Memory Hierarchy Reconfiguration for Energy and Performance in
General-Purpose Processor Architectures

Rajeev BalasubramonigrDavid Albonesi, Alper Buyuktosunogliy and Sandhya Dwarkadas
f Department of Computer Science
! Department of Electrical and Computer Engineering
University of Rochester

Abstract improvements can be realized. Arguably the single biggest
potential bottleneck for many applications in the future will
Conventional microarchitectures choose a single mem- be high memory latency and the lack of sufficient mem-
ory hierarchy design point targeted at the average appli- ory bandwidth. Although advances such as non-blocking
cation. In this paper, we propose a cache and TLB layout caches [10] and hardware and software-based prefetch-
and design that leverages repeater insertion to provide dy-ing [14, 21] can reduce latency in some cases, the under-
namic low-cost configurability trading off size and speed lying structure of the memory hierarchy upon which these
on a per application phase basis. A novel configuration approaches are implemented may ultimately limit their ef-
management algorithm dynamically detects phase changedectiveness. In addition, power dissipation levels have in-
and reacts to an application’s hit and miss intolerance in creased to the point where future designs may be funda-
order to improve memory hierarchy performance while tak- mentally limited by this constraint in terms of the function-
ing energy consumption into consideration. When applied ality that can be included in future microprocessors. Al-
to a two-level cache and TLB hierarchy at gri technol- though several well-known organizational techniques can
ogy, the result is an average 15% reduction in cycles per be used to reduce the power dissipation in on-chip mem-
instruction (CPI), corresponding to an average 27% reduc- ory structures, the sheer number of transistors dedicated to
tion in memory-CPI, across a broad class of applications the on-chip memory hierarchy in future processors (for ex-
compared to the best conventional two-level hierarchy of ample, roughly 92% of the transistors on the Alpha 21364
comparable size. Projecting to subufin technology design are dedicated to caches [6]) requires that these structures be
considerations that call for a three-level conventional cache effectively used so as not to needlessly waste chip power.
hierarchy for performance reasons, we demonstrate that a Thus, new approaches that improve performance in a more
configurable L2/L3 cache hierarchy coupled with a conven- energy-efficient manner than conventional memory hierar-
tional L1 results in an average 43% reduction in memory chies are needed to prevent the memory system from fun-
hierarchy energy in addition to improved performance. damentally limiting future performance gains or exceeding
power constraints.

The most commonly implemented memory system or-
ganization is likely the familiar multi-level memory hier-
archy. The rationale behind this approach, which is used

The performance of general purpose microprocessorsprimarily in caches but also in some TLBs.§, in the
continues to increase at a rapid pace. In the last 15 yearsMIPS R10000 [24]), is that a combination of a small, low-
performance has improved at a rate of roughly 1.6 times perlatency L1 memory backed by a higher capacity, yet slower,
year with about half of this gain attributed to techniques for L2 memory and finally by main memory provides the best
exploiting instruction-level parallelism and memory local- tradeoff between optimizing hit time and miss time. Al-
ity [13]. Despite these advances, several impending bottle-though this approach works well for many common desk-
necks threaten to slow the pace at which future performancetop applications and benchmarks, programs whose work-
ing sets exceed the L1 capacity may expend considerable

*This work was supported in part by NSF grants CDA-9401142, EIA- .. ; : _
9972881, CCR_0702466, CCR_9701915, CCR_9811929, CCR-9988361 IMe and energy transferring data between the various lev

and CCR-9705594; by DARPA/ITO under AFRL contract F29601-00-k- €IS Of the hierarchy. If the miss tolerance of the applica-
0182; and by an external research grant from DEC/Compag. tion is lower than the effective L1 miss penalty, then perfor-

1 Introduction

0-7695-0924-X/2000/$10.00 © 2000 |EEE 1

mancemay degradesignificantly due to instructionswait-
ing for operanddo arrive. For suchapplications,a large,
single-level cachglasusedin the HP PA-8X00 seriesof mi-
croprocessorfl 2, 17, 18]) mayperformbetterandbe more
enegy-efiicientthanatwo-level hierarchyfor the sameto-
tal amountof memory For similar reasonsthe PA-8X00
seriesalsoimplementsa large, single-lezel TLB. Because
the TLB andcacheare accessednh parallel, a larger TLB
canbeimplementedvithoutimpactinghit time in this case
dueto thelargeL1 cacheghatareimplemented.

The fundamentalssuein currentapproachess that no
one memoryhierarchyorganizationis bestsuitedfor each
application. Acrossa diverseapplicationmix, there will
inevitably be significantperiodsof executionduringwhich
performancedegradesand enegy is needlesslyexpended
due to a mismatchbetweenthe memory systemrequire-
mentsof the applicationandthe memoryhierarchyimple-
mentation. In this paper we presenta configurablecache
andTLB orchestratedy a configuratioralgorithmthatcan
be usedto improve the performanceand enegy-efficiency
of the memoryhierarchy Key to our approachs the ex-
ploitation of the propertiesof corventionalcachesand fu-
ture technologytrendsin orderto provide cacheand TLB
configurability in a low-intrusive manner Our approach
monitorscacheand TLB usageby detectingphasechanges
usingmissratesandbranchfrequenciesandimprovesper
formanceby properlybalancinghit lateng intolerancewith
misslateng intolerancedynamicallyduringapplicationex-
ecution (using CPI as the ultimate performancemetric).
Furthermoreinsteadof changingheclockrateasproposed
in [2], we implementa cacheand TLB with a variablela-
teng/ sothatchangesn the organizatiorof thesestructures
only impactmemoryinstructionlateng/ andthroughput.Fi-
nally, enegy-avaremodificationgto the configuratioralgo-
rithm areimplementedhat trade off a modestamountof
performancedor significantenegy savings.

Our previous approachego this problem[2, 3] have
exploited the partitioning of hardware resourcesto en-
able/disablepartsof the cacheundersoftware control, but
in alimited manner Theissuesof how to practicallyimple-
mentsuchadesignwverenotaddresseih detail, theanalysis
only looked at changingconfigurationson an application-
by-applicationbasis(and not dynamicallyduring the exe-
cutionof asingleapplication) andthe simplifying assump-
tion was madethat the bestconfigurationwas known for
eachapplication. Furthermore the organizationand per
formanceof the TLB wasnot addressedandthereduction
of the processorclock frequeng with increasedn cache
sizelimited the performancémprovementhatcouldbere-
alized.

Recently Ranganathamdve, andJouppi[22] proposed
areconfigurableachen whichaportionof thecachecould
be usedfor anotherfunction, suchasan instructionreuse

buffer. Although the authorsshow that suchan approach
only modestlyincreasescacheaccesstime, fundamental
changego thecachemayberequiredsothatit maybeused
for otherfunctionality aswell, andlong wire delaysmay
be incurredin sourcingand sinking datafrom potentially
severalpipelinestages.

This papersignificantlyexpandsuponour resultsin [5]
that addressednly performancen a limited mannerfor
onetechnologypoint (0.1xm) usinga different(morehard-
wareintensive) configurationalgorithm. In this paper we
explore the applicationof the configurablehierarchyas a
L1/L2 replacemenin 0.1um technologyandasan L2/L3
replacementor a0.035um featuresize. For the former, we
demonstrat@n average27% improvementin memoryper
formancewhichresultsin anaveragel 5%improvementn
overall performanceas comparedo a corventionalmem-
ory hierarchy Furthermore,the enegy-avare enhance-
mentsthatwe introducebringmemoryenegy dissipatiorin
line with a corventionalorganizationwhile still improving
memoryperformancedy 13% relative to the corventional
approachFor 0.035um geometrieswheretheprohibitively
high latenciesof large on-chipcached1] call for a three-
level corventionalhierarchyfor performancereasonswe
demonstrat¢hata configurabld2/L3 cachehierarchycou-
pledwith acorventionalL1 reduce®verallmemoryenegy
by 43% while even slightly increasingperformance.This
latter resultdemonstratethatbecaus@ur configurableap-
proachsignificantlyimprovesmemoryhierarchyefficiency,
it cansene asa partialsolutionto the significantpower dis-
sipationchallengedacingfuture processoarchitects.

