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Abstract

Conventional microarchitectures choose a single mem-
ory hierarchy design point targeted at the average appli-
cation. In this paper, we propose a cache and TLB layout
and design that leverages repeater insertion to provide dy-
namic low-cost configurability trading off size and speed
on a per application phase basis. A novel configuration
management algorithm dynamically detects phase changes
and reacts to an application’s hit and miss intolerance in
order to improve memory hierarchy performance while tak-
ing energy consumption into consideration. When applied
to a two-level cache and TLB hierarchy at 0.1� m technol-
ogy, the result is an average 15% reduction in cycles per
instruction (CPI), corresponding to an average 27% reduc-
tion in memory-CPI, across a broad class of applications
compared to the best conventional two-level hierarchy of
comparable size. Projecting to sub-.1� m technology design
considerations that call for a three-level conventional cache
hierarchy for performance reasons, we demonstrate that a
configurable L2/L3 cache hierarchy coupled with a conven-
tional L1 results in an average 43% reduction in memory
hierarchy energy in addition to improved performance.

1 Introduction

The performance of general purpose microprocessors
continues to increase at a rapid pace. In the last 15 years,
performance has improved at a rate of roughly 1.6 times per
year with about half of this gain attributed to techniques for
exploiting instruction-level parallelism and memory local-
ity [13]. Despite these advances, several impending bottle-
necks threaten to slow the pace at which future performance
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improvements can be realized. Arguably the single biggest
potential bottleneck for many applications in the future will
be high memory latency and the lack of sufficient mem-
ory bandwidth. Although advances such as non-blocking
caches [10] and hardware and software-based prefetch-
ing [14, 21] can reduce latency in some cases, the under-
lying structure of the memory hierarchy upon which these
approaches are implemented may ultimately limit their ef-
fectiveness. In addition, power dissipation levels have in-
creased to the point where future designs may be funda-
mentally limited by this constraint in terms of the function-
ality that can be included in future microprocessors. Al-
though several well-known organizational techniques can
be used to reduce the power dissipation in on-chip mem-
ory structures, the sheer number of transistors dedicated to
the on-chip memory hierarchy in future processors (for ex-
ample, roughly 92% of the transistors on the Alpha 21364
are dedicated to caches [6]) requires that these structures be
effectively used so as not to needlessly waste chip power.
Thus, new approaches that improve performance in a more
energy-efficient manner than conventional memory hierar-
chies are needed to prevent the memory system from fun-
damentally limiting future performance gains or exceeding
power constraints.

The most commonly implemented memory system or-
ganization is likely the familiar multi-level memory hier-
archy. The rationale behind this approach, which is used
primarily in caches but also in some TLBs (e.g., in the
MIPS R10000 [24]), is that a combination of a small, low-
latency L1 memory backed by a higher capacity, yet slower,
L2 memory and finally by main memory provides the best
tradeoff between optimizing hit time and miss time. Al-
though this approach works well for many common desk-
top applications and benchmarks, programs whose work-
ing sets exceed the L1 capacity may expend considerable
time and energy transferring data between the various lev-
els of the hierarchy. If the miss tolerance of the applica-
tion is lower than the effective L1 miss penalty, then perfor-

0-7695-0924-X/2000/$10.00 © 2000 IEEE 1



mancemay degradesignificantlydueto instructionswait-
ing for operandsto arrive. For suchapplications,a large,
single-level cache(asusedin theHPPA-8X00 seriesof mi-
croprocessors[12, 17, 18]) mayperformbetterandbemore
energy-efficient thana two-level hierarchyfor thesameto-
tal amountof memory. For similar reasons,the PA-8X00
seriesalsoimplementsa large, single-level TLB. Because
the TLB andcacheareaccessedin parallel,a larger TLB
canbeimplementedwithout impactinghit time in this case
dueto thelargeL1 cachesthatareimplemented.

The fundamentalissuein currentapproachesis that no
onememoryhierarchyorganizationis bestsuitedfor each
application. Acrossa diverseapplicationmix, therewill
inevitably besignificantperiodsof executionduringwhich
performancedegradesand energy is needlesslyexpended
due to a mismatchbetweenthe memorysystemrequire-
mentsof the applicationandthe memoryhierarchyimple-
mentation. In this paper, we presenta configurablecache
andTLB orchestratedby aconfigurationalgorithmthatcan
be usedto improve the performanceandenergy-efficiency
of the memoryhierarchy. Key to our approachis the ex-
ploitation of the propertiesof conventionalcachesandfu-
ture technologytrendsin order to provide cacheandTLB
configurability in a low-intrusive manner. Our approach
monitorscacheandTLB usageby detectingphasechanges
usingmissratesandbranchfrequencies,andimprovesper-
formanceby properlybalancinghit latency intolerancewith
misslatency intolerancedynamicallyduringapplicationex-
ecution (using CPI as the ultimate performancemetric).
Furthermore,insteadof changingtheclockrateasproposed
in [2], we implementa cacheandTLB with a variablela-
tency sothatchangesin theorganizationof thesestructures
only impactmemoryinstructionlatency andthroughput.Fi-
nally, energy-awaremodificationsto theconfigurationalgo-
rithm are implementedthat tradeoff a modestamountof
performancefor significantenergy savings.

Our previous approachesto this problem [2, 3] have
exploited the partitioning of hardware resourcesto en-
able/disablepartsof the cacheundersoftwarecontrol, but
in a limited manner. Theissuesof how to practicallyimple-
mentsuchadesignwerenotaddressedin detail,theanalysis
only looked at changingconfigurationson an application-
by-applicationbasis(andnot dynamicallyduring the exe-
cutionof asingleapplication),andthesimplifying assump-
tion was madethat the bestconfigurationwas known for
eachapplication. Furthermore,the organizationand per-
formanceof theTLB wasnot addressed,andthereduction
of the processorclock frequency with increasesin cache
sizelimited theperformanceimprovementthatcouldbere-
alized.

Recently, Ranganathan,Adve,andJouppi[22] proposed
areconfigurablecachein whichaportionof thecachecould
be usedfor anotherfunction, suchasan instructionreuse

buffer. Although the authorsshow that suchan approach
only modestly increasescacheaccesstime, fundamental
changesto thecachemayberequiredsothatit maybeused
for other functionality aswell, and long wire delaysmay
be incurredin sourcingand sinking datafrom potentially
severalpipelinestages.

