
Memory Enhanced Evolutionary Algorithms for Changing Optimization Probl ems
Jürgen Branke

Institute AIFB, University of Karlsruhe
D-76128 Karlsruhe, Germany

Phone: ++49 (721) 6086585 Fax: ++49 (721) 693717
Email: branke@aifb.uni-karlsruhe.de
http://www.aifb.uni-karlsruhe.de/�jbr

Abstract- Recently, there has been increased interest in
evolutionary computation applied to changing optimiza-
tion problems. This paper surveys a number of ap-
proaches that extend the evolutionary algorithm with
implicit or explicit memory, suggests a new benchmark
problem and examines under which circumstances a
memory may be helpful. From these observations we de-
rive a new way to explore the benefits of a memory while
minimizing its negative side effects.

Keywords: evolutionary algorithm, genetic algorithm,
dynamic, non-stationary, time-varying, memory

1 Introduction

While most of the papers produced in the area of evolutionary
computation deal with optimization in static, non-changing
environments, many real-world problems are basically dy-
namic: new jobs have to be added to the schedule, machines
may break down or wear out slowly, raw material is of chang-
ing quality etc.

Of course one could deal with this non-stationarity by re-
garding each change as the arrival of a new optimization prob-
lem that has to be solved from scratch (cf. [15]). However this
simple approach is often impractical, e.g. because solving a
problem from scratch without reusing information from the
past is too time consuming.

Fortunately, unless the change in the problem is extremely
strong, probably much effort could be saved and better solu-
tion quality achieved by using an optimization algorithm that
is capable of continuously adapting the solution to a changing
environment, reusing the information gained in the past. Evo-
lutionary algorithms (EAs) seem to be a suitable candidate,
and subsequently the interest in EAs for dynamic problems
has been rising in recent years.

A number of authors have addressed the issue of transfer-
ring information from the old environment to the new envi-
ronment by enhancing the EA with memory that might al-
low it to store good (possibly partial) solutions and reuse
them later as necessary. This memory may be implicit (e.g.
a diploid genome) or explicit (i.e. an extra storage space with
explicit rules for storing and retrieving information).

This paper surveys the memory-based approaches pub-
lished so far, suggests a new benchmark problem, examines
the idea of explicit memory more closely, compares several
storage strategies, and suggests a new way to use the mem-
ory.

The paper’s outline is as follows: Section 2 thoroughly
reviews and classifies relevant literature. The next two sec-
tions discuss a number of design decisions related to the use
of a memory and motivate our approach. Then, in Section
5, a new benchmark problem is defined that is simple, but
relates better to the interesting properties of real-world dy-
namic environments than previous benchmarks. A number of
experimental results are reported in Section 6.

The paper concludes with a summary and some sugges-
tions for future work.

2 Memory-based Evolutionary Algorithms:
History

2.1 Implicit Memory

An evolutionary algorithm that uses representations contain-
ing more information than necessary to define the phenotype
(i.e. redundant representations) basically has some memory
where good (partial) solutions may be stored and reused later
as necessary.

We call this kind of memoryimplicit because it is left to
the EA to find a way to use it appropriately.

The most prominent approach to redundant representa-
tions seems to be diploidy. Goldberg and Smith [5, 19] report
on experiments with using diploidy and dominance. Since
it is not clear beforehand which allele value (e.g. 0 or 1)
should be dominant at a particular gene position, Goldberg
and Smith favor a triallelic scheme where an allele can take
on one of three values “0”, “recessive 1”, and “dominant 1”.
Tested on a time-varying knapsack problem, they report bet-
ter adaptive qualities than with a simple GA.

