
Memory Exploration for Low Power,
Embedded Systems

Wen-Tsong Shiue
Arizona State University

Department of Electrical Engineering
Tempe, AZ 85287-5706

Ph: 1(602) 965-1319, Fax: 1(602) 965-8325
shiue@imap3.asu.edu

Chaitali Chakrabarti
Arizona State University

Department of Electrical Engineering
Tempe, AZ 85287-5706

Ph: 1(602) 965-9516, Fax: 1(602) 965-8325
chaitali@asu.edu

ABSTRACT
In embedded system design, the designer has to choose an on-
chip memory configuration that is suitable for a specific
application. To aid in this design choice, we present a memory
exploration strategy based on three performance metrics,
namely, cache size, the number of processor cycles and the
energy consumption. We show how the performance is affected
by cache parameters such as cache size, line size, set
associativity and tiling, and the off-chip data organization. We
show the importance of including energy in the performance
metrics, since an increase in the cache line size, cache size, tiling
and set associativity reduces the number of cycles but does not
necessarily reduce the energy consumption. These performance
metrics help us find the minimum energy cache configuration if
time is the hard constraint, or the minimum time cache
configuration if energy is the hard constraint.
Keywords
Design automation, Low power design, Memory hierarchy, Low
power embedded systems, Memory exploration and
optimization, Cache simulator, Off-chip data assignment.

1. INTRODUCTION
The increase in the level of abstraction of modern VLSI design
is accompanied by a corresponding increase in the complexity of
the building blocks that constitute the design library. Modern
design libraries frequently consist of predesigned mega-cells
such as embedded microprocessor cores and memories. An
important feature of embedded processor-based design is that
the processor core is decoupled from the on-chip memory, and
thus the system designer has to choose an on-chip memory
configuration that is suitable for a specific application. To aid in
this design choice, a memory exploration strategy is clearly
needed. In this paper, we present an exploration strategy for
determining an efficient on-chip data memory architecture based
on three performance metrics, namely, cache size, the number of
processor cycles and the energy consumption. We add energy to

the traditional performance metrics, since for low power
applications, energy plays a decisive role. We choose the line
size, the number of lines, tiling and the degree of set
associativity such that the performance requirements are met.
We focus only on the data cache. This is because for many
embedded software applications, the volume of data being
processed far exceeds the number of instructions.
Memory optimization for embedded system has been addressed
by Panda, Dutt and Nicolau [1,2]. The performance metrics of
their system are data cache size and number of processor cycles.
In addition, they propose an excellent method for off-chip data
placement such that the number of conflict misses is reduced.
We extend the work of [1,2] to include energy consumption as
one of the performance metrics. We also consider the impact of
tiling, and the degree of set associativity on the memory
performance. Our memory exploration algorithm can be
summarized as follows.
Algorithm MemExplore

 for on-chip memory size,M (in powers of 2)
 for cache size, T (in powers of 2, < M)
 for line size, L (in powers of 2, < T)
 for set associativity, S (in powers of 2,≤ 8)
 for tiling size, B (in powers of 2, ≤ T/L)
 Estimate Memory Performance (number
 of cycles C, and energy consumption E).
 Select (T, L, S, B) that maximizes performance.

Here for each candidate cache size T (that is a power of two), for
different cache line sizes, tiling sizes and the degree of set
associativity, we estimate the number of processor cycles and
energy consumption. We then select the cache configuration
that best matches the system requirements (time bound, energy
bound, time and energy bound). We have applied our procedure
to several benchmark examples including Compress, Matrix
multiplication, PDE, SOR [9] and Dequant [1]. Our analysis
shows that the largest performance enhancement is obtained by
organizing the data off-chip in a way to reduce the number of
conflict misses. We also show that for memory exploration in
low power systems, it is not sufficient to only consider the cache
size and miss rate. This is because while the miss rate reduces
with increase in cache size, the energy consumption does not
always reduce. Thus it is important to study the tradeoffs
between size, time and energy. The exploration procedure
described here for data caches can be extended to instruction
caches by merging the method of Kirovski et al [8] with ours.

