
Memory Management with Explicit Regions

David Gay* and Alex Aiken’

EECS Department

University of California, Berkeley

{dgay,aiken}@cs.berkeley.edu

Abstract

Much research has been devoted to studies of and algo-
rithms for memory management based on garbage col-
lection or explicit allocation and deallocation. An al-
ternative approach, region-based memory management,
has been known for decades, but has not been well-
studied, In a region-based system each allocation spec-
ifies a region, and memory is reclaimed by destroying
a region, freeing all the storage allocated therein. We
show that on a suite of allocation-intensive C programs,
regions are competitive with malloc/free and sometimes
substantially faster. We also show that regions sup-
port safe memory management with low overhead. Ex-
perience with our benchmarks suggests that modifying
many existing programs to use regions is not difficult.

1 Introduction

The two most popular memory management tech-
niques are explicit allocation and deallocation, as
in C’s malloc/free, and various forms of garbage-
collection [Wi192]. Both have well-known advantages
and disadvantages, discussed further below. A third al-
ternative is region-based memory allocation, which has
been widely used as an implementation technique for
many years under a variety of names, e.g., zones [ROSEN],

groups [lY90], or arenas [HanSO]. Regions have also re-
cently attracted research attention as a target for static
inference of memory management [TT97] and for im-
proving locality of dynamically allocated data [Sto97].

In a region-based memory allocation scheme each al-
located object is placed in a program-specified region.
Memory is reclaimed by destroying a region, freeing
all the objects allocated therein. A simple example is
shown in Figure 1. Each iteration of the loop allocates
a small array. The call to deleteregion frees all arrays.

*This material is based in part upon work supported by NSF
Young Investigator Award No. CCR9457812, DARPA contract
F30602-95-C-0136 and a Microsoft graduate fellowship.

~3 ,666 ACM 0-89791-987-4/98/0006...$6.00

void f (1
c

Region r = newregion ;

for (i = 0; i < 10; i++) C
int *x = ralloc(r, (i + 1) * sizeof (int));
work(i, x);

1
deleteregion(

I

Figure 1: An example of region-based allocation.

In the commonly used version of region-based program-
ming, regions are explicit in the program and entirely
under programmer control. To our knowledge, the per-
formance of this popular implementation technique has
never been studied. Our f&t contribution is a detailed
comparison of the performance of regions with mal-
lot/free libraries and conservative garbage collection on
a set of benchmark programs. Our conclusion is that
explicit regions are, for our benchmarks, faster than ei-
ther malloc/free or conservative garbage collection, and
sometimes significantly so (up to 16%). Memory con-
sumption is good in our experiments: regions use from
9% less to 19% more memory than the best alternative
and always rank either first or second (see Section 5).

While our study supports the use of regions on perfor-
mance grounds, the common implementation of regions
is unsafe, as a region r can be deleted even if other
regions have accessible pointers to objects in r. Our
second contribution is the study of a safe region imple-
mentation in which a region r can be deleted only if
there are no ezternalreferences to objects in r (a refer-
ence external to r is any pointer not stored within r).
We enforce this rule by keeping a reference counf for
each region; deleteregion is a no-op when this refer-
ence count is nonzero. Note that by reference count-
ing regions instead of individual objects two common
problems with reference counting are ameliorated: min-
imal space is devoted to storing reference counts, and
cyclic structures can be collected so long as they are al-
located within a single region. The overhead of safety
varies from negligible to 17% on our benchmarks, but
the comparative performance remains almost the same:
regions are still faster (up to 9%) than the alternatives

313

in all but a few cases, and in those cases regions are only
slightly slower (up to 5%).

A third contribution is an assessment of how difficult it
is to program with explicit regions. Our metric is the
number and type of changes required to modify an appli-
cation to use regions. All of our benchmarks required
only modest recoding to use regions, and the needed
region organization was straightforward to derive (see
Section 5.1).

We also found that explicit regions have some partic-
ular strengths. First, regions bring structure to mem-
ory management, making programs clearer and, in our
subjective assessment, easier to write compared to us-
ing malloc/free. For example, it is not necessary to
walk through a complex data structure to deallocate
it. Second, we found some evidence that regions can
be used to provide significantly improved data local-
ity, as posited by Stoutamire [Sto97]. The execution
time of one benchmark was improved 24% simply by
reorganizing allocation so that the most frequently ac-
cessed objects are allocated in a single region. Nei-
ther malloc/free nor garbage-collected systems provide
any mechanism for expressing locality. Third, regions
are useful for building software with predictable perfor-
mance, as the cost of every operation is easily bounded,
at least for unsafe regions and in [TT97] for compiler-
inferred safe regions (see Section 2). Our safe imple-
mentation uses a moderately sophisticated scheme for
efficiency; we show that the overhead of this scheme is
amortized constant time per instruction executed, as-
suming that the size of stack frames is bounded by a
constant (see Section 4.3).

Another advantage of region-baaed memory manage-
ment is that it can be used nearly unchanged in an
explicitly-parallel programming language. The only op-
erations that require synchronization amongst all pro-
cesses are region creation and deletion. Each process
keeps a local reference count for each region which
counts the references created or deleted by that process.
A region can be deleted if the sum of alI its local refer-
ence counts is zero. Writes of references to regions must
be done with an atomic exchange (rather than a simple
write) to prevent incorrect behaviour in the presence of
data races, however the local reference counts can be
adjusted without synchronization or communication.