However, this approach has been reviewed critically by
Ng and Wong in [14]. They argue that the triallelic scheme
is biased and that the reported better performance of the trial-
lelic scheme compared to a simple haploid representation is
mainly due to the slower convergence rate of the triallelic GA
which happens to be suitable in the frequent changes used for
testing in [5]. In other dynamic environments, so the con-
clusion, the haploid GA might even outperform the triallelic
scheme. Ng and Wong propose a new diploid scheme with
four possible alleles (0 and 1, each dominant and recessive).
To be able to adapt to changes quickly, they suggest to use a
dominance change mechanism for which all allele pairs are
inverted (i.e. changed from dominant to recessive and vice
versa) whenever an individual‘s fitness decreases by more
than 20%. In the experiments presented, their diploid scheme

outperforms the haploid as well as the triallelic scheme.
Hadad and Eick [7] use multiploidy and a dominance vec-

tor as an additional part of an individual that breaks ties when-
ever there is an equal amount of 0’s and 1’s at a specific
gene location. They report on a number of experiments with
varying number of gene strings per individual. Also using
the time-varying knapsack problem as testbed, they observe
best performance with diploid or tetraploid individuals, while
tetraploidy showed a slight advantage at high change frequen-
cies.

Ryan [17] uses additive multiploidy, where the genes de-
termining one trait areadded in order to determine the phe-
notypic trait. The phenotypic trait becomes1 when a cer-
tain thresholdb1 is exceeded, and is0 otherwise. In [18] this
paradigm has been extended slightly such that the phenotypic
trait becomes1 when a certain thresholdb1 is exceeded,0 if
the value is below a smaller thresholdb2, and is determined
at random if the value is betweenb1 andb2. The results are
reported to outperform the methods by Ng and Wong ([17])
and Osmera ([18]) on several problems.

Lewis et al. [9] compared five approaches on the oscilla-
tory knapsack problem: a simple hypermutation scheme (cf.
[1]), the approach by Ng and Wong [14] with and without the
mechanism of dominance change (see above) and the origi-
nal approach of Ryan [17] as well as a variant extended with a
dominance change mechanism. They observed that a simple
dominance scheme is not sufficient to track the optimum rea-
sonably well. If the diploid approaches are extended with a
dominance change mechanism, much better results can be ob-
tained. Still however, a simple haploid GA with a hypermuta-
tion rate similar to the number of bits flipped by a dominance
change performed comparably. Experiments with an envi-
ronment of two alternating states as well as a larger number
of states revealed that the approach by Ng and Wong proved
to be able to learn two solutions and switch between them
almost instantaneously, although the best solutions achieved
for each target were slightly poorer than with the other ap-
proaches. If more than two targets were used, the Ng and
Wong approach failed completely, while the haploid hyper-
mutation GA performed better than both diploid GAs with
dominance scheme. It seems that the Ng and Wong approach
is quite effective at maintaining memory, while the approach
by Ryan, extended with a dominance change mechanism,
maintains diversity similar to a hypermutation scheme.

Given the evidence available so far, it can be assumed that
the multiploid representations may be useful in periodically
changing environments where it is sufficient to remember a
few states and where it is important to be able to return to
previous states quickly. The applicability to problems without
periodicity and more than a few re-occurring states is at least
questionable.

A quite different redundant representation scheme that is
not based on multiploidy but uses a multi-level structured
gene-representation has been suggested by Dasgupta and Mc-
Gregor [3]. In this representation, each level can activate or

deactivate genes at the next lower level, allowing complex
hierarchically structured genes and more redundant informa-
tion than in the diploid scheme. In the experiments on the
time-varying knapsack problem reported in [3] however, a
relatively simple two-level representation was chosen, where
the higher level activated exactly one of four alternative sub-
strings, each consisting of a complete solution to the problem.
Nevertheless, improvements over simple GAs were found.

This approach has additionally been tested on a simple
moving parabola, results are reported in [2]. As in the pre-
vious paper, a simple two-level structure was used, this time
with the higher level activating only parts of the solution. Per-
formance found was significantly better than with a simple
GA. Whether this approach has a significant advantage com-
pared to multiploidy has yet to be determined.

2.2 Explicit memory

While redundant representations might allow the EA to im-
plicitly store some useful information during the run, it is not
clear that the algorithm actually uses this memory in an effi-
cient way. As an alternative, the kind of approaches in this
subsection use an explicit memory in which specific infor-
mation is stored and reintroduced into the population at later
generations.