2. PERFORMANCE METRICS
In this section we describe the three performance metrics of our

system, namely, cache size, number of processor cycles and
energy consumption.

2.1 Cache Size
Choosing a cache size involves balancing the conflicting
requirements of area and miss rate. If the cache line size is
increased, then the miss rate is reduced. If the number of cache
lines is increased, then the miss rate can be reduced if the tiling
size or the degree of set associativity is also increased. Since
there is a limit to the cache size, performance tradeoffs have to
be investigated.

2.2 Number of Processor Cycles
The number of processor cycles that would be required to
execute the code is a function of the miss rate. We adopt the
model used in [10] and assume that the number of cycles per hit
is 1, 1.1, 1.12, and 1.14 for 1, 2, 4, and 8-way set associative
cache respectively. We also assume that the number of cycles
per miss is 40, 40, 42, 44, 48, 56, and 72 for line sizes of 4, 8,
16, 32, 64, 128, and 256 respectively. Since increasing the line
size reduces the miss rate while increasing the miss penalty,
greater associativity can come at the cost of increased hit time.
The number of processor cycles is shown as follows.

Number of processor cycles = hit_rate*trip_count*(number of
cycles per hit) + miss_rate*trip_count*(tiling size + number of
cycles per miss).

2.3 Energy Consumption
There exist several energy models for caches. Kamble and
Ghose [3] have developed an analytic model for power
consumption in various cache structures. Their model
combines memory traffic, process features such as capacitance,
and architectural factors including cache line size, set
associativity, and capacity. The process models are based on
measurements reported by Wilton and Jouppi [4] for a 0.8 µm
process technology. Su and Despain [5] have developed an
intuitive and simple model for power consumption due to hits in
a cache. Hicks, Walnock and Owens [6] extended this model
(albeit erroneously) and considered the energy consumption due
to cache misses as well. We have rectified the model in [6] in
this paper.

In our model, the total energy is given by Energy=
hit_rate*Energy_hit + miss_rate*Energy_miss, where the
Energy_hit is the sum of the energy in the decoder and the
energy in the cell arrays, and Energy_miss is the sum of
Energy_hit and the energy required to access data in main
memory. We consider only energy due to READ (READ HIT
and READ MISS) because reads dominate processor cache
accesses [10]. Our energy model is simple and is based on those
cache components that dominate overall cache power
consumption. For instance, in the address decoding path, the
capacitance of the decoding logic is less than that of the address
bus, and so we consider only the energy consumption of the
address buses, E_dec. Similarly, in cell arrays, we consider
E_cell to be the energy consumed by the pre-charged cache
word/bit lines. During a miss, the dominant components are the
energy consumed in the I/O path of the host processor, E_io and
the energy consumed during data access from the main memory
E_main. We consider E_io to be the energy consumed in the

address and data I/O pads [5]. For most of our experiments, we
have used the SRAM CY7C1326-133 from Cypress as our main
memory. The SRAM is of size 2M bits, has an access time of
4 ns, voltage of 3.3V, current of 375 mA, and has an energy
consumption of 4.95 nJ per access.

In summary,

• Energy = Hit rate * Energy_hit + Miss rate * Energy_miss
Energy_hit = E_dec+E_cell
Energy_miss = E_dec+E_cell+E_io+E_main
 = Energy_hit + E_io+E_main
- E_dec = α*(Add_bs)

 - E_cell = β*(Word_line_size) * (Bit_line_size)
 - E_io = γ*(Data_bs* Cache_line_size + Add_bs)
 - E_main = γ*(Data_bs* Cache_line_size)
 + Em * Cache_line_size
 where
 Add_bs = Number of bit switches on address bus per instruction.
 Data_bs = Number of bit switches on data bus per instruction
 Word_line_size = Number of memory cells in a word line.
 Bit_line_size = Number of memory cells in a bit line.
 Em = Energy consumption of a main memory access
 α=0.001, β=2 and γ =20 are used for 0.8 µm CMOS technology
The above energy model can be used for set associative caches
as well. Even though the set associative cache consumes more
power in the control logic, tag comparators and address
comparators, the amount is not significant [3] and hence can be
ignored in our simplified energy model. Finally, in the
computation of address bus switching, we have assumed Gray
code encoding of the address lines, and for data bus switching,
we have assumed a value of 0.25.