There are situations where regions are not a good
model, particularly when the programmer does not
know enough about the lifetime of objects at allocation-
time to place them in appropriate regions. One example
we encountered is a game where objects are allocated
and deallocated as the result of the player’s actions;
there is no way to place objects with similar lifetimes in
a common region. Our purpose here is to study the costs
and benefits of regions as they are normally used. We
leave generalizations of explicit regions as future work.

We conclude this section with a high-level comparison
of our region scheme with malloc/free and garbage col-
lection. Our region model is reminiscent of malloc/free
but allocation is about twice as fast and deallocation is
much faster. In the safe version of our scheme, there
is additional overhead for maintaining region reference
counts. Garbage collection is easier to use than re-

gions and can be very efficient if the application only
uses a fraction of available memory. When an appli-
cation needs most of the available memory, however,
performance degrades. Also garbage collection prevents
local reasoning about performance by introducing un-
predictable pauses. Real-time collectors [Bak78, WJ93]
eliminate this last problem at the cost of higher over-
head. From these considerations, we believe regions are
best suited for high-performance applications that use
a large fraction of machine memory and where the life-
times of values can be statically predicted. Regions are
also useful for writing software with more predictable
performance than garbage-collection-based systems.

The rest of this paper begins with a more detailed survey
of related work (Section 2). We then introduce our safe,
region-based memory management system (Section 3)
and its implementation (Section 4). Section 5 details
the costs of safe regions and compares their performance
on six C applications with three malloc/free implemen-
tations and the Boehm-Weiser conservative garbage col-
lector [BW88].

2 Related Work

The literature on memory management is vast. Sur-
veys can be found in [Wi192] for garbage collection
and [WJNB95] for explicit allocation and deallocation.

Regions have been used for decades. Ross [Ros67]
presents a storage package that allows objects to be al-
located in specific zones. Each zone can have a different
allocation policy, but deallocation is done on an object-
by-object basis. Vo’s [Vo96] VmaIloc package is similar:
allocations are done in regions with specific allocation
policies. Some regions alIow object-by-object dealloca-
tion, some regions can only be freed ail at once. Hanson
presents arenas in [HanSO], but does not measure their
performance. Barrett and Zorn [BZ93] use profiling to
determine allocations that are short-lived, then place
these allocations in fixed-size regions. A new region is
created when the previous one filIs up, and regions are
deleted when alI objects they contain are freed. This
provides some of the performance advantages of regions
without programmer intervention, but does not work
for all programs. None of these proposals attempt to
provide safe memory management.

Stoutamire (St0971 adds zones, which are garbage-
collected regions, to Sather [SO961 to allow explicit pro-
gramming for locality. His benchmarks compare zones
with Sather’s standard garbage collector. Reclamation
is still on an object-by-object basis.

The only published empirical studies on regions are for
the region inference system of Tofte and Talpin [TT97],
which automatically infers for ML programs how many
regions should be allocated, where these regions should
be freed, and to which region each allocation site should
write. Although very sophisticated, the Tofte/Talpin
system relies critically on the fact that regions, region
allocation, and region deallocation are introduced by
the compiler and not by the programmer. Besides be-
ing fulIy automatic, the Tofte/Talpin system has the ad-
vantage that the runtime overhead for memory manage-

314

ment is reduced to an absolute minimum while also be-
ing safe. Unfortunately, region inference is not perfect.
To avoid leaking a great deal of memory it is necessary
for the programmer to understand the regions inferred
by the compiler and to adjust the program so that the
compiler infers better region assignments. Second, op-
timizations beyond the basic inference procedure make
an enormous difference in memory management perfor-
mance [AFL95, BTV96]. Both of these properties sug-
gest that explicit first-class regions may be appropriate,
but combining explicit programmer-controlled regions
with region inference appears to be a very difficult prob-
lem.

Bobrow [Bob801 is the first to propose the use of regions
to make reference counting tolerant of cycles. This idea
is taken up by Ichisugi and Yonezawa in [lY90] for use in
distributed systems. Neither of these papers considers
the use of regions for enhancing locality, nor do they
include any performance measurements.

Grunwald and Zorn [GZ93] and Detlefs, Dosser and
Zorn [DDZ94] study the performance of various allo-
cators. Vo’s paper on regions [Vo96] also compares
the performance of the malloc/free-like allocator of the
Vmalloc package with other malIoc/free implementa-
tions. Grunwald, Zorn and Henderson compare the
performance and cache locality of different allocators
in [GZH93]. None of these studies consider region-based
allocation.

3 Programming Model

We have implemented a prototype safe region-based
memory management system as an extension of C,
CO. Using C allows us to compare existing allocation-
intensive programs with versions of these applications
modified to use regions. Our prototype requires lan-
guage and’compiler support for two reasons. First, it
is much easier for the compiler to generate the refer-
ence counting code than to insert reference counts by
hand. Second, our implementation must locate alI live
local variables containing pointers; this information is
only available in the compiler. An added advantage of
modifying the language is that we can enforce some of
the requirements on pointers to objects in regions at
compile-time. The rest of this section presents CQ, the
region allocation library, and gives a simple example.

3.1 The Language CQ

CQ distinguishes two kinds of pointers: normal pointers
and region pointers, i.e., pointers to objects in regions.
Region pointers are defmed with ‘@’ instead of ‘*,’ e.g.,
int Qx. The types TQ and T* are different types, and
no implicit conversion exists between them although ex-
plicit casts are allowed. These casts are unsafe, but are
necessary for our experiments because the standard C
libraries are not aware of region pointers. In particular
deleteregion does not account for region pointers cast
to normal pointers.