Therestof this paperis organizedasfollows. Thecache
and TLB architecturesare describedin Section2 includ-
ing the modificationsnecessaryo enabledynamicrecon-
figuration. In Section3, we discussthe dynamicselection
mechanismsincluding the counterhardware requiredand
the configurationmanagemenalgorithms. In Sections4
and5, we describeour simulationmethodologyandpresent
aperformanceandenegy dissipationcomparisorwith con-
ventionalmulti-level cacheandTLB hierarchiegor thetwo
technologydesignpoints. Finally, we concludein Sec-
tion 6.

2 Cacheand TLB Circuit Structures

In this section,we describethe circuit structuresof the
corventionaland configurablecachesand TLBs that we
consider We alsodescribewo differentapproachefor us-
ing configurablecachesas replacementgor corventional
on-chipcachehierarchies.

2.1 Configurable CacheOrganization

The cacheand TLB structures(both corventionaland
configurable)that we modelfollow that describedby Mc-

Even Data Bus Odd Data Bus
| |

Even Data Bank (1MB) Odd Data Bank (1MB)

512KB Array
Structure

Figure 1. The overall organizationof the cachedata
arrays

Farlandin his thesis[19]. McFarlanddevelopeda detailed
timing modelfor boththecacheandTLB thatbalancedoth
performanceand enegy considerationsn subarrayparti-
tioning, andwhich includesthe effectsof technologyscal-
ing.

We startwith a corventional2MB datacachethatis or-
ganizedbothfor fastaccesgsime andenenpy efficiencgy. As
is shavn in Figure 1, the cacheis structuredastwo 1MB
interleaved banks in orderto provide sufiicient memory
bandwidthfor the four-way issuedynamicsuperscalapro-
cessothatwe simulate.In orderto reduceaccesdime and
enegy consumptioneachlMB bankis furtherdividedinto
two 512KB SRAM structuresone of which is selectedon
eachbankaccess.We make a numberof modificationsto
this basicstructureto provide configurabilitywith little im-
pactonaccesdime, enepgy dissipationandfunctionalden-
sity.

The dataarray sectionof the configurablestructureis
shawvn in Figure2 in which only the detailsof onesubarray
areshown for simplicity. (The othersubarraysare identi-
cally organized). Therearefour subarrayseachof which
containsfour ways. In both the corventionaland config-
urablecache,two addressbits (Subariy Selec} are used
to selectonly one of the four subarrayson eachaccessn
orderto reduceenegy dissipation. The otherthreesubar
rayshavetheirlocalwordlinesdisabledandtheir prechage,
senseamp,andoutputdriver circuitsarenot activated. The
TLB virtual to real pagenumbertranslationandtag check
proceedn parallelandonly the outputdriversfor the way
in which the hit occurredareturnedon. Parallel TLB and
tagacceszanbeaccomplishedf the operatingsystemcan
ensurdahatindex_bits-page offsetbits bits of thevirtual and
physicaladdresseareidentical,asis the casefor the four-
way setassociatie 1IMB dual-banlkedL1 datacachein the
HP PA-8500[11].

In orderto provide configurability while retainingfast

1The banksareword-interleaed whenusedasan L1/L2 replacement
andblockinterleaved whenusedasan L2/L3 replacement.

accesdimes, we implementseveral modificationsto Mc-
Farlands baselinedesignasshawn in Figure2:

e McFarlanddrivesthe globalwordlinesto the centerof
eachsubarrayandthenthelocal wordlinesacrosshalf
of the subarrayin eachdirectionin orderto minimize
the worst-casedelay In the configurablecache,be-
causewe are more concernedvith achieving compa-
rabledelaywith a corventionaldesignfor oursmallest
cacheconfigurationswe distribute the global word-
linesto the nearesendof eachsubarrayanddrive the
localwordlinesacrosgheentiresubarray

e McFarlandorganizeghe databits in eachsubarrayby
bit number That is, databit O from eachway are
groupedtogether thendatabit 1, etc. In the config-
urablecache,we organizethe bits accordingto ways
asshavn in Figure2 in orderto increasehe number
of configurationoptions.

e Repeateswitchesareusedin the global wordlinesto
electricallyisolateeachsubarray Thatis, subarray$
and 1 do not suffer additional global wordline delay
dueto the presenceof subarray? and3. Providing
switchesasopposedo simplerepeaterslsoprevents
wordline switchingin disabledsubarraygherebysar-
ing dynamicpower.

e Repeateswitchesarealsousedin the local wordlines
to electricallyisolateeachway in a subarray There-
sult is that the presenceof additionalways doesnot
impactthe delay of the fastestways. Dynamicpower
dissipationis alsoreducedby disablingthe wordline
driversof disabledways.

e Configuation Control signalsfrom the Configuiation
Reagisterprovide the ability to disableentiresubarrays
or wayswithin an enabledsubarray Local wordline
anddataoutputdriversand prechage and senseamp
circuits are not activated for a disabledsubarrayor
way.

Using McFarlands areamodel, we estimatethe addi-
tionalareafrom addingrepeateswitchego electricallyiso-
latewordlinesto be 7%. In addition,dueto thelarge capac-
ity (andresultinglong wordlines)of eachcachestructure,
a fasterpropagatiordelayis achieved with thesebuffered
wordlinescomparedwith unbufferedlines. Moreover, be-
causdocal wordline driversarerequiredin a corventional
cache,the extra driversrequiredto isolate ways within a
subarraydo not impactthe spacingof the wordlines,and
thus bitline lengthis unafected. In termsof enegy, the
additionof repeateswitchesncreaseshetotalmemoryhi-
erarchyenengy dissipationby 2-3% in comparisorwith a
cachewith norepeatersor the simulatedbenchmarks.

Subarray2 Subarray0

Subarrayl Subarray3

Precharge

Pre-
oftSiel | |

Local Wordline .

T w1

SO0 000 |04

Way3 Way?2 Way1

LGaT]|

Row

Way0 Decode|

Column
MUXes

Sense
Amps

‘ : Data Bus

Subarray Sele
(from address)

Cache Select
Logic

Tag Hit
(from tags)

Subarray/Way Select

Configuration Control
(from Config Register)

Figure2. The organizationof the dataarraysectionof oneof the 512KB cachestructures

2.2 Configurable CacheOperation

With thesemodificationsthe cachebehaesasa virtual
two-level, physicalone-level non-inclusve cachehierarchy
with the sizes,associatiities, andlatenciesof the two lev-
elsdynamicallychosen.In otherwords,we have designed
asinglelarge cacheorganizationto serne asa configurable
two-level non-inclusve cachehierarchy where the ways
within eachsubarraythat are initially enabledfor an L1
accessarevariedto matchapplicationcharacteristicsThe
lateng of the two sectionds changedn half-cycle incre-
mentsaccordingto the timing of eachconfiguration(and
assuminga 1 GHz processor).Half cycle incrementsare
requiredto provide the granularityto distinguishthe differ-
entconfigurationsn termsof their organizatiorandspeed.
Suchan approactcanbe implementedy capturingcache
datausingboth phasef the clock, similar to the double-
pumpedAlpha 21264 data cache[16], and enablingthe
appropriatelatch accordingto the configuration. The ad-
vantagesof this approachis that the timing of the cache
canchangewith its configuratiorwhile the main processor
clockremainsunafected,andthatno clock synchronization
is necessarpetweerthe pipelineandcache/TLB.

