
1.  ABSTRACT
As custom computing machines evolve, it is clear that 
a major bottleneck is the slow interconnection archi-
tecture between the logic and memory. This paper 
describes the architecture of a custom computing 
machine that overcomes the interconnection bottle-
neck by closely integrating a fixed-logic processor, a 
reconfigurable logic array, and memory into a single 
chip, called OneChip-98.
The OneChip-98 system has a seamless programming 
model that enables the programmer to easily specify 
instructions without additional complex instruction 
decoding hardware. As well, there is a simple scheme 
for mapping instructions to the corresponding pro-
gramming bits. To allow the processor and the recon-
figurable array to execute concurrently, the 
programming model utilizes a novel memory-consis-
tency scheme implemented in the hardware.
To evaluate the feasibility of the OneChip-98 architec-
ture, a 32-bit MIPS-like processor and several perfor-
mance enhancement applications were mapped to the 
Transmogrifier-2 field programmable system. For two 
typical applications, the 2-dimensional discrete cosine 
transform and the 64-tap FIR filter, we were capable of 
achieving a performance speedup of over 30 times that 
of a stand-alone state-of-the-art processor.

1.1  Keywords
Reconfigurable computer, FPGA, reconfigurable processor,
memory interfacing, memory coherence

2.  INTRODUCTION
The existence of reprogrammable logic, such as FPGAs, has
allowed researchers to develop custom computing machines
(CCMs) with the goal of accelerating applications relative
to a stand-alone general-purpose processor. One approach is

to combine a general-purpose processor and reconfigurable
logic into a single system to produce a CCM with the
advantages of both resources. The CPU can support the bulk
of the functionality required to implement an algorithm,
while the FPGA is used to accelerate only the most critical
computational kernels of the program.
Previous CCMs that combine the CPU and FPGA resources
into a single system first encountered slow interfaces
between the processor and FPGA, demonstrating the need
for higher bandwidth communication between resources
[1][2][3][4]. More recent CCMs closely integrate these two
resources, reducing the communication overhead
[5][6][7][8][9][10]. However, simply combining the
processor and FPGA into a CCM results in a memory
bandwidth bottleneck. The original OneChip [7][11]
integrated the processor and FPGA, while memory accesses
had to go through the processor registers, limiting the
memory bandwidth.

In the literature there has also been little discussion of
complete methods for specifying configurable instructions,
including how they are decoded, how the instructions are
mapped to the reconfiguration bits, and how the
reconfiguration bit streams are stored.

In this paper, we propose the OneChip-98 architecture, a
follow-on to the original OneChip [7][11] that integrated a
CPU, FPGA resources and memory on a single chip.
OneChip-98 improves upon OneChip by providing a
flexible, high-bandwidth interface to memory, including
hardware to maintain memory consistency so that the
processor and reconfigurable logic can operate in parallel. A
scheme for specifying reconfigurable instructions is also
proposed that includes a method for storing and locating the
corresponding programming bit-streams for the
reconfigurable logic. These two techniques require little
modification to the programming model of typical
processors.

In the remainder of this section, we will outline some of the
other current related work in CCMs. Section 3 will
elaborate on the architectural issues and give an overview of
the proposed system. Instruction issue and specification is
detailed in Section 4 and the memory coherence scheme is
described in Section 5. A description of our prototype and
test applications is given in Section 6, and we conclude and
provide suggestions for future work in Section 7.
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2.1  Related Work
In this section we provide a brief description of how some
of the recent CCM work relates to OneChip-98.

The BRASS research group at UC Berkeley has developed
GARP [8], a microprocessor core with a programmable
coprocessor, instruction cache, and data cache all on a
single chip. GARP addresses the memory bandwidth issue
by providing the reconfigurable array with access to the
standard memory hierarchy of the CPU. However, their
published work seems to have focused more on the
organization of the reconfigurable array and how to compile
to it, rather than on the details of the interfaces.

The basic NAPA processor [9] is a single-cluster element
containing a 32-bit RISC processor, 50k gates of
reconfigurable logic, and local memory. The local memory
is included as a solution to the memory bandwidth issue, but
the reconfigurable logic has no direct connection to main
memory. Therefore, data in main memory must be
transferred through the CPU to the local memory.

