can
be seen easily from these true projection results that a ROM built
by only R = 6 modes using the PID framework yields more accurate
results than a standard projection ROMwith R = 48 modes. We also
highlight that the PIDROM (Np = 8 andR = 6) will be approximately
83 times faster than the global ROM (Np = 1 and R = 48) when the
Galerkin projection model is used.

B. 2D vortex merger problem

We expand our framework testing into two-dimensional cases.
As an application for 2D Navier-Stokes equations, we consider the
vortex merger problem (i.e., the merging of a corotating vortex
pair).155 The merging process occurs when two vortices of the same
sign with parallel axes are within a certain critical distance from
each other, ending as a single, nearly axisymmetric, final vortex.156

FIG. 10. Vorticity field at different time instances for the vortex merger problem
using a 10242 grid and Δt = 0.001.
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It is a two-dimensional process and is one of the fundamental pro-
cesses of fluidmotion and occurs inmany fields such as astrophysics,
meteorology, and geophysics. For example, in two-dimensional tur-
bulence, like-sign vortex merger is the main factor affecting the
evolution of the vortex population.156 Vortex merging also plays an
important role in the context of aircraft trailing wakes.157 We con-
sider an initial vorticity field of two Gaussian-distributed vortices
with a unit circulation as follows:

ω(x, y, 0) ≙ exp(−ρ[(x − x1)2 + (y − y1)2])
+ exp (−ρ[(x − x2)2 + (y − y2)2]), (48)

where ρ is the interacting constant set as ρ = π and the vortices cen-

ters are initially located at (x1, y1) ≙ (3π
4
,π) and (x2, y2) ≙ (5π

4
,π).

We use a Cartesian domain (x, y) ∈ [0, 2π] × [0, 2π], with

FIG. 11. Final vorticity contours (i.e., at t = 40) for the vortex merger problem from
true projection using different number of intervals compared to FOM solution.

periodic boundary conditions. We perform our simulations solv-
ing Eq. (4) with a Reynolds number of 10 000 using a 10242 spa-
tial grid and a timestep of 0.001. The evolution of the two vor-
tices from time t = 0 to t = 40 is shown in Fig. 10. Details of the
numerical schemes and computations can be found in a previous
study.158

We compare the final field, characterizing the merging of two
vortices into a single vortex at the center of the 2D domain. Figure 11
shows true projection, while Figs. 12 and 13 illustrate the results
obtained using the PID-GP framework and PID-LSTM framework,
respectively. Similar to the 1D Burgers results, we note that increas-
ing the number of intervals improves the results significantly. For
example, if we look at the obtained field using a single interval, we
will find a vorticity field that does not resemble the true one except
for a very poor approximation of the merging phenomenon. How-
ever, the external field (away from the core) is very different from the

FIG. 12. Final vorticity contours (i.e., at t = 40) for the vortex merger problem from
PID-GP prediction using different number of intervals compared to FOM solution.
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true physical spiral motion.Moreover, Fig. 12 shows larger deforma-
tion in the field compared to both the true projection and PID-LSTM
framework. Again, this is due to the nonlinear interactions affect-
ing the truncated ROM equations, requiring stabilization schemes
to mitigate these effects.

C. 2D double shear layer problem

Another application for 2DNavier-Stokes equations is the dou-
ble shear layer problem, introduced by Bell et al.159 We consider a
square domain of side length 2π with the following initial field:160

ω(x, y, 0) ≙
⎧⎪⎪⎪⎨⎪⎪⎪⎩
δ cos(x) − σ cosh−2(σ∥y − π

2
∥) if y ≤ π,

δ cos(x) + σ cosh−2(σ∥3π
2
− y∥) if y > π.

(49)

FIG. 13. Final vorticity contours (i.e., at t = 40) for the vortex merger problem
from PID-LSTM prediction using different number of intervals compared to FOM
solution.

This field represents a horizontal shear layer of finite thickness
(determined by δ), perturbed by a small amplitude vertical veloc-
ity, where σ determines the amplitude of this initial perturbation.
In this study, we adopt values of δ = 0.05 and σ = 15/π. Simi-
lar to the vortex merger setup, we use Re = 10 000 over a grid
of 10242 and Δt = 0.001. Indeed, the same numerical solver is
used for both the vortex merger and double shear layer problem,
with only different initial conditions. The evolution of the double
shear layer from time t = 0 to t = 40 is shown in Fig. 14, where
the top and bottom shear layers evolve into a periodic array of
large vortices, and the layer between the rolls becomes thinner and
thinner.