However, becausea constanttwo-stagecachepipeline
is maintainedregardlessof the cacheconfiguration,cache
bandwidthdegradesfor the larger, slower configurations.
Furthermoretheimplementatiorof a cachewhoselateng
can vary on half-cycle incrementsrequirestwo pipeline
modifications First,thedynamicschedulindhardwaremust

be able to speculatiely issue(assuminga datacachehit)
load-dependeninstructionsat different times depending
on the currently enabledcacheconfiguration. Second for
someconfigurationsrunningthe cacheon half-cycleincre-
mentsrequiresanextra half-cycle for accesse® be caught
by the processoclock phase.

When usedas a replacemenfor a corventionallL1/L2
on-chip cachehierarchy the possible configurationsare
shavnin Figure3. Althoughmultiple subarraysnaybeen-
abledasL1 in anorganizationasin a corventionalcache,
only oneis selectedeachaccessaccordingto the Subariay
Selecffield of theaddressWhenamissin theL1 sectionis
detectedall tag subarraysandwaysareread. This permits
hit detectionto datain the remainingportion of the cache
(designatechs L2 in Figure 3). Whensucha hit occurs,
thedatain theL1 section(which hasalreadybeenreadout
andplacedinto a buffer) is swappedwith thedatain the L2
section.In the caseof a missto bothsectionsthedisplaced
blockfromtheL1 sectionis placednto thelL2 section.This
preventsthrashingn the caseof low-associatie L1 organi-
zations.

The direct-mappedb12KB andtwo-way setassociatie
1MB cacheorganizationsarelower enegy, andlower per
formance, alternatves to the 512KB two-way and 1MB
four-wayorganizationstespectiely. Theseoptionsactivate
half the numberof wayson eachaccesdor the samecapac-
ity astheir counterparts.For executionperiodsin which
thereare few cacheconflicts and hit lateng toleranceis
high, the low enegy alternatves may resultin compara-

Subarray/Way Allocation (L1 or L2)

L1 L1 L1 Subarray 2 Subarray 0 Subarray 1 Subarray 3
Size Assoc Acc Timg W3| W2| W1l WO W3| W2| W1| WOl WO| W1| W2| W3 WO| W1l W2| W3
256-1 256KB l1lway 2.0 L2 L2 | L2 |L2 L2 |L2 (L2 |L1|L1|L2|L2|L2(|L2|L2|L2|L2
512-2 512KB 2way 2.5 L2 (L2 (L2 (L2 (L2 |L2 {L2 (L2 (LY |LL|L2|L2|L2|L2|L2|L2
-% 768-3 768KB 3way 25 L2 L2 | L2 |L2 L2 LT (LY |LT|L2|LT (LY |L2(L2]|L2|L2|L2
E, 1024-4 | 1024KB 4 way 3.0 L2 L2 | L2 |L2|L2|LT (L2 |LT|L2 LT (LT |LT|L2]|L2|L2|L2
fo) 512-1 512KB 1way 3.0 L2 (L2 (L2 (L1 (L2 |L2 |L2 (L2 (LY |L2 |L2|L2|L1|L2|L2|L2
% 1024-2 | 1024KB 2way 3.5 L2 L2 | L1 |L1 (L2 |L2 (L2 |LT|L2|LT(L2|L2|LT|LT|L2|L2
S 1536-3 | 1536KB 3way 4.0 (L2 |L21|L1|L1 (L2 L2 |L2|LL|LL|LD|LD|L2|LL|LL|LL|L2
2048-4 | 2048KB 4way 4.5 I I 15 I I 5 I 5 I I I I 1 I

Figure 3. Possiblel 1/L2 cacheorganizationghat canbe configuredshovn by the waysthatareallocatedto L1 and
L2. Only oneof the four 512KB SRAM structureds shovn. Abbreviationsfor eachorganizationarelistedto the left
of thesizeandassociatiity of theL1 sectionwhile L1 accessimesin cyclesaregivenontheright. Notethatthe TLB
accessnay dominatethe overall delay of someconfigurations.The numberdisted heresimply indicatethe relative
orderof theaccesgimesfor all configurationsandthusthe size/accessme tradeofs allowable.

ble performanceyet potentially save considerablesneny.
Theseconfigurationsaare usedin an enegy-avare modeof
operatiorasdescribedn Section3.

Note thatbecausesomeof the configurationspanonly
two subarrayswhile othersspanfour, the numberof sets
is not alwaysthe same. Hence,it is possiblethat a given
addressnight mapinto a certaincachdine atonetime and
into anotherat anothertime (calleda mis-map. In cases
wheresubarrayswo andthreearedisabledthe high-order
Subariay Selecssignalis usedasatagbit. This extratagbit
is storedon all accessem orderto detectmis-maps.Mis-
mappeddatais handledthe sameway asa L1 missandL2
hit, i.e., it resultsin a swap. Our simulationsindicatethat
sucheventsareinfrequent.

In sub-0.Jum technologiesthe long accesdatenciesof
alarge on-chipL2 cache[1] may be prohibitive for those
applicationsvhich make useof only a smallfractionof the
L2 cache.Thus,for performancaeasonsa three-level hi-
erarchywith a moderatesize (e.g., 512KB) L2 cachewiill
becomean attractve alternatve to two-level hierarchiesat
thesefeaturesizes. However, the costmay be a significant
increasen enegy dissipationdueto transfersnvolving the
additionalcachdevel. We demonstratén Section5 thatthe
useof theaforementionedonfigurablecachestructureasa
replacementor corventionalL2 andL3 cachesansignif-
icantly reduceeneqgy dissipationwithout any compromise
in performancesfeaturesizesscalebelov 0.1um.

vpn ppn

switth - —»! CcAM [RAM
enable 4\>KL 1
- CAM [RAM
enable 4>ﬂ> 1 *D
— CAM ™ RAM ™
enable H[ﬁ* 1 +D
I
| I
| I
I
L CAM = RAM [
enable - L |

Figure4. Theorganizationof the configurableTLB

2.3 Configurable TLB Organization

Our 512-entry fully-associatve TLB can be similarly
configuredasshawn in Figure4. Thereareeight TLB in-
crementseachof which containsa CAM of 64 virtual page
numbersandanassociateRAM of 64 physicalpagenum-

bers.Switchesareinsertedon theinput andoutputbusesto
electricallyisolatesuccessie increments.Thus,the ability
to configurea larger TLB doesnot degradethe accesgime
of theminimal size(64 entry) TLB. Similarto thecachede-
sign, TLB missegesultin asecondacces$ut to thebackup
portionof the TLB.

3 Dynamic SelectionMechanisms

In this section,we first describeselectionmechanisms
for the configurablecacheandTLB whenusedasareplace-
mentfor a conventionalL1/L2 on-chip hierarchy In the
lastsubsectionwe discusghe mechanismssappliedto a
configurabld_2/L3 cachehierarchycoupledwith acorven-
tional fixed-oiganization_1 cache.

