Memory Limited, Streaming PCA

Ioannis Mitliagkas Constantine Caramanis
Dept. of Electrical and Computer Engineering Dept. of Electrical and Computer Engineering
The University of Texas at Austin The University of Texas at Austin
ioannis@utexas.edu constantine@utexas.edu

Prateek Jain
Microsoft Research
Bangalore, India
prajain@microsoft.com

Abstract

We consider streaming, one-pass principal component analysis (PCA), in the high-
dimensional regime, with limited memory. Here, p-dimensional samples are pre-
sented sequentially, and the goal is to produce the k-dimensional subspace that
best approximates these points. Standard algorithms require O(p?) memory;
meanwhile no algorithm can do better than O(kp) memory, since this is what the
output itself requires. Memory (or storage) complexity is most meaningful when
understood in the context of computational and sample complexity. Sample com-
plexity for high-dimensional PCA is typically studied in the setting of the spiked
covariance model, where p-dimensional points are generated from a population
covariance equal to the identity (white noise) plus a low-dimensional perturbation
(the spike) which is the signal to be recovered. It is now well-understood that
the spike can be recovered when the number of samples, n, scales proportionally
with the dimension, p. Yet, all algorithms that provably achieve this, have mem-
ory complexity O(p?). Meanwhile, algorithms with memory-complexity O(kp)
do not have provable bounds on sample complexity comparable to p. We present
an algorithm that achieves both: it uses O(kp) memory (meaning storage of any
kind) and is able to compute the k-dimensional spike with O(plogp) sample-
complexity — the first algorithm of its kind. While our theoretical analysis focuses
on the spiked covariance model, our simulations show that our algorithm is suc-
cessful on much more general models for the data.

1 Introduction

Principal component analysis is a fundamental tool for dimensionality reduction, clustering, classi-
fication, and many more learning tasks. It is a basic preprocessing step for learning, recognition, and
estimation procedures. The core computational element of PCA is performing a (partial) singular
value decomposition, and much work over the last half century has focused on efficient algorithms
(e.g., Golub & Van Loan (2012) and references therein) and hence on computational complexity.

The recent focus on understanding high-dimensional data, where the dimensionality of the data
scales together with the number of available sample points, has led to an exploration of the sample
complexity of covariance estimation. This direction was largely influenced by Johnstone’s spiked
covariance model, where data samples are drawn from a distribution whose (population) covariance
is a low-rank perturbation of the identity matrix Johnstone (2001). Work initiated there, and also
work done in Vershynin (2010a) (and references therein) has explored the power of batch PCA in
the p-dimensional setting with sub-Gaussian noise, and demonstrated that the singular value decom-

position (SVD) of the empirical covariance matrix succeeds in recovering the principal components
(extreme eigenvectors of the population covariance) with high probability, given n = O(p) samples.

This paper brings the focus on another critical quantity: memory/storage. The only currently avail-
able algorithms with provable sample complexity guarantees either store all n = O(p) samples (note
that for more than a single pass over the data, the samples must all be stored) or explicitly form or
approximate the empirical p X p (typically dense) covariance matrix. All cases require as much as
O(p?) storage for exact recovery. In certain high-dimensional applications, where data points are
high resolution photographs, biometrics, video, etc., p often is of the order of 10!° — 10'2, making
the need for O(p?) memory prohibitive. At many computing scales, manipulating vectors of length
O(p) is possible, when storage of O(p?) is not. A typical desktop may have 10-20 GB of RAM, but
will not have more than a few TB of total storage. A modern smart-phone may have as much as a
GB of RAM, but has a few GB, not TB, of storage. In distributed storage systems, the scalability in
storage comes at the heavy cost of communication.

In this light, we consider the streaming data setting, where the samples x; € RP are collected
sequentially, and unless we store them, they are irretrievably gone.! On the spiked covariance model
(and natural generalizations), we show that a simple algorithm requiring O(kp) storage — the best
possible — performs as well as batch algorithms (namely, SVD on the empirical covariance matrix),
with sample complexity O(plogp). To the best of our knowledge, this is the only algorithm with
both storage complexity and sample complexity guarantees.

We discuss connections to past work in detail in Section 2, introduce the model in Section 3, and
present the solution to the rank 1 case, the rank % case, and the perturbed-rank-k case in Sections 4.1,
4.2 and 4.3, respectively. In Section 5 we provide experiments that not only confirm the theoretical
results, but demonstrate that our algorithm works well outside the assumptions of our main theorems.