When a region pointer r is updated it is potentially
necessary to adjust two reference counts, one for the old

typedef struct region QRegion;
typedef size-t

(*cleanup-t)(/* struct ??? Qx */);
typedef size-t

(*cleanuparray-t)(/*size-t n,
struct ??? Qx */) ;

Region neuregion(void) ;
int deleteregion(Region *r) ;

void Qralloc(Region r, size-t size,
cleanup-t cleanup) ;

void Qrarrayalloc(Region r,
size-t n, size-t size,
cleanuparray-t cleanup) ;

void Qrstralloc(Region r, size-t size);

Region regionof (void Qx) ;

Figure 2: Region allocation interface.

region r points to (a decrement) and one for the new re-
gion r points to (an increment). This implies that region
pointers must always be initialized, which is enforced by
requiring initialization of all local variables that are, or
contain, region pointers, and by clearing (writing O’S in)
all objects allocated in regions. Because C@ must recog-
nise all writes of region pointers, copying structs con-
taining region pointers is forbidden-C’s unions make it
impossible to know which parts of a structure actually
contain region pointers. Region pointers behave oth-
erwise like normal ANSI C pointers and in particular
address arithmetic is allowed.

While these restrictions on regions pointers in CQ are
not onerous, it is worth noting that explicit regions
could be integrated into more modern languages with
fewer modifications. For example, in Java [GJS96]
pointers (i.e., references) are always initialized and
union does not exist.

3.2 The Region Library

Figure 2 shows the region interface. A new region is
created with newregion Objects are allocated with
ralloc, arrays with rarrayalloc. Objects or arrays
that do not contain any region pointers can be allocated
with rstralloc; the cleanup arguments to ralloc and
rarrayalloc are discussed in Section 4. The mem-
ory returned by ralloc and rarrayalloc, but not
rstralloc, is cleared. An object’s region is returned
by regionof.

An attempt to delete a region is made by calling
deleteregion(The deletion succeeds if there are
no references (excepting *x) to the region in live vari-
ables or in other regions. On success, *x is set to NULL,
and 1 is returned. On failure *x is unchanged, and 0 is
returned.

Figure 3 shows a simple example that copies a list
into a region, then later deletes that region. The
cleanuplist function is presented in Section 4.

315

struct list C
int i;
struct list Qnext;

1;

struct list Qcons(Region r, int x,
struct list Ql)

c
struct list Qp =

ralloc (r , sizeof (struct list) ,
cleanup-list) ;

p->i = x; p->next = 1;
return p;

1

struct list Qcopy-list (Region r,

C

struct list Ql)

if (1 == NULL) return NULL;
else return cons(r, 1->i,

copy-list(r, 1->next));

void work(struct list 01)
i

Region tmp = newregion0;

1 - copy-list(tmp, 1) ;
. . . do something with 1 . . .
deleteregion(&tmp) ;

Figure 3: List copy using regions.

4 Implementation

Our implementation of safe regions is based on the
ICC [FH95] C compiler and a runtime library implement-
ing our region interface. The modified ICC handles the
language extensions of Section 3 and cooperates with
the runtime library to maintain region reference counts.
The target machine is a Sun UltraSparc-I. This sec-
tion discusses how our implementation manages regions
(Section 4.1) and reference counts (Section 4.2). We
also have a modified version of our implementation that
supports unsafe regions: it is identical to the safe ver-
sion, except that ah support for maintaining reference
counts is disabled. The section concludes with a ar-
gument that the overhead of memory management is
amortized constant time per instruction executed.

4.1 Managing Regions

The goal of the region library is to provide cheap object
allocation and region deletion. It must also maintain
a mapping from memory addresses to regions for the
reference counting code.

The region data structure is shown in Figure 4. A re-
gion contains a reference count and two allocators, one
for normal allocations (ralloc and rarrayalloc) and
one for region-pointer-free data (rstralloc). Each al-

struct allocator C
char *firstpage;
/* offset at which to allocate */
int allocfrom;

3;

struct region C
int rc;
struct allocator normal:
struct allocator String;

1;

Figure 4: Region structure.

locator maintains a list of 4K byte pages, with allocation
occurring only on the first page of the Est.’

Allocation is very simple: If the allocation fits on the
first page just return f irstpage+allocf rom and incre-
ment allocfrom, if not allocate a new page and try
again. The ralloc and rarrayalloc functions must
also save the cleanup function at the start of the aho-
cated object (see below) and clear the rest of the aho-
cated memory. Finally, rarrayalloc must save the size
of the array. The allocators maintain an array mapping
page addresses (i.e., memory addresses / 4K) to regions.

The space overheads of this scheme are low: eight bytes
per page for the map of pages to regions and the list of
allocated pages. If an object does not fit in the space
remaining at the end of a page that space is wasted.2
Each allocation needs zero (for strings) to twelve (for
arrays) bytes of bookkeeping information.

The region itself is stored in the first page allocated for
that region. To reduce cache conflicts between region
structures, successive regions are offset by 64 bytes (the
2nd level cache line size) in their first page, up to a
maximum offset of 512.