The MIT RAW Machine [10] consists of multiple tiles,
where each tile is comprised of fixed logic (registers, ALU),
configurable logic, instruction memory, and data memory.
The tiles are interconnected in a mesh structure, enabling
communication between neighboring processing units. The
RAW Machine utilizes a different approach to achieving
high memory bandwidth than both GARP and NAPA. By
partitioning the memory, each processor has a direct,
dedicated connection to its own local memory. Such a
system has a radically different programming model from
the single instruction stream systems described above.

3.  THE ONECHIP-98 ARCHITECTURE
The goal of the OneChip-98 architecture is to take
advantage of the limitations of the typical modern
processor, which generally operates on data by fetching it
into registers, performing an operation and storing the result
back in the registers. This limits bandwidth as well as
opportunities for parallelism. Most of the available
performance improvement will come from applications that
can take advantage of large local storage and high memory
bandwidth. Such applications are classified as memory
streaming applications, which read in a block of data from
memory, perform some operation on the data, and write the
block of data back to memory. The operation can be very
fine-grained, perhaps as simple as inverting each bit, or can
be very coarse-grained, such as the 2-dimensional Discrete
Cosine Transform algorithm.

For this work, the DLX RISC processor described by
Patterson & Hennessey [12] was chosen as the basis
processor. The DLX consists of a 32-bit instruction and data
path, a five-stage pipeline, and 32 general-purpose registers.
Data forwarding should be implemented to reduce read-
after-write data hazards. To achieve high performance, the
architecture should allow out-of-order issue and perform
branch prediction to reduce the number of control hazards.

Figure 1 shows the proposed architecture of OneChip-98.

Highlights are used to differentiate between those areas that
must be implemented with reconfigurable logic and those
that can be implemented with fixed logic.

The FPGA can be subdivided into two distinct regions. One
region contains the controller, logic, and local storage
needed to execute the specific application. This region must
be implemented using reconfigurable logic since it is
application dependent. The other region holds the
instruction buffer and memory interface, both of which are
application independent and can therefore be implemented
using fixed logic.

It may be advantageous to use reconfigurable memory, and
hence a reconfigurable memory interface, since this will
provide the flexibility of either synchronous or
asynchronous memory accesses with configurable memory
width and memory block size. However, using
reconfigurable memory will result in increased area and
may adversely affect the performance of the memory
system. This trade-off has not been explored in this work,
but remains a topic of future research. Further information
on reconfigurable memory can be found in [13][14][15].

There are several key areas of the processor-FPGA interface
that must be addressed: instruction sequencing and the
handling of data dependences, how to specify the FPGA
instruction, FPGA dynamic reconfiguration, and data
consistency amongst the processor cache, the FPGA
memory, and main memory. These will be addressed in the
next two sections.

4.  INSTRUCTION SEQUENCING AND 
SPECIFICATION

As CCMs evolve it becomes important to examine more
closely how details of the implementation affect the current
programming models and hardware required. This section
addresses the sequencing and specification of instructions
for OneChip-98.

4.1  Instruction Sequencing
Since the CPU is pipelined and the latency of the function
implemented in the FPGA is almost certainly greater than
one CPU clock cycle, then the question is how the FPGA
execution fits in the pipeline. The simple solution is to stall
the pipeline while the FPGA executes. However, it would
be desirable to allow the processor to continue executing in
parallel with the FPGA. To handle this, Tomasulo’s
algorithm [12] could be used, employing reservation
stations to synchronize with the FPGA resource.

The FPGA has an instruction buffer mirroring the FPGA
reservation stations, so that when the buffer is full the
processor will prevent any further FPGA instructions from
issuing. The FPGA will execute the next instruction in its
instruction buffer when the FPGA is available to do so.
When an instruction is complete, the FPGA will notify the
processor. Subsequent instructions in the processor that are
stalled due to data dependences on the FPGA instruction are
allowed to continue, and the completed FPGA instruction is
removed from the FPGA reservation station.