Louis and Xu [11], for example, look at re-scheduling an
open shop problem after a machine has broken down and has
been replaced by a faster machine. They assume that the
changes of the problem are known (i.e. it is possible to re-
act explicitly), and they use a fixed number of generations
between changes (which is a valid assumption when the time
between changes is larger than the time to run the maximum
number of generations for the EA). In this paper, the popula-
tion’s best individual is stored at regular intervals. For exam-
ple, when the maximum number of generations is 300, every
50 generations the best individual is stored, resulting in a to-
tal of 6 stored individuals. After a change, the GA is seeded
partially (5-10%) with individuals from the old run (i.e. the
last run before the environment changed), while all other in-
dividuals are initialized randomly. The authors report signif-
icant improvements over a totally random initialization, par-
ticularly in early generations. However, when carrying over
more individuals from the old run (50-100%), or for problems
where the environment changes more significantly (deletion
of a job), the method reportedly failed. Further experiments
on the effect of the number and quality of the inserted solu-
tions are reported in [10]. For example, the authors observe
that as the similarity between the problems decreases, inject-
ing individuals with lower fitness from the old population re-
sults in better solutions in the new run. In any case, the mem-
ory in that paper is only used to transfer individuals from one
EA run to seed the initial population after a single change, the
memory is not permanent.

Ramsey and Grefenstette [16] incorporate case-based rea-
soning into an EA. They use a knowledge base to memo-
rize successful individuals in a permanent memory. The sys-

tem assumes that the environmental conditions can be mea-
sured. In regular intervals, the best individual is stored in
the knowledge base and indexed with data characterizing the
environment at that time. Whenever a new environment is
encountered (the environmental variables changed), the EA
is restarted. For restart, half of the population is initialized
with individuals from the knowledge base that have been
successful in a similar environment. Similarity of environ-
ments is calculated by a nearest neighbor analysis. Experi-
ments proved that the knowledge base allows the EA to build
upon the knowledge gained in the past. Unfortunately this ap-
proach is only applicable when the similarity of environments
can be measured.

Another example is the work by Trojanowski et al. [20]
in which each individual is extended with additional memory
for a number of its ancestors. After a change in the environ-
ment, these older solutions are also re-evaluated and replace
the current individual if they outperform it in the new envi-
ronment. Since the memory is limited, this approach may be
regarded as an EA with short-term memory that allows to in-
crease variability by reintroducing individuals that have been
considered good in recent generations.

A more elaborate storage strategy has been added to the
Thermodynamical Genetic Algorithm (TDGA, c.f. [12, 13]).
There, every generation‘s best individual is stored in the
memory, and another individual is deleted from the memory
depending on its age and contribution to the memory popula-
tion’s diversity. The individuals from the memory then serve
as additional potential candidates in the process of selecting
a parent generation (in addition to the usual population).

This is perhaps the most universal approach to permanent,
explicit memory and is most closely related to the following
sections. However, so far it has been defined for binary rep-
resentation only and has never been evaluated per se.

Together with TDGA it was tested again on the time-
varying knapsack problem where it was able to recall earlier
solutions when needed and to adapt to new situations much
faster when they reappeared, even in high frequency changing
environments.

3 General Thoughts about Memory

Why does the idea of adding a memory to an evolutionary
algorithm (EA) seem to be so appealing that a larger number
of authors have suggested it?

Intuitively, when the optimum reappears at a previous lo-
cation, a memory could remember that location, and instanta-
neously move the population to the new optimum. A memory
could also be useful in maintaining diversity. And it might
guide evolution to promising areas after a re-initialization.
But while the memory might allow to exploit knowledge
gained in the past, it might as well mislead evolution and
prevent it from exploring new regions and discovering new
peaks.

When trying to get the most out of an added memory, a

good start is to look at the possible design decisions that have
to be made. First of all there is the question of implicit or
explicit memory. We will restrict ourselves to explicit mem-
ory here, since its effects are easier to understand and since
given the evidence so far, it seems questionable whether im-
plicit memory is really useful for problems with more than
two states.

After having decided to use an explicit memory, further
questions arise:

1. when and which individuals should be stored in the
memory?

2. how many individuals should be stored in the memory
and which should be replaced to make space for new
individuals?

3. which individuals should be retrieved when from the
memory and reinserted into the population.?

Although we will not be able to answer all of these ques-
tions here, we will discuss and compare a number of alterna-
tives and try to motivate our choices.

Intuitively, the individuals stored in the memory should be
of above average fitness, not too old, and distributed across
several promising areas of the search space.