This papersignificantlyexpandsuponour resultsin [5]
that addressedonly performancein a limited mannerfor
onetechnologypoint (0.1� m) usingadifferent(morehard-
wareintensive) configurationalgorithm. In this paper, we
explore the applicationof the configurablehierarchyas a
L1/L2 replacementin 0.1� m technology, andasan L2/L3
replacementfor a 0.035� m featuresize.For theformer, we
demonstrateanaverage27%improvementin memoryper-
formance,which resultsin anaverage15%improvementin
overall performanceascomparedto a conventionalmem-
ory hierarchy. Furthermore,the energy-aware enhance-
mentsthatweintroducebringmemoryenergydissipationin
line with a conventionalorganization,while still improving
memoryperformanceby 13% relative to the conventional
approach.For 0.035� mgeometries,wheretheprohibitively
high latenciesof large on-chipcaches[1] call for a three-
level conventionalhierarchyfor performancereasons,we
demonstratethataconfigurableL2/L3 cachehierarchycou-
pledwith aconventionalL1 reducesoverallmemoryenergy
by 43% while even slightly increasingperformance.This
latterresultdemonstratesthatbecauseour configurableap-
proachsignificantlyimprovesmemoryhierarchyefficiency,
it canserveasapartialsolutionto thesignificantpowerdis-
sipationchallengesfacingfutureprocessorarchitects.

Therestof this paperis organizedasfollows. Thecache
and TLB architecturesare describedin Section2 includ-
ing the modificationsnecessaryto enabledynamicrecon-
figuration. In Section3, we discussthe dynamicselection
mechanisms,including the counterhardwarerequiredand
the configurationmanagementalgorithms. In Sections4
and5, wedescribeoursimulationmethodologyandpresent
aperformanceandenergydissipationcomparisonwith con-
ventionalmulti-level cacheandTLB hierarchiesfor thetwo
technologydesignpoints. Finally, we concludein Sec-
tion 6.

2 Cacheand TLB Cir cuit Structures

In this section,we describethe circuit structuresof the
conventionaland configurablecachesand TLBs that we
consider. We alsodescribetwo differentapproachesfor us-
ing configurablecachesas replacementsfor conventional
on-chipcachehierarchies.

2.1 Configurable CacheOrganization

The cacheand TLB structures(both conventionaland
configurable)that we model follow that describedby Mc-
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Farlandin his thesis[19]. McFarlanddevelopeda detailed
timing modelfor boththecacheandTLB thatbalancesboth
performanceand energy considerationsin subarrayparti-
tioning, andwhich includesthe effectsof technologyscal-
ing.

We startwith a conventional2MB datacachethat is or-
ganizedbothfor fastaccesstime andenergy efficiency. As
is shown in Figure1, the cacheis structuredas two 1MB
interleaved banks1 in order to provide sufficient memory
bandwidthfor thefour-way issuedynamicsuperscalarpro-
cessorthatwe simulate.In orderto reduceaccesstime and
energy consumption,each1MB bankis furtherdividedinto
two 512KB SRAM structuresoneof which is selectedon
eachbankaccess.We make a numberof modificationsto
thisbasicstructureto provideconfigurabilitywith little im-
pactonaccesstime,energy dissipation,andfunctionalden-
sity.

The dataarray sectionof the configurablestructureis
shown in Figure2 in whichonly thedetailsof onesubarray
areshown for simplicity. (The othersubarraysare identi-
cally organized).Therearefour subarrays,eachof which
containsfour ways. In both the conventionalandconfig-
urablecache,two addressbits (Subarray Select) areused
to selectonly oneof the four subarrayson eachaccessin
orderto reduceenergy dissipation.The otherthreesubar-
rayshavetheir localwordlinesdisabledandtheirprecharge,
senseamp,andoutputdrivercircuitsarenot activated.The
TLB virtual to real pagenumbertranslationandtag check
proceedin parallelandonly theoutputdriversfor theway
in which the hit occurredareturnedon. Parallel TLB and
tagaccesscanbeaccomplishedif theoperatingsystemcan
ensurethatindex bits-page offsetbitsbitsof thevirtual and
physicaladdressesareidentical,asis thecasefor thefour-
way setassociative 1MB dual-bankedL1 datacachein the
HPPA-8500[11].

In order to provide configurability while retainingfast

1The banksareword-interleaved whenusedasanL1/L2 replacement
andblock interleavedwhenusedasanL2/L3 replacement.

accesstimes, we implementseveral modificationsto Mc-
Farland’sbaselinedesignasshown in Figure2:

� McFarlanddrivestheglobalwordlinesto thecenterof
eachsubarrayandthenthelocal wordlinesacrosshalf
of thesubarrayin eachdirectionin orderto minimize
the worst-casedelay. In the configurablecache,be-
causewe aremoreconcernedwith achieving compa-
rabledelaywith aconventionaldesignfor oursmallest
cacheconfigurations,we distribute the global word-
linesto thenearestendof eachsubarrayanddrive the
localwordlinesacrosstheentiresubarray.

� McFarlandorganizesthedatabits in eachsubarrayby
bit number. That is, data bit 0 from eachway are
groupedtogether, thendatabit 1, etc. In the config-
urablecache,we organizethe bits accordingto ways
asshown in Figure2 in orderto increasethe number
of configurationoptions.

� Repeaterswitchesareusedin the globalwordlinesto
electricallyisolateeachsubarray. That is, subarrays0
and 1 do not suffer additionalglobal wordline delay
due to the presenceof subarrays2 and3. Providing
switchesasopposedto simplerepeatersalsoprevents
wordlineswitchingin disabledsubarraystherebysav-
ing dynamicpower.

� Repeaterswitchesarealsousedin thelocal wordlines
to electricallyisolateeachway in a subarray. The re-
sult is that the presenceof additionalways doesnot
impactthedelayof the fastestways. Dynamicpower
dissipationis also reducedby disablingthe wordline
driversof disabledways.

� Configuration Control signalsfrom the Configuration
Registerprovide theability to disableentiresubarrays
or wayswithin an enabledsubarray. Local wordline
anddataoutputdriversandprechargeandsenseamp
circuits are not activated for a disabledsubarrayor
way.