3. FINDING THE MINIMUM CACHE SIZE
In this section we describe a procedure for computing the
minimum cache size that is required to avoid cache conflicts.
The cache conflicts occur when data that could possibly be
reused in the near future, is mapped to the same cache line by
subsequent accesses in a limited associativity cache.

Two references, a[f(i)] and a[g(i)] are said to be uniformly
generated if f(i)=Hi+cf and g(i)=Hi+cg, where H is a linear
transformation and cf and cg are constant vectors [9]. We
partition references in a loop nest into equivalent classes of
reference or equivalent cases of reference. References belong to
the same class if they have the same H and operate on the same
arrays as described in [9]. Here we introduce the notion of case.
We say that the references belong to the same case if they have
the same H but belong to different arrays. For each class or
case, we find the value of the (distance) mod (cache line size),
where distance= floor(abs(difference of constant vector/stride of
loop)+1. If the value of distance is zero or one, then the number
of cache lines is equal to floor(distance/cache line size)+1;
otherwise, the number of cache lines is equal to
floor(distance/cache line size)+2. The total number of cache
lines is the sum of the number of cache lines for each class or
case. We explain this procedure with the help of Example
Compress.

Example 1. Compress
int a[32,32]
for i=1,31
 for j=1,31
 a[i.j]=a[i,j]-a[i-1,j]-a[i,j-1]-2*a[i-1,j-1];

In this example, there are two equivalent classes. Class 1: a[i-
1,j-1], a[i-1,j] and class 2: a[i,j-1], a[i,j]. The total number of
cache lines is 4 (two cache lines for references in class 1 and
two cache lines for references in class 2). The minimum cache
size is 4*L, where L is the line size. If the given cache size is
larger than the minimum cache size, then the cache line size can
be increased to exploit the spatial locality or the number of
cache lines can be increased in proportion to the number of
classes or cases. While the miss rate reduces with increase in
cache size and line size, the energy consumption may or may not
reduce. To illustrate the differences in the energy consumption
trends, we consider two extremes values of Em, (the energy due
to main memory access). On one end of the spectrum is a
Cypress 2Mbit SRAM with Em=2.31nJ and on the other end of
the spectrum is a 16Mbit SRAM with Em=43.56 nJ. While the
energy consumption values reduce with increase in cache size
and line size for Em = 43.56 nJ, the energy consumption values
increase with increase in cache size and line size for Em=2.31
nJ. Figure 1 shows this variation in energy consumption for
Em=43.56nJ and Em=2.31nJ for the example Compress. Figure
2 describes the variation in the miss rate, number of cycles and
energy for different cache and line sizes for the benchmark
examples (Compress, Matrix Multiplication, PDE, SOR and
Dequant). In all these examples, the iteration space is 31*31.
Figure 3 plots the variation in the number of cycles for the
example Compress. Figure 4 shows the variation in energy
consumption for Em =4.95 nJ (corresponding to SRAM
CY7C1326-133) for different cache and line sizes for the
example Compress.

Figure 1. Example Compress. Variation in energy for different
 cache sizes and line sizes. (Em = 43.56 nJ and Em =
 2.31 nJ).

The study of the variation in the number of cycles and energy
for different cache sizes and line sizes can be used to obtain the
best cache configuration given the energy and/or time bounds.
For instance, the minimum energy cache configuration for the
example Compress is C16L4 (cache size of 16 bytes and line
size of 4 bytes) and the minimum time cache configuration is
C512L64. If the number of processor cycles is bound to 5,000,
then the minimum energy cache configuration is C64L16.
Similarly, if the energy (nJ) is bound to 5,500, then the
minimum time cache configuration is C512L64.