2 Related Work

Memory- and computation-efficient algorithms that operate on streaming data are plentiful in the
literature and many seem to do well in practice. However, there is no algorithm that provably
recovers the principal components in the same noise and sample-complexity regime as the batch
PCA algorithm does and maintains a provably light memory footprint. Because of the practical
relevance, there is renewed interest in this problem. The fact that it is an important unresolved issue
has been pointed out in numerous places, e.g., Warmuth & Kuzmin (2008); Arora et al. (2012).

Online-PCA for regret minimization is considered in several papers, most recently in Warmuth &
Kuzmin (2008). There the multiplicative weights approach is adapted to this problem, with experts
corresponding to subspaces. The goal is to control the regret, improving on the natural follow-
the-leader algorithm that performs batch-PCA at each step. However, the algorithm can require
O(p?) memory, in order to store the multiplicative weights. A memory-light variant described in
Arora et al. (2012) typically requires much less memory, but there are no guarantees for this, and
moreover, for certain problem instances, its memory requirement is on the order of p?.

Sub-sampling, dimensionality-reduction and sketching form another family of low-complexity and
low-memory techniques, see, e.g., Clarkson & Woodruft (2009); Nadler (2008); Halko et al. (2011).
These save on memory and computation by performing SVD on the resulting smaller matrix. The
results in this line of work provide worst-case guarantees over the pool of data, and typically require
a rapidly decaying spectrum, not required in our setting, to produce good bounds. More funda-
mentally, these approaches are not appropriate for data coming from a statistical model such as the
spiked covariance model. It is clear that subsampling approaches, for instance, simply correspond to
discarding most of the data, and for fundamental sample complexity reasons, cannot work. Sketch-
ing produces a similar effect: each column of the sketch is a random (+/—) sum of the data points.
If the data points are, e.g., independent Gaussian vectors, then so will each element of the sketch,
and thus this approach again runs against fundamental sample complexity constraints. Indeed, it is
straightforward to check that the guarantees presented in (Clarkson & Woodruff (2009); Halko et al.
(2011)) are not strong enough to guarantee recovery of the spike. This is not because the results are
weak; it is because they are geared towards worst-case bounds.

!"This is similar to what is sometimes referred to as the single pass model.

Algorithms focused on sequential SVD (e.g., Brand (2002, 2006), Comon & Golub (1990),Li (2004)
and more recently Balzano et al. (2010); He et al. (2011)) seek to have the best subspace estimate
at every time (i.e., each time a new data sample arrives) but without performing full-blown SVD
at each step. While these algorithms indeed reduce both the computational and memory burden of
batch-PCA, there are no rigorous guarantees on the quality of the principal components or on the
statistical performance of these methods.

In a Bayesian mindset, some researchers have come up with expectation maximization approaches
Roweis (1998); Tipping & Bishop (1999), that can be used in an incremental fashion. The finite
sample behavior is not known.

Stochastic-approximation-based algorithms along the lines of Robbins & Monro (1951) are also
quite popular, due to their low computational and memory complexity, and excellent performance.
They go under a variety of names, including Incremental PCA (though the term Incremental has been
used in the online setting as well Herbster & Warmuth (2001)), Hebbian learning, and stochastic
power method Arora et al. (2012). The basic algorithms are some version of the following: upon
receiving data point x; at time ¢, update the estimate of the top k principal components via:

U = Proj(U" + nexex, UMW), (1)

where Proj(-) denotes the “projection” that takes the SVD of the argument, and sets the top k
singular values to 1 and the rest to zero (see Arora et al. (2012) for discussion). While empirically
these algorithms perform well, to the best of our knowledge - and efforts - there is no associated
finite sample guarantee. The analytical challenge lies in the high variance at each step, which makes
direct analysis difficult.

In summary, while much work has focused on memory-constrained PCA, there has as of yet been no
work that simultaneously provides sample complexity guarantees competitive with batch algorithms,
and also memory/storage complexity guarantees close to the minimal requirement of O(kp) — the
memory required to store only the output. We present an algorithm that provably does both.