Using McFarland’s areamodel, we estimatethe addi-
tionalareafrom addingrepeaterswitchesto electricallyiso-
latewordlinesto be7%. In addition,dueto thelargecapac-
ity (andresultinglong wordlines)of eachcachestructure,
a fasterpropagationdelay is achieved with thesebuffered
wordlinescomparedwith unbufferedlines. Moreover, be-
causelocal wordlinedriversarerequiredin a conventional
cache,the extra drivers requiredto isolateways within a
subarraydo not impact the spacingof the wordlines,and
thus bitline length is unaffected. In termsof energy, the
additionof repeaterswitchesincreasesthetotalmemoryhi-
erarchyenergy dissipationby 2-3% in comparisonwith a
cachewith no repeatersfor thesimulatedbenchmarks.
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2.2 Configurable CacheOperation

With thesemodifications,thecachebehavesasa virtual
two-level,physicalone-levelnon-inclusivecachehierarchy,
with thesizes,associativities, andlatenciesof the two lev-
elsdynamicallychosen.In otherwords,we have designed
a singlelargecacheorganizationto serve asa configurable
two-level non-inclusive cachehierarchy, where the ways
within eachsubarraythat are initially enabledfor an L1
accessarevariedto matchapplicationcharacteristics.The
latency of the two sectionsis changedon half-cycle incre-
mentsaccordingto the timing of eachconfiguration(and
assuminga 1 GHz processor).Half cycle incrementsare
requiredto provide thegranularityto distinguishthediffer-
entconfigurationsin termsof their organizationandspeed.
Suchan approachcanbe implementedby capturingcache
datausingbothphasesof the clock, similar to the double-
pumpedAlpha 21264 data cache[16], and enablingthe
appropriatelatch accordingto the configuration. The ad-
vantagesof this approachis that the timing of the cache
canchangewith its configurationwhile themainprocessor
clockremainsunaffected,andthatnoclocksynchronization
is necessarybetweenthepipelineandcache/TLB.

However, becausea constanttwo-stagecachepipeline
is maintainedregardlessof the cacheconfiguration,cache
bandwidthdegradesfor the larger, slower configurations.
Furthermore,the implementationof a cachewhoselatency
can vary on half-cycle incrementsrequirestwo pipeline
modifications.First,thedynamicschedulinghardwaremust

be able to speculatively issue(assuminga datacachehit)
load-dependentinstructionsat different times depending
on the currentlyenabledcacheconfiguration. Second,for
someconfigurations,runningthecacheonhalf-cycle incre-
mentsrequiresanextra half-cycle for accessesto becaught
by theprocessorclockphase.

When usedas a replacementfor a conventionalL1/L2
on-chip cachehierarchy, the possibleconfigurationsare
shown in Figure3. Althoughmultiplesubarraysmaybeen-
abledasL1 in anorganization,asin a conventionalcache,
only oneis selectedeachaccessaccordingto theSubarray
Selectfield of theaddress.Whenamissin theL1 sectionis
detected,all tagsubarraysandwaysareread.This permits
hit detectionto datain the remainingportion of the cache
(designatedas L2 in Figure 3). When sucha hit occurs,
thedatain theL1 section(which hasalreadybeenreadout
andplacedinto abuffer) is swappedwith thedatain theL2
section.In thecaseof amissto bothsections,thedisplaced
blockfrom theL1 sectionis placedinto theL2 section.This
preventsthrashingin thecaseof low-associativeL1 organi-
zations.

The direct-mapped512KB andtwo-way setassociative
1MB cacheorganizationsarelower energy, andlower per-
formance,alternatives to the 512KB two-way and 1MB
four-wayorganizations,respectively. Theseoptionsactivate
half thenumberof waysoneachaccessfor thesamecapac-
ity as their counterparts.For executionperiodsin which
thereare few cacheconflicts and hit latency toleranceis
high, the low energy alternatives may result in compara-
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Figure3. PossibleL1/L2 cacheorganizationsthat canbe configuredshown by the waysthatareallocatedto L1 and
L2. Only oneof thefour 512KB SRAM structuresis shown. Abbreviationsfor eachorganizationarelistedto theleft
of thesizeandassociativity of theL1 section,while L1 accesstimesin cyclesaregivenontheright. NotethattheTLB
accessmay dominatethe overall delayof someconfigurations.The numberslisted heresimply indicatethe relative
orderof theaccesstimesfor all configurationsandthusthesize/accesstime tradeoffs allowable.

ble performanceyet potentially save considerableenergy.
Theseconfigurationsareusedin anenergy-awaremodeof
operationasdescribedin Section3.

Note thatbecausesomeof the configurationsspanonly
two subarrays,while othersspanfour, the numberof sets
is not always the same. Hence,it is possiblethat a given
addressmightmapinto a certaincacheline at onetimeand
into anotherat anothertime (calleda mis-map). In cases
wheresubarraystwo andthreearedisabled,thehigh-order
SubarraySelectsignalis usedasa tagbit. Thisextra tagbit
is storedon all accessesin orderto detectmis-maps.Mis-
mappeddatais handledthesameway asa L1 missandL2
hit, i.e., it resultsin a swap. Our simulationsindicatethat
sucheventsareinfrequent.

In sub-0.1� m technologies,the long accesslatenciesof
a large on-chipL2 cache[1] may be prohibitive for those
applicationswhich make useof only a smallfractionof the
L2 cache.Thus,for performancereasons,a three-level hi-
erarchywith a moderatesize(e.g., 512KB) L2 cachewill
becomean attractive alternative to two-level hierarchiesat
thesefeaturesizes.However, thecostmaybea significant
increasein energy dissipationdueto transfersinvolving the
additionalcachelevel. Wedemonstratein Section5 thatthe
useof theaforementionedconfigurablecachestructureasa
replacementfor conventionalL2 andL3 cachescansignif-
icantly reduceenergy dissipationwithout any compromise
in performanceasfeaturesizesscalebelow 0.1� m.

CAM RAM

enable 

vpn ppn

enable 

CAM RAM

CAM RAM

enable 

CAM RAM

enable 

switch

Figure4. Theorganizationof theconfigurableTLB

2.3 Configurable TLB Organization

Our 512-entry, fully-associative TLB can be similarly
configuredasshown in Figure4. Thereareeight TLB in-
crements,eachof whichcontainsaCAM of 64virtual page
numbersandanassociatedRAM of 64 physicalpagenum-

5



bers.Switchesareinsertedon theinputandoutputbusesto
electricallyisolatesuccessive increments.Thus,theability
to configurea largerTLB doesnot degradetheaccesstime
of theminimalsize(64entry)TLB. Similar to thecachede-
sign,TLB missesresultin asecondaccessbut to thebackup
portionof theTLB.

3 Dynamic SelectionMechanisms

In this section,we first describeselectionmechanisms
for theconfigurablecacheandTLB whenusedasareplace-
ment for a conventionalL1/L2 on-chip hierarchy. In the
lastsubsection,we discussthemechanismsasappliedto a
configurableL2/L3 cachehierarchycoupledwith aconven-
tionalfixed-organizationL1 cache.