Examples Cache size (C)
Cache line size (L)

Em
=4.95nJ Compress Mat. Multi. PDE SOR Dequant

C=16
L=4

Miss rate
Cycles
Energy (nJ)

0.251
10358
4992

0.25
320260
4978

0.251
10357
4986

0.25
320260
4983

0.5
1311
9953

C=32
L=8

Miss rate
Cycles
Energy (nJ)

0.126
5678
5006

0.125
175020
4973

0.126
5676
5002

0.125
175020
4975

0.375
999

14896
C=64
L=16

Miss rate
Cycles
Energy (nJ)

0.0634
3338
5046

0.0625
102400
4974

0.0634
3336
5042

0.0625
102400
4975

0.312
843

24796
C=128
L=32

Miss rate
Cycles
Energy (nJ)

0.0322
2167
5132

0.0312
66096
4982

0.0322
2166
5126

0.0312
66096
4983

0.281
765

44605
Figure 2. Miss rate, # of cycles and energy vs. cache size and
 cache line size.

C16 C32 C64 C128 C256 C512 C_1K C_2K C_4K C_8K
L4 10358 10355 10350 10340 10320 10280 10199 10038 9716 9072
L8 5678 5675 5670 5660 5640 5600 5519 5358 5036
L16 3338 3335 3330 3320 3420 3377 3293 3123
L32 2167 2165 2160 2272 2250 2205 2116
L64 1582 1579 1700 1688 1664 1615
Figure 3. Example Compress. Variation in the number of cycles
 for different cache sizes and line sizes. The number

of cache lines is >=4.

Cycles variation

1500
2500
3500
4500
5500
6500
7500
8500
9500

10500
11500

C16 C32 C64 C128 C256 C512 C_1K C_2K C_4K C_8K
Cache size

C
yc

le
s

L4 L8 L16
L32 L64

(Em=2.31nJ)

2300

2500

2700

2900

3100

3300

3500

C16 C32 C64 C128 C256 C512 C_1K C_2K C_4K C_8K
Cache size

E
ne

rg
y

(n
J)

L4 L8 L16
L32 L64

(Em=43.56 nJ)

39000

40000

41000

42000

43000

44000

45000

46000

C16 C32 C64 C128 C256 C512 C_1K C_2K C_4K C_8K
Cache size

E
ne

rg
y

(n
J)

L4 L8 L16
L32 L64

(Em=4.95 nJ)

4900

5100

5300

5500

5700

5900

C16 C32 C64 C128 C256 C512 C_1K C_2K C_4K C_8KCache size

E
ne

rg
y

(n
J)

L4 L8 L16
L32 L64

C16 C32 C64 C128 C256 C512 C_1K C_2K C_4K C_8K
L4 4992 4993 4996 5001 5010 5030 5069 5147 5304 5617
L8 5006 5009 5014 5023 5043 5082 5161 5318 5632
L16 5046 5051 5061 5081 5120 5198 5355 5670
L32 5132 5142 5161 5201 5279 5436 5750
L64 5300 5320 5359 5438 5595 5909
Figure 4. Example Compress. Variation in energy for
 different cache sizes and line sizes. (Em = 4.95 nJ)

4. ENHANCING CACHE PERFORMANCE
We present three techniques to improve cache performance,
namely, off-chip memory assignment that significantly reduces
the number of conflict misses, tiling size and set associativity.

4.1 Off-chip Memory Assignment
The off-chip memory assignment method is an extension of the
method in [1] that is based on utilizing compatible array access
patterns. We call two array access patterns compatible [1] if the
difference in the accesses is independent of loop index. Thus,
two arrays, a[i] and a[i-2] are compatible while two arrays, a[i]
and a[b[i]], are incompatible. If all accesses in a loop are
compatible for each equivalent class, then we can use a suitable
data layout in memory to avoid cache conflicts completely [1].
Conflict misses occur when data that could possibly be used in
the near future, is displaced from cache by a subsequently
accessed element in a direct-mapped cache or limited
associativity cache. Given an embedded application program
and a cache line size, we determine the optimal memory
assignment to avoid conflict misses not only for references that
belong to the same class (as in [1]) but also for references that
belong to the same case.

