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ABSTRACT

Open nesting provides a loophole in the strict model of atomi
transactions. Moss and Hosking suggested adapting opéingnes
for transactional memory, and Moss and a group at Stanford ha
proposed hardware schemes to support open nesting. Sieme th
researchers have described their schemes using only iopatat
definitions, however, the semantics of these systems haveeea
specified in an implementation-independent way. This paffers

a framework for defining and exploring the memory semantfcs o
open nesting in a transactional-memory setting.

Our framework allows us to define the traditional model of
serializability and two new transactional-memory modelace
freedomand prefix race freedom The weakest of these memory
models, prefix race freedom, closely resembles the Staofoed-
nesting model. We prove that these three memory models aie eq
alent for transactional-memory systems that support oldged
nesting, as long as aborted transactions are “ignored.” keep
that for systems that support open nesting, however, thelmad
serializability, race freedom, and prefix race freedom asératt.
We show that the Stanford TM system implements a model at leas
as strong as prefix race freedom and strictly weaker thanfreee
dom. Thus, their model compromises serializability, thepgrty
traditionally used to reason about the correctness of aidims.

1. INTRODUCTION

Atomic transactions represent a well-known and usefulrabst
tion for programmers writing parallel code. Database systhave
utilized transactions for decades [9], and more receménsac-
tional memory [12] has become an active area of researchsTra
actional memory (TM) describes a collection of hardware softt
ware mechanisms that provide a transactional interfacadoess-
ing memory, as opposed to a database. A TM system guarantee
that any section of code that the programmer has specified as
transaction either appears to execute atomically or appearto
happen at all, even though other transactions may be rurmmoing
currently. In the first case, we say the transaction dw@amitted
otherwise, we say the transaction lad®rted

A TM system enforces atomicity by tracking the memory lo-
cations that each transaction in the system accesses ditrdims-
action conflicts, and aborting and possibly retrying tratisas to
resolve conflicts. Most TM implementations maintain a teani®n
readsetandwriteset i.e., a list of memory locations that a transac-
tion has read from or written to, respectively. Typicalhg tsystem
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(1 xbegin
2 X4+
3 y++;
A< 4 xbegin_-lI
5 i++4; ™1
6 xend |
7 Z++;
\8 xend

FIGURE 1: A code example where transactidnis nested insided. The
xbegin andxend delimiters mark the beginning and end of a transaction.

reports a conflict between two transactiohsnd B if both trans-
actions access the same memory location and at least onesef th
accesses is a write. K and B conflict, then TM aborts one of the
transactions, rolls back any changes the aborted trangsattade
to global memory, and clears its readset and writeset.

Transactional memory systems may suppestingof transac-
tions. Nested transactions arise when an outer transadtionts
body calls another transactidn Figure 1 shows code for a trans-
action A within which another transactiohis nested.

The database community has produced an extensive literatur
on nested transactions. Moss [17] credits Davies [4] witiming
nested transactions, and he credits Reed [23] as providarst
implementation of what we now call closed transactions yG8a
describes what we now call open transactions. The terma”ope
and “closed” nesting” were coined by Traiger [25] in 1983.

The TM literature discusses three types of nesting: flagedo
and open. The semantics and performance implications df eac
form of nesting can be understood through the example ofr&iju
éf I isflat-nestedinside A, then conceptuallyd executes as if the
code forl were inlined insided. With flat-nesting,I’s reads and
writes are added directly to the readset and writeset.ofFhus, in
Figure 1, if a concurrent transactids tries to modify variablei
while I is running, but beford has committed, then if aborts, it
also causesl to abort (since. belongs to the readset df as well).

If I is closed-nestednside A (see, for example, [18]), then
conceptually, the operations éfonly become part ofA when I
commits. In Figure 1, ifB tries to modifyi and cause$ to abort,
then the system only needs to abort and roll bAdbut B need not
abort A, becaused has not accessed locatianyet. Thus, closed
nesting can be more efficient than flat nesting in this example
I's readset and writeset are merged witls readset and writeset
if I commits, however. Thus, iB tries to modifyi after I has
committed but beforel commits, the system may still abott

Finally, if I is open-nestednside A (see [16, 19, 21, 26]), then
conceptually, the operations éfare not considered as part df
WhenI commits,I’s changes are made visible to any other transac-
tion B immediately, in the scheme of [18]ndependent of whether

1Several alternative policies for manipulating readsets aritesets are
suggested in both [19,21], but since [19] suggests adofiimgame scheme
as [16], we do not discuss the alternatives in this paper.