3 Problem Formulation and Notation

We consider the streaming model: at each time step ¢, we receive a point x; € RP. Any point that is
not explicitly stored can never be revisited. Our goal is to compute the top & principal components
of the data: the k-dimensional subspace that offers the best squared-error estimate for the points. We
assume a probabilistic generative model, from which the data is sampled at each step ¢. Specifically,

x¢ = Az + Wy, (2)

where A € RP** is a fixed matrix, z; € R**! is a multivariate normal random variable, i.e.,
2t ~ N (Okx1; Thxk),
and w, € RP*! is the “noise” vector, also sampled from a multivariate normal distribution, i.e.,
Wi~ N(Opx1, 0% Lyxp).-

Furthermore, we assume that all 2n random vectors (z;, w;, V1 < ¢t < n) are mutually independent.
In this regime, it is well-known that batch-PCA is asymptotically consistent (hence recovering A up
to unitary transformations) with number of samples scaling as n = O(p) Vershynin (2010b). It is
interesting to note that in this high-dimensional regime, the signal-to-noise ratio quickly approaches
zero, as the signal, or “elongation” of the major axis, ||Az||2, is O(1), while the noise magnitude,
||w||2, scales as O(,/p). The central goal of this paper is to provide finite sample guarantees for a
streaming algorithm that requires memory no more than O(kp) and matches the consistency results

of batch PCA in the sampling regime n = O(p) (possibly with additional log factors, or factors
depending on o and k).

We denote matrices by capital letters (e.g. A) and vectors by lower-case bold-face letters (x). ||x||4
denotes the ¢, norm of x; ||x|| denotes the ¢, norm of x. || A|| or || A||2 denotes the spectral norm of
A while ||A]| r denotes the Frobenius norm of A. Without loss of generality (WLOG), we assume
that: [[All> = 1, where |[Al> = max|x|,—1 || Ax||> denotes the spectral norm of A. Finally, we
write (a,b) = a b for the inner product between a, b. In proofs the constant C is used loosely and
its value may vary from line to line.

Algorithm 1 Block-Stochastic Power Method Block-Stochastic Orthogonal Iteration

input {xi,...,x,}, Block size: B

1: qo ~ N(0, I,x,) (Initialization) H ~ N(0,1,xp),1 <i < k (Initialization)
2: qo < qo/||qol|2 H « QoRo (QR-decomposition)
3: forr=0,...,n/B—1do
4: Syl 0 ST+1 0
5: fort=Br+1,...,B(tr+1)do
6: Sri1 4 Srq1 + 5 (dr, X)Xy Sri1 ¢ Srg1 + Bxx] Qr
7. end for
8 Qry1 ¢ Srq1/lISr41ll2 Sr4+1 = Qr+1Rr 1 (QR-decomposition)
9: end for
output

4 Algorithm and Guarantees

In this section, we present our proposed algorithm and its finite sample analysis. It is a block-wise
stochastic variant of the classical power-method. Stochastic versions of the power method already
exist in the literature; see Arora et al. (2012). The main impediment to the analysis of such stochastic
algorithms (as in (1)) is the large variance of each step, in the presence of noise. This motivates us
to consider a modified stochastic power method algorithm, that has a variance reduction step built
in. At a high level, our method updates only once in a “block” and within one block we average out
noise to reduce the variance.

Below, we first illustrate the main ideas of our method as well as our sample complexity proof for
the simpler rank-1 case. The rank-1 and rank-k algorithms are so similar, that we present them in
the same panel. We provide the rank-£ analysis in Section 4.2. We note that, while our algorithm
describes {x1,...,X,} as “input,” we mean this in the streaming sense: the data are no-where
stored, and can never be revisited unless the algorithm explicitly stores them.

4.1 Rank-One Case

We first consider the rank-1 case for which each sample x; is generated using: x; = uz; + wy
where u € RP is the principal component that we wish to recover. Our algorithm is a block-wise
method where all the n samples are divided in n/B blocks (for simplicity we assume that n/B is
an integer). In the (7 4 1)-st block, we compute

1 B(t+1)

Sry1 = E Z XtX;r qr. (3)

t=Bt1+1

Then, the iterate q, is updated using g1 = S;41/|/Sr+1|]2- Note that, s,; can be computed
online, with O(p) operations per step. Furthermore, storage requirement is also linear in p.

4.1.1 Analysis

We now present the sample complexity analysis of our proposed method. Using O(c*plog(p)/€?)
samples, Algorithm 1 obtains a solution g of accuracy ¢, i.e. [[qr — uf|2 <e.