OurconfigurablecacheandTLB approachmakesit pos-
sible to pick appropriateconfigurationsand sizes based
on applicationrequirements.The differentconfigurations
spenddifferentamountsof time andenergy accessingthe
L1 and the lower levels of the memory hierarchy. Our
heuristicsimprove the efficiency of the memoryhierarchy
by trying to minimize idle time due to memoryhierarchy
access. The goal is to determinethe right balancebe-
tweenhit latency andmissratefor eachapplicationphase
basedon the toleranceof the phasefor the hit and miss
latencies.Our approachis to designthe selectionmecha-
nismsto improve performanceandthento introducemod-
ificationsto theheuristicsthatopportunisticallytradeoff a
smallamountof performancefor significantenergysavings.
Theseheuristicsrequireappropriatemetricsfor assessing
thecache/TLBperformanceof agivenconfigurationduring
eachapplicationphase.

3.1 Search Heuristics

LargeL1 cacheshaveahighhit rate,but alsohavehigher
accesstimes. To arrive at the cacheconfigurationthat is
theoptimal trade-off point betweenthe cachehit andmiss
times,we usea simplemechanismthatusespasthistory to
pick a sizefor thefuture,basedon CPI astheperformance
metric.

Our initial schemeis tuned to improve performance
andthusexploresthe following five cacheconfigurations:
direct-mapped256KB L1, 768KB 3-way L1, 1MB 4-way
L1, 1.5MB 3-way L1, and2MB 4-way L1. The512KB 2-
way L1 configurationprovidesno performanceadvantage
over the768KB 3-way L1 configuration(dueto their iden-
tical accesstimes in cycles)and thus this configurationis
not used. For similar reasons,the two low-energy config-
urations(direct-mapped512KB L1 andtwo-way setasso-
ciative 1MB L1) are only usedwith modificationsto the
heuristicsthatreduceenergy (describedshortly).

At the end of eachinterval of execution(100K cycles
in our simulations),we examinea set of hardware coun-

ters.Thesehardwarecounterstell usthemissrate,theIPC,
and the branchfrequency experiencedby the application
in that last interval. Basedon this information, the selec-
tion mechanism(which could be implementedin software
or hardware)picks oneof two states- stableor unstable.
Theformersuggeststhatbehavior in this interval is notvery
different from the last and we do not needto changethe
cacheconfiguration,while thelattersuggeststhat therehas
recentlybeena phasechangein the programandwe need
to exploreandpick anappropriatesize.

The initial stateis unstableand the initial L1 cacheis
chosento bethesmallest(256KB in thispaper).At theend
of an interval, we entertheCPI experiencedfor thatcache
sizeinto a table. If the missrateexceedsa certainthresh-
old (1% in our case)during that interval, we switch to the
next largestL1 cacheconfigurationfor thenext interval of
operationin anattemptto containtheworking set.Thisex-
plorationcontinuesuntil the maximumL1 size is reached
or until themissrateis sufficiently small. At this point, the
tableis examined,the cacheconfigurationwith the lowest
CPI is picked,thetableis cleared,andweswitchto thesta-
blestate.Wecontinueto remainin thestablestatewhile the
numberof missesandbranchesdo not significantlydiffer
from that in thepreviousinterval. Whenthereis a change,
we switch to the unstablestate,return to the smallestL1
cacheconfigurationandstartexploring again.Thepseudo-
codefor themechanismis listedbelow.

if (state == STABLE)
if ((num_miss-last_num_miss) < m_noise

&& (num_br-last_num_br) < br_noise)
decr m_noise, br_noise;

else
cache_size = SMALLEST;
state = UNSTABLE;

if (state == UNSTABLE)
record CPI;
if ((miss_rate > THRESHOLD)

&& (cache_size != MAX))
cache_size++;

else
cache_size = that with best CPI;
state = STABLE;
if (cache_size == prev_cache_size)

incr br_noise, m_noise;

Different applicationssee different variations in the
numberof missesandbranchesasthey move acrossappli-
cationphases.Hence,insteadof usinga singlefixednum-
berasthethresholdto detectphasechanges,wechangethis
dynamically. If anexplorationphaseresultsin picking the
samecachesizeasbefore,thenoisethresholdis increased
to discouragesuchneedlessexplorations. Likewise, every
interval spentin the stablestatecausesa slight decrement
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in the noisethresholdin caseit hadbeensetto too high a
value.

The miss rate thresholdensuresthat we explore larger
cachesizesonly if required.Notethatahighmissrateneed
notnecessarilyhavealargeimpactonperformancebecause
of theability of dynamicsuperscalarprocessorsto hideL2
latencies.

Clearly, suchaninterval-basedmechanismis bestsuited
to programsthatcansustainuniformbehavior for anumber
of intervals. While switchingto an unstablestate,we also
move to the smallestL1 cacheconfigurationasa form of
“damagecontrol” for programsthat have irregular behav-
ior. This choiceensuresthatfor theseprograms,moretime
is spentat the smallercachesizesandhenceperformance
is similar to that usinga conventionalcachehierarchy. In
addition,we keeptrackof how many intervalsarespentin
stableandunstablestates.If it turnsout thatwe arespend-
ing toomuchtimeexploring,weconcludethattheprogram
behavior is not suitedto aninterval-basedschemeandsim-
ply remainfixedat thesmallestsizedcache.

Our earlierexperiments[5] useda novel hardwarede-
sign to estimatethe hit andmiss latency intoleranceof an
application’s phase(which our selectionmechanismis at-
temptingto minimize). Theseestimateswerethenusedto
detectphasechangesas well as to guide exploration. As
our resultsshow in comparisonto thosein [5], the addi-
tionalcomplexity of thehardwareis notessentialto obtain-
inggoodperformance.Presently, weenvisionthattheselec-
tion mechanismwould be implementedin software. Every
100K cycles,a low-overheadsoftwarehandlerwill be in-
vokedthatexaminesthehardwarecountersandupdatesthe
stateasnecessary. This imposesminimal hardwareover-
headandallowsflexibility in termsof modifying theselec-
tion mechanism.We estimatedthecodesizeof thehandler
to beonly 120staticassemblyinstructions,only a fraction
of which is executedduringeachinvocation,resultingin a
netoverheadof lessthan0.1%. In termsof hardwareover-
head,we needroughly9 20-bit countersfor thenumberof
misses,loads,cycles,instructions,andbranches,in addition
to a stateregister. This amountsto lessthan8,000transis-
tors.

In addition to cachereconfiguration,we also progres-
sively changethe TLB configurationon an interval-by-
interval basis. A countertracksTLB misshandlercycles
and the L1 TLB size is increasedif this counterexceeds
a threshold(3% in this paper)of the total executiontime
counterfor an interval. A singlebit is addedto eachTLB
entrythat is setto indicateif it hasbeenusedin aninterval
(andis clearedat startof an interval). TheL1 TLB sizeis
decreasedif theTLB usageis lessthanhalf.