4.2  FPGA Configuration
To integrate FPGA instructions into the instruction stream,
there needs to be processor opcodes and a way to indicate
how the FPGA is to be configured. For the processor there
should be a dedicated opcode, say “111111”, that is set aside
for FPGA instructions. If an instruction is targeted to the
FPGA (by setting the instruction opcode to “111111”), then
the instruction will be forwarded to the FPGA status
controller. The FPGA status controller contains the FPGA
reservation stations and a Reconfiguration Bits Table. The
Reconfiguration Bits Table is used to keep track of FPGA
configurations. An example Reconfiguration Bits Table is
shown in Table 1. The first column in the table is the FPGA
function. Each FPGA function points to a corresponding
address in memory where the reconfiguration bits can be
found. For example, function “0000” has reconfiguration
bits at address 0x5000 in memory, while function “0001”
has its configuration bits stored at address 0x6500 in
memory. The column labelled active in Table 1 indicates

whether that configuration is programmed into the FPGA.
Only one FPGA function can be active at a given time. In
the example Reconfiguration Bits Table the configuration
stored at address 0x8000, corresponding to function “0010”,
is active.

Dynamically Programmable Gate Arrays (DPGAs) [16][17]
allow multiple configurations to be stored on the
programmable logic device, while only one configuration
(context) is active at any given time. The DPGA in effect
acts as a cache for configuration bits. DPGAs offer much
lower reconfiguration times when compared to FPGAs
since the new configuration bits are already loaded onto the
DPGA. Therefore, it is desirable to utilize a DPGA for the
programmable logic.

A set of configurations are pre-loaded on the DPGA, setting
a flag in the Reconfiguration Bits Table for each loaded
FPGA function. These loaded configurations are each
assigned a unique DPGA context identifier (ID) in the
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Reconfiguration Bits Table. The loaded flag and the DPGA
context ID have been added to Table 1 for clarity. In the
example Reconfiguration Bits Table, function “0000” is
loaded in context ID 2, function “0010” is loaded in context
ID 3, function “0011” is loaded in context ID 0, and
function “0100” is loaded in context ID 1. Function “0001”
is not loaded, and therefore does not have an associated
DPGA context ID number. Re-programming the DPGA
with a configuration that has already been loaded simply
requires selecting the context ID corresponding to the
desired configuration. If the configuration is not already
loaded, then the configuration is first loaded onto the DPGA
and then selected as the active configuration.

Realistically a DPGA can only store a limited number of
configurations. Therefore, not all configurations are pre-
loaded, instead configurations are dynamically swapped
into and out of the DPGA, thus requiring a mechanism for
loading new configurations. A new configuration is loaded
on demand when the load flag is not set. The disadvantage
of this approach is that the FPGA instruction must wait for
the configuration to finish loading before proceeding.
Alternatively, the new configuration can be pre-loaded
using compiler directives [18]. Pre-loading occurs
transparently, thereby allowing an earlier FPGA instruction
to execute concurrently. Hence, pre-loading is preferred to
on-demand loading.

Swapping configurations into and out of the DPGA requires
another mechanism for selecting the configuration to
replace. The replacement algorithm can be implemented in
hardware, utilizing the least-recently-used algorithm.
Alternatively, if pre-loading is used then the compiler can
select which configuration to replace. This has an advantage
since the compiler can statically analyze the code to

determine which configurations will be most frequently
used, thereby ensuring a more optimal replacement.

The FPGA instruction, which is passed to the FPGA status
controller, has a field for the FPGA function. This field is
used to select the corresponding row in the Reconfiguration
Bits Table to ascertain the DPGA context ID. The context
ID is sent along with the FPGA instruction to the FPGA
instruction buffer. When the FPGA reads the next
instruction in its instruction buffer, the context ID selects a
configuration from the pre-loaded configurations, causing
the selected configuration to become active.

The format of the FPGA instruction is shown in Figure 2,
where the opcode requires six bits, the FPGA function uses
four bits, the source and destination registers each require
five bits, and the source and destination block sizes are each
encoded into five bits. The remaining two bits (labelled
misc.) are as yet undefined and may be used for
miscellaneous tasks or information that needs to be
transmitted to the FPGA. The four-bit FPGA function can

address 24, or 16, different configurations. However, one
function is required for setting the memory addresses in the
Reconfiguration Bits Table, and another function would be
needed for pre-loading configurations in a DPGA.
Therefore, 14 different configurations can be addressed,
each requiring a single row of storage in the
Reconfiguration Bits Table.

The user software program must initialize the
Reconfiguration Bits Table with the FPGA configurations
that will be needed for the program to execute. For each
available FPGA function a memory address is required,
indicating where the configuration bits can be found in
memory.