Theorem 1. Denote the data stream by Xi,...,x,, where x; € RP Vt is generated by (2).
Set the total number of iterations T = Q(log((ngfg;;)//e()o2 —5y)) and the block size B =

Q((1+3(a+”2)2‘/ﬁ)210g(T)). Then, with probability 0.99, ||qr — ullz < € where qr is the T-th

€
iterate of Algorithm 1. That is, Algorithm I obtains an e-accurate solution with number of samples

(n) given by:
= (L3 DR st
Zlog((02 + .75) /(02 + 5))) °

Note that in the total sample complexity, we use the notation Q() to suppress the extra log(7T") factor
for clarity of exposition, as T already appears in the expression linearly.

Proof. The proof decomposes the current iterate into the component of the current iterate, g, in the
direction of the true principal component (the spike) u, and the perpendicular component, showing
that the former eventually dominates. Doing so hinges on three key components: (a) for large enough

. . . B(r+1 . . .
B, the empirical covariance matrix F, 1 = & Zt:(;; Jr)l x;X, is close to the true covariance matrix

M = uu' + 0%, ie., ||Fy41 — M]||2 is small. In the process, we obtain “tighter” bounds for
|luT (F,41 — M)u|| for fixed u; (b) with probability 0.99 (or any other constant probability), the
initial point g has a component of at least O(1/,/p) magnitude along the true direction u; (c) after
T iterations, the error in estimation is at most O(v") where v < 1 is a constant.

There are several results that we use repeatedly, which we collect here, and prove individually in the
full version of the paper (Mitliagkas et al. (2013)).

Lemmas 4, 5 and 6. Let B, T' and the data stream {x;} be as defined in the theorem. Then:
e (Lemma 4): With probability 1 — C/T, for C a universal constant, we have:

1
B thxtT —uu' —o%I|| <e
t

2

e (Lemma 5): With probability 1 — C/T, for C a universal constant, we have:

€
UTST+1 2 uTqT(]. + 0'2) <1 — 4(1-’—0’2)) s

_1 T
where sy = 53 5. < p(ri1) XtX¢ Qr-

e (Lemma 6): Let qq be the initial guess for u, given by Steps 1 and 2 of Algorithm 1. Then,
w.p. 0.99: [{qo, u)| > %, where Cp > 0 is a universal constant.

Step (a) is proved in Lemmas 4 and 5, while Lemma 6 provides the required result for the initial
vector qp. Using these lemmas, we next complete the proof of the theorem. We note that both (a)
and (b) follow from well-known results; we provide them for completeness.

Letq, = V1 —d,u++6,g,,1 <7 < n/B, where g, is the component of g, that is perpendicular
to u and v/1 — 4, is the magnitude of the component of q, along u. Note that g, may well change
at each iteration; we only wish to show §, — 0.

Now, using Lemma 35, the following holds with probability at least 1 — C'/T":

u's, 1 >\/1-0.(1+02) <1€>. 4)

4(1+ 02)
Next, we consider the component of s that is perpendicular to u:
1 B(t+1)
gj—f-ls‘r-&-l = gj—&-l B Z XtXtT qr = gj—&-l(M + E;)ar,
t=Bt+1

where M = uu' +02] and E- is the error matrix: E, = M — % Zf:(;tfl xtx;'—. Using Lemma 4,
|E;||2 < €e(w.p. >1—C/T). Hence, wp. > 1—C/T:
g:+1sf+1 = Uzg;r+1QT +lgrall2| Exll2llar |2 < o’ VOr + e (5)

Now, since q; 11 = S741/[Sr41][2.

(gI+1Sr+1)2
(uTsry1)? + (g;r+ls7'+1)2 ’
(2 (gj+157+1)2
T =) (1402 = 6) + (@las)?

@ (0257 + €)?
C (1-6)(1+02- 2)2 + (0'2\/54—6)2’

0ri1 = (81 1ar+1)% =

(6)

where, (i) follows from (4) and (ii) follows from (5) along with the fact that i is an increasing
function in z for ¢,z > 0. Assuming /&, > 2¢ and using (6) and bounding the failure probability

with a union bound, we get (w.p. > 1—17-C/T)

6.(0% +1/2) (i) 7278, G

b1 < < Gy, 7

S 1602 +3/42+ 6. (02 +1/2)2 = 1— (125 — P (7)

where v = Ziiéji and C > 0 is a global constant. Inequality (ii) follows from Lemma 6; to prove

(i), we need the following lemma. It shows that in the recursion given by (7), 0, decreases at a fast
rate. The rate of decrease in §, might be initially (for small 7) sub-linear, but for large enough 7 the
rate is linear. We defer the proof to the full version of the paper (Mitliagkas et al. (2013)).