Our configurablecacheand TLB approachmalesit pos-
sible to pick appropriateconfigurationsand sizes based
on applicationrequirements.The different configurations
spenddifferentamountsof time and enegy accessinghe
L1 and the lower levels of the memory hierarchy Our
heuristicsimprove the efficiencgy of the memoryhierarchy
by trying to minimize idle time dueto memoryhierarchy
access. The goal is to determinethe right balancebe-
tweenhit lateny and missratefor eachapplicationphase
basedon the toleranceof the phasefor the hit and miss
latencies. Our approachis to designthe selectionmecha-
nismsto improve performanceandthento introducemod-
ificationsto the heuristicsthat opportunisticallytradeoff a
smallamountof performancdor significantenegy sasings.
Theseheuristicsrequire appropriatemetrics for assessing
thecache/TLBperformancef agivenconfigurationduring
eachapplicationphase.

3.1 Search Heuristics

LargelL1 cachedhave ahighhit rate,but alsohave higher
accesdimes. To arrive at the cacheconfigurationthat is
the optimal trade-of point betweerthe cachehit andmiss
times,we usea simplemechanisnthatusespasthistoryto
pick a sizefor the future,basedon CPI asthe performance
metric.

Our initial schemeis tuned to improve performance
andthus exploresthe following five cacheconfigurations:
direct-mappe®56KB L1, 768KB 3-way L1, 1MB 4-way
L1, 1.5MB 3-way L1, and2MB 4-way L1. The512KB 2-
way L1 configurationprovidesno performanceadvantage
overthe 768KB 3-way L1 configuration(dueto theiriden-
tical accesdimesin cycles)andthusthis configurationis
not used. For similar reasonsthe two low-enegy config-
urations(direct-mappedb12KB L1 andtwo-way setasso-
ciative IMB L1) are only usedwith modificationsto the
heuristicshatreduceenegy (describedshortly).

At the end of eachinterval of execution (100K cycles
in our simulations),we examinea setof hardware coun-

ters. Thesehardwarecountergell usthemissrate,the IPC,
and the branchfrequeng experiencedby the application
in that lastinterval. Basedon this information, the selec-
tion mechanismwhich could be implementedn software
or hardware) picks one of two states- stableor unstable.
Theformersuggestshatbehavior in thisinterval is notvery
differentfrom the last and we do not needto changethe
cacheconfigurationwhile the latter suggestshattherehas
recentlybeena phasechangein the programandwe need
to exploreandpick anappropriatesize.

The initial stateis unstableandthe initial L1 cacheis
choserto bethe smallest{256KBin this paper).At theend
of anintenval, we enterthe CPI experiencedor thatcache
sizeinto atable. If the missrateexceedsa certainthresh-
old (1% in our case)during thatinterval, we switch to the
next largestL1 cacheconfigurationfor the next intenval of
operationin anattemptto containtheworking set. This ex-
ploration continuesuntil the maximumL1 sizeis reached
or until the missrateis sufficiently small. At this point, the
tableis examined,the cacheconfigurationwith the lowest
CPlis picked,thetableis cleared andwe switchto the sta-
ble state.We continueto remainin thestablestatewhile the
numberof missesand branchesdo not significantly differ
from thatin the previousinterval. Whenthereis a change,
we switch to the unstablestate, returnto the smallestL1
cacheconfigurationandstartexploring again. The pseudo-
codefor themechanisnis listed below.

if (state == STABLE)
if ((num.mss-last_numnmniss) < mnoise
&& (num br-last_numbr) < br_noise)
decr m_noi se, br_noise;
el se
cache_si ze = SMALLEST;
state = UNSTABLE;

if (state == UNSTABLE)

record CPI;

if ((mss_rate > THRESHOLD)
&& (cache_size !'= MAX))
cache_si ze++;

el se
cache_size = that with best CPI;
state = STABLE;
if (cache_size == prev_cache_size)

i ncr br_noi se, mnoise;

Different applications see different variations in the
numberof missesandbranchesasthey move acrossappli-
cationphasesHence,insteadof usinga singlefixed num-
berasthethresholdo detectphasechangesywe changethis
dynamically If anexplorationphaseresultsin picking the
samecachesizeasbefore,the noisethresholdis increased
to discouragesuchneedles®xplorations. Lik ewise, every
interval spentin the stablestatecausesa slight decrement

in the noisethresholdin caseit hadbeensetto too high a
value.

The miss rate thresholdensureghat we explore larger
cachesizesonly if required.Notethata highmissrateneed
notnecessariljhave alargeimpacton performancédecause
of the ability of dynamicsuperscalaprocessorso hide L2
latencies.

Clearly, suchaninterval-basednechanisnis bestsuited
to programghatcansustainuniform behaior for anumber
of intervals. While switchingto an unstablestate,we also
move to the smallestL1 cacheconfigurationasa form of
“damagecontrol” for programsthat have irregular beha-
ior. This choiceensureghatfor theseprogramsmoretime
is spentat the smallercachesizesand henceperformance
is similar to that usinga corventionalcachehierarchy In
addition,we keeptrack of how mary intervalsarespentin
stableandunstablestates.If it turnsoutthatwe arespend-
ing too muchtime exploring, we concludethatthe program
behaior is not suitedto aninterval-basedschemeandsim-
ply remainfixedat the smallestsizedcache.

Our earlier experiments[5] useda novel hardware de-
signto estimatethe hit and misslateng intoleranceof an
applications phase(which our selectionmechanisnis at-
temptingto minimize). Theseestimatesverethenusedto
detectphasechangesas well asto guide exploration. As
our resultsshav in comparisonto thosein [5], the addi-
tional complexity of thehardwareis not essentiato obtain-
ing goodperformancePresentlywe ervisionthattheselec-
tion mechanisnwould beimplementedn software. Every
100K cycles, a low-overheadsoftware handlerwill bein-
vokedthatexaminesthe hardwarecountersandupdateghe
stateas necessary This imposesminimal hardware over-
headandallows flexibility in termsof modifying the selec-
tion mechanismWe estimatedhe codesizeof the handler
to be only 120 staticassemblyinstructions,only a fraction
of which is executedduring eachinvocation,resultingin a
netoverheadf lessthan0.1%. In termsof hardwareover-
head,we needroughly 9 20-bit countergfor the numberof
misses|oads,cycles,instructionsandbranchesin addition
to a stateregister This amountsto lessthan8,000transis-
tors.

In additionto cachereconfiguration,we also progres-
sively changethe TLB configurationon an interval-by-
interval basis. A countertracksTLB miss handlercycles
andthe L1 TLB sizeis increasedf this counterexceeds
a threshold(3% in this paper)of the total executiontime
counterfor aninterval. A singlebit is addedto eachTLB
entrythatis setto indicateif it hasbeenusedin aninterval
(andis clearedat startof aninterval). TheL1 TLB sizeis
decreased the TLB usages lessthanhalf.

For the cachereconfigurationwe choseaninterval size
of 100K cyclesso asto reactquickly to changeswithout
letting the selectiormechanisnposea high cycle overhead.

For the TLB reconfigurationwe useda larger one million

cycle interval so that an accurateestimateof TLB usage
couldbe obtained.A smallerinterval sizecouldresultin a
spuriouslyhigh TLB missrate over someintervals, and/or
low TLB usage.