4.3  Instruction Format
Recall from Section 3 that the FPGA can offer the most
benefit for memory streaming applications. This means that
data in a source block of memory is processed and stored in
a destination block of memory. The FPGA instruction, as
specified in the instruction-set of the processor, needs to
indicate the source and destination blocks in memory, in
addition to the FPGA function. This implies a memory-
memory type of instruction, which does not fit the register-
register model of modern processors. The main problem is
that there are not enough instruction bits to specify the
source and destination addresses and the size of the memory
blocks.

FPGA
function

memory address
where configuration

is stored

active loaded
(DPGA)

context ID 
(DPGA)

0000 0x5000 NO YES 2

0001 0x6500 NO NO ---

0010 0x8000 YES YES 3

0011 0x3000 NO YES 0

0100 0x1800 NO YES 1

Table 1: Example Reconfiguration Bits Table

Figure 2: FPGA Instruction Format
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The source and destination addresses can be specified by
using an indirect addressing mode instead of direct or
absolute addressing. The source address and destination
address are each stored in registers in the processor register
file. The FPGA instruction then references the source and
destination registers where the corresponding addresses are
stored. When an FPGA instruction is decoded (in the ID
stage), the source address and destination address are read
from the source register, Rsource, and destination register,

Rdest, respectively. These addresses are stored in the FPGA

reservation station and are subsequently passed to the
FPGA.

The memory streaming application running on the FPGA
reads a block of data from the source address, processes it,
and writes the result to a block of data at the destination
address. The source block size identifies the amount of data
to be read beginning at the source address, while the
destination block size identifies the amount of data to be
written beginning at the destination address.

Both the source and destination blocks contain a power of
two number of words (i.e. 2, 4, 8, 16,...), and the
corresponding address must be aligned on a block boundary.
For example, suppose the source block size is 64 words,
then the source address must be a multiple of 64 words. The

block size cannot be larger than 232 words, the amount of
memory addressable with a 32-bit datapath. Hence, the

block size can be encoded in five bits, allowing 25 or 32
different block sizes, where each block size is a power of
two number of words. This block size restriction limits
flexibility a little bit, but makes it easier to check memory
coherence, which is described in Section 5.

The five-bit source block size and five-bit destination block
size are each included in the FPGA instruction. When the
FPGA instruction is decoded, the source block size is
decoded into 32 bits and is passed to the FPGA reservation
station. The source block size is used to mask the low order
bits of the source address, as shown in Table 2, where ‘x’ is
a mask bit. The source address 0x6a20 is shown in the first
row of the table. The source block size “00100” in the
FPGA instruction is decoded into the 32-bit value shown in
the second row of the table. This value specifies the mask
bits for the source address. All bits to the left of the set bit in
the 32-bit source block size are significant, identifying the
source block of addresses. All bits to the right of the set bit
(including the set bit) mask the low order bits of the source
block address. In Table 2, the fourth bit (counting from bit
zero) of the source block size is set, masking bits zero

through four of the source address. The third row of the
table displays the mask bits, while the fourth row of the
table shows the source address after the low order bits have
been masked. This masked address signifies that the source
data extends from address 0x6a20 to 0x6a3f, and the FPGA
reads 32 words of data. The destination block size masks the
low order bits of the destination address in a manner
identical to the source block size.

The block size may vary depending on the granularity of the
application mapped to the FPGA. The application may have
a fixed memory block size or a variable memory block size.
A fixed memory block size application computes on a pre-
determined amount of data that is specified by the hardware
circuit in the FPGA, while a variable memory block size
application performs computations on the amount of data
specified in the block sizes of the FPGA instruction. In
either case, the block sizes must be included in the FPGA
instruction for the purpose of maintaining memory
consistency, a topic deferred to Section 5.

Although we have shown a two-operand instruction format,
it may also be desirable to have a three-operand format. In
this case, one of the block size fields could be used as
another register specifier. This means that the memory
blocks would all be restricted to the same block size, which
is not likely to be a severe constraint.

5.  MEMORY COHERENCE
Assuming there are no data dependences between CPU
instructions and FPGA instructions the two resources can
execute concurrently, thus providing the potential for
greater speedup, similar to a multiprocessor system. In
OneChip-98, data can be stored in main memory, the
processor cache, or the local memory of the FPGA, leading
to possible memory coherence problems when data must be
shared. Cache and memory coherence in the OneChip-98
system is the topic of this section.