Regarding the question which individuals to store in the
memory, it seems quite natural to use the best individuals
from time to time. Contrary to this intuition, Louis et al.
[10] reported that for the case of larger changes, better results
were obtained with storing inferior solutions. This might be
caused by the fact that they used a simple storage scheme,
storing only a very small number of individuals and keeping
all of them. Storing inferior solutions then means maintain-
ing diversity which is necessary to be able to react to larger
changes. If diversity is considered explicitly when deciding
which individuals to keep, we still think it is sufficient to look
at the best individuals.

As replacement strategies, we consider the following al-
ternatives:� Compute an “importance value” for each individual as

linear combination of the individual’s age, its contribu-
tion to diversity and its fitness. Since it seems very dif-
ficult to determine an optimal tradeoff, we don’t think
this approach would be practicable� Delete the individual which, when deleted, retains the
maximum variance in the population, where the vari-
ance is calculated as the sum of the variances of the
alleles over the population (this method with subse-
quently be termedvariance).V (i) = mXi=1 Xj2Pnfig(xij � �xi)2m : length of genotype, P: population� In order to maintain diversity, a simple crowding strat-
egy may be used, i.e. the new individual replaces

the most similar old individual as long as it is better
(termedsimilar).� Alternatively, we can determine the two individuals
with the minimum distance between each other and re-
move the less fit individual. The underlying idea is that
one individual in a certain area should be sufficient,
and if there are two close to each other, only the fitter
should be retained (termedmindist).

Retrieval should probably only happen after the environment
changed, otherwise the continuous injection of old individ-
uals in the population may be detrimental. We decided to
acknowledge that a change has occurred whenever the fitness
of at least one individual in the memory has changed. Note
that although this method does not guarantee to capture all
changes, it seems a reasonable indicator due to the expected
variety in the memory. Whenever we decide to retrieve indi-
viduals from the memory, we merge the old population and
the memory population and keep the bestn individuals as
new population (the memory remains unaffected).

4 The best of two worlds?

Our first experiments with memory added EAs showed that
the risk to misguide evolution and prevent it from exploring
new regions of the search space should not be underestimated.

The alternative, restarting evolution from scratch when-
ever a change in the environment occurred, will of course
have a good chance to find new peaks, however, it will take a
long time to reach that optimum, sudden jumps are impossi-
ble.

The question therefore was: can we have the best from
both worlds, without the drawbacks?

Our suggestion is to divide the population into two, a
“memory”-population and a “search”-population. The one
population is memory-based and responsible for remember-
ing good old solutions, maintaining a minimum quality and
initiating jumps. The other population constantly searches
for new peaks and is submitting these to the memory, but will
not retrieve any information from it. In order to enforce ex-
ploration, this second population is re-initialized at random
after every change in the environment (see Figure 1).

Memory

Population 1 (initialized after change)

store retrieve
store

Population 2

Figure 1: Memory based EA with two islands: one to exploit
the memory, the other to explore new regions of the search
space.

5 A New Benchmark Problem

Benchmarks should be simple, easy to describe, easy to ana-
lyze and also tunable in their parameters. On one hand they
should be complex enough to allow conjectures to the real
world, on the other hand they should be simple enough to al-
low to gain new insights into the working of the optimization
algorithm.

That’s why we think that scheduling ([11]) or mouse-
tracking ([16]), although representative real-world problems,
are not the best benchmarks for a research area in such an
early stage as EAs for dynamic optimization problems cur-
rently is.

Other authors have suggested simpler problems, however
they seem to be so simple that they are too far away from
reality.

So far, the majority of authors tested their approach on a
time varying knapsack problem [3, 5, 7, 9, 13, 17, 19] where
the allowable weight limit changes over time, usually it os-
cillates between two predefined values. Representation is bi-
nary and invalid individuals are penalized. This problem does
not seem to be typical since the environment only oscillates
between two static states, in which an explicit memory would
certainly outperform all implicit memory strategies. Also, the
change from a higher to a lower weight limit makes all pre-
vious individuals invalid which basically eradicates the old
solution and forces the EA to search for a new solution.