4.2 Managing Reference Counts

While an object is allocated and deallocated only once,
references to an object may change an arbitrary num-
ber of times. Thus, while object allocation and region
deallocation are inexpensive in our system, maintain-
ing reference counts is potentially very expensive. It
is useful to distinguish between references in local vari-
ables, which change frequently, from references in the
heap, which are updated more rarely. The main aim
of our reference counting scheme is to avoid the large
overhead that would be incurred by reference counting
local variables exactly. There are four components to
our scheme: maintaining approximate reference counts
for local variables, maintaining exact reference counts
for pointers in the heap, performing a scan of the stack,
and scanning deleted regions.

‘Our prototype only handles allocations of less than one
page-our benchmarks did not use any larger objects. This re-
striction could be lifted without affecting the cost of small allo-
cations.

‘Also the last byte of a page cannot be used if pointers to the
end of objects are supported.

316

4.2.1 Local Variables

The exact reference count for a region is the number
of pointers to objects of that region from other regions,
global storage (including global and static variables and
any memory returned by malloc if used) and the live
variables in all active call frames. We need the exact
reference count only when deleteregionis called, at all
other times we need only maintain enough information
to compute this reference count (this is the principle
behind deferred reference counting [DB76]).

The actual reference count stored with a region reflects
the number of pointers to objects of that region from all
other regions, global storage, and the live variables in
all active call frames above the high water mark on the
stack (note the stack grows downward on the SPARC).
The high water mark is just a location on the stack,
with some frames above and some below. Our system
maintains the following invariant:

(*) The number offrames below the high-water

mark is always at least one.

Thus writes to local variables never update reference
counts.

Invariant (*) is maintained by a procedure call, but
some work may be required on procedure return. If
control returns to a call frame at the high-water mark,
then the region reference counts attributable to local
variables are decremented and the high water mark is
adjusted above the call frame. We describe this unscan
function in further detail below.

When deleteregion requires the exact reference
count of r it scans the portion of the stack below
the high water mark and updates the region reference
counts. At that point the actual and exact reference
counts are equal. The stack scan sets the high water
mark above the frame of deleteregion, which is not
itself scanned.

4.2.2 Global and Region References

The compiler generates code to update reference counts
on writes of region pointers in global storage and to ob-
jects within regions. Reference counting is different for
writes to global storage and for writes within regions.
When a pointer to region r is written in region r, the
reference count for r is not incremented. We call such
pointers sameregion pointers. As global storage does
not belong to any region, it cannot contain sameregion
pointers. Figure 5 shows pseudo-code for both kinds
of reference count updates. The instruction counts re-
flect the number of SPARC instructions required by our
implementation for each kind of write.

Our compiler attempts to distinguish writes to local
variables, global storage and regions at compile-time,
but this is not always possible in C because writes via
normal pointers can be writes to global storage or to
variables on the stack. Writes to the stack should only
be reference counted if that variable is above the high
water mark. For writes that cannot be statically dis-

Global writes - 16 instructions
t = *a:
if (regionof (t) != regionof (b)) {

regionof (t)->rc--;
regionof (b) ->rc++;

1

Region writes - 23 mstructrons
t = *a I
if (regionof (t) != regionof (b)) {

if (regionof (t) != regionof (a) 1
regionof (t.) ->rc--;

if (regionof (b) != regionof (a))
regionof (b) --)rc++;

1

Figure 5: Reference count methods for *a=b.

tinguished, a more expensive runtime routine is used to
determine which case applies.

4.2.3 Stack Scan

To allow the stack to be scanned at runtime, the com-
piler records at each function call site the set of registers
and offsets in the current call frame that contain live re-
gion pointers. Because our implementation is based on
lee, which does not have liveness information available,
our prototype considers all variables in scope to be live.
The liveness information is static data whose location
is recorded in the unused bits of a NOP instruction at
the call site. (A more complex implementation would
avoid this extra instruction.) After the scan of a call
frame increments the region reference counts for all live
variables, the high water mark is placed just below that
call frame.

A call frame that was scanned is unscanned automat-
ically when control returns to that frame. This is
achieved by modifying return addresses during the scan
to point to a special unscan function that decrements
the region reference counts, adjusts the high water mark
above the call frame, and then jumps to the original re-
turn address.

4.2.4 Region Scan

A deleted region r may contain pointers to objects in
other regions. To adjust the reference counts of other
regions we examine all the region pointers in objects
allocated in r. The user supplies the function that per-
forms this task as the cleanup argument to ralloc and
rarrayalloc. This function must call destroy on ev-
ery region pointer in the allocated object and return
the size of the object. We require the user to provide
this function for the same reason that we forbid copying
structures that contain region pointers: the presence of
C’s unions makes it impossible for the compiler to lo-
cate every region pointer. For cases without union, and
in higher-level languages, the cleanup function could be
generated automatically by the compiler. The cleanup

317

function also allows object finalization. Figure 6 shows
the cleanuplist function for the list type of Figure 3.
The pseudo-code for scanning deleted regions is in Fig-
ure 7.

size-t cleanup-list(struct list 0x1
C

destroy(x->next);
return sizeof *x;

1

Figure 6: Example of cleanup function.

for all pages p of region:
deleting = p;
end = p + PAGESIZE;
while (deleting < end)

cleanup-t cln = *(cleanup-t *)deleting;
/* the end of unfilled pages is marked

with a NULL */
if (!cln) break;
deleting += sizeof(cleanup-t);
s = cln(deleting);
deleting += ALIGN (s, ALIGNMENT) ;

Figure 7: Region cleanup.