A later commits or aborts. Thus, in FigureR never aborts, and ] )
xbegin 13 xbegin

B’s access to variable is never added tel's readset or Writeset. 2 od a T i e a g
Transactional memory with either flat or closed nesting goar 3 xbegin 3 15 xbegin 3
tees that transactions aserializable[22]: they affect global mem- 4 Insert(a,a); =1, 16 Insert (d,d) -3,

ory as if they were executed one at a time in some order, even if 5  xend - 17 xend -

in reality, several executed concurrently. Closed neggieigerally 6 read b A 18 read e e

allows for a more efficient implementation compared withflest- 7 xbegin 0 BY 19 xbegin 0

ing, because closed nesting allows a nested transattiorabort s e

without forcibly aborting its parent transactieh as with flat nest- 10 ceaib = R 7 fedae = .

ing. 11 write ¢ } : 23 write £ } ?
Open nesting provides aloophole in the strict guarantemost 12 xend 24 xend

action serializability by allowing an outer transaction“tgnore”

the operations of its open subtransactions. Moss [19] descr 25 Insert(x, y) { ]

open nesting as a high-level construct that operates atveds| of 26 A.arraylx] « y; Sample Orderings:

abstraction. Thus, open nesting may require high-levestrants 27 read A.size Schedule 1: Ay, I, Ay Iy, Ay By, 3y, By, 35, By

for rollbacks of aborted transactions or for concurrenaytiam be- 28 A.size « A.size + 1 Schedule: By A, I Ay Iy Jy By 33 Ay By

29 write A.size Schedule 3: By, Ay, Iy 3y, Ay, I, Ay, By, 35, By

tween transactions. For example, when using open nestiog, p
grammers may heed to specify a “compensating” transacdtan t
U”C?'OES the effect of a committed open transaction if "‘tsmarans' FIGURE 2: Two concurrent transactions that do not share any memoay loc
action aborts, or the programmer may need to use “abstracks| tions except in their nested transactions. Divide traisact into abstract
in the code to prevent certain transaction interleavingé [1 operationsdy, I1, Az, I, As, and divideB into By, Ji, B, J2, Bs. The
Indeed, even TM without any nesting can be viewed at two I's and.J’s represent inserts to an abstract table data structuhedate 1
levels of abstraction. For example, the hardware may impfgm s a serial order, Schedule 2 is an interleaved order equivab Schedule
rollback of memory state, but rely on the programmer or coenpi 1, and Schedule 3 is an interleaved order which is not seaial.
to retry transactions that abort, sometimes using backofbpols
to ensure that a given transaction eventually commits. Thuis
helpful to distinguish thenemory modefor TM, as the essential
memory semantics that the hardware implements, fromptbe
gram modelas the semantics that the programmer sees.
Our focus will be on memory models for TM. We shall not con-
cern ourselves with retry mechanisms, compensating tc¢insa,

and the like. A TM system s_hould have well-specified behavior 2. SUBTLETIESWITH OPEN NESTING
even as a target for compilation, when all program-leveipsup This section motivates the need for a precise descriptiothef

for transactions and nesting are put aside. Low-level softvmay . . -
build upon the memory model to provide a higher level of agstr ~ MeMOry semantics using three examples to illustrate sorbe su
tleties with open nesting. The first example shows that soeme d

tion, e.g., for open nesting, but the semantics of openmgstiust . . o
g P g penme sirable schedules allowed by open nesting are not setiddizahe

be understood by the programmers of this low-level software T
Moreover, although one may ignore the semantics of aborted SecOnd example shows that the loss of serializability femapest-

transactions at the program-model level, at the level ofrteenory ing sanctions arguably bizarre program behaviors. Thel tiam-

model, even aborted transactions must have a reasonataetesy ~ Pl€ Shows that open nesting compromises composability.
at least up to the point where they abort. Thus, we shall fe-int Figure 2 describes a program with nested transactions where

ested in defining memory semantics even for aborted trapsact 1€ Use of open nesting admits a desirable schedule whicbtis n
In this paper, we describe a framework for defining transac- Se€fializable. Moreover, a system with only flat or closedtings
tional memory models. Our framework, which is inspired bg th  Pronibits the schedule. In Figure 2, transactibreads from global
computation-centric framework proposed by Frigo [6, 7]ow variablea, adds a key-value pair base_d @to a global table, reads
TM semantics to be specified in an implementation-independe 7oM b and adds a corresponding pair to the table, and then stores
way. Within this framework, we define the traditional modeke- the sumu + binto c. Transaction3 perfor_m; analogous operat|_ons
rializability and two new transactional memory models eréee- ond, e, andf. The table data structure is implemented as a simple
dom and prefix-race freedom. We prove that these three memorydirect-access table [3, Section 11.1] with a globate field to
models are equivalent for computations that contain onbpe count the number of elements in the table.
transactions, as long as aborted transactions are “igridredsys- If the nested transactions (tli&s and J's) are all flat-nested or

tems that support open nesting, however, the three modekigr closed-nested, then TM guarantees that the transactiessdaliz-
tinct. We show that the Stanford system [16], perhaps thet mos 2PI€: the program appears to executes as though eithappened