5.1  Situations Causing Memory Inconsistency
The memory consistency problem can manifest itself in six
different ways, each situation giving rise to a type of data
hazard [12]. The first two situations are caused by read-
after-write (RAW) data hazards, the next two situations are
caused by write-after-read (WAR) data hazards, and the last
two situations are caused by write-after-write (WAW) data
hazards. These situations are listed in Table 3. As an
example, we will expand upon one situation, but more
detailed examples and explanations can be found in [19]. 

In the first situation shown in Table 3, the processor updates

source address 0000 0000 0000 0000 0110 1010 0010 0000

source block size 0000 0000 0000 0000 0000 0000 0001 0000

source block mask 0000 0000 0000 0000 0000 0000 0001 1111

source address masked 0000 0000 0000 0000 0110 1010 001x xxxx

Table 2: Source address and source block size in the FPGA reservation station



data in its cache. The FPGA then, attempting to access the
updated values, reads stale data in main memory. To reduce
write stalls and memory traffic, we prefer to use a write-
back cache, where data in the cache is updated without
updating the memory. To maintain cache consistency in a
write-back cache, the processor must flush the cache after
the store completes and prior to the FPGA reading data
from memory, thereby ensuring that the FPGA reads the
correct data.

5.2  Solving the Memory Consistency Problem
The situations described above each necessitate some action
to ensure memory coherence. These actions are listed in
Table 3. The following discussion presents the mechanisms
needed to perform each action.

For Action 1, the source address and source block size of
the FPGA instruction are sent to the cache when the source
address becomes available. The source block size is used to
mask the low order bits of the source address making them
into “don’t care bits” when performing the cache lookup.
Any dirty locations that match must be flushed from the
cache.

The mechanism for invalidating the destination block in the
cache is similar to the mechanism for flushing the source
block from the cache except that the destination address and
destination block size are used. This provides memory
coherence according to Action 3 in Table 3.

The mechanisms used to enforce Actions 4, 6, and 8 are
more complicated since they must somehow prevent the
processor from accessing blocks of main memory. This is
performed by using a Block Lock Table. The Block Lock

Table is responsible for storing the source address masked
and destination address masked for all outstanding FPGA
instructions.

A Block Lock Table is shown in Table 4. The table has three
columns: Block Address Masked, FPGA Instruction Tag,
and a flag indicating whether the address is a source or
destination address. The block address, in conjunction with
the block size, is used to determine the range of addresses
that will be accessed by the FPGA. This address range is
stored using mask bits, or “don’t care bits”, in the column
labelled Block Address Masked. The number of mask bits is
determined by the block size. The FPGA instruction tag
identifies which FPGA instruction accesses which block
addresses so that the corresponding entry can be removed
when the FPGA instruction completes. The table contains
two entries for each outstanding FPGA instruction -- one
entry for the source block and the other entry for the
destination block. The source / destination flag identifies
whether the entry corresponds to a source block or a
destination block.

The example Block Lock Table in Table 4 shows two
outstanding FPGA instructions. The instruction with a tag
equal to one has a source address of 0x9000 and destination
address of 0x4000, with source and destination blocks each
containing 0x400 words. Hence, the source block address
ranges from 0x9000 to 0x93ff, and the destination block
address ranges from 0x4000 to 0x43ff. The other instruction
has a source address of 0x2800, a source block size of
0x200, a destination address of 0x3600, and a destination
block size of 0x80. Hence, the source block address ranges
from 0x2800 to 0x29ff, and the destination block address

Situation
Number

Problem
Situation

Actions Taken

1 FPGA read
after

CPU write

1. Flush FPGA source addresses from CPU cache when FPGA instruction issues

2. Prevent FPGA reads while pending CPU store instructions are outstanding

2 CPU read
after

FPGA write

3. Invalidate FPGA destination addresses in CPU cache when FPGA instruction issues

4. Prevent CPU reads from FPGA destination addresses until FPGA writes its destina-

tion block

3 FPGA write
after

CPU read

5. Prevent FPGA writes while pending CPU load instructions are outstanding

4 CPU write
after

FPGA read

6. Prevent CPU writes to FPGA source addresses until FPGA reads its source block

5 FPGA write
after

CPU write

7. Prevent FPGA writes while pending CPU store instructions are outstanding

6 CPU write
after

FPGA write

8. Prevent CPU writes to FPGA destination addresses until FPGA writes its destina-

tion block

Table 3: Problem situations and actions taken to ensure memory coherence



ranges from 0x3600 to 0x367f.