4.3 Amortized Cost of Safe Regions

The primary justification for our reference counting
scheme is that it both solves the engineering problem
of avoiding maintaining all reference counts all the time
while still bounding the cost of memory management.
We make two assumptions. First, we assume that the
size of the largest stack frame is bounded by a constant
c.~ Second, we assume that every allocated word is ac-
tually referenced by some program instruction. We can
then argue that the amortized cost of memory manage-
ment is a constant per instruction executed.

The costs in our region system are incurred on region
allocation, object allocation, updates (reference count-
ing), region deletion (scanning regions and the stack),
and on procedure return (unscanning). To show our
bound we distribute these costs over all memory refer-
ences and procedure calls in such a way that the maxi-
mum cost associated with any operation is bounded by
a constant.

Allocating a new region is a constant time operation.
The cost of allocating an object o is at worst propor-
tional to the size of o plus the cost of acquiring a new
page. The latter cost is constant, the former is dis-
tributed to the program references to o. Scanning a
deleted region simply scans each object o in the region,
the cost of which can also be assigned to program ref-
erences to o. A reference count operation is charged to
the assignment.

The analysis of the stack scan and unscan requires a bit
of care. Every scan of a frame is eventually paired with

3Actually, it is sufficient if the number of live region pointers
in a frame is bounded by a constant.

a corresponding unscan of the same frame. Except for
the frame for deleteregion (which is at the bottom of
the downward-growing stack), the cost of scanning and
unscanning a frame f is charged to the call that creates
the frame immediately below f on the stack. Because
the high-water mark moves up only on procedure re-
turn, it follows that every function call is charged for
the scan and unscan of at most one frame. Assuming
stack frames have at most size c, every call is therefore
charged a constant cost.

5 Results

We describe our benchmarks and the changes required
to adapt them to use regions in Section 5.1. We
use these benchmarks to compare the performance of
regions with three malloc/free implementations (de-
scribed in Section 5.2) and the Boehm-Weiser conser-
vative garbage collector. We find that the safe region-
based programs use from 9% less to 19% more memory
(Section 5.4) than the allocator that uses least memory,
and are from 5% slower to 9% faster than the fastest
allocator. Unsafe regions are never slower than other
allocators and are up to 16% faster (Section 5.5). On
one benchmark, we use regions to group frequently ac-
cessed data structures and obtain a 24% performance
improvement. We measure the overhead of safe regions
and iind that it does not exceed 17% and is generally
much lower (Section 5.6).

5.1 Benchmarks

We compared the performance of our safe, region-based
memory management on six allocation-intensive C pro-
grams. These programs and the inputs we used for our
measurements are

cfrac: A program to factor large integers
using the continued fraction method. The
original application uses explicit reference
counting to reclaim storage. We factor
4175764634412486014593803028771.

griibner: Find the Grijbner’s basis of a set of poly-
nomials. The input is nine nine-variable polynomi-
als.

mudlle: A byte-code compiler for a scheme-like
language. The original version of this program uses
unsafe regions. The same 500-line file is compiled
100 times.

ICC: Our modified version of the ICC C compiler.
The original program also uses unsafe regions

Fe C file.
anson’s arenas [HanSO]). The input is a 6000-

tile: Automatically partitions a set of text files into
subsections based on frequency and grouping of
words in the text. This program uses malloc/free.
Twenty copies of a 14K text are given as input.

moss: A software plagiarism detection system,
written originally using malloc/free. The input is
180 student compiler projects (about 10MB).

318

We modified these programs to use our safe regions. Our
first step was to choose appropriate regions for those
applications that were not already region-based. All
the applications have a simple region structure, even
when the data structures stored in the regions are very
complex. For instance, our region-based ‘cfrac’ creates
a region for temporary computations for every few it-
erations of the main algorithm. Partial solutions are
copied from this region to a solution region so that old
temporary regions can be deleted. In ‘mudhe, one re-
gion holds the abstract syntax tree of the file being
compiled and one region is created to hold the data
structures needed to compile each function. The other
programs have similarly simple region structures. In
general, we found it fairly easy to modify these bench-
marks to use regions. The difficulty lay not so much
in selecting where to create and delete regions, but in
the tedious process of changing types, writing cleanup
functions, etc. As pointed out above, most of this work
would not be necessary in a higher-level language. The
other difficulty is finding stale pointers that prevent a
region from being deleted; an environment for debug-
ging regions would be helpful here.

Once the region structure is selected, the following ba-
sic modifications are made: calls to malloc and free
are replaced with appropriate region operations, nor-
mal pointers are changed to region pointers, the cleanup
functions are written and initializations are added for all
local region pointers. Each application has some further
changes:

l For cfrac we disable the explicit reference counting
and allocate some static objects in regions. We also
add the copies of partial solutions to the solution
region.

l For mudlle it is necessary to clear some global vari-
ables with stale pointers in the original code; oth-
erwise these pointers prevent region deletion.

l In griibner we must replace some bulk copies (via
assignment) with explicit copies, statically allocate
some structures that were originally on the stack,
and add copies of the polynomials that form the
basis to a result region. Many frees are replaced
by clearing the corresponding pointer, a number of
other pointers must also be explicitly cleared.

l For ICC we replace bulk copies (via assignment or
memcpy) with calls to hand-written copy functions
and replace some uses of memset with explicit NULL
writes. Information is added to some types so that
cleanup functions can be written. Some static and
stack objects are allocated in regions and some
global variables and region-allocated objects are
cleared. Memory for strings is allocated individu-
ally rather than in blocks. To improve ‘ICC’S perfor-
mance, we create a region for every hundred state-
ments compiled rather than for every statement.

l For tile, one local variable must be cleared to al-
low a region to be deleted. In addition, numerous
memory management bugs present in the original
code are repaired.