Lemma 2. [fforany T > 0and 0 < v < 1, we have §, 41 < 17512%’
72t+2 50

0741 < .
e (1 —~2+2)d9

then,

Hence, using the above equation after T = O (log(p/¢€)/log (1/)) updates, with probability at
least 1 — C, /61 < 2e. The result now follows by noting that ||[u — qrll2 < 2v/07. O

Remark: In Theorem 1, the probability of recovery is a constant and does not decay with p. One can
correct this by either paying a price of O(log p) in storage, or in sample complexity: for the former,
we can run O(log p) instances of Algorithm 1 in parallel; alternatively, we can run Algorithm 1
O(logp) times on fresh data each time, using the next block of data to evaluate the old solutions,
always keeping the best one. Either approach guarantees a success probability of at least 1 — po—lm.

4.2 General Rank-£ Case

In this section, we consider the general rank-k£ PCA problem where each sample is assumed to be
generated using the model of equation (2), where A € RP*¥ represents the k principal components
that need to be recovered. Let A = UAV " be the SVD of A where U € RP*F AV € RFXK,
The matrices U and V are orthogonal, i.e., U'u=1 , VIV =TI and Zisa diagonal matrix with
diagonal elements Ay > A - -+ > A\g. The goal is to recover the space spanned by A, i.e., span(U).
Without loss of generality, we can assume that ||All; = A1 = 1.

Similar to the rank-1 problem, our algorithm for the rank-%k problem can be viewed as a streaming
variant of the classical orthogonal iteration used for SVD. But unlike the rank-1 case, we require
a more careful analysis as we need to bound spectral norms of various quantities in intermediate
steps and simple, crude analysis can lead to significantly worse bounds. Interestingly, the analysis
is entirely different from the standard analysis of the orthogonal iteration as there, the empirical
estimate of the covariance matrix is fixed while in our case it varies with each block.

For the general rank-k problem, we use the largest-principal-angle-based distance function between
any two given subspaces:

dist (span(U), span(V)) = dist(U, V) = |[U[Vo = |V U|la,
where U, and V| represent an orthogonal basis of the perpendicular subspace to span(U) and

span(V), respectively. For the spiked covariance model, it is straightforward to see that this is
equivalent to the usual PCA figure-of-merit, the expressed variance.

Theorem 3. Consider a data stream, where x, € RP for every t is generated by (2), and the SVD
of A € RP¥F js given by A = UAV . Let, wlog, \y =1 > Xy > --- > A\, > 0. Let,

2
p 02 1 0.75\2 ((1+ 02V + oVTF 0?hy/p) loa(T)
7= (log (52) /o5 (g)) B0 i

Then, after T B-size-block-updates, w.p. 0.99, dist(U, Q1) < €. Hence, the sufficient number of
samples for e-accurate recovery of all the top-k principal components is:

2
((1 +0)2Vk+oV1+ 0%@) log(p/ke)
Aie? log (7024_0'75)\2)

02+O‘5/\i

Again, we use Q() to suppress the extra log(T') factor.

The key part of the proof requires the following additional lemmas that bound the energy of the
current iterate along the desired subspace and its perpendicular space (Lemmas 8 and 9), and Lemma
10, which controls the quality of the initialization.

Lemmas 8, 9 and 10. Let the data stream, A, B, and T be as defined in Theorem 3, o be the
variance of noise, F, 41 = % ZBT<t<B(T+1) xtxtT and @ be the 7-th iterate of Algorithm 1.

e (Lemma8): Vv € R* and ||v|2 = 1, w.p. 1 — 5C/T we have:

Ae
U Fri1Qrvlla > (AR +0° — Z W1=1U7Q-|3

e (Lemma 9): With probability at least 1 — 4C/T,
UL Fri1Qrll2 < 0®|IUL Q|2 + Afe/2-

e (Lemma 10): Let Qg € RP** be sampled uniformly at random as in Algorithm 1. Then,
w.p. atleast 0.99: 0.(UT Qo) > O/

We provide the proof of the lemmas and theorem in the full version (Mitliagkas et al. (2013)).

4.3 Perturbation-tolerant Subspace Recovery

While our results thus far assume A has rank exactly &, and k is known a priori, here we show that
both these can be relaxed; hence our results hold in a quite broad setting.