Consider the Compress benchmark example. The cache line
size is 2 bytes. A memory assignment that avoids conflicts
should ensure that the elements in class 1 and class 2 are never
mapped into the same cache line. If the cache size is 8, then the
first element in class 1, a[0][0], with memory address 0 is
mapped to cache line 0. If the first element in class 2, a[1][0],
has memory address 32, then it is mapped to cache line 0,
causing a conflict in each iteration. If, instead, a[1][0] has
memory address 36, then it is mapped to cache line 2, resulting
in no conflict misses. Note that if a[1][0] has memory address
34, then there would be a conflict every second iteration. Thus,
even though there is no valid data in locations 32 through 35 in
the off-chip memory, the conflict misses have been avoided,
thereby enhancing the performance significantly. Figure 5 show
how the miss rate is significantly reduced if this memory
assignment algorithm used in the Compress example.

Now consider the Matrix addition example [1] shown in
example 2. The cache is direct-mapped with cache line size=2.
The three different arrays a, b and c, can be assigned to three
different cache lines which is the minimum number of cache
lines as shown in the figure below.

 0 1 2
a00
a01

b00
b01

c00
c01

0 35 38 73 76 111
a00 a55 b00 b55 c00 c55
If array a[] is stored in main memory from locations 0 through
35, then in order that b[0][0] be assigned to cache 1, it has to be

stored in location 36+2=38. Thus the array b[] is stored in
location 38 through 73. Similarly, in order that c[0][0] be
assigned to cache line 2, it has to be stored in location 74+2=76.
The array c[] is then stored in location 76 through 111.

Example 2. Matrix Addition
int a[6][6], b[6][6], c[6][6]
for i=0,5
 for j=0,5
 c[i.j]=a[i,j]+b[i,j];

Figure 5. Example Compress. Miss rate reduction due to
 off chip memory assignment.
We would like to point out that we have developed analytical
expressions to calculate the minimum cache line requirement,
minimum cache size (in Section 3), off-chip data assignment (in
Section 4.1), miss rates, # of cycles and energy (in Section 2).
We chose to do this rather than developing a trace driven
simulator that could be ported to Dinero ([11]).

4.2 Tiling
Tiling is primarily used to improve cache reuse by dividing the
iteration space into tiles and transforming the loop nest to iterate
over them [9]. However, it can also used to improve processor,
register and cache locality. The need for tiling is illustrated by
the loop in Example 3(a). With the j loop innermost, access to
array b[] is stride-1, while access to array a[] is stride-n.
Interchanging does not help, since it makes access to array b[]
stride-n. After tiling, Example 3(b), the miss rate is drastically
reduced. For instance, if tiling size is two, then the miss rate is
reduced from 0.44 to 0.22.

Example 3(a) Example 3(b)
for i=1,n for ti=1,n,64
 for j=1,n for tj=1,n,64
 a[i,j]=b[j,i]; for i=ti,min(ti+63,n)

 for j=tj,min(tj+63,m)
 a[i,j]=b[j,i];

Figure 6 describes how the miss rate, number of processor
cycles and energy consumption are reduced as the tiling size is
increased. Here the cache size is 64 bytes and cache line size is
8 bytes. The energy consumption reduces in all the examples up
to tiling size of 8. This is to be expected since the tiling
algorithm tries to reduce misses via improved temporal locality.
However, if the tiling size is greater than the number of cache
lines, the data in the cache gets replaced before being used.
Therefore, the number of misses increases which results in an
increase in the energy consumption. Our experiments show that
for low energy applications, the tiling size should be as large as

After tiling

Miss rate variation
(Optimized vs. Unoptimized)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

C32L4 C64L8 C128L16
Cache size and line size

Miss rates

Opt.
Un-opt.

the number of cache lines. Figure 7 plots energy vs. tiling size
for the Compress and Dequant examples.