If a change of the problem results in a totally new, random
environment with no connection to the previous environment,
nothing will beat a simple restart policy, since there is just
no information to transfer from one environment to the next.
Thus, a reasonable benchmark problem should feature “small
to medium” environmental changes.

If the environment is unimodal as in [2], the EA’s task
basically is to follow the peak as closely as possible. This
is certainly interesting to observe and may provide insights
about EA behavior in dynamic environments. However in
that kind of environment, possibly a local hillclimber would
be more efficient than an EA.

From the above considerations, we concluded that a suit-
able test environment should be multimodal and change
slightly. Nevertheless, even a slight change might move the
optimum to a totally different location, namely when the
height of the peaks changes such that a different peak be-
comes the maximum peak. Although local hillclimbing might
often be sufficient after a change, in these cases the EA ba-
sically has to “jump”, or cross a valley, to reach the new
maximum peak. A benchmark problem should simulate both
sides of environmental change: sometimes it may be suffi-
cient to adapt the current solution, and sometimes it may be
necessary to switch to another, previously slightly inferior but
now better solution. Therefore we here propose a new, sim-
ple benchmark problem that tries to bridge the gap between
very complex, hard to understand real-world problems and
all too simple toy problems. The idea is to have an artifi-
cial multi-dimensional landscape consisting of several peaks,

X1 X2 X3 X4 X5 W H
peak1 8.0 64.0 67.0 55.0 4.0 0.1 50.0
peak2 50.0 13.0 76.0 15.0 7.0 0.1 50.0
peak3 9.0 19.0 27.0 67.0 24.0 0.1 50.0
peak4 66.0 87.0 65.0 19.0 43.0 0.1 50.0
peak5 76.0 32.0 43.0 54.0 65.0 0.1 50.0

Table 1: Initial parameters for all peaks

where the height, the width and the position of each peak is
altered slightly every time a change in the environment oc-
curs.

The test function suggested here has 5 dimensions, uses
real-valued parameters, and has the following form:F (~x; t) = maxi=1:::5 Hi(t)1 +Wi(t)P5j=1(xj �Xj(t))2

The coordinates, the heightH and the widthW of each
peak are initialized according to Table 1. Then, every�e
generations the height and width of every peak are changed
by adding a random Gaussian variable. The location of every
peak is moved by a vectorv of fixed lengths in a random
direction. Thus the parameters allows to control the severity
of a change,�e will determine the frequency of change.

More formally, a change can be described as� 2 N(0; 1)Hi(t) = Hi(t� 1) + 7 � �Wi(t) = Wi(t� 1) + 0:01 � �~X(t) = ~X(t� 1) + ~v
An example on how the maximum moves over time in a

two-dimensional space can be seen in Figure 2.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

x2

x1

Figure 2: The movement of the maximum through a 2-
dimensional subspace over 300 changes, shifting vector~v has
lengths = 0:9

To allow replication, the exact test function is using a sep-
arate random number generator. The C-code can be down-
loaded from our web-page.

For future research, the function could also be made more
complex by increasing the number of dimensions or the num-
ber of peaks and by overlaying the whole landscape with a
high-frequency noise.

For this paper, we additionally used a more simple test
function especially suited for memory-based EAs. This func-
tion, G, is a linear combination of two fixed 5-dimensional
functions with 5 peaks each. The weight of the two func-
tions changes over time, soG changes fromg1 to g2 to g1
etc. In other words, the absolute maximum ofG oscillates
between two points only, namely the maxima of functionsg1
andg2. Basically this function relates to the oscillatory knap-
sack problem that has seen so many successful examples of
memory-based EA approaches.�(t) = cos(2�t100�) + 12g1(~x) = 5Xi=1 Hi1 +WiP5j=1(xj �Xj)2g2(~x) = 10Xi=6 Hi1 +WiP5j=1(xj �Xj)2G(t; ~x) = �(t)g1(~x) + (1� �(t))g2(~x)
6 Experiments

For our experiments, we used an evolutionary algorithm with
real-valued encoding, generational replacement but elite of 1,
mutation rate of 0.2, crossover probability of 0.6, one popu-
lation and a total population size of 100, including the mem-
ory if used, since all individuals in the memory have to be
reevaluated every generation in order to detect changes of the
landscape. Thus in any case, each generation involves 100
evaluations. All reported results are the averages over 20 runs
with different random seed.