Similar results are obtained for the double shear problem, as
shown in Figs. 15–17. As can be seen in Fig. 15, significant details
of the shear layers cannot be captured using a single global inter-
val (Np = 1), even from the direct projection of the FOM field on
the ROM space. The situation is even worse in PID-GP, where the
vortex at the center of the domain is deformed. Interestingly, the
PID-LSTM performs much better than PID-GP, almost similar to
the true projection fields.

D. 2D Boussinesq problem

The two-dimensional Boussinesq problem is one-step more
complex than the 2D Navier-Stokes equations, solving the energy
equation along with the momentum equations. We consider
a strong-shear flow exhibiting the Kelvin-Helmholtz instability,

FIG. 14. Vorticity field at different time instances for the double shear layer problem
using a 10242 grid and Δt = 0.001.
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FIG. 15. Final vorticity contours (i.e., at t = 40) for the double shear layer problem
from true projection using different number of intervals compared to FOM solution.

known as the Marsigli flow or lock-exchange problem. The physical
process in this flow problem explains how differences in tempera-
ture/density can cause currents to form in the ocean, seas and natural
straits. For example, Marsigli discovered that the Bosporus currents
are a consequence of the different water densities in the Black and
Mediterranean seas.161 Basically, when fluids of two different densi-
ties meet, the higher density fluid slides below the lower density one.
This is one of the primary mechanisms by which ocean currents are
formed.162

We consider two fluids of different temperatures, in a rectan-
gular domain (x, y) ∈ [0, 8] × [0, 1]. A vertical barrier divides the
domain at x = 4, keeping the temperature, θ, of the left half at 1.5
and the temperature of the right half at 1. Initially, the flow is at
rest [i.e., ω(x, y, 0) = ψ(x, y, 0) = 0], with uniform temperatures

FIG. 16. Final vorticity contours (i.e., at t = 40) for the double shear layer prob-
lem from PID-GP prediction using different number of intervals compared to FOM
solution.

at the right and left regions [i.e., θ(x, y, 0) = 1.5 ∀ x ∈ [0, 4] and
θ(x, y, 0) = 1 ∀ x ∈ (4, 8]]. No-slip boundary conditions are assumed
for the flow field, and adiabatic boundary conditions are prescribed
for the temperature field. The Reynolds number of Re = 104, the
Richardson number of Ri = 4, and the Prandtl number of Pr = 1
are set in Eqs. (11) and (12). A Cartesian grid of 4096 × 512 and a
timestep of Δt = 5 × 10−4 are used for the FOM simulations. The
evolution of the temperature field is shown in Fig. 18 at t = 0, 2, 4, 8.
At time zero, the barrier is removed, instantaneously triggering the
lock-exchange problem. Due to the temperature difference (causing
density difference), buoyancy forces start to emerge. The higher den-
sity fluid (on the right) slides below the lower density fluid (on the
left), causing an undercurrent flow moving from right to left. Con-
versely, an upper current flow moves from left to right, causing a
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FIG. 17. Final vorticity contours (i.e., at t = 40) for the double shear layer problem
from PID-LSTM prediction using different number of intervals compared to FOM
solution.

strong shear layer between the countercurrent flows. As a result, vor-
tex sheets are produced, exhibiting the Kelvin-Helmholtz instability.
This problem is challenging, even for direct numerical simulation
(DNS) calculations,122 making it a good benchmark for POD/PID
comparison.

In Fig. 19, we show the true projection of the final tempera-
ture field on the POD/PID space using different number of intervals.
Although the overall structure is represented nicely using a single
interval (corresponding to the standard POD), the small-scale struc-
tures are not captured. If we investigate the contour lines carefully,
we can see that the standard POD smoothens the field. As the num-
ber of intervals is increased, more details can be captured using local
basis functions. Also, we compare the final temperature field predic-
tions from the standard Galerkin projection and LSTM frameworks.

FIG. 18. Temperature field at different time instances for the 2D Boussinesq
problem using a 4096 × 512 grid and Δt = 0.0005.