Examples Tiling
size

C64L8
Compress Mat. Multi. PDE SOR Dequant

1 Miss rate
Cycles
Energy (nJ)

0.126
5680
5010

0.125
175000
4980

0.126
5670
5000

0.125
175000
4980

0.374
998

14900
2 Miss rate

Cycles
Energy (nJ)

0.0634
3460
2530

0.0625
106000
2490

0.0634
3460
2530

0.0625
106000
2500

0.312
883

12400
8 Miss rate

Cycles
Energy (nJ)

0.0166
1710
671

0.0156
51700
632

0.0166
1710
670

0.0156
51700
632

0.265
862

10600
16 Miss rate

Cycles
Energy (nJ)

0.0322
2290
1290

0.0312
69800
1250

0.0322
2290
1290

0.0312
69800
1250

0.281
837

11200
Figure 6. Miss rate, # of cycles and energy vs. tiling size.
 Em=4.95 nJ.

4.3 Set Associativity
The hit rate of the cache can also be improved by increasing its
associativity. At the lowest level of associativity is the direct
mapped cache, followed by increasing levels of set associativity.
Figure 8 illustrates how the miss rate, # of cycles and energy
consumption are reduced if the degree of set associativity is
increased for our benchmark examples. Here the cache size is
64 bytes and the line size is 8 bytes. However, if the cache size
is 1024 bytes and line size is 32 bytes, the number of processor
cycles as well as the energy values do not necessarily decrease.

Figure 7. Example Compress and Dequant. Variation in
 energy with increase in tiling and set associativity.

Examples Set assoc. C64L8
Compress Mat. Multi. PDE SOR Dequant

1 Miss rate
Cycles
Energy (nJ)

0.126
5800
5010

0.125
179000
4980

0.126
5800
5000

0.125
179000
4980

0374
1020
14900

2 Miss rate
Cycles
Energy (nJ)

0.0989
4850
3940

0.0982
150000
3920

0.0988
4850
3940

0.0982
150000
3920

0.294
821

11700
4 Miss rate 0.0874 0.0869 0.0874 0.0869 0.26

Cycles
Energy (nJ)

4430
3480

137000
3460

4420
3480

137000
3460

735
10300

8 Miss rate
Cycles
Energy (nJ)

0.0687
3730
2740

0.0683
115000
2720

0.0687
3730
2740

0.0683
115000
2720

0.204
594

8130
Figure 8. Miss rate, # of cycles and energy vs. set
 associativity. Tiling size is 1 and Em=4.95 nJ.
Figure 9 shows the reduction in miss rate, # of cycles and energy
when both set associativity and tiling are considered. The
values in parentheses are unoptimized values, that is, values for
the case when the memory assignment scheme in Section 4.1
has not been incorporated. Note that there is a significant
difference between optimized and unoptimized values. The
miss rate for the unoptimized case is extremely large, so large
that tiling and set associativity have little effect.

ExamplesSet Assoc. (SA)
Tiling Size (TS)

C64L8
Compress Mat. Multi. PDE SOR Dequant

SA=1
TS=1

Miss rate

Cycles

Energy
 (nJ)

0.126
(0.969)
5680

(37300)
5010

(38500)

0.125
(0.999)
175000

(1190000)
4980

(39700)

0.126
(0.968)
5670

(37200)
5000

(38400)

0.125
(0.999)
175000

(1190000)
4980

(39700)

0.374
(0.531)

998
(1390)
14900

(21100)
SA=2
TS=4

Miss rate

Cycles

Energy
 (nJ)

0.0253
(0.761)
2100

(32400)
1020

(30300)

0.0246
(0.785)
64200

(1040000)
986

(31200)

0.0253
(0.761)
2100

(32400)
1020

(30200)

0.0246
(0.785)
64200

(1040000)
987

(31200)