For thecachereconfiguration,we chosean interval size
of 100K cycles so as to reactquickly to changeswithout
lettingtheselectionmechanismposeahighcycleoverhead.

For the TLB reconfiguration,we useda largeronemillion
cycle interval so that an accurateestimateof TLB usage
couldbeobtained.A smallerinterval sizecouldresultin a
spuriouslyhigh TLB missrateover someintervals,and/or
low TLB usage.

3.2 Reconfigurationon a Per-Subroutine Basis

As previouslymentioned,theinterval-basedschemewill
work well only if the programcan sustainits execution
phasefor a numberof intervals. This limitation may be
overcomeby collecting statisticsand making subsequent
configurationchangeson a per-subroutinebasis.Thefinite
statemachinethatwasusedfor theinterval-basedschemeis
now employedfor eachsubroutine.This requiresmaintain-
ing a tablewith CPI valuesat differentcachesizesandthe
next sizeto be picked for a limited numberof subroutines
(100in thispaper).To focusonthemostimportantroutines,
we only monitor thosesubroutineswhoseinvocationsex-
ceedacertainthresholdof instructions(1000in thispaper).
Whena subroutineis invoked, its tableis lookedup anda
changein cacheconfigurationis effecteddependingon the
tableentry for thatsubroutine.Whena subroutineexits, it
updatesthetablebasedonthestatisticscollectedduringthat
invocation.A stackis usedto checkpointcounterson every
subroutinecall sothatstatisticscanbedeterminedfor each
subroutineinvocation.

We investigatedtwo subroutine-basedschemes.In the
non-nestedapproach,statisticsarecollectedfor a subrou-
tineandits callees.Cachesizedecisionsfor asubroutineare
basedon thesestatisticscollectedfor thecall-graphrooted
at this subroutine.Oncethecacheconfigurationis changed
for asubroutine,noneof its calleescanchangetheconfigu-
rationunlesstheoutersubroutinereturns.Thus,thecallees
inherit thesizeof theircallersbecausetheirstatisticsplayed
a role in determiningtheconfigurationof thecaller. In the
nestedscheme,eachsubroutinecollectsstatisticsonly for
the periodwhen it is the top of the subroutinecall stack.
Thus,every singlesubroutineinvocationis lookeduponas
apossiblechangein phase.

Becausethesimplernon-nestedapproachgenerallyout-
performedthenestedscheme,weonly reportresultsfor the
formerin Section5.

3.3 Energy-AwareModifications

Therearetwo energy-awaremodificationsto the selec-
tion mechanismsthat we consider. The first takesadvan-
tageof theinherentlylow-energyconfigurations(thosewith
direct-mapped512KBandtwo-waysetassociative1MB L1
caches).With this approach,theselectionmechanismsim-
ply usestheseconfigurationsin placeof the768KB 3-way
L1 and1MB 4-wayL1 configurations.

A secondpotentialapproachis to seriallyaccessthetag
and data arraysof the L1 data cache. ConventionalL1
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cachesalwaysperformparallel tag anddatalookup to re-
ducehit time, therebyreadingdataout of multiple cache
waysandultimately discardingdatafrom all but oneway.
By performingtaganddatalookup in series,only thedata
way associatedwith the matching tag can be accessed,
therebyreducingenergy consumption. Hence, our sec-
ond low-energy modeoperatesjust like the interval-based
schemeas before, but accessesthe set-associative cache
configurationsby seriallyreadingthetaganddataarrays.

3.4 L2/L3 Reconfiguration

The selectionmechanismfor the L2/L3 reconfiguration
is very similar to the simpleinterval-basedmechanismfor
the L1/L2. In addition, becausewe assumethat the L2
andL3 caches(bothconventionalandconfigurable)already
useserial tag/dataaccessto reduceenergy dissipation,the
energy-aware modificationswould provide no additional
benefitfor L2/L3 reconfiguration.(Recall that performing
the tag lookup first makes it possibleto turn on only the
requireddataway within a subarray, asa resultof which,
all configurationsconsumethe sameamountof energy for
the dataarrayaccess.)Finally, we did not simultaneously
examineTLB reconfigurationso asnot to vary the access
time of the fixed L1 datacache. Much of the motivation
for thesesimplificationswasdueto ourexpectationthatdy-
namic L2/L3 cacheconfigurationwould yield mostly en-
ergy saving benefits,dueto thefact thatwe werenot alter-
ing the L1 cacheconfiguration(the organizationof which
hasthelargestmemoryperformanceimpactfor mostappli-
cations).To further improveour energy savingsat minimal
performancepenalty, we alsomodified the searchmecha-
nismto pick a largersizedcacheif it performedalmostas
well (within 95%in oursimulations)asthebestperforming
cacheduring the exploration,thusreducingthe numberof
transfersbetweentheL2 andL3.

4 Evaluation Methodology

4.1 Simulation Methodology

WeusedSimplescalar-3.0[8] for theAlphaAXP instruc-
tion setto simulateanaggressive4-waysuperscalarout-of-
orderprocessor. The architecturalparametersusedin the
simulationaresummarizedin Table1.

The datamemoryhierarchyis modeledin greatdetail.
For example, contentionfor all cachesand busesin the
memoryhierarchyaswell asfor writebackbuffers is mod-
eled. The line size of 128 bytes was chosenbecauseit
yieldeda muchlower missratefor our benchmarksetthan
smallerline sizes.

For bothconfigurableandconventionalTLB hierarchies,
aTLB missat thefirst level resultsin alookupin thesecond

Fetchqueueentries 8
Branchpredictor comb. of bimodal& 2-level gshare;

bimodal/GshareLevel1/2entries-
2048,1024(hist. 10),4096(global),resp.;

Combiningpred.entries- 1024;
RAS entries- 32;BTB - 2048sets,2-way

Branchmispred.latency 8 cycles
Fetch,decode,issuewidth 4

RUU andLSQentries 64and32
L1 I-cache 2-way; 64KB (0.1� m), 32KB (0.035� m)

Memorylatency 80cycles(0.1� m), 114cycles(0.035� m)
IntegerALUs/mult-div 4/2

FPALUs/mult-div 2/1

Table1. Architecturalparameters

level. A missin thesecondlevel resultsin a call to a TLB
handlerthatis assumedto completein 30 cycles.Thepage
sizeis 8KB.