Since for dynamic fitness functions it is not useful to re-
port the best solution achieved, we will here report on the
offline-performance, which is the average of the best solu-
tions at each time step, i.e.x�(T) = 1T PTt=1 e�t with e�t be-
ing the best solution at timet (cf. [8]). If several populations
are used,e�t is the best individual over all populations. Note
that the number of values that are used for the average grows
with time, thus the curves tend to get smoother and smoother.

If the memory is used, by default the EA is started with an
empty memory and writes its best individual into the memory
every 10 generations, replacing another individual according
to one of the four strategies described in Section 3. Unless
stated otherwise, memory size is 10.

The fitness function changes every 10 generations for
functionG (since this is a gradual change, the maximum peak
switches only every 50 generations), and every 50 generations
for functionF in the way described above.

6.1 Oscillating Fitness Function

As expected, the EA with memory clearly outperforms the
simple EA onG after a few generations since the memory
allows the EA to return to known peaks. However, when we
looked at the movement of the best individual through space,
we noted that the performance gain is mainly due to thequick
change from one peak to the exact location of the other, but
often the best solution is not found. In other words, after one
reasonable peak has been found for each of the two states of
the fitness landscape, the memory actually inhibits the search
for new, better peaks.

0

10

20

30

40

50

60

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

of
fli

ne
-p

er
fo

rm
an

ce

generations

P1, no memory
P1, memory mindist

P1, memory variance

Figure 3: Offline performance with and without memory on
the oscillatory function.

0

10

20

30

40

50

60

70

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

of
fli

ne
-p

er
fo

rm
an

ce

generations

P1, random25, memory mindist
P3, memory mindist

P3, no memory
P1, random25, no memory

Figure 4: Offline performance with and without memory on
the oscillatory function, 3 populations or 25 random immi-
grants.

This can be alleviated to some extend by enforcing some
diversity in the population, either by using 3 independent pop-
ulations (in which case we allow each population to write
into the memory, while retrieving solutions from the mem-
ory is still restricted to one population), or by replacing 25
individuals in every generation by random immigrants (ran-
domly generated individuals, this is another popular method
to make EAs suitable to changing fitness functions [6]). As
can be seen, performance is further increased, this time due
to finding better peaks.

While the increased diversity also helps the simple EA, the
positive effect of memory remains or is even increased.

As to the replacement strategies, the approach to maxi-
mize the variance in the memory (variance) performed sig-
nificantly worse than replacing the most similar (similar) and
replacement of the worse of the two individuals with mini-
mum distance (mindist), which both showed almost identical
performance. Therefore, our future experiments are restricted
to thesimilar andmindist replacement strategies.

6.2 Changing the peak’s location

In our last experiment the test function had the unrealistic
property that the locations of the peaks remained the same
throughout the run, only their height changed. With the next
set of experiments, we want to examine the effect of varying
the extent to which the location of the peaks is shifted, on the
advantage of memory. This will be tested using functionF .

For s = 0 the peaks still stay at the same place, but as
opposed to functionG the optimum now switches between 5
peaks, and they do not disappear completely before they rise
again.

More or less, the results are similar to those obtained ear-
lier: the memory-based EAs clearly outperforms the simple
EA, the replacement strategies “most-similar” and “worse of
two individuals with minimum distance” show almost identi-
cal behavior (therefore the second one is omitted in the dia-
gram). The two-island-approach suggested in Section 4 (X2)
clearly outperforms the one population approaches, and also
the approach with three populations and memory (cf. Figure
5). Astonishingly, the approach that performed best on func-
tionG, namely the one that replaced 25 individuals with ran-
dom immigrants, did not perform much better than the simple
GA with memory on this function.

42

44

46

48

50

52

54

56

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

of
fli

ne
-p

er
fo

rm
an

ce

generations

P3, memory mindist
X2, memory mindist
P1, memory mindist

P1, no memory
P1, random25, memory mindist

Figure 5: Offline-Performance of several approaches, no shift
of the peak locations.

If the lengths of the shift vector is increased, the main dif-
ference is that the three-island approach becomes the best one
(cf. Fig. 6). This may be explained by its possibility to main-
tain island populations on up to three different peaks, follow-
ing all three peaks simultaneously when they move, while all
other tested approaches can only follow one peak at a time.