3.2 Reconfiguration on a Per-Subroutine Basis

As previously mentionedtheinterval-basedchemaewill
work well only if the programcan sustainits execution
phasefor a numberof intervals. This limitation may be
overcomeby collecting statisticsand making subsequent
configurationchange®n a per-subioutinebasis. Thefinite
statemachinethatwasusedfor theinterval-basedchemes
now employedfor eachsubroutine This requiresmaintain-
ing atablewith CPI valuesat differentcachesizesandthe
next sizeto be pickedfor a limited numberof subroutines
(100in this paper).To focusonthemostimportantroutines,
we only monitor thosesubroutinesvhoseinvocationsex-
ceeda certainthresholdof instructiong(1000in this paper).
Whena subroutinegs invoked, its tableis looked up anda
changen cacheconfigurationis effecteddependingpn the
tableentry for that subroutine.Whena subroutineexits, it
updateghetablebasednthestatisticxcollectedduringthat
invocation.A stackis usedto checkpointcounterson every
subroutinecall sothatstatisticscanbe determinedor each
subroutingnvocation.

We investigatedwo subroutine-basedchemes.In the
non-nestedapproach statisticsare collectedfor a subrou-
tineandits callees.Cachesizedecisiongor asubroutinere
basedon thesestatisticscollectedfor the call-graphrooted
atthis subroutine Oncethe cacheconfigurationis changed
for asubroutinenoneof its calleescanchangehe configu-
rationunlessthe outersubroutinereturns.Thus,the callees
inheritthesizeof their callersbecaus¢heir statisticsplayed
arole in determiningthe configurationof the caller. In the
nestedscheme gachsubroutinecollectsstatisticsonly for
the periodwhenit is the top of the subroutinecall stack.
Thus, every singlesubroutingnvocationis lookeduponas
apossiblechangen phase.

Becausdhe simplernon-nestedpproachgenerallyout-
performedhenestedschemewe only reportresultsfor the
formerin Section5.

3.3 Energy-Aware Modifications

Therearetwo enegy-aware modificationsto the selec-
tion mechanismghat we consider The first takes advan-
tageof theinherentlylow-enegy configurationgthosewith
direct-mapped12KB andtwo-way setassociatie LIMB L1
caches)With this approachthe selectionmechanisnsim-
ply usestheseconfigurationsn placeof the 768KB 3-way
L1 and1MB 4-wayL1 configurations.

A secondpotentialapproachs to seriallyaccesghetag
and dataarraysof the L1 datacache. CorventionalL1

cachesalways perform paralleltag and datalookup to re-
ducehit time, therebyreadingdataout of multiple cache
ways and ultimately discardingdatafrom all but oneway.
By performingtag anddatalookupin seriesonly the data
way associatedwith the matchingtag can be accessed,
therebyreducing enegy consumption. Hence, our sec-
ond low-enegy modeoperategust like the interval-based
schemeas before, but accesseshe set-associate cache
configurationdy seriallyreadingthetaganddataarrays.

3.4 L2/L3 Reconfiguration

The selectionmechanisnfor the L2/L3 reconfiguration
is very similar to the simpleinterval-basednechanisnfor
the L1/L2. In addition, becausenve assumethat the L2
andL3 cachegbothcornventionalandconfigurableplready
useserialtag/dataaccesdo reduceenegy dissipation.the
enegy-aware modificationswould provide no additional
benefitfor L2/L3 reconfiguration.(Recallthat performing
the tag lookup first makesit possibleto turn on only the
requireddataway within a subarrayasa resultof which,
all configurationsconsumethe sameamountof enegy for
the dataarray access.)Finally, we did not simultaneously
examineTLB reconfiguratiorso asnot to vary the access
time of the fixed L1 datacache. Much of the motivation
for thesesimplificationswasdueto our expectatiorthatdy-
namic L2/L3 cacheconfigurationwould yield mostly en-
ergy saving benefitsdueto the factthatwe werenot alter
ing the L1 cacheconfiguration(the organizationof which
hasthelargestmemoryperformancémpactfor mostappli-
cations).To furtherimprove our enegy savzings at minimal
performancepenalty we also modified the searchmecha-
nismto pick a largersizedcacheif it performedalmostas
well (within 95%in our simulations)asthebestperforming
cacheduring the exploration, thusreducingthe numberof
transferdbetweertheL2 andL3.

4 Evaluation Methodology
4.1 Simulation Methodology

We usedSimplescalaf3.0[8] for theAlphaAXP instruc-
tion setto simulateanaggressie 4-way superscalaout-of-
order processar The architecturalparametersisedin the
simulationaresummarizedn Tablel.

The datamemoryhierarchyis modeledin greatdetail.
For example, contentionfor all cachesand busesin the
memoryhierarchyaswell asfor writebackbuffersis mod-
eled. The line size of 128 byteswas chosenbecauset
yieldeda muchlower missratefor our benchmarksetthan
smallerline sizes.

For bothconfigurableandcorventionalTLB hierarchies,
aTLB missatthefirstlevel resultsin alookupin thesecond

Fetchqueueentries 8
Branchpredictor comb of bimodal& 2-level gshare;
bimodal/Gsharéevell/2 entries-
2048,1024 (hist. 10),4096(global),resp.;
Combiningpred.entries- 1024;
RAS entries- 32; BTB - 2048sets 2-way

Branchmispred.lateny 8cycles
Fetch,decodejssuewidth 4
RUU andLSQ entries 64 and32
L1 I-cache 2-way; 64KB (0.1um), 32KB (0.035um)
Memorylateny 80cycles(0.1um), 114 cycles(0.035:m)
Integer ALUs/mult-div 4/2
FPALUs/mult-div 2/1

Tablel. Architecturalparameters

level. A missin the secondevel resultsin acall to a TLB
handlerthatis assumedo completein 30 cycles. Thepage
sizeis 8KB.

4.2 Benchmarks

We have useda variety of benchmarkdfrom SPEC95,
SPEC2000andthe Oldensuite[23]. Theseparticularpro-
gramswere chosenbecausdhey have high missratesfor
theL1 cacheswve considered For programswith low miss
ratesfor the smallestcachesize, the dynamicschemeaf-
fords no advantageandbehaveslike a corventionalcache.
The benchmarksvere compiledwith the Compagcc, f77,
andf90 compilersat anoptimizationlevel of O3. Warmup
timesweredeterminedor eachbenchmarkandthesimula-
tion wasfast-forwardedthroughthesephasesThe window
sizewaschoserto belargeenoughto accommodatatleast
one outermostiteration of the program,whereapplicable.
A further million instructionswere simulatedin detail to
prime all structuresbefore startingthe performancemea-
surements.Table 2 summarizeghe benchmarksand their
memoryreferenceropertiegthelL1 missrateandloadfre-

queng).
4.3 Timing and Energy Estimation

We investigatedwo futuretechnologyfeaturesizes:0.1
and 0.035:m. For the 0.035um designpoint, we usethe
cachdatengq valuesof Agarwal etal. [1] whosemodelpa-
rametersare basedon projectionsfrom the Semiconduc-
tor Industry AssociationTechnologyRoadmap[4]. For
the 0.1um designpoint, we usethe cacheand TLB tim-
ing modeldevelopedby McFarland[19] to estimatdimings
for both the configurablecacheand TLB, andthe caches
andTLBs of acorventionalL1/L2 hierarchy McFarlands
model containsseveral optimizations,including the auto-
matic sizing of gatesaccordingto loading characteristics,
and the careful consideratiorof the effects of technology

Benchmark Suite Datasets Simulationwindow (instrs) | 64K-2way L1 missrate | % of instrsthatareloads
em3d Olden 20,000nodesarity 20 1000M-1100M 20% 36%
health Olden 4 levels, 1000iters 80M-140M 16% 54%
mst Olden 256nodes entireprogram14M 8% 18%
compress | SPEC93NT ref 1900M-2100M 13% 22%
hydro2d SPEC95-P ref 2000M-2135M 4% 28%
apsi SPEC95-P ref 2200M-2400M 6% 23%
swim SPEC2000-P ref 2500M-2782M 10% 25%
art SPEC2000-P ref 300M-1300M 16% 32%

Table2. Benchmarks

scalingdown to 0.1um technology[20]. The modelinte-
gratesafully-associatve TLB with the cacheto accountfor
casesn whichtheTLB dominateghel 1 cacheaccespath.
This occurs for example,for all of the conventionalcaches
thatweremodeledaswell asfor theminimumsizel 1 cache
(directmappe®56KB) in the configurableorganization.