0.221
(0.399)

677
(1170)
8790

(15900)
SA=8
TS=8

Miss rate

Cycles

Energy
 (nJ)

0.00908
(0.529)
1500

(24900)
371

(21000)

0.00854
(0.546)
45900

(796000)
350

(21700)

0.00906
(0.529)
1500

(24900)
370

(21000)

0.00854
(0.546)
45900

(796000)
350

(21700)

0.154
(0.273)

508
(892)
5770

(10900)
Figure 9. Miss rate, # of cycles and energy vs. set associativity
 and tiling size. The values in parentheses are
 unoptimized values.

5. MPEG DECODER: A CASE STUDY
In previous sections, we validated our exploration strategy by
performing simulation experiments on small benchmark loop
kernels. In this section, we present a case study of our
exploration technique on a relatively large program: the MPEG
Decoder. The MPEG behavior is characterized by a number of
array access patterns, which makes it a good candidate on which
to apply our memory exploration techniques. The MPEG
decoder consists of many modules including VLD (Variable
Length Decoder), Dequant, IDCT, Plus, Display, Store, and
Prediction (consists of Addr, Fetch, and Compute) [7]. Figure
10 shows the minimum energy cache configuration for each
kernel program in the MPEG decoder.

Kernel
Program

Cache
size

Line
size

Set
Assoc.

Tiling
size

Energy (nJ)

VLD 64 4 8 16 223
Dequant 64 4 8 16 2900

IDCT 128 4 8 8 546
Plus 64 4 8 16 177

Display 256 16 8 16 167
Store 64 4 8 16 177
Addr 128 4 8 8 366
Fetch 128 4 8 8 367

Compute 64 4 8 16 177
Figure 10. Minimum energy cache configuration for each kernel
 program in the MPEG decoder.

Energy vs. Tiling

0
2000
4000
6000
8000

10000
12000
14000
16000

T1 T2 T4 T8 T16
Tiling size

E
ne

rg
y

(n
J)

Compress

Dequant

Energy vs. Set Associativity

0
2000
4000
6000
8000

10000
12000
14000
16000

SA1 SA2 SA4 SA8
Set Assoc.

E
ne

rg
y

(n
J)

Compress

Dequant

The procedure to calculate the miss rate, # of processor cycles
and energy of the large program is as above. The input to the
procedure is a set of records for each kernel program, where a
record is defined by (T, L, S, B, mr, C, E). Here T is the cache
size, L is the line size, S is the degree of set associativity, B is
the tiling size, mr is the miss rate, C is the number of cycles and
E is the energy. For each combination of T, L, S, B, we
compute the miss rate, the number of cycles and energy for the
whole program (T, L, S, B, MISS_R, CYCLES, ENERGY). Let
trip(j) be the number of times kernel program j is invoked. The
procedure to determine the cache configuration that satisfies the
energy bound or the time bound or both the energy and time
bound is the same as before.

The minimum energy cache configuration for the MPEG
decoder is cache size of 64 bytes, line size of 4 bytes, 8-way set
associativity and tiling size of 16. The energy consumption for
this configuration is only 293,000 nJ and the number of
processor cycles is 142,000. The cache configuration
corresponding to the minimum number of processor cycles
(121,000) is cache size of 512 bytes, line size of 16 bytes, 8-
way set associativity and tiling size of 8. The corresponding
energy is 1,110,000 nJ. Note that the lowest energy cache
configuration for the large program is different from the lowest
energy configuration any of the kernel programs. Also the
cache configuration corresponding to lowest energy is quite
different from the configuration corresponding to minimum
number of processor cycles.