Let x, = Az, + w, be the t-th step sample, with A = UAVT € RPX" and U € RPX", where r > k
is the unknown true rank of A. We run Algorithm 1 with rank & to recover a subspace ()7 that is
contained in U. The largest principal angle-based distance, from the previous section, can be used
directly in our more general setting. That is, dist(U, Q) = ||UT Qr||2 measures the component of
Qr “outside” the subspace U.

Now, our analysis can be easily modified to handle this case. Naturally, now the number of samples
we require increases according to r. In particular, if

5 (14 0)2/F + oVT + o2r/p)” log(p/re)

4.2 0’2+O.75>\% ’
ATE 10g (0'2+0.5)\$,

n =

then dist(U, Q7) < e. Furthermore, if we assume > C' - k (or a large enough constant C' >
0) then the initialization step provides us better distance, i.e., dist(U, Qg) < C'/ \/P rather than
dist(U, Qo) < C'/+/kp bound if r = k. This initialization step enables us to give tighter sample
complexity as the ,/p in the numerator above can be replaced by /7p.

S Experiments

In this section, we show that, as predicted by our theoretical results, our algorithm performs close
to the optimal batch SVD. We provide the results from simulating the spiked covariance model,
and demonstrate the phase-transition in the probability of successful recovery that is inherent to the
statistical problem. Then we stray from the analyzed model and performance metric and test our
algorithm on real world—and some very big—datasets, using the metric of explained variance.

In the experiments for Figures 1 (a)-(b), we draw data from the generative model of (2). Our results
are averaged over at least 200 independent runs. Algorithm 1 uses the block size prescribed in
Theorem 3, with the empirically tuned constant of 0.2. As expected, our algorithm exhibits linear
scaling with respect to the ambient dimension p — the same as the batch SVD. The missing point
on batch SVD’s curve (Figure 1(a)), corresponds to p > 2.4 - 10%. Performing SVD on a dense
p X p matrix, either fails or takes a very long time on most modern desktop computers; in contrast,
our streaming algorithm easily runs on this size problem. The phase transition plot in Figure 1(b)

Samples to retrieve spike (0=0.5, ¢=0.05)

10* Probability of success (n=1000, £=0.05).

10°% 3
c 0.8
2 3 10°
2 10* g, 0.6
3 S 0.4
< 10f, 5
—e—Batch SVD € 0.2
—&— Our algorithm (streaming) < | 4
10° : ‘ 10 = > oo
10° 10° 10* 10 10 10
p (dimension) Noise standard deviation (o).
(a) (b)
NIPS bag-of-words dataset Our algorithm on large bag-of-words datasets
40% : ‘ : 20% : : : : ‘
- # -NY Times: 300K samples, p=103K
3 309%] —o— PubMed: 8.2M samples, p=140K
g7 c I
g g
g g
g 20%g 5 10%
£ 2 e
© =
S 10%]| —— Optimal (batch) | 2
uw —&— Our algorithm (streaming) &
= = =Optimal using B samples
00/0 T T T
4 6 8 10 0%, 2 3 4 5 7
k (number of components) k (number of components)

C
Figure 1: (a) Number o(f)samples required for recovery of a single component (k¥ = 1) from the
spiked covariance model, with noise standard deviation o = 0.5 and desired accuracy € = 0.05.
(b) Fraction of trials in which Algorithm 1 successfully recovers the principal component (k = 1)
in the same model, with ¢ = 0.05 and n = 1000 samples, (c¢) Explained variance by Algorithm 1
compared to the optimal batch SVD, on the NIPS bag-of-words dataset. (d) Explained variance by
Algorithm 1 on the NY Times and PubMed datasets.

shows the empirical sample complexity on a large class of problems and corroborates the scaling
with respect to the noise variance we obtain theoretically.

Figures 1 (c)-(d) complement our complete treatment of the spiked covariance model, with some
out-of-model experiments. We used three bag-of-words datasets from Porteous et al. (2008). We
evaluated our algorithm’s performance with respect to the fraction of explained variance metric:
given the p X k matrix V' output from the algorithm, and all the provided samples in matrix X, the
fraction of explained variance is defined as Tr(VT X XTV)/ Tr(XXT). To be consistent with our
theory, for a dataset of n samples of dimension p, we set the number of blocks to be T' = [log(p)]
and the size of blocks to B = |n/T'| in our algorithm. The NIPS dataset is the smallest, with
1500 documents and 12K words and allowed us to compare our algorithm with the optimal, batch
SVD. We had the two algorithms work on the document space (p = 1500) and report the results in
Figure 1(c). The dashed line represents the optimal using B samples. The figure is consistent with
our theoretical result: our algorithm performs as well as the batch, with an added log(p) factor in
the sample complexity.