For the global wordline, local wordline, and output
driver selectwires, we recalculatecacheand TLB wire de-
laysusingRC delayequationgor repeatemsertion[9]. Re-
peatersareusedin the configurablecacheaswell asin the
corventionalL1 cachewheneerthey reducewire propaga-
tion delay The enepy dissipationof theserepeatersvas
accountedor aswell, andthey addonly 2-3%to thetotal
cacheeneny.

We estimatecacheand TLB enegy dissipationusinga
modified version of the analyticalmodel of Kamble and
Ghosd15]. Thismodelcalculatesacheenegy dissipation
using similar technologyand layout parametersas those
usedby the timing model(including voltagesandall elec-
trical parametersappropriatelyscaledfor 0.1um technol-
ogy). The TLB enegy modelwasderivedfrom this model
andincludedCAM matchline prechaginganddischaging,
CAM wordlineandbitline enegy dissipationaswell asthe
enegy of the RAM portion of the TLB. For mainmemory
weincludeonly theenegy dissipatediueto driving the off-
chip capacitve busses.

For all L2 and L3 caches(both configurableand con-
ventional),we assumeserialtag anddataaccessandselec-
tion of only one of 16 databanksat eachaccesssimilar
to theenepgy-saving approachusedin the Alpha 211640n-
chip L2 cache[7]. In addition,the corventionalL1 caches
weredivided into two subarrayspnly one of which is se-
lectedat eachaccess.Thus,the corventionalcachehierar
chy againstwhich we comparedour reconfigurabléhierar
chywashighly optimizedfor bothfastaccesdime andlow
enegy dissipation.

Detailed event counts were captured during Sim-
pleScalarsimulationsof eachbenchmark. Theseevent
countsincludeall of the operationghat occurfor the con-
figurablecacheaswell asall TLB events,andare usedto
obtainfinal enegy estimations.

Baseexcl. cachewith 256KB 1-way L1 & 1.75MB14-way L2
Baseincl. cachewith 256KB 1-way L1 & 2MB 16-way L2
Baseincl. cachewith 64KB 2-way L1 & 2MB 16-way L2

Intenal-baseddynamicscheme
Subroutine-basedith nestecchanges
Intenval-basedvith enegy-avare cacheconfigurations
Intenal-basedwith serialtaganddataaccess

®| T m|{O| 0| | >

Table3. Simulated_1/L2 configurations

4.4 Simulated Configurations

Table 3 shavs the corventional and dynamic L1/L2
schemeghat were simulated. We compareour dynamic
schemeswith threecornventionalconfigurationswhich are
identical in all respectsexceptthe datacachehierarchy
Thefirst usesa two-level non-inclusve cachewith adirect
mapped56KB L1 cachebacled by a 14-way 1.75MB L2
cache(configurationA). The L2 associatiity resultsfrom
thefactthat 14 waysremainin each512KB structureafter
two of the ways are allocatedto the 256KB L1 (only one
of which is selectedon eachaccess).Comparisonof this
schemewith the configurableapproachdemonstrateshe
adwantageof resizingthe first level. We alsocomparewith
a two-level inclusive cachewhich consistsof a 256KB di-
rectmapped.1 backedby a16-way2MB L2 (configuration
B). This configurationsenesto measurdhe impactof the
non-inclusve policy of the first basecaseon performance
(a non-inclusie cacheperformsworsebecausevery miss
resultsin aswapor writeback,which causegreateibusand
memoryportcontention.)We alsocomparewith a 64KB 2-
wayinclusive L1 and2MB of 16-way L2 (configurationC),
which represents typical configurationin a modernpro-
cessorand ensureghat the performancegainsfor our dy-
namically sizedcacheare not obtainedsimply by moving
from adirectmappedo asetassociatie cache.For boththe
corventionalandconfigurabld_2 cachestheaccessimeis
15 cyclesdueto serialtag anddataaccessandbus transfer
time, but is pipelinedwith a new requestbeginning every
four cycles. The corventionalTLB is atwo-level inclusive
TLB with 64 entriesin thefirst level and448entriesin the
secondevel with a6 cycle lookuptime.

For L2/L3 reconfiguration,we compareour interval-

25

Memory CPI

Figure 5. Memory CPI for corventional (A, B, and
C), interval-basedD), andsubroutine-basefE) con-
figurableschemes

basedconfigurablecachewith a conventional three-level

on-chip hierarchy In both, the L1 cacheis 32KB two-

way setassociatie with athreecycle lateng, reflectingthe

smallerL1 cachesandincreasedatenc likely requiredat

0.035:m geometrieq1]. For the corventionalhierarchy
the L2 cacheis 512KB two-way setassociatie with a 21

cycle latengy andthe L3 cacheis 2MB 16-way setassocia-
tive with a 60 cycle lateng. Serialtag and dataaccesss

usedfor both L2 andL3 cachego reduceenegy dissipa-
tion.

5 Results

We first evaluatethe performancendenegy dissipation
of theL1/L2 configurableschemesersughethreecorven-
tional approachessingdelayandenegy valuesfor 0.1um
geometries.We thendemonstraténow L2/L3 reconfigura-
tion canbe usedat finer 0.035:m geometrieso dramati-
cally improve enegy efficiency relative to a corventional
three-level hierarchybut with no compromiseof perfor
mance.

5.1 L1/L2 PerformanceResults

Figures5 and 6 shov the memory CPI and total CPI,
respectiely, achiezed by the corventional and config-
urableinterval and subroutine-basedchemedor the var
ious benchmarks.The memoryCPI is calculatedby sub-
tracting the CPI achieved with a simulatedsystemwith
a perfectcache(all hits and one cycle lateng) from the
CPI1 with the memoryhierarchy In comparingthe arith-
metic mean(AM) of the memory CPI performance the
interval-basedconfigurableschemeoutperformsthe best-
performing corventional scheme(B) (measuredn terms

&

&

Figure6. CPIfor corventional(A, B, andC), interval-
based (D), and subroutine-basedE) configurable
schemes

Cache TLB Cache TLB
contritution | contritution | explorations | changes

em3d 73% 27% 10 2
health 33% 67% 27 2
mst 100% 0% 5 3
compress 64% 36% 54 2
hydro2d 100% 0% 19 0

apsi 100% 0% 63 27
swim 49% 51% 5 6
art 100% 0% 11 5

Table 4. Contritution of the cacheand the TLB to
speedupor slovdown in the dynamicschemeandthe
numberof explorations

of a percentageeductionin CPI) by 27%, with roughly

equalcacheand TLB contributionsasis shavn in Table4.

For eachapplication,this table also presentsghe number
of cacheand TLB explorationsthat resultedin the selec-
tion of differentsizes. In termsof overall performance,
theinterval-basedchemeachievesa 15%reductionin CPI.

The benchmarkswith the biggestmemoryCPI reductions
are health (52%), compresg50%), apsi (31%), and mst

(30%).