Contour plots for the final temperature field are shown in Figs. 20
and 21 at different number of intervals,Np. Similar to previous cases,
PID-GP is adding more deformation to the results, and instabili-
ties are amplified. This is due to the fact that the eigenvalues of

FIG. 19. Final contours (i.e., at t = 8) for the Boussinesq problem from true
projection using different number of intervals compared to FOM solution.
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FIG. 20. Final contours (i.e., at t = 8) for the Boussinesq problem from PID-GP
prediction using different number of intervals compared to FOM solution.

this flow problem are decaying slowly, especially for such a high Re
used in the current study. In this study, we use just 6 modes (i.e.,
R = 6), corresponding to the RIC of only 60.97% for vorticity and
88.27 for temperature fields using one interval. Due to the depen-
dence of Galerkin projection on the governing equations, the result-
ing ROMs strongly couple temperature and vorticity. Therefore,
inaccuracies in vorticity predictions often affect temperature pre-
dictions and vice versa since they are coupled with each others in
the ROM-GP equations. As a result, even if 6 modes with Np = 4
can capture more than 90% of the variance in the temperature field,
the results will be affected by the low energy captured from the vor-
ticity fields (less than 70%), and instabilities in the predicted fields
can easily occur. On the other hand, LSTM predictions do not have
this dependency, which enables us to use the most accurate datasets
and fields with the maximum reducibility without being affected by
other irrelevant fields. This is another merit of nonintrusive ROMs
for reducing instabilities with multivariate flow fields.

We note here that our results prove that the PID approach is
an appropriate technique for model order reduction of convection-
dominated flows. It is clear from the four test cases that these
systems undergo significant evolution over time as the convec-
tive effects are more dominant than the dissipative ones. Due
to variation of the system’s states at different time instants, the
system becomes less reducible and the standard approaches fail
to extract any meaningful underlying structures. The resulting
modes are largely smoothed out and deformed to give global

FIG. 21. Final contours (i.e., at t = 8) for the Boussinesq problem from PID-LSTM
prediction using different number of intervals compared to FOM solution.

approximation of the varying flow field. As a result, the energy
is distributed over more modes rather than concentrated in a few
ones. Alternatively, the PID approach aims to split the time win-
dows over which the standard techniques (e.g., POD) are applied.
This splitting helps in clustering different flow regimes/behaviors
in different partitions, so that the snapshots in each partition
almost represent a single regime making order reduction feasi-
ble. The Appendix provides some visualizations of the basis func-
tions at different number of intervals. They clearly show the defi-
ciency of global application of POD to extract the underlying
patterns.

Finally, in order to quantify the results in a more quantitative
way, we use the root mean square error (RMSE) as an error measure,
defined as

RMSE(t) ≙
¿ÁÁÀ 1

N

N

∑
i=1

(uFOM(x, t) − u(x, t))2, (50)

where N is the spatial resolution, as defined in Sec. III. For 1D cases,
it is simply Nx, and in 2D cases, it is (Nx × Ny). We calculate the
RMSE at the final field (i.e., at t = T) using different approaches.
Results are given in Table V and illustrated graphically using a bar
chart in Fig. 22, confirming our earlier findings about the accuracy
gain due to time decomposition as well as PID-LSTM being superior
to the PID-GP framework.
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TABLE V. RMSE for the predicted field at final time from the true projection, PID-GP
framework, and PID-LSTM framework compared to FOM results.