Finally, in Figure 1 (d), we show our algorithm’s ability to tackle very large problems. Both the
NY Times and PubMed datasets are of prohibitive size for traditional batch methods — the latter
including 8.2 million documents on a vocabulary of 141 thousand words — so we just report the
performance of Algorithm 1. It was able to extract the top 7 components for each dataset in a few
hours on a desktop computer. A second pass was made on the data to evaluate the results, and we
saw 7-10 percent of the variance explained on spaces with p > 10%.

References

Arora, R., Cotter, A., Livescu, K., and Srebro, N. Stochastic optimization for PCA and PLS. In 50th Allerton
Conference on Communication, Control, and Computing, Monticello, IL, 2012.

Balzano, L., Nowak, R., and Recht, B. Online identification and tracking of subspaces from highly incomplete
information. In Communication, Control, and Computing (Allerton), 2010 48th Annual Allerton Conference
on, pp. 704-711, 2010.

Brand, M. Fast low-rank modifications of the thin singular value decomposition. Linear algebra and its
applications, 415(1):20-30, 2006.

Brand, Matthew. Incremental singular value decomposition of uncertain data with missing values. Computer
Vision—ECCYV 2002, pp. 707-720, 2002.

Clarkson, Kenneth L. and Woodruff, David P. Numerical linear algebra in the streaming model. In Proceedings
of the 41st annual ACM symposium on Theory of computing, pp. 205-214, 2009.

Comon, P. and Golub, G. H. Tracking a few extreme singular values and vectors in signal processing. Proceed-
ings of the IEEE, 78(8):1327-1343, 1990.

Golub, Gene H. and Van Loan, Charles F. Matrix computations, volume 3. JHUP, 2012.

Halko, Nathan, Martinsson, Per-Gunnar, and Tropp, Joel A. Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions. SIAM review, 53(2):217-288, 2011.

He, J., Balzano, L., and Lui, J. Online robust subspace tracking from partial information. arXiv preprint
arXiv:1109.3827,2011.

Herbster, Mark and Warmuth, Manfred K. Tracking the best linear predictor. The Journal of Machine Learning
Research, 1:281-309, 2001.

Johnstone, lain M. On the distribution of the largest eigenvalue in principal components analysis.(english. Ann.
Statist, 29(2):295-327, 2001.
Li, Y. On incremental and robust subspace learning. Pattern recognition, 37(7):1509-1518, 2004.

Mitliagkas, Ioannis, Caramanis, Constantine, and Jain, Prateek. Memory limited, streaming PCA. arXiv
preprint arXiv:1307.0032, 2013.

Nadler, Boaz. Finite sample approximation results for principal component analysis: a matrix perturbation
approach. The Annals of Statistics, pp. 2791-2817, 2008.

Porteous, lan, Newman, David, Ihler, Alexander, Asuncion, Arthur, Smyth, Padhraic, and Welling, Max. Fast
collapsed gibbs sampling for latent dirichlet allocation. In Proceedings of the 14th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, pp. 569-577, 2008.

Robbins, Herbert and Monro, Sutton. A stochastic approximation method. The Annals of Mathematical Statis-
tics, pp. 400-407, 1951.

Roweis, Sam. EM algorithms for PCA and SPCA. Advances in neural information processing systems, pp.
626-632, 1998.

Rudelson, Mark and Vershynin, Roman. Smallest singular value of a random rectangular matrix. Communica-
tions on Pure and Applied Mathematics, 62(12):1707-1739, 2009.

Tipping, Michael E. and Bishop, Christopher M. Probabilistic principal component analysis. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 61(3):611-622, 1999.

Vershynin, R. How close is the sample covariance matrix to the actual covariance matrix? Journal of Theoret-
ical Probability, pp. 1-32, 2010a.

Vershynin, Roman. Introduction to the non-asymptotic analysis of random matrices. arXiv preprint
arXiv:1011.3027,2010b.

Warmuth, Manfred K. and Kuzmin, Dima. Randomized online PCA algorithms with regret bounds that are
logarithmic in the dimension. Journal of Machine Learning Research, 9:2287-2320, 2008.