The dramaticimprovementswith healthand compress
aredueto the fact that particularphasesf theseapplica-
tions performbestwith a large L1 cacheevenwith there-
sulting higher hit latencies(for which thereis reasonably
high tolerancewithin theseapplications). For health,the
configurableschemesettlesat the 1.5MB cachesize for
mostof the simulatedexecutionperiod, while the 768KB
configurationis chosenfor much of compress execution
period. Note that TLB reconfigurationalso plays a ma-
jor role in the performanceémprovementsachieved. These
two programsbestillustratethe mismatchthatoftenoccurs
betweenthe memoryhierarchyrequirementf particular

10

applicationphasesand the organizationof a corventional
memoryhierarchy andhow anintelligently-managedon-
figurablehierarchycanbettermatchon-chipcacheandTLB
resourcedo theseexecutionphases.Note that while some
applicationsstaywith asinglecacheandTLB configuration
for mostof their executionwindow, othersdemonstrat¢he
needto adapto therequirementsf differentphasedn each
program(seeTable 4). Regardlessthe dynamicschemes
are able to determinethe bestcacheand TLB configura-
tions, which spanthe entirerangeof possibilities,for each
applicationduringexecution.

Theresultsfor artandhydro2ddemonstratéow the dy-
namic reconfigurationmay in somecasesdegradeperfor
mance. Theseapplicationsare very unstablein their be-
havior anddo notremainin any onephasefor morethana
few intervals. Art alsodoesnotfit in 2MB, sothereis no
sizethatcauses sufficiently largedropin CPIto meritthe
costof exploration. However, the dynamicschemeiden-
tifies that the applicationis spendingmoretime exploring
thanin stablestateandturnsexplorationoff altogetherBe-
causethis happensearly enoughin caseof art (the simu-
lation window is also much larger), art shavs no overall
performancedegradation,while hydro2d hasa slight 3%
slowdown. This resultillustratesthat compileranalysisto
identify such“unstable” applicationsand override the dy-
namicselectionmechanismwith a statically-chosercache
configurationrmay be beneficial.

In comparingheinterval andsubroutine-basesthemes,
we concludethat the simpler interval-basedschemeusu-
ally outperformsthe subroutine-basedpproach.The most
notableexceptionis apsi, which hasinconsistentehaior
acrosdntervals (asindicatedby the large numberof explo-
rationsin Table 4), causingit to thrashbetweena 256KB
L1 anda 768KB L1. The subroutine-baseschemesignif-
icantly improvesperformanceelative to theinterval-based
approachaseachsubroutingnvocationwithin apsiexhibits
consistentbehaior from invocation to invocation. Yet,
dueto the overall resultsandthe additionalcompleity of
thesubroutine-basesthemetheinterval-basedchemeap-
peargto bethemostpracticalchoiceandis theonly scheme
consideredn therestof our analysis.

In termsof the effect of TLB reconfiguration,health,
swim, and compresshenefitthe mostfrom using a larger
TLB. Healthandcompresgperformbestwith 256 and 128
entries, respectrely, and the dynamic schemesettlesat
thesesizes. Swim showvs phasechangebehaior with re-
spectto TLB usageresultingin five stablephasesequiring
either2560r 512 TLB entries.

These results demonstratepotential performanceim-
provementfor onetechnologypoint andmicroarchitecture.
In orderto determinghesensitvity of ourqualitatveresults
to differenttechnologypointsandmicroarchitecturatrade-
offs, we variedthe processopipeline speedrelative to the

o
=)

o
13

o
~
|

Memory EPI
o
w

o
N

0.1 -

e

A) > S
® & & &

Figure 7. Memory EPI (in nanoJoulesjor corven-
tional (A, B, andC), interval-basedD), andenegy-
aware(F andG) configurableschemes

25

Memory CPI

0.5

e

Figure 8. Memory CPI for corventional(A, B, and
C), intenval-basedD), and enegy-aware (F and G)
configurableschemes

memorylatencies(keepingthe memoryhierarchylateng
fixed). The resultsin termsof performancamprovement
weresimilar for 1 (our basecase),1.5,and2 GHz proces-
sors.

5.2 Energy-Aware Configuration Results

We focushereon theenegy consumptiorof theon-chip
memoryhierarchy(includingthatto drive the off-chip bus).
Thememoryenegy perinstruction(memoryEPI,with each
enegy unit measuredn nanoJoulesjesultsof Figure7 il-
lustratehow asis usuallythe casewith performanceopti-
mizations the costof the performanceémprovementdueto
the configurableschemaeis a significantincreasen enegy
dissipation.Thisis causedy thefactthatenegy consump-
tion is proportionatto the associatiity of thecacheandour
configurablel 1 usedarger set-associate caches For this
reason,we explore how the enegy-awvare improvements
may be usedto provide a more modestperformanceam-

11

provementyet with a significantreductionin memoryEPI
relative to a pureperformancepproach.

From Figure 7 we obsenre that merely selectingthe
enegy-aware cache configurations(schemeF) has only
a nominal impact on enegy. In contrast,operatingthe
L1 cachein a serial tag and data accessmode (G) re-
ducesmemoryEPI by 38%r elative to the baselinenterval-
basedschemgD), bringingit in line with the bestoverall-
performing corventionalapproach(B). For compressand
swim, this approacheven achieves roughly the sameen-
ergy, with significantly betterperformancgseeFigure 8),
than corventionalconfigurationC, whose64KB two-way
L1 data cacheactivateshalf the amountof cacheevery
cycle than the smallestL1 configuration(256KB) of the
configurableschemes. In addition, becausehe selection
schemeautomaticallyadjustsfor the higher hit lateng of
serial accessthis enegy-awvare configurableapproachre-
ducesmemoryCPI by 13%relative to the best-performing
corventionalschemgB). Thus,theenegy-avareapproach
maybeusedto provide moremodesiperformancémprove-
mentsin portable applicationswhere design constraints
such as battery life are of utmostimportance. Further
more, as with the dynamicvoltageand frequeng scaling
approachesisedtoday this modemay be switchedon un-
derparticularervironmentalconditions(e.g., whenremain-
ing batterylife dropsbelow a giventhreshold)therebypro-
viding on-demananenpy-efficientoperation.

5.3 L2/L3 Performanceand Energy Results

While L1 reconfiguratiorimprovesperformanceit may
consumemore enegy than corventional approachesf
higher L1 associatie configurationsare enabled. To re-
duceenepgy, mechanismsuchasserialtaganddataaccess
(asdescribedn the previous subsectionhave to be used.
SincelL2 andL3 cachesareoften alreadydesignedor se-
rial tag and dataaccesdo save enegy, reconfigurationat
theselower levels of the hierarchywould not increasethe
enegy consumed Instead they standto decreasét by re-
ducingthe numberof datatransfersthat needto be done
betweerthevariouslevels,i.e., by improving theefficiency
of thememoryhierarchy

Thus, we investigatethe enegy benefitsof providing a
configurabld_2/L.3 cachehierarchywith afixedL1 cacheas
on-chipcachedelayssignificantlyincreasewith sub-0.Jum
geometriesDueto the prohibitively long latencieof large
cachesatthesegeometriesathree-level cachehierarchybe-
comesan attractive designoption from a performanceper
spectve. We usethe parametergrom Agarwal et al. [1]
for 0.035um technologyto illustrate how dynamicL2/L3
cacheconfigurationcan matchthe performanceof a con-
ventionalthree-level hierarchywhile dramaticallyreducing
enegy dissipation.