6. CONCLUSION
We presented a data memory exploration procedure for low
power, embedded systems. Our analysis shows that while
increasing cache size, cache line size, tiling and set associativity
reduces the miss rate and the number of cycles, it does not
necessarily reduce the energy. Thus it is important to add
energy to the (traditional) performance metrics of size and
number of processor cycles. Furthermore, the miss rate can be
significantly reduced by suitable off-chip data organization if the
arrays are compatible (since the conflict misses can be
completely eliminated). Thus off-chip data organization should
be an integral part of the design procedure. The energy-time
tradeoffs developed in this analysis enable us to find the
minimum energy cache configuration if there is a bound on the
number of cycles or the minimum time cache configuration if
there is a bound on the energy. This exploration procedure was
validated by performing simulation experiments on small
benchmark loop kernels (Compress, Matrix Multiplication,
PDE, SOR, Dequant) as well as the MPEG decoder which
consists of several loop kernels. We found that the minimum
time cache configuration can be significantly different from the
minimum energy cache configuration. Furthermore, the
minimum energy (or time) cache configuration for a large

program (like the MPEG decoder) can be quite different from
the minimum energy (or time) cache configuration of its
constituent kernel programs.

7. ACKNOWLEDGEMENTS
This work was carried out at the Center of Low Power
Electronics which is supported by the National Science
Foundation, the state of Arizona, and 13 member companies
from the microelectronics industry. The authors would like to
thank Andreas Wild of Motorola for supporting this research,
Manapat Rajesh of Cypress for providing energy estimates of
off-chip memory, and P. R. Panda of Synopsys for sharing his
work on caches for embedded applications.

8. REFERENCES
[1] P. R. Panda, N. D. Dutt, and A. Nicolau. “Data Cache
 Sizing for Embedded Processor Applications.”
 Technical Report ICS-TR-97-31, University of
 California, Irvine, June 1997.
[2]P. R. Panda, N. D. Dutt, and A. Nicolau. “Architectural
 Exploration and Optimization of Local Memory in
 Embedded Systems.” International Symposium on
 System Synthesis (ISSS 97), Antwerp, Sept. 1997.
[3] M. B. Kamble and K. Ghose, “Analytical Energy
 Dissipation Models for Low Power Caches”,
 International Symposium on Low Power Electronics
 and Design, 1997.
[4] S. E. Wilton and N. Jouppi, “An Enhanced Access and
 Cycle Time Model for On-chip Caches”, Digital
 Equipment Corporation Western Research Lab, Tech.
 Report 93/5, 1994.
[5] C. Su and A. Despain, “Cache Design Trade-offs for
 Power and Performance Optimization: A Case Study”,
 International Symposium on Low Power Electronics
 and Design, pages 63-68, 1995.
[6] P. Hicks, M. Walnock, R. M. Owens, “Analysis of
 Power Consumption in Memory Hierarchies”,
 International Symposium on Low Power Electronics
 and Design, pages 239-242, 1997.
[7] A. Thordarson, “Comparison of Manual and
 Automatic Behavioral Synthesis of MPEG Algorithm”,
 Master’s thesis, University of California, Irvine, 1995.
[8] D. Kirovski, C. Lee, M. Potkonjak, and W. Mangione-
 Smith, “Application –Driven Synthesis of Core-based
 Systems”, In Proceedings of the IEEE/ACM
 International Conference on Computer Aided Design,
 pages 104-107, San Jose, CA, November 1997.
[9] M. E. Wolf and M. Lam. “A Data Locality
 Optimizing Algorithm.” In proceedings of the
 SIGPLAN’9 Conference on Programming Language
 Design and Implementation, pages 30-44, June 1991.
[10] J. L. Hennessy and D. A. Patterson, “Computer
 Architecture A Quantitative Approach”, 2nd edition
 Morgan Kaufman Publishers, 1996.
[11] J. Edler and M. D. Hill, “ Dinero IV Trace-Driven
 Uniprocessor Cache Simulator”, web site:
 http://www.neci.nj.nec.com/homepages/edler/d4 or
 http://www.cs.wisc.edu/~markhill/DineroIV.

∑
∑

∑
∑

=

=

=

j

j

j

j

jtripjEENERGY

jtripjCCYCLES

jtrip

jtripjmr
RMISS

)(*)(

)(*)(

)(

)(*)(
_