0 moss allocates some large static arrays in a region.

Name] Lines 1 Changed lines
cfrac] 4203 1 149 18

pFJlii~ E$j 1
Table 1: Complexity of benchmark changes.

The size of these changes is summarized in Table 1.
The ‘Lines’ columns counts the number of lines in the
original source code. The first number under ‘Changed
lines’ represents the number of changed or extra lines of
code in the region-based version, based on the results
of dif f -f; the second number counts only those lines
that are not part of the basic modifications.

5.2 Allocators

We compare the performance of regions with the follow-
ing allocators:

Sun: This is the default allocator supplied with
Solaris 2.5.1. It provides an interesting point for
comparison as it will likely be used by default.

BSD: The version of the BSD memory allocator
supplied by Sun. It rounds allocations up to the
nearest power of two. It features fast allocation and
deallocation but has a very large memory overhead.

Lea: Doug Lea’s implementation of malloc,
~2.6.4.~ This is an improved version of the allo-
cator used in some previous surveys of memory al-
location costs [DDZ94, Vo96]. In those surveys this
allocator exhibited good performance overall.

GC: The Boehm-Weiser conservative garbage col-
lector [SW881 ~4.12. We disable all free’s when
compiling with this collector, thus guaranteeing
safe memory management.

We use three different region libraries in these measure-
ments:

safe: the safe region-based memory management
described in Section 4. This library is used for
the region-based measurements (the ‘Reg’ bars in
Figures 8, 9 and 10).

unsafe: the same as safe, but with all operations
that maintain or test reference counts disabled.
This library is used for the unsafe region measure-
ments in Figure 9 (bar ‘unsafe’).

emulation: a region library that uses malIoc
and free to allocate and free each individual ob-
ject. This library approximates the performance
a region-based application would have if it were
written with malloc/free. In our experiments this

‘Available at ftp://g.oswego.edu/pub/misc/malloc.c

319

Name Total Y Total kbytes Max. kbytes Total Max. Max. kbytes Avg. kbytes Avg allots
allots allocated allocated regions regions in region per region per region

cfrac 3812425 60107 106 23383 5 83.6 2.57 163
grijbner 805321 28454 43.6 11452 4 13.0 2.48 70
mudlle 737850 10661 240 4648 13 141 2.29 159
ICC 177816 8711 4567 1249 3 4125 6.97 142
tile 40699 1347 88.4 81 5 41.9 12.5 502
moss 552240 7778 2212 1899 7 1246 3.49 291

Table 2: Allocation behaviour with regions.

Name 1 Total 1 Total kbytes 1 Max. kbytes
allocated allocated

66879 1 84.8
grijbner 804956
mudlle 742495
S/o overhead)

1 166495
(w/o overhead)

::ss 1 5Ez

28449 46.2
13578 324
10678 239

I 9102 4683
8452 4375
1330 84.0
7778 2203

Table 3: Allocation behaviour with malloc.

library is used to measure the performance of the
‘mudlle’ and ‘lee’ with malloc/free allocators.

Using this library imposes a small space overhead:
the objects allocated in a region must be kept in a
linked list so they can be freed when deleteregion
is called. Table 3 and Figure 8 include additional
entries estimating memory usage without this over-
head.

The C library sometimes calls malloc, and thus C appli-
cations using regions inevitably include a mix of mem-
ory allocated with regions and with malloc. The region-
based programs are linked with the default ‘Sun’ allo-
cator; our results for regions include the time and space
cost of these calls to malloc.

5.3 Allocation Characteristics

Tables 2 and 3 give the memory allocation character-
istics of the region-based and malloc/free versions of
the applications. ‘Total allots’ is the total number of
memory allocations performed by the program and ‘To-
tal kbytes allocated’ is the total number of kilobytes
allocated, with allocation sizes rounded to the nearest
multiple of four. The ‘Max. kbytes allocated’ column
contains the maximum amount of memory allocated at
any time. The remaining columns concern only regions:
‘Total regions’ is the number of regions created, ‘Max.
regions’ is the maximum number of regions present at
any time, ‘Max. kbytes in region’ is the size of the ap-
plication’s largest region, ‘Avg. kbytes per region’ is the
average size of the regions and ‘Avg. alIocs per region’
is the average number of objects allocated per region.

The discrepancies in Tables 3 and 2 in the number of
allocations and the amount of memory allocated are

generally small and attributable to the small changes
needed to convert the applications to use regions. The
first exception is ‘cfrac’, where the region-based version
does not need to allocate space for reference counts, but
does need to allocate some extra copies of the results.
The second exception is ‘lee’ where the region-based ver-
sion does more than 10,000 extra allocations because
strings are allocated individually and some stack allo-
cated structures are converted to region allocated struc-
tures.

Because a region can only be deleted all at once,
the region-based versions of the applications tend to
free memory later than the malloc/free-based versions.
Thus the maximum amount of memory allocated at any
time tends to be slightly larger in Table 2 than in Ta-
ble 3.