Figures9 and 10 comparethe performanceandeneny,

I

m3-level
Odynamic

w

Memory CPI

IN)
L

o -
|
%
S
%,
o

Figure 9. Memory CPI for corventionalthree-level
anddynamiccachehierarchies

0.3

0.25

0.2 4

0.15 | l3—level.
Odynamic

0.1

Memory EPI

0.05

0+
O N >3 ° > >
& F & F &L
[2) & &Q S

Oo <

& &
& ®

Figure 10. Memory EPI (in nanoJoulesjor corven-
tional three-level anddynamiccachehierarchies

respectiely, of thecorventionalthree-level cachehierarchy
with the configurableschemegRecallthat TLB configura-
tion wasnot attemptedsotheimprovementsaarecompletely
attributableto the cache.).Sincethe L1 cacheorganization
hasthe largestimpacton cachehierarchyperformanceas
expectedthereis little performancalifferencebetweerthe
two, aseachusesanidenticalcorventionalL1 cache How-

ever, the ability of the dynamicschemeo adaptthe L2/L3

configuratiorto theapplicationresultsn a43%reductionin

memoryEPlonaverage Thesavingsarecausedy theabil-

ity of the dynamicschemeto usea largerL2, andthereby
reducethe numberof transfersbetweenlL2 andL3. Hav-

ing only atwo-level cachewould, of course gliminatethese
transfersaltogether but would be detrimentalto program
performancdecaus®f thelarge60-cycleL2 accessThus,
in contrasto this approactof simply optingfor aloweren-
ergy, andlower performing,solution (the two-level hierar

chy), dynamicL2/L3 cacheconfigurationcanimprove per

formancewhile dramaticallyimproving enegy efficiency.

12

6 Conclusions

We have describeda novel configurablecacheand TLB
as an alternative to corventionalcachehierarchies. Re-
peaterinsertionis leveragedto enabledynamiccacheand
TLB configuration,with an organizationthat allows for
dynamicspeed/sizéradeofs while limiting the impact of
speedchangedo within the memoryhierarchy Our config-
uration managemenélgorithmis ableto dynamically ex-
aminethetradeof betweeranapplications hit andmissin-
toleranceusingCPI asthe ultimatemetricto determineap-
propriatecachesizeandspeed At 0.1um technologiesour
resultsshav an averagel5% reductionin CPlin compar
isonwith the bestcorventionallL1-L2 designof compara-
bletotal size,with thebenefitalmostequallyattributableon
averageto the configurablecacheand TLB. Furthermore,
enegy-avare enhancementso the algorithm trade off a
moremodesiperformancémprovementor asignificantre-
ductionin enegy. Projectingto 0.035:m technologiesand
a 3-level cachehierarchy we shav improved performance
with an average43% reductionin memory hierarchyen-
ergy whencomparedo a corventionaldesign. This latter
resultdemonstratethatbecaus@ur configurableapproach
significantlyimprovesmemoryhierarchyefficiengy, it can
sene asa partial solutionto the significantpower dissipa-
tion challengedacingfuture processoarchitects.

Futurework includesinvestigatingthe useof compiler
supportfor applicationswhere an interval-basedscheme
is unableto capturethe phasechangeddiffering working
sets)in anapplication. Compilersupportwould be benefi-
cial bothto selectappropriateadaptatiorpointsaswell as
to predictan applications working setsizes. Finally, im-
provementsat the circuit andmicroarchitecturalevels will
be pursuedhatbetterbalanceconfigurationflexibility with
accessime andenegy consumption.

References

[1] V.Agarwal, M. Hrishikesh,S.Keckler andD. Burger. Clock
rate versusIPC: The end of the roadfor corventional mi-
croarchitecturesProceeding®f the 27thInternational Sym-
posium on Computer Architectue, pages248-259, June
2000.

[2] D. Albonesi. Dynamic IPC/clock rate optimization. Pro-
ceedingof the 25th International Symposiunon Computer
Architectule, page282—-292 Junel998.

[3] D. Albonesi. Selectve cacheways: On-demanctachere-
sourceallocation. Proceedingsof the 32nd International
Symposiunon Microarchitectue, pages248—259,Novem-
ber1999.

[4] S.I. Association. The National TechnologyRoadmapfor
EngineersTechnicalreport,1999.

[5] R.BalasubramoniarD. Albonesi,A. Buyuktosunogluand
S.DwarkadasDynamicmemoryhierarchyperformancep-

timization. Workshopon Solvingthe MemoryWall Problem
June2000.

[6] P.Bannon.Alpha21364:A scalablesingle-chipSMP. Mi-
croprocessoorum, October1998.

[7] W. Bowhill etal. Circuitimplementatiorof a 300-MHz 64-
bit second-generatioBMOS Alpha CPU. Digital Technical
Journal, 7(1):100-118Speciallssuel1995.

[8] D.BurgerandT. Austin. The Simplescalatoolset,version
2.0.TechnicaReportTR-97-1342 University of Wisconsin-
Madison,Junel997.

[9] W. Dally andJ. Poulton.Digital SystenkEngineering Cam-
bridgeUniversity PressCambridgeUK, 1998.

[10] K. Farkasand N. Jouppi. Compleity/performancetrade-
offs with non-blockingloads. Proceeding®f the 21stInter-
national Symposiunon ComputerArchitectule, pages211—
222,April 1994.

[11] J.FleischmanPrivatecommunicationOctober1999.

[12] L. Gwennap.PA-8500's 1.5M cacheaidsperformance Mi-
croprocessoReport 11(15),Novemberl7,1997.

[13] J. Hennessy Back to the future: Time to returnto some
long standingproblemsin computersystems? Fedeated
ComputerConfeence May 1999.

[14] N. Jouppi. Improving direct-mappedacheperformancey
the additionof a small fully-associatve cacheand prefetch
buffers. Proceedingf the 17th International Symposium
on ComputerArchitecture, pages364-373May 1990.

[15] M. Kamble and K. Ghose. Analytical enegy dissipation
modelsfor low power caches.Proceedingof the Interna-
tional Symposiunon Low Power Electronics and Design
pagesl43-148 August1997.

[16] R.Kessler The Alpha 21264microprocessorlEEE Micro,
19(2):24-36March/April 1999.

[17] A. Kumar The HP PA-8000RISC CPU. IEEE Computer
17(2):27-32March1997.

[18] G.LesartreandD. Hunt. PA-8500: Thecontinuingevolution
of the PA-8000family. Proceeding®f Compcon1997.

[19] G.McFarland.CMOSTednolagy Scalingandlts Impacton
CacdheDelay. PhDthesis,StanfordUniversity, Junel997.

[20] G. McFarland and M. Flynn. Limits of scaling MOS-
FETS. TechnicalReportCSL-TR-95-62,StanfordUniver-
sity, November1995.

[21] T. Mowry, M. Lam, andA. Gupta. Designand evaluation
of a compiler algorithm for prefetching. Proceedingsof
ASPLOS-Ypages2—-73,0ctober1992.

[22] P. Ranganathan$. Adve, and N. Jouppi. Reconfigurable
cachesandtheir applicationto mediaprocessing.Proceed-
ings of the 27th International Symposiunon ComputerAr-
chitectue, pages214—224,June2000.

[23] A. Rogers,M. Carlisle, J. Reppy, and L. Hendren. Sup-
porting dynamicdatastructureson distributedmemoryma-
chines.ACM Transactionson ProgrammingLanguaesand
SystemdMar. 1995.

[24] K. Yeager The Mips R10000superscalamicroprocessor
IEEE Micro, 16(2):28—41April 1996.

13