Np True projection PID-GP PID-LSTM

1D Burgers

1 2.31× 10−2 2.82× 10−2 2.32× 10−2

2 6.62× 10−3 7.02× 10−3 6.88× 10−3

4 7.24× 10−4 4.50× 10−3 7.93× 10−4

8 2.16× 10−5 4.23× 10−3 1.39× 10−3

16 2.19× 10−7 2.18× 10−2 1.03× 10−2

2D vortex merger

1 4.18× 10−2 6.27× 10−2 4.20× 10−2

2 2.74× 10−2 2.79× 10−2 2.75× 10−2

4 9.08× 10−3 9.57× 10−3 9.14× 10−3

8 1.09× 10−3 2.35× 10−3 1.61× 10−3

16 4.80× 10−5 1.65× 10−4 3.29× 10−3

2D double shear layer

1 1.37× 10−1 1.87× 10−1 1.78× 10−1

2 1.16× 10−1 1.51× 10−1 1.68× 10−1

4 1.03× 10−1 1.79× 10−1 1.06× 10−1

8 6.63× 10−2 8.69× 10−2 6.83× 10−2

16 2.56× 10−2 2.97× 10−2 2.67× 10−2

2D Boussinesq

1 6.30× 10−2 1.03× 10−1 6.30× 10−2

2 5.28× 10−2 7.28× 10−2 5.45× 10−2

4 3.73× 10−2 4.11× 10−2 3.73× 10−2

8 2.03× 10−2 2.22× 10−2 2.03× 10−2

16 8.24× 10−3 8.94× 10−3 8.67× 10−3

An important observation from Table V and Fig. 22 is the
significant increase in RMSE for the Burgers problem at Np = 16.
To express this behavior, we plot the eigenspectrum for these four
problems as shown in Fig. 23. Interestingly, we can see that the
decay of eigenvalues for the 1D Burgers case is faster than other
cases, while the decay of eigenvalues in the 2D Boussinesq prob-
lem is the slowest. This implies that the higher the decay rate is,
the fewer the required intervals are. That is, for the 1D Burgers
case, 4 or 8 subintervals are enough to capture local dynamics, and
a further increase in the number of partitions leads to an increase
in RMSE. This might be caused by the degradation of field qual-
ity due to successive reconstructions/projections at the interface.
After a finite number of these interface treatments, the accuracy
gain due to localization is surpassed by that successive degrada-
tion. This can bemitigated by applying closure and/or regularization
techniques at the interface to enhance the reconstructed field and
account for truncated modes before transferring into the subsequent
manifold. On the other hand, for more challenging problems when
the rate of decay is slow (such as 2D double shear and 2D Boussi-
nesq cases), more localization helps to increase predictive accuracy

FIG. 22. A bar chart for RMSE of the predicted field at final time.

of PID. This implies that for a higher Kolmogorov n-width bar-
rier (i.e., lower decay rate), a larger number of subintervals Np is
required and the PID approach can offer a viable solution in such
situations.

FIG. 23. Eigenspectrum plot for the investigated tested cases [normalized with
respect to the first (largest) eigenvalue].
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VIII. CONCLUSIONS

In the current study, we present a fully data-driven nonintru-
sive framework for convection-dominated problems. Most model
reduction techniques depend on the ergodicity hypothesis which
implies that any ensemble of realizations would carry the average
statistical properties of the entire process. However, in convective
flow problems (such as those investigated in this study), the con-
vective mechanisms are more dominant than diffusive ones. The
ergodicity hypothesis is therefore violated, making the application of
the standard model reduction algorithms infeasible. Moreover, the
Kolmogorov barrier constrains the reducibility of such systems. We
address these issues by employing a splitting technique, based on
principal interval decomposition. We divide the time domain into
a set of equidistant partitions and apply the POD locally in each
of them as our compression approach. For the system’s dynamics
(encapsulated in temporal coefficients), we train the correspond-
ing LSTM models at each zone equipped with consistent inter-
face conditions. PID-LSTM results are compared with the standard
Galerkin projection framework. It is found that PID-GP provides
less accurate results than PID-LSTM. This is particularly evident in
problems where multiple fields are coupled, such as the 2D Boussi-
nesq case. On the other side, PID-LSTM enables us to separate the
quantity of interest and deploy our prediction on the most rele-
vant problem-specific ones. Therefore, for example, the temperature
field can be inferred without explicitly constructing the vorticity
fields because of the nonintrusive nature of the predictive mod-
eling framework. We also observe that for convection-dominated
problems, the optimal number of intervals is dependent on the
decay rate of the Kolmogorov n-width. Hence, we suggest that adap-
tive and automated partitioning or clustering techniques would be
useful in this context. Finally, since the most expensive stages of
PID-LSTM (decomposition and training) are performed offline, it
is capable of providing near real-time responses during the online
stage. This can serve as a key enabler for developing digital twin
technologies, a topic that we plan to cover more in detail in the
future.
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APPENDIX: BASIS FUNCTIONS

Here, we visualize the constructed basis functions of POD and
PID approaches using different number of intervals. Specifically, we
present the first 4 modes of POD application on the whole time
interval. This illustrates the deformation of obtained modes by the
severely varying system states with time. Also, we present the first

mode computed locally in the first and last intervals (i.e., ϕ(1)1 and

ϕ
(Np)

1 , respectively).