5.4 Memory Usage

Figure 8 compares the amount of memory requested
from the operating system (bar ‘OS’) by the different
allocators with the memory actually requested by the
programmer (bar ‘requested,’ see Tables 3 and 2). The
graphs for ‘cfrac’ and ‘tile’ are clipped: the Boehm-
Weiser garbage collector used 832 and 664 kbytes re-
spectively. For ‘lee’ and ‘mudlle,’ the first bar is the
raw memory usage, the second bar has the region-
emulation overhead removed. The ‘cfrac’/Boehm-
Weiser garbage collector pair requests less memory than
the malloc/free-based versions because it does not need
reference counts.

Regions use from from 9% less to 19% more memory
than Doug Lea’s allocator. Regions use less memory
than all other allocators in all other cases, except on
the ‘tile’ benchmark where regions use 1% more than
Sun’s allocator. The BSD allocator and the Boehm-
Weiser garbage collector use a lot of memory, which
makes them unsuitable for some applications.

5.5 Performance

For each application/allocator combination we measure
wall-clock execution time (‘base+memory’ in Figure 9),
including the portion of time spent in memory man-
agement (‘memory’ only). Figure 10 reports processor
cycles lost to read (waiting for the result of a load in-
struction) and write (store buffer full) stalls. An alloca-
tor that uses the memory hierarchy more efficiently loses
fewer cycles to read and write stalls. All measurements

320

200
18

100

- 140

t

1P

100

f

00

00

40

20
0

30

25

20
3 . 15
s

IO

6

0

cfrac arobner mudlle

Frgure 8: Memory overhead.

cf rat grobner
.s

4

OS
3

25
2

IS
I

OS

0

mudlle ICC

LneooLuocFwg

tile
200
180

loo

140

1P

100

00

00

40

20
0

tile
0

0

4

3

2

1

0
.9m6oobaocRD

Figure 9: Execution time and memory management overhead.

are performed on 167Mhz UltraSparc-I workstation and
use the UltraSparc’s internal counters for precision.

All applications are compiled with ICC, a non-optimizing
compiler. The time spent in the actual application is
represented by the ‘base’ part of the execution time in
Figure 9. The allocation libraries are compiled with
optimization by the GNU C compiler or are supplied
by Sun. The portion of time spent in these libraries
(and in reference counting for region-based allocation)
is the ‘memory’ part of the execution time, again in
Figure 9. Compiling the applications with an optimiz-
ing compiler will not change the time spent in memory
management and will reduce the ‘base’ part of execu-
tion time uniformly for all allocators. Thus using an
optimizing compiler would not change the results of our
comparison.

On these benchmarks, unsafe regions (bar ‘unsafe’ in
Figure 9) are faster (up to 16%) than all the other al-
locators. Safe regions are as fast or faster (up to 9%)
than the other allocators on ‘cfrac’, ‘tile’, and ‘moss’ and
only slightly slower than the BSD allocator (5% slower) - - - \
and Boehm-Weiser garbage collector (3% slower) on
‘mudlle’. On ‘ICC’ safe redons are slower than the BSD

allocator (5% slower) and competitive with Doug Lea’s
allocator-this application has the highest overhead for
safe regions.

The graph for ‘moss’ in Figure 9 includes the time for an

moss
4soo-

optimised version (‘base+memory’ bar) and our origi-
nal region version (‘slow’ bar). The memory allocation
pattern of ‘moss’ is to alternately allocate a small, fre-
quently accessed object and a large, infrequently ac-
cessed object. This pattern reduces memory locality
among the small objects. The 24% improvement in ex-
ecution time in ‘moss’ is obtained by using two regions:
one for the small objects and one for the large objects.
This improvement is also reflected in Figure 10: the
graph for ‘moss’ shows that the optimized region ver-
sion (‘Reg’ column) has approximately half the stalls of
the original version (‘Slow’ column). It is interesting to
note that the BSD memory allocator (which automat-
ically segregates objects by size) tends to have fewer
stalls than the other explicit allocators; the resulting
performance advantage is most visible with ‘moss.’

5.6 Cost of Safety

The costs for safe regions can be divided into three parts
that mirror the implementation: the cost of calling the
cleanup functions when regions are deleted, the cost of
scanning the stack when deleteregion is called, and
the cost of maintaining the reference counts on region
pointer writes. Figure 11 gives the breakdown of these
costs for our six applications.

321

cfrac grobner mudlle ICC tile moss
120 1P 70 400

low

0 0 0 0 0 0

SunBSDLw QC R.2 SunBSDLu GC Ma SuSSDLu DC Rq SUlSSDLuCiD~ SunBSDLw GC FW Sm6SDlMQORS@OW

Figure 10: Processor cycles lost to stalls.

The cost of safety varies from negligible (‘tile’) to 17%
(‘ICC’). For less allocation and pointer intensive pro-
grams, we expect results similar to ‘tile.’ We have con-
sidered various methods of reducing the cost of safety,
such as recognizing sameregion pointers at compile-
time, and various schemes for optimizing the cleanup
of regions. We plan to implement some of these ideas in
another version of region-based memory management.

Cost of safety

Figure 11: Region costs.

6 Conclusion

We have presented a new region-based memory man-
agement technique that combines efficiency with safety.
We have shown that this technique often uses less mem-
ory and is as fast or faster than traditional malloc/free-
based memory management. Safe regions are also faster
than conservative garbage collection in most cases and
use much less memory. The programmer can use regions
to explicitly take advantage of the locality of dynami-
cally allocated data structures. This can lead to much
better performance, as the ‘moss’ example shows.

Our style of region-based memory management re-
quires extensions to be useful for all applications. We
plan to address this issue as part of providing re ‘on-
based memory management in Titanium F PSP 981,
an explicitly-parallel, Java-based [GJS96] programming
language.