4.2 Benchmarks

We have useda variety of benchmarksfrom SPEC95,
SPEC2000,andtheOldensuite[23]. Theseparticularpro-
gramswerechosenbecausethey have high miss ratesfor
theL1 cacheswe considered.For programswith low miss
ratesfor the smallestcachesize, the dynamicschemeaf-
fordsno advantageandbehaveslike a conventionalcache.
The benchmarkswerecompiledwith the Compaqcc, f77,
andf90 compilersat anoptimizationlevel of O3. Warmup
timesweredeterminedfor eachbenchmark,andthesimula-
tion wasfast-forwardedthroughthesephases.Thewindow
sizewaschosento belargeenoughto accommodateat least
oneoutermostiterationof the program,whereapplicable.
A further million instructionswere simulatedin detail to
prime all structuresbeforestartingthe performancemea-
surements.Table2 summarizesthe benchmarksandtheir
memoryreferenceproperties(theL1 missrateandloadfre-
quency).

4.3 Timing and Energy Estimation

We investigatedtwo futuretechnologyfeaturesizes:0.1
and0.035� m. For the 0.035� m designpoint, we usethe
cachelatency valuesof Agarwal et al. [1] whosemodelpa-
rametersare basedon projectionsfrom the Semiconduc-
tor Industry AssociationTechnologyRoadmap[4]. For
the 0.1� m designpoint, we usethe cacheand TLB tim-
ing modeldevelopedby McFarland[19] to estimatetimings
for both the configurablecacheandTLB, and the caches
andTLBs of a conventionalL1/L2 hierarchy. McFarland’s
model containsseveral optimizations,including the auto-
matic sizing of gatesaccordingto loadingcharacteristics,
and the careful considerationof the effectsof technology
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Benchmark Suite Datasets Simulationwindow (instrs) 64K-2way L1 missrate % of instrsthatareloads
em3d Olden 20,000nodes,arity 20 1000M-1100M 20% 36%
health Olden 4 levels,1000iters 80M-140M 16% 54%
mst Olden 256nodes entireprogram14M 8% 18%

compress SPEC95INT ref 1900M-2100M 13% 22%
hydro2d SPEC95FP ref 2000M-2135M 4% 28%

apsi SPEC95FP ref 2200M-2400M 6% 23%
swim SPEC2000FP ref 2500M-2782M 10% 25%

art SPEC2000FP ref 300M-1300M 16% 32%

Table2. Benchmarks

scalingdown to 0.1� m technology[20]. The model inte-
gratesafully-associativeTLB with thecacheto accountfor
casesin whichtheTLB dominatestheL1 cacheaccesspath.
Thisoccurs,for example,for all of theconventionalcaches
thatweremodeledaswell asfor theminimumsizeL1 cache
(directmapped256KB) in theconfigurableorganization.

For the global wordline, local wordline, and output
driver selectwires,we recalculatecacheandTLB wire de-
laysusingRCdelayequationsfor repeaterinsertion[9]. Re-
peatersareusedin theconfigurablecacheaswell asin the
conventionalL1 cachewheneverthey reducewire propaga-
tion delay. The energy dissipationof theserepeaterswas
accountedfor aswell, andthey addonly 2-3%to the total
cacheenergy.

We estimatecacheandTLB energy dissipationusinga
modified versionof the analytical model of Kamble and
Ghose[15]. Thismodelcalculatescacheenergy dissipation
using similar technologyand layout parametersas those
usedby the timing model(includingvoltagesandall elec-
trical parametersappropriatelyscaledfor 0.1� m technol-
ogy). TheTLB energy modelwasderivedfrom this model
andincludedCAM matchline precharginganddischarging,
CAM wordlineandbitline energy dissipation,aswell asthe
energy of theRAM portionof theTLB. For mainmemory,
weincludeonly theenergydissipateddueto driving theoff-
chipcapacitivebusses.

For all L2 and L3 caches(both configurableand con-
ventional),we assumeserialtaganddataaccessandselec-
tion of only one of 16 databanksat eachaccess,similar
to theenergy-saving approachusedin theAlpha 21164on-
chip L2 cache[7]. In addition,theconventionalL1 caches
weredivided into two subarrays,only oneof which is se-
lectedat eachaccess.Thus,theconventionalcachehierar-
chy againstwhich we comparedour reconfigurablehierar-
chywashighly optimizedfor bothfastaccesstime andlow
energy dissipation.

Detailed event counts were captured during Sim-
pleScalarsimulationsof each benchmark. Theseevent
countsincludeall of the operationsthatoccurfor the con-
figurablecacheaswell asall TLB events,andareusedto
obtainfinal energy estimations.

A Baseexcl. cachewith 256KB 1-way L1 & 1.75MB14-way L2
B Baseincl. cachewith 256KB1-way L1 & 2MB 16-way L2
C Baseincl. cachewith 64KB 2-way L1 & 2MB 16-way L2
D Interval-baseddynamicscheme
E Subroutine-basedwith nestedchanges
F Interval-basedwith energy-awarecacheconfigurations
G Interval-basedwith serialtaganddataaccess

Table3. SimulatedL1/L2 configurations

4.4 Simulated Configurations

Table 3 shows the conventional and dynamic L1/L2
schemesthat were simulated. We compareour dynamic
schemeswith threeconventionalconfigurationswhich are
identical in all respects,except the datacachehierarchy.
Thefirst usesa two-level non-inclusivecache,with a direct
mapped256KB L1 cachebackedby a 14-way 1.75MB L2
cache(configurationA). The L2 associativity resultsfrom
thefact that14 waysremainin each512KB structureafter
two of the waysareallocatedto the 256KB L1 (only one
of which is selectedon eachaccess).Comparisonof this
schemewith the configurableapproachdemonstratesthe
advantageof resizingthefirst level. We alsocomparewith
a two-level inclusive cachewhich consistsof a 256KB di-
rectmappedL1 backedby a16-way2MB L2 (configuration
B). This configurationservesto measurethe impactof the
non-inclusive policy of the first basecaseon performance
(a non-inclusive cacheperformsworsebecauseevery miss
resultsin aswapor writeback,whichcausesgreaterbusand
memoryportcontention.)Wealsocomparewith a64KB 2-
wayinclusiveL1 and2MB of 16-wayL2 (configurationC),
which representsa typical configurationin a modernpro-
cessorandensuresthat the performancegainsfor our dy-
namicallysizedcachearenot obtainedsimply by moving
from adirectmappedto asetassociativecache.For boththe
conventionalandconfigurableL2 caches,theaccesstime is
15 cyclesdueto serialtaganddataaccessandbustransfer
time, but is pipelinedwith a new requestbeginning every
four cycles. TheconventionalTLB is a two-level inclusive
TLB with 64 entriesin thefirst level and448entriesin the
secondlevel with a 6 cycle lookuptime.