The Block Lock Table is used to prevent the processor from
accessing certain blocks of memory according to Actions 4,
6, and 8. Action 6 must prevent the processor from writing
to an FPGA source block address. The source address and
source block size, which are sent to the cache for flushing,
are simultaneously sent to the Block Lock Table. The
source/destination flag is set to SOURCE, indicating that
writes to this block of addresses are illegal and will cause
the store instruction to stall, while reads from this block of
addresses are permitted.

To enforce Action 6, all CPU store instructions must be
checked in the Block Lock Table to ensure that the store
address does not lie within an FPGA source block,
otherwise, the store is stalled until the FPGA instruction
completes.

Actions 4 and 8, which prevent CPU reads from or writes to
an FPGA destination block address, are similar to Action 6
except that the destination address and destination block
size are used.

Action 8 requires that CPU store instructions, whose
addresses are compared in the Block Lock Table for a match
in the source blocks, must also be checked for matches in
the destination blocks. Hence, a store instruction may ignore
the source / destination flag, since a match in either block
would stall the store instruction. Action 4, on the other
hand, applies to CPU load instructions whose address only
needs to be compared in the destination blocks. Therefore,
load instructions must check the source / destination flag --
load addresses that match in the destination block must be
stalled, while load addresses that match in a source block
can continue (since a read after read, RAR, is not a hazard).

A CPU load or store instruction that stalls due to data
dependence on an FPGA instruction can continue when the
FPGA instruction completes. Upon completion, the
instruction tag is sent to the FPGA reservation station, and
the corresponding entry in the reservation station is
removed. The instruction tag is also forwarded to the Block
Lock Table, and the two entries in the Block Lock Table are
deleted -- one entry corresponding to the source block, and
the other entry corresponding to the destination block. Since
those memory blocks are no longer locked, load and store
instructions that stalled due to dependences on the FPGA
instruction can then proceed.

Actions 2, 5, and 7 prevent FPGA reads or writes while any
issued CPU load or store instruction has not completed. To
fulfill this requirement we could prevent the FPGA from
issuing as long as there is any pending load or store
instruction in the CPU. Alternatively, we could set up an
Address Lock Table, similar to a Block Lock Table, that will
only prevent the FPGA instruction from issuing when a
CPU load or store address is unknown. Once the CPU
memory address becomes available, the FPGA instruction
could issue (assuming there is no address conflict between
the FPGA source and destination block addresses and the
CPU load or store instruction address). However, it is
difficult to justify the overhead of an Address Lock Table
since load and store instructions in the CPU can expect to
complete within a short period of time (this delay may be
only a few CPU clock cycles). Therefore, we simply prevent
the FPGA from issuing while there are any pending load or
store instructions in the CPU.

6.  IMPLEMENTATION OF THE ONECHIP-
98 PROTOTYPE

The OneChip-98 system was mapped onto the
Transmogrifier-2 [20] Field Programmable System for
prototyping purposes. Once mapped, the architecture of
OneChip-98 could be evaluated, and the performance of the
system could be extrapolated. The TM-2, however, has
several inherent limitations that prevent the OneChip-98
system from being accurately modeled. This section briefly
discusses these limitations, and the approach taken to
minimize their effect.

6.1  Fixed and Reconfigurable Logic
The OneChip-98 system consists of fixed logic,
reconfigurable logic, and memory as shown in Figure 1.
Due to the fact that the OneChip-98 system is being mapped
to a multi-FPGA system, both the fixed logic and
reconfigurable logic portions of the system must be
implemented in FPGAs. The disadvantage of this
implementation scheme is two-fold: FPGAs do not offer the
same performance as fixed logic, and FPGAs deliver a
much lower logic density than fixed logic. The advantage is
that different approaches can be implemented and
evaluated.

The OneChip-98 architecture also stipulates that the
processor and FPGA must be highly integrated. However,
the TM-2 forces us to partition the design amongst two
Altera Flex10K50 PLDs [21] connected with I-cube [22]
devices providing a flexible interconnect, as shown in
Figure 3. The I-cube chip adds a 20 ns latency to signals,
whereas a true realization of OneChip-98 would not incur
this delay. Therefore, to accurately model the OneChip-98
system this delay should be neglected.