42

44

46

48

50

52

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

of
fli

ne
-p

er
fo

rm
an

ce

generations

P3, memory mindist
X2, memory mindist
P1, memory mindist

P1, no memory
P1, random25, memory mindist

Figure 6: Offline-Performance of several approaches, peak
locations shifting bys = 0:6.

In general, when the lengths of the shift vector is in-
creased, the performance of all approaches decreases (Fig-
ure 7). In particular, the difference between the tested ap-
proaches becomes smaller. Nevertheless, since the standard
deviation of these values is usually very low (around 0.25),
the difference remains significant. Figure 7 shows the offline-
performance after 5000 generations (100 change intervals)
over a range of values fors.

47

48

49

50

51

52

53

54

55

56

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

of
fli

ne
-p

er
fo

rm
an

ce

shift vector length s

X2, memory mindist
P1, memory mindist

P1, no memory
P3, memory mindist

Figure 7: Offline-Performance of several approaches after
5000 generations, varying shift lengths.

We also tried to gain even better performance by using a
larger memory (20 individuals instead of 10) and by introduc-
ing 25 random immigrants in every generation. However, no
significant improvements could be achieved.

7 Conclusion

This paper makes three contributions: First, it surveys previ-
ous approaches using implicit or explicit memory in evolu-
tionary algorithms applied to dynamic fitness functions. Sec-
ond, it critically observes previous test problems and sug-
gests a new benchmark problem, aimed at bridging the gap
between complex real-world applications and all too sim-
ple toy problems. The suggested benchmark is not limited
to memory-based approaches, but might become a standard

benchmark for evolutionary algorithms for dynamic fitness
landscapes. And finally, the idea of explicit memory is exam-
ined more thoroughly, and a new memory based approach,
using a “memory-population” and a “search-population” has
been shown to be at least competitive with standard ap-
proaches.

From our experiments we draw the following conclu-
sions:� If the optimum repeatedly returns to exact previous lo-

cations, that’s perfect for memory-based EAs since it
allows them to switch instantaneously. Given the right
memorization strategy, a large number or re-occurring
peaks may be stored in an explicit memory.� However, the advantage of a memory quickly di-
minishes when the location of the optimum changes
even slightly, therefore the range of problems where
memory-based approaches promise noteworthy im-
provements is probably quite small.� If one wants to retrieve good individuals from the mem-
ory, they first have to be stored. In other words, the ba-
sic evolutionary algorithm needs to be able to “switch
peaks” or to maintain diversity if we want to have
memory-individuals on several peaks.� Using several independent subpopulations allows to
follow several peaks simultaneously.� As replacement strategy for the memory, replacing the
most similar or replacing the worse of the two indi-
viduals with minimum distance worked better than a
variance maximization scheme.� Problems where a change significantly decreases the
fitness of the old solution are actually easier for EAs,
since this enforces the search for a new peak

Summarizing our experiences, the application of memory-
based EAs seems to be restricted to a small set of problems
where the optimum repeatedly returns to previous locations,
in other cases, diversity-based methods seem to be preferable.
In any case, some diversity-keeping method should be used in
conjunction with the memory.

For now, many questions remain open worth for future
study: first of all, some other memory-based approaches al-
ready known from the literature, like considering age for
replacement or storing not the best but inferior individuals
should be examined under the same framework. For the
new 2-population approach, the distribution of individuals
to “search”-population, “memory”-population, and the ac-
tual memory could probably be optimized, maybe even made
adaptive, dependent on success history. Currently, we are
also investigating the possibility to use more than one mem-
ory population. To study the effect of changing the number
of peaks or the change frequency is another interesting topic.
And finally, other EA approaches designed for use in dynamic
environments should be tested and compared on the bench-
mark problem presented.

Acknowledgements: Thanks to Steffen Lämmermeier

and Eberhard Münz for interesting discussions and providing
some of the code, and to the anonymous reviewers for their
valuable comments.

Bibliography
[1] H. G. Cobb. An investigation into the use of hypermutation as an adap-

tive operator in genetic algorithms having continuouis, time-dependent
nonstationary environments. Technical Report AIC-90-001, Naval Re-
search Laboratory, Washington, USA, 1990.