; ; ; before B (Schedule 1) oB happened beford. The system might
reasonable design for open-nesting of transactional meipra- . - - h
posed to date, in%plemenpt)s a modelgat least as strong as paeéix- actually perform the operations in a different, interlehoeder (for

freedom and strictly weaker than race freedom. Thus, thedteh ~ ©X@mple, Schedule 2), but this schedule is equivalent tabtte

compromises serializability, the property traditionalised to rea- WO valid serial schedules (in this case, Schedule 1). Stbedlis
son about the correctness of transactions. not serializable, however, because(and thusB) observes the in-

The remainder of this paper is organized as follows. Seion ~termediate value of .size written by /; (and thus written byd).

presents several examples that illustrate program betsatiat Cor_wl_se.quently, Schedule 3 is prohibited with flat or ckllotsezilllng.
open nesting can admit. Section 3 defines our framework fdern 0 Improve concurrency, a programmer may wish 1o aliow cer-

standing transactional memory models. Section 4 formaifines tain schedules that are not serializable, but which neetess are
the memory models of serializability, race freedom, andipmace consistent from the programmer's point of view. A systemt tha

freedom. In Section 5 we prove that all three memory modeis ar tcan adrplt nonsengtl)llzabllle sg:he(:ules |n:posets fewer r'.?nﬁon
equivalent for computations with only committed transasi, but ransactions, possibly afllowing transactions 1o commiewiney
would have otherwise aborted. For example, the programnagr m

30}

are distinct when we model aborted transactions or have topes-
actions. Section 6 describes an operational model for opstingy
that similar to the Stanford model [16] and shows that it ieapl
ments prefix-race freedom. Section 7 offers some persgeotiv
open nesting and other loopholes in transactional memory.



1 xbegin 3 xbegin
2 read a A, 9 read i
3 xbegin_open T B < 10 i i+ 1
i |
4 read i | 11 write i
5 iei+d >‘ L 12 =xend
6 write i |
A |
7 xend_open ) 13 xbegin
14 read i
18 read b .
c< 15 b «i
19 ccath 2 16 write b
20 write ¢ 17 d
xen
21 xend

FIGURE 3: A program execution permitted by open nesting. Transaction
does not appear to execute atomically, because it can ré@ucansistent”
value forb if B andC interleave between the execution4f and As.

wish to admit Schedule3, even though tfe and J's happen to
access the samsi ze field. Conceptually, the programmer may not
care in which order the table inserts occur. For examplé,,ifz,

1 xbegin 3 xbegin
2 if (!Contains(5)) 4 if (!Contains(5))
A 7 Insert (5,15) B 5 Insert (5,10)
8 xend 6 xend
Contains (x) Insert (x,y)
9 xbegin 19 xbegin

10
11

20
21
22
23
24

found <« true A.array[x] <« y

xbegin_open read A.size
read A.size A.size «—A.size + 1
if (A.size==0) empty« true write A.size
xend_open xend
if (!empty)

found < A.array[x]
return ((!empty) && found)

xend

FIGURE 4: Flawed implementation of a table data structure with twamet
ods,Contains (x) andInsert(x,y). Although each method individually

appears atomic, transactiossand B, which call those methods, may not
appear atomic. In particular, the orderitig 2, 3,4, 5, 6, 7, 8) is allowed.

we can understand what properties should be enforced bghigh

Ji, and.J; are open transactions, then Schedule 3 is a valid execu- [evel mechanisms.

tion.

Once a TM system with open nesting admits some desirable

nonserializable schedules, however, the proverbial catti®f the
bag. As far as the memory semantics are concerned, it seéms di
ficult to prohibit additional program behaviors that mighgeably

be undesirable. Figure 3 shows a program execution alloy b
open-nesting implementations of [16,21]. In this examipie,pos-
sible for all transactionsl, I, B, andC to commit, even thoughl
does not appear to execute atomically. Transactioeads incon-
sistent data, sino€' writes tob betweenA'’s reads ofz andb. Thus,

the “snapshot” of the world seen by when it begins is different
from its snapshot part way through its computation.