1. Burgers problem

Figure 24 shows the first four global functions calculated from
the classical POD approach over the whole time interval. It can
be observed that the shock is smoothed out as it is moving with
time. As a result, none of these modes resembles the actual state
of the flow and not much information about the location and
characteristics of these shocks can be inferred from these global
modes.

On the other hand, the application of PID results in local
modes which give much better information about the shock char-
acteristics. For example, the first mode in the first subinterval pro-
vides more accurate information about the initial shock location
as emphasized in Fig. 25. As the number of intervals increases,
the detection of the shock wave is improved. Similar results are
obtained in Fig. 26, where the shock wave at the final time is
captured.

2. Vortex merger problem

The contour plots for the global POD modes for the vortex
merger problem are shown in Fig. 27. We can easily observe the

FIG. 24. The first 4 global basis functions from POD application over the whole
time domain (i.e., for 0 ≤ t ≤ 2) for the Burgers problem.
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FIG. 25. The first local basis function from PID application over the first subinterval
(i.e., for 0 ≤ t ≤ tκ(1) ) for the Burgers problem using different number of intervals.

modal deformation in such a way that the obtained modes give just
an overview of the merging process without much detail about the
growth of the two vortices. On the other hand, we can get more
insights about the initial and final stages of themerging process from
Figs. 28 and 29, respectively.

3. Double shear layer problem

Similar results are obtained for the double shear layer problem,
where the global deformed POD modes are shown in Fig. 30. It is
clear that the final field structures are captured by higher modes,
where the first mode barely carries any information about the final

FIG. 26. The first local basis function from PID application over the last subinter-
val (i.e., for tκ(Np−1) ≤ t ≤ 2) for the Burgers problem using different number of
intervals.

FIG. 27. The first 4 global basis functions for the vorticity field from POD application
over the whole time domain (i.e., for 0 ≤ t ≤ 40) for the vortex merger problem.

FIG. 28. The first local basis function for the vorticity field from PID application
over the first subinterval [i.e., for 0 ≤ t ≤ tκ(1) ] for the vortex merger problem
using different number of intervals.
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FIG. 29. The first local basis function for the vorticity field from PID application over
the last subinterval [i.e., for tκ(Np−1) ≤ t ≤ 40] for the vortex merger problem using
different number of intervals.

FIG. 30. The first 4 global basis functions for the vorticity field from POD application
over the whole time domain (i.e., for 0 ≤ t ≤ 40) for the double shear layer problem.

FIG. 31. The first local basis function for the vorticity field from PID application over
the first subinterval [i.e., for 0 ≤ t ≤ tκ(1) ] for the double shear layer problem using
different number of intervals.

FIG. 32. The first local basis function for the vorticity field from PID application over
the last subinterval [i.e., for tκ(Np−1) ≤ t ≤ 40] for the double shear layer problem
using different number of intervals.

Phys. Fluids 31, 126602 (2019); doi: 10.1063/1.5128374 31, 126602-22

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 33. The first 4 global basis functions
for the temperature field from POD appli-
cation over the whole time domain (i.e.,
for 0 ≤ t ≤ 8) for the Boussinesq problem.

FIG. 34. The first local basis function for
the temperature field from PID applica-
tion over the first subinterval [i.e., for 0 ≤
t ≤ tκ(1) ] for the Boussinesq problem
using different number of intervals.
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FIG. 35. The first local basis function
for the temperature field from PID appli-
cation over the last subinterval [i.e., for
tκ(Np−1) ≤ t ≤ 8] for the Boussinesq
problem using different number of inter-
vals.

field. Therefore, moremodes need to be retained in the ROM.On the
other hand, the local basis function for the first subinterval is similar
to the initial field as shown in Fig. 31, while the first basis function
in the last subinterval captures the main dynamics of the final field
as depicted in Fig. 32.

4. Boussinesq problem

In the Boussinesq problem, we provide the first four POD
modes for temperature fields in Fig. 33, which obviously demon-
strates the averaging nature of POD. We can see that none of these
modes looks like the initial or final fields. They just give an aver-
age image of the whole process. On the other hand, applying PID
allows us to explore more about the details of the dynamical evo-
lution and underlying instabilities. In Fig. 34, the initial state of the
system can be identified by decomposing the domain into multiple
local zones and investigating the first interval where the initial field is
located. Similarly, information about the final temperature field can
be acquired from narrowing the last partition (i.e., by increasing the
number of intervals) as shown in Fig. 35.
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