6.2  Processor Modifications
The MIPS-like RISC processor was implemented in an
Altera Flex10K50 PLD. The processor, however, was
modified for several reasons:

(a) due to constraints inherent in the structure of the TM-2,

Block Address Masked
FPGA 

Instruction 
Tag

source / destination

0010 100x xxxx xxxx 2 SOURCE

0011 0110 0xxx xxxx 2 DESTINATION

0100 00xx xxxx xxxx 1 DESTINATION

1001 00xx xxxx xxxx 1 SOURCE

Table 4: Block Lock Table



(b) certain capabilities of the processor were not essential in
modeling, prototyping, and evaluating the system, and

(c) to fit in the Altera device.

Hardware constraints on the TM-2 do not permit an FPGA
to reconfigure another FPGA, hence run-time
reconfiguration is not possible on the TM-2, so the
Reconfiguration Bits Table was not implemented in the
processor.

The structure of the TM-2 only permits an FPGA to access
data from its neighboring RAMs, preventing multiple
FPGAs from sharing a memory port. This additional
constraint inhibits memory coherence from being modeled.
The Block Lock Table was therefore not implemented in the
processor. Alternatively, a tertiary FPGA on the TM-2 could
be used as a memory, allowing a memory to be attached to
the other two FPGAs (one containing the CPU and the other
containing the reconfigurable logic). This would enable us
to adequately model memory coherence between the
reconfigurable logic local memory and main memory. This
however was not implemented and remains a topic of future
work.

Tomasulo’s algorithm is not implemented in the processor,
with the exception of the FPGA status controller, which
uses reservation stations to buffer FPGA instructions. Thus,
out-of-order issue cannot be performed.

The FPGA uses a fixed memory block size, accessing a pre-
determined amount of data. Since the FPGA uses a fixed
memory block size and the Block Lock Table is not
implemented, the source and destination block sizes are not
needed, and are therefore not included in the FPGA
instruction. In addition, the FPGA function and DPGA
context ID are not included in the OneChip-98
implementation since run-time reconfiguration is not
possible.

6.3  Applications and Results
Although we could not test any of the dynamic
reconfiguration or memory consistency issues, we did
implement two applications to test the basic instruction
issue and memory interface. Our philosophy is that the
actual prototyping of the these interfaces is the best way to
test their feasibility. We chose two applications, the DCT
algorithm and the FIR filter, as examples of memory

streaming applications.

The HDL code for each application circuit is highly tuned.
Hence, it is unlikely that these circuits would be
automatically generated. Instead, we envision a library of
hardware modules, similar to Hardware Object Technology
(HOT) [23], where the programmer simply selects the
hardware object from a library of pre-synthesized circuits.
The details of the library and the method in which a
hardware object is instantiated by the user are topics for
future work.

To test the application circuit, the host workstation must
communicate with the RISC processor by means of loading
instructions into the processor’s instruction memory. The
application circuit is targeted by loading an FPGA
instruction into the processor’s instruction memory. The
application circuit then accesses data from memory,
performs some computation on the data, and writes the
result back to memory. Thus the functionality of the
application circuit is verified by testing the contents of
memory before and after the FPGA instruction. The
performance of the application circuit is measured using a
logic analyzer.

After scaling the actual performance to that of a state-of-
the-art implementation, the performance results and
speedup of the application circuits are shown below. Table 5
summarizes the performance and speedup of the 2-
dimensional DCT implementation, while Table 6
summarizes the performance and speedup of the 64-tap FIR

filter.

The results shown in Table 5 and Table 6 are determined on
the basis of downloading several consecutive FPGA
instructions. These instructions are decoded in the processor
and computed by the application circuit running on the
FPGA. Hence, this methodology does not account for any
software effects, such as instruction scheduling or loop
unrolling. To model these effects, one must create a
compiler that can schedule instructions to minimize
interface bottlenecks between the processor and the FPGA,
minimize the amount of context switching in the FPGA, and
provide a load balance between processor instructions and
FPGA instructions. Modeling these software effects is a
topic of future work.

The 2-dimensional DCT and the 64-tap FIR filter are both
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Figure 3: TM-2 Implementation of the OneChip-98 System
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memory streaming applications. The 2-dimensional DCT is
a coarse-grained application, reading and writing 64 bits
every clock cycle. The FIR filter, on the other hand, is fine-
grained, reading eight bits and writing ten bits every cycle.
Both applications, when implemented on a state- of-the-art
PLD, show substantial speedup relative to their software
(and DSP) counterparts. This proves that the OneChip-98
reconfigurable computer can speed up memory streaming
applications, irrespective of the granularity of the
application.