References

[AFL951

[Bak78]

[Bob801

[BTV96]

[BWSS]

[BZ93]

[DB76]

[DDZ94]

Alexander Aiken, Manuel Fahndrich, and
Raph Levien. Better static memory man-
agement : improving region-based analysis
of higher-order languages. In Proceedings

of the ACM SIGPLAN ‘95 Conference on

Programming Language Design and Imple-

mentation (PLDI), pages 174-185, La Jolla,
CA, June 1995.

Henry G. Baker. List processing in real-time
on a serial computer. Communications of

the ACM, 21(4):280-94, 1978.

Daniel G. Bobrow. Managing re-entrant
structures using reference counts. ACM

Transactions on Programming Languages

and Systems, 2(3):269-273, July 1980.

Lars Birkedal, Mads Tofte, and Magnus Ve-
jlstrup. From region inference to von Neu-
mann machines via region representation in-
ference. In Proceedings of the 23rd ACM

SIGPLAN-SIGACT Symposium on Princi-

ples of Programming Languages, St. Peters-
burg Beach, FL, January 1996.

Hans-Juergen Boehm and Mark Weiser.
Garbage collection in an uncooperative en-
vlronment. Software Practice and Experi-

ence, 18(9):807-820, 1988.

David A. Barrett and Benjamin G. Zorn.
Using lifetime predictors to improve mem-
ory allocation performance. In Proceed-

ings of the ACM SIGPLAN ‘93 Conference

on Programming Languages Design and Im-
plementation, pages 187-196, Albuquerque,
New Mexico, June 1993.

L. Peter Deutsch and Daniel G. Bobrow.
An efficient incremental automatic garbage
collector. Communications of the ACM,

19(9):522-526, September 1976.

David Detlefs, Al Dosser, and Benjamin
Zorn. Memory allocation costs in large C

322

[FH95]

[GJS96]

[GZ93]

[GZH93]

[HanSO]

[lY90]

[Ros67]

[SO961

[St0971

[TT97]

[Vo96]

[Wi192]

and C++ programs. Software Practice and

Experience, 24(6), 1994.

Chris W. Fraser and David R. Hanson. A

Retargetable C Compiler: Design and Im-

plementation. Benjamin/Cummings Pub.
Co., Redwood City, CA, USA, 1995.

J. Gosling, B. Joy, and G. Steele. The Java
Language Specification. The Java Series.
Addison-Wesley, Reading, MA, USA, June
1996.

Dirk GrunwaId and Benjamin Zorn. Cus-
tomaIIoc: Efficient, synthesised memory al-
locators. Software Practice and Experience,

23:851-869, 1993.

Dirk GrunwaId, Benjamin Zorn, and Robert
Henderson. Improving the cache locality
of memory allocation. In Proceedings of

the ACM SIGPLAN ‘93 Conference on Pro-

gramming Languages Design and Implemen-

tation, pages 177-186, Albuquerque, New
Mexico, June 1993.

David R. Hanson. Fast allocation and deal-
location of memory based on object Iife-
times. Software Practice and Experience,

20(1):5-12, January 1990.

Yuuji Ichisugi and Akinori Yonezawa. Dis-
tributed garbage collection using group ref-
erence counting. In OOPSLA/ECOOP ‘90

Workshop on Garbage Collection in Object-

Oriented Systems, October 1990.

D. T. Ross. The AED free storage package.
Communications of the ACM, 10(8):481-
492, August 1967.

David Stoutamire and Stephen Omohun-
dro. The Sather 1.1 Specification. Techni-
cal Report TR-96-012, International Com-
puter Science Institute, Berkeley, CA, Au-
gust 1996.

D. Stoutamire. Portable, Modular Expres-
sion of Locality. PhD thesis, University of
California at Berkeley, 1997.

Mads Tofte and Jean-Pierre Talpin. Region-
based memory management. Information

and Computation, 132(2):109-176, Febru-
ary 1997.

Kiem-Phong Vo. Vmalloc: A general and
efficient memory allocator. Software Pmc-

tice and Experience, 26(3):357-374, March
1996.

Paul R. Wilson. Uniprocessor garbage col-
lection techniques. In Proceedings of In-

ternational Workshop on Memory Manage-
ment, volume 637 of Lecture Notes in Com-

puter Science, St MaIo, France, September
1992. Springer-Verlag.

[WJ93] PauI R. Wilson and Mark S. Johnstone.
Truly real-time non-copying garbage coIIec-
tion. In OOPSLA/ECOOP ‘93 Workshop

on Garbage Collection in Object-Oriented

Systems, October 1993.

[WJNB95] Paul R. Wilson, Mark S. Johnstone, Michael
Neely, and David Boles. Dynamic storage
allocation: A survey and critical review. In
Proceedings of International Workshop on

Memory Management, volume 986 of Lec-

ture Notes in Computer Science, Kinross,
Scotland, September 1995. Springer-Verlag.

[YSPt98] Kathy Yelick, Luigi Semenzato, Geoff Pike,
Carleton Miyamoto, Ben LibIit, Arvind Kr-
ishnamurthy, Paul HiIfinger, Susan Gra-
ham, David Gay, Phil Colella, and Alex
Aiken. Titanium: A High-Performance Java
Dialect. In Proceedings of A CM 1998 Work-
shop on Java for High-Performance Net-

work Computing, pages 1-14, Palo Alto,
CA, February 1998.

323