For L2/L3 reconfiguration,we compareour interval-
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Figure 5. Memory CPI for conventional(A, B, and
C), interval-based(D), andsubroutine-based(E) con-
figurableschemes

basedconfigurablecachewith a conventional three-level
on-chip hierarchy. In both, the L1 cacheis 32KB two-
waysetassociativewith a threecycle latency, reflectingthe
smallerL1 cachesandincreasedlatency likely requiredat
0.035� m geometries[1]. For the conventionalhierarchy,
the L2 cacheis 512KB two-way setassociative with a 21
cycle latency andtheL3 cacheis 2MB 16-waysetassocia-
tive with a 60 cycle latency. Serial tag anddataaccessis
usedfor both L2 andL3 cachesto reduceenergy dissipa-
tion.

5 Results

Wefirst evaluatetheperformanceandenergy dissipation
of theL1/L2 configurableschemesversusthethreeconven-
tional approachesusingdelayandenergy valuesfor 0.1� m
geometries.We thendemonstratehow L2/L3 reconfigura-
tion canbe usedat finer 0.035� m geometriesto dramati-
cally improve energy efficiency relative to a conventional
three-level hierarchybut with no compromiseof perfor-
mance.

5.1 L1/L2 PerformanceResults

Figures5 and 6 show the memoryCPI and total CPI,
respectively, achieved by the conventional and config-
urableinterval andsubroutine-basedschemesfor the var-
ious benchmarks.The memoryCPI is calculatedby sub-
tracting the CPI achieved with a simulatedsystemwith
a perfect cache(all hits and one cycle latency) from the
CPI with the memoryhierarchy. In comparingthe arith-
metic mean(AM) of the memory CPI performance,the
interval-basedconfigurableschemeoutperformsthe best-
performing conventional scheme(B) (measuredin terms
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Figure6.CPIfor conventional(A, B, andC), interval-
based(D), and subroutine-based(E) configurable
schemes

Cache TLB Cache TLB
contribution contribution explorations changes

em3d 73% 27% 10 2
health 33% 67% 27 2
mst 100% 0% 5 3

compress 64% 36% 54 2
hydro2d 100% 0% 19 0

apsi 100% 0% 63 27
swim 49% 51% 5 6

art 100% 0% 11 5

Table 4. Contribution of the cacheand the TLB to
speedupor slowdown in thedynamicschemeandthe
numberof explorations

of a percentagereductionin CPI) by 27%, with roughly
equalcacheandTLB contributionsasis shown in Table4.
For eachapplication,this table also presentsthe number
of cacheandTLB explorationsthat resultedin the selec-
tion of different sizes. In termsof overall performance,
theinterval-basedschemeachievesa15%reductionin CPI.
The benchmarkswith the biggestmemoryCPI reductions
are health (52%), compress(50%), apsi (31%), and mst
(30%).

The dramaticimprovementswith healthand compress
aredueto the fact that particularphasesof theseapplica-
tions performbestwith a largeL1 cacheevenwith the re-
sulting higher hit latencies(for which thereis reasonably
high tolerancewithin theseapplications). For health,the
configurableschemesettlesat the 1.5MB cachesize for
mostof the simulatedexecutionperiod,while the 768KB
configurationis chosenfor muchof compress’s execution
period. Note that TLB reconfigurationalso plays a ma-
jor role in theperformanceimprovementsachieved. These
two programsbestillustratethemismatchthatoftenoccurs
betweenthe memoryhierarchyrequirementsof particular
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applicationphasesand the organizationof a conventional
memoryhierarchy, andhow an intelligently-managedcon-
figurablehierarchycanbettermatchon-chipcacheandTLB
resourcesto theseexecutionphases.Note thatwhile some
applicationsstaywith asinglecacheandTLB configuration
for mostof their executionwindow, othersdemonstratethe
needto adaptto therequirementsof differentphasesin each
program(seeTable4). Regardless,the dynamicschemes
are able to determinethe bestcacheand TLB configura-
tions,which spantheentirerangeof possibilities,for each
applicationduringexecution.

Theresultsfor artandhydro2ddemonstratehow thedy-
namic reconfigurationmay in somecasesdegradeperfor-
mance. Theseapplicationsare very unstablein their be-
havior anddo not remainin any onephasefor morethana
few intervals. Art alsodoesnot fit in 2MB, so thereis no
sizethatcausesa sufficiently largedropin CPI to merit the
cost of exploration. However, the dynamicschemeiden-
tifies that the applicationis spendingmoretime exploring
thanin stablestateandturnsexplorationoff altogether. Be-
causethis happensearly enoughin caseof art (the simu-
lation window is also much larger), art shows no overall
performancedegradation,while hydro2dhasa slight 3%
slowdown. This result illustratesthat compileranalysisto
identify such“unstable”applicationsandoverridethe dy-
namicselectionmechanismwith a statically-chosencache
configurationmaybebeneficial.

In comparingtheintervalandsubroutine-basedschemes,
we concludethat the simpler interval-basedschemeusu-
ally outperformsthesubroutine-basedapproach.Themost
notableexceptionis apsi,which hasinconsistentbehavior
acrossintervals(asindicatedby thelargenumberof explo-
rationsin Table4), causingit to thrashbetweena 256KB
L1 anda 768KB L1. Thesubroutine-basedschemesignif-
icantly improvesperformancerelative to theinterval-based
approachaseachsubroutineinvocationwithin apsiexhibits
consistentbehavior from invocation to invocation. Yet,
dueto the overall resultsandthe additionalcomplexity of
thesubroutine-basedscheme,theinterval-basedschemeap-
pearsto bethemostpracticalchoiceandis theonly scheme
consideredin therestof our analysis.

In termsof the effect of TLB reconfiguration,health,
swim, andcompressbenefitthe most from usinga larger
TLB. Healthandcompressperformbestwith 256and128
entries, respectively, and the dynamic schemesettlesat
thesesizes. Swim shows phasechangebehavior with re-
spectto TLB usage,resultingin fivestablephasesrequiring
either256or 512TLB entries.

These results demonstratepotential performanceim-
provementfor onetechnologypoint andmicroarchitecture.
In ordertodeterminethesensitivity of ourqualitativeresults
to differenttechnologypointsandmicroarchitecturaltrade-
offs, we variedthe processorpipelinespeedrelative to the
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Figure 7. Memory EPI (in nanoJoules)for conven-
tional (A, B, andC), interval-based(D), andenergy-
aware(F andG) configurableschemes
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Figure 8. Memory CPI for conventional(A, B, and
C), interval-based(D), and energy-aware(F andG)
configurableschemes

memorylatencies(keepingthe memoryhierarchylatency
fixed). The resultsin termsof performanceimprovement
weresimilar for 1 (our basecase),1.5,and2 GHz proces-
sors.