The 2-dimensional DCT and 64-tap filter applications are
mapped to an Altera general-purpose programmable logic
device. Custom programmable logic may provide higher
performance than general-purpose programmable logic,
thereby increasing the potential for greater speedup. In

addition, the performance results for the hardware
implementation are based on the execution time of the
application running on the PLD. However, in the OneChip-
98 reconfigurable system, the processor can execute
concurrent to the PLD. This enables independent
instructions to execute in parallel, thereby providing
additional speedup. This additional speedup has not been
considered in the results above.

7.  CONCLUSIONS AND FUTURE WORK
The evolution of custom computing machines has shown
that the memory interface must be carefully considered to
avoid a serious processing bottleneck. In this paper, we have
described the OneChip-98 architecture that tightly couples a
fixed-logic processor with reconfigurable logic and memory
onto a single chip. The target applications are memory
streaming, reading data from memory, operating on it, and
storing the results back to memory. In this way, data can be
directly accessed by the reconfigurable logic without
needing to deal with the overhead of going through the fixed
processor.

The proposed architecture introduces potential memory
consistency problems. To simplify the programming model,
we describe how the hardware can manage the problem. In
particular, we introduce the concept of the Block Lock
Table, which is used to store the sections of memory that are
being accessed. We also describe a means for quickly
finding locations to flush or invalidate in a cache by using
“don’t care” bits in the tag compare.

A scheme for specifying reconfigurable instructions and
managing the storage and access of the programming bits is
also proposed. This scheme requires little additional
hardware to be added to the typical fixed-logic processor
model.

The OneChip-98 architecture enables the processor and the
reconfigurable logic to execute concurrently. This not only
provides increased performance, but also allows the
processor to support small interrupts such as I/O handling.
These interrupts do not require much computation and
therefore need not affect the reconfigurable logic.

Two applications, one coarse-grained and one fine-grained,
were mapped to the OneChip-98 prototype and showed
improved performance over a general-purpose processor.
Although none of the dynamic reconfiguration or memory
consistency mechanisms could be validated, this
implementation did demonstrate that the proposed
instruction issue and memory interfaces worked well
without adding complex hardware to the traditional models.
The 2-dimensional Discrete Cosine Transform, a coarse-
grained application, obtained a ten-fold speed improvement
relative to the stand-alone processor, while the 64-tap finite
impulse response filter, a relatively fine-grained application,
achieved a performance speedup of over 30 times that of the
general-purpose processor. These performance results
indicate that the OneChip-98 system can successfully attain
speedup for a wide class of applications.

Future work should investigate issues such as whether out-

Implementa-
tion

System Execution 
time

Ultra 2 
(300 MHz)

actual 17 µs

scaled by 8 assuming MMX-
like (A)

2.1 µs

FPGA

Flex10K50-4
(using approximately 47,000 

gates)

1.59 µs

Flex10K50-1
(using approximately 47,000 

gates)

0.61 µs

Flex10K100 (better schedul-
ing) (B)

(using approximately 64,000 
gates)

0.20 µs

Speedup FPGA vs. Ultra 2 (A/B) 10x

Table 5: Performance results and speedup of the 2-dimensional 
DCT

Implementa-
tion

System Execution 
time

Ultra 2 
(300 MHz)

actual 2.53 µs

scaled by 4 assuming MMX-
like (A)

0.63 µs

DSP 56K 50 MHz processor (B 1.32 µs

FPGA

Flex10K50-4
(using approximately 37,000 

gates)

0.053 µs

Flex10K50-1 (C)
(using approximately 37,000 

gates)

0.020 µs

Speedup FPGA vs. Ultra 2 (A/C) 32x

FPGA vs. DSP (B/C) 65x

Table 6: Performance results and speedup of the 64-tap FIR 
filter



of-order issue provides significant benefit in these systems.
More thorough experimentation and benchmarking of
applications will provide greater insight into the cost-benefit
trade-off. OneChip-98 uses a fixed memory interface. As
experience grows with more applications being
implemented, it may be observed that a reconfigurable
memory interface would be more suitable. The field-
programmable system did not allow for the implementation
of dynamic reconfiguration or memory consistency. A
custom approach could provide these features. Lastly, we
have not considered the details of how the programmer
actually specifies or designs the hardware that gets mapped
to the reconfigurable logic. This is also an important area to
study.
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