[2] D. Dasgupta. Incorporating redudancy and gene activation mechanisms
in genetic search. In L. Chambers, editor,Practical Handbook of Ge-
netic Algorithms, volume 2, pages 303–316. CRC Press, 1995.

[3] D. Dasgupta and D. R. McGregor. Nonstationary function optimiza-
tion using the structured genetic algorithm. In R. Männer and B. Man-
derick, editors,Parallel Problem Solving from Nature, pages 145–154.
Elsevier Science Publisher, 1992.

[4] A. E. Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwefel,editors.Par-
allel Problem Solving from Nature, number 1498 in LNCS. Springer,
1998.

[5] D. E. Goldberg and R. E. Smith. Nonstationary function optimiza-
tion using genetic algorithms with dominance and diploidy.In J. J.
Grefenstette, editor,Proceedings of the Second International Confer-
ence on Genetic Algorithms, pages 59–68. Lawrence Erlbaum Asso-
ciates, 1987.

[6] J. J. Grefenstette. Genetic algorithms for changing environments. In
R. Maenner and B. Manderick, editors,Parallel Problem Solving from
Nature 2, pages 137–144. North Holland, 1992.

[7] B. S. Hadad and C. F. Eick. Supporting polyploidy in genetic algo-
rithms using dominance vectors.

[8] K. De Jong.An analysis of the behavior of a class of genetic adaptive
systems. PhD thesis, University of Michigan, Ann Arbor MI, 1975.

[9] J. Lewis, E. Hart, and G. Ritchie. A comparison of dominance mecha-
nisms and simple mutation on non-stationary problems. In Eiben et al.
[4], pages 139–148.

[10] S. J. Louis and J. Johnson. Solving similar problems using genetic
algorithms and case-based memory. In T. Bäck, editor,Proceedings
of the Seventh International Conference on Genetic Algorithms, pages
283–290. Morgan Kaufmann, 1997.

[11] S. J. Louis and Z. Xu. Genetic algorithms for open shop scheduling
and re-scheduling. In M. E. Cohen and D. L. Hudson, editors,ISCA
Eleventh International Conference on Computers and their Applica-
tions, pages 99–102, 1996.

[12] N. Mori, S. Imanishi, H. Kita, and Y. Nishikawa. Adaptation to chang-
ing environments by means of the memory based thermodynamical ge-
netic algorithm. In T. Bäck, editor,International Conference on Ge-
netic Algorithms. Morgan Kaufmann Publishers, 1997.

[13] N. Mori, H. Kita, and Y. Nishikawa. Adaptation to a changing envi-
ronment by means of the thermodynamical genetic algorithm.volume
1141 ofLNCS, pages 513–522. Springer Verlag Berlin, 1996.

[14] K. P. Ng and K. C. Wong. A new diploid scheme and dominance
change mechanism for non-stationary function optimization. In Pro-
ceedings of the Sixth International Conference on Genetic Algorithms,
pages 159–166. Morgan Kaufmann, 1995.

[15] N. Raman and F. B. Talbot. The job shop tardiness problem: a de-
composition approach.European Journal of Operational Research,
69:187–199, 1993.

[16] C. L. Ramsey and J. J. Grefenstette. Case-based initialization of genetic
algorithms. In S. Forrest, editor,Fifth International Conference on
Genetic Algorithms, pages 84–91. Morgan Kaufmann, 1993.

[17] C. Ryan. Diploidy without dominance. In J. T. Alander, editor, Third
Nordic Workshop on Genetic Algorithms, pages 63–70, 1997.

[18] C. Ryan and J. J. Collins. Polygenic inheritance - a haploid scheme
that can outperform diploidy. In Eiben et al. [4], pages 178–187.

[19] R. E. Smith. Diploid genetic algorithms for search in time varying
environments. InProceedings of the Annual Southeast Regional Con-
ference of the ACM, pages 175–179, New York, 1987.

[20] K. Trojanowski, Z. Michalewicz, and Jing Xiao. Adding memory to
the evolutionary planner/navigator. InIEEE Intl. Conference on Evo-
lutionary Computation, pages 483–487, 1997.