5.2 Energy-AwareConfiguration Results

We focushereon theenergy consumptionof theon-chip
memoryhierarchy(includingthatto drivetheoff-chip bus).
Thememoryenergyperinstruction(memoryEPI,with each
energy unit measuredin nanoJoules)resultsof Figure7 il-
lustratehow asis usually the casewith performanceopti-
mizations,thecostof theperformanceimprovementdueto
the configurableschemeis a significantincreasein energy
dissipation.This is causedby thefactthatenergy consump-
tion is proportionalto theassociativity of thecacheandour
configurableL1 useslargerset-associative caches.For this
reason,we explore how the energy-aware improvements
may be usedto provide a more modestperformanceim-
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provementyet with a significantreductionin memoryEPI
relative to a pureperformanceapproach.

From Figure 7 we observe that merely selectingthe
energy-aware cacheconfigurations(schemeF) has only
a nominal impact on energy. In contrast,operatingthe
L1 cachein a serial tag and data accessmode (G) re-
ducesmemoryEPIby 38%relative to thebaselineinterval-
basedscheme(D), bringing it in line with thebestoverall-
performingconventionalapproach(B). For compressand
swim, this approacheven achieves roughly the sameen-
ergy, with significantlybetterperformance(seeFigure8),
thanconventionalconfigurationC, whose64KB two-way
L1 data cacheactivateshalf the amountof cacheevery
cycle than the smallestL1 configuration(256KB) of the
configurableschemes. In addition, becausethe selection
schemeautomaticallyadjustsfor the higherhit latency of
serialaccess,this energy-awareconfigurableapproachre-
ducesmemoryCPI by 13%relative to thebest-performing
conventionalscheme(B). Thus,theenergy-awareapproach
maybeusedto providemoremodestperformanceimprove-
ments in portable applicationswhere design constraints
such as battery life are of utmost importance. Further-
more, aswith the dynamicvoltageand frequency scaling
approachesusedtoday, this modemaybe switchedon un-
derparticularenvironmentalconditions(e.g., whenremain-
ing batterylife dropsbelow agiventhreshold),therebypro-
viding on-demandenergy-efficientoperation.

5.3 L2/L3 Performanceand Energy Results

While L1 reconfigurationimprovesperformance,it may
consumemore energy than conventional approachesif
higher L1 associative configurationsare enabled. To re-
duceenergy, mechanismssuchasserialtaganddataaccess
(asdescribedin the previous subsection)have to be used.
SinceL2 andL3 cachesareoftenalreadydesignedfor se-
rial tag anddataaccessto save energy, reconfigurationat
theselower levels of the hierarchywould not increasethe
energy consumed.Instead,they standto decreaseit by re-
ducing the numberof datatransfersthat needto be done
betweenthevariouslevels,i.e., by improving theefficiency
of thememoryhierarchy.

Thus,we investigatethe energy benefitsof providing a
configurableL2/L3 cachehierarchywith afixedL1 cacheas
on-chipcachedelayssignificantlyincreasewith sub-0.1� m
geometries.Dueto theprohibitively long latenciesof large
cachesatthesegeometries,athree-levelcachehierarchybe-
comesanattractive designoption from a performanceper-
spective. We usethe parametersfrom Agarwal et al. [1]
for 0.035� m technologyto illustratehow dynamicL2/L3
cacheconfigurationcan matchthe performanceof a con-
ventionalthree-level hierarchywhile dramaticallyreducing
energy dissipation.

Figures9 and10 comparethe performanceandenergy,
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Figure 9. Memory CPI for conventional three-level
anddynamiccachehierarchies
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Figure10. Memory EPI (in nanoJoules)for conven-
tional three-level anddynamiccachehierarchies

respectively, of theconventionalthree-level cachehierarchy
with the configurablescheme(Recall that TLB configura-
tion wasnotattemptedsotheimprovementsarecompletely
attributableto thecache.).SincetheL1 cacheorganization
hasthe largestimpacton cachehierarchyperformance,as
expected,thereis little performancedifferencebetweenthe
two, aseachusesanidenticalconventionalL1 cache.How-
ever, theability of thedynamicschemeto adapttheL2/L3
configurationto theapplicationresultsin a43%reductionin
memoryEPIonaverage.Thesavingsarecausedby theabil-
ity of the dynamicschemeto usea largerL2, andthereby
reducethe numberof transfersbetweenL2 andL3. Hav-
ing only atwo-level cachewould,of course,eliminatethese
transfersaltogether, but would be detrimentalto program
performancebecauseof thelarge60-cycleL2 access.Thus,
in contrastto thisapproachof simplyoptingfor a loweren-
ergy, andlower performing,solution(the two-level hierar-
chy),dynamicL2/L3 cacheconfigurationcanimproveper-
formancewhile dramaticallyimproving energy efficiency.
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6 Conclusions

We have describeda novel configurablecacheandTLB
as an alternative to conventionalcachehierarchies. Re-
peaterinsertionis leveragedto enabledynamiccacheand
TLB configuration,with an organizationthat allows for
dynamicspeed/sizetradeoffs while limiting the impactof
speedchangesto within thememoryhierarchy. Ourconfig-
urationmanagementalgorithm is able to dynamicallyex-
aminethetradeoff betweenanapplication’shit andmissin-
toleranceusingCPI astheultimatemetricto determineap-
propriatecachesizeandspeed.At 0.1� m technologies,our
resultsshow an average15% reductionin CPI in compar-
ison with the bestconventionalL1-L2 designof compara-
ble totalsize,with thebenefitalmostequallyattributableon
averageto the configurablecacheandTLB. Furthermore,
energy-aware enhancementsto the algorithm trade off a
moremodestperformanceimprovementfor asignificantre-
ductionin energy. Projectingto 0.035� m technologiesand
a 3-level cachehierarchy, we show improvedperformance
with an average43% reductionin memoryhierarchyen-
ergy whencomparedto a conventionaldesign. This latter
resultdemonstratesthatbecauseour configurableapproach
significantly improvesmemoryhierarchyefficiency, it can
serve asa partial solutionto the significantpower dissipa-
tion challengesfacingfutureprocessorarchitects.

Futurework includesinvestigatingthe useof compiler
support for applicationswhere an interval-basedscheme
is unableto capturethe phasechanges(differing working
sets)in anapplication.Compilersupportwould bebenefi-
cial both to selectappropriateadaptationpointsaswell as
to predictan application’s working setsizes. Finally, im-
provementsat thecircuit andmicroarchitecturallevelswill
bepursuedthatbetterbalanceconfigurationflexibility with
accesstime andenergy consumption.
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