Our final example illustrates how open nesting can admit sub-
tle program behaviors that affect the composability of seantions.
Consider the program in Figure 4 which describes an impléanen
tion of a simple table library that (arguably) contains abtkuflaw.
The program includes @ntains (x) method to complement the
Insert(x,y) method used in Figure 2. Since theze field is the
primary source of transaction conflicts between table djmers,
the Contains method “optimizes” its search method by checking
size within an open transaction.

Using TM with open nesting, in any sequenceCohtains or
Insert operations, each individual operation still appears atomi
Thus, in transactiord in Figure 4, we might expect that if the
Contains operation returns false, then the key can be safely in-
serted into the hash table without adding duplicates.

Unfortunately, one cannot correctly call botlentains and
Insert inside a transactiof’ and still havel” appear to be atomic.
Indeed, the open-nesting implementation described in §l6jvs
the entire transactioB to execute between Lines 2 and 7 of trans-
action A. Thus, this code shows that composability of transactions
is not preserved. When using open nesting, simply ensutiag t
atomicity of individual transactions is not sufficient toagantee
composability.

Admittedly, the examples in Figures 3 and 4 are somewhat
contrived. In particular, unlike in Figure 2, transactiong=igures
3 and 4 cannot be partitioned into clear abstraction leveith
each level accessing disjoint memory locations, as Mosgesig
may be necessary [19]. These examples suggest, howeweiortha
open nesting, the distinction between the abstract prognaatel
and the low-level memory model is much more significant thaan f
closed or flat nesting. Thus, these examples motivate the toee
understand memory models for open nesting so that at théeast

3. MEMORY MODELS

This section defines our framework for modeling transaction
computations. Our model is inspired by Frigo’s computation
centric modeling of a program execution as a computation dag
(directed acyclic graph) [6] with an “observer function” izh es-
sentially tells what write operation is “seen” by a read. @udel
uses a “computation tree” to model both the computation aal a
the nesting structure of transactions. We first define coatjmurt
trees without transactions, then we show how transactiansbe
specified, and finally, we define Lamport’s classical sedaknt
consistency model [14].

Formal models for systems with nested transactions apgear a
early as the work by Beeri, Bernstein, and Goodman [1]. Reecen
papers providing operational semantics for open transastin-
clude [15, 16, 21]. Although operational semantics of a TM ca
provide an abstract basis for implementation, inferringeegant
properties of the system from these semantics can be qtiie di
cult.

Our computation-centric model focuses oregposteriorianal-
ysis of a program execution. After a program completes, \seras
the execution has generatettacewhich is abstractly modeled as a
pair (C, ®), whereC is a “computation tree” describing the mem-
ory operations performed and transactions executed daiglan
“observer function” describing the behavior of read ancevap-
erations. We shall defin@ and® more precisely below. We define
U to be the set of all possible tracgs, ).

Within this framework, we define a memory model as follows:

DEFINITION 1. Amemory models a subse\ C .
Thatis,A represents all executions that “obey” the memory model.

Computation trees without transactions

The computation tre€' summarizes the information about the
control structure of a program together with the structdnessted
transactions. We first describe how a computation tree rsdtiel
structure of a program execution in the special case where th
computation has no transactions.

Structurally, acomputation treeC' is an ordered tree with
two types of nodesmemory-operation nodesemOps(C) at the
leaves, andcontrol nodesspNodes(C) as internal nodes. Let
nodes(C) memOps(C') U spNodes(C') denote the set of all
nodes ofC.



We defineM to be the set of all memory locations. Each leaf
nodeu € memOps(C) represents a single memory operation on a
memory location! € M. We say that node satisfies theead
predicateR(u, £) if u reads from locatiorf. Similarly, u satisfies
thewrite predicateW (u, £) if u writes toZ.

The internal nodespNodes(C) of C represent the parallel
control structure of the computation. In the manner of [Zicle
internal nodeX € spNodes(C) is labeled as either afi-node or
P-node to capture fork/join parallelism. All the children afi S-
node are executed in series from left to right, while thedrbih of
an P-node can be executed in parallel.

Several structural notations will help. Denote tlaot of a
computation treeC' as root(C'). For any internal nodeX e
spNodes(C), let children(X) denote the ordered set Of’s
children. For any tree nod¥ € nodes(C'), letances(X) denote
the set of all ancestors of in C, and letdesc(X) denote the set

of all X's descendants. Denote the set of proper ancestors (and de-

scendants) oK by pAnces(X) (andpDesc(X)). Denote thdeast
common ancestoof two nodesX 1, X» € C by LCA(X 1, X2).

Since every subtree of a computation tree is also a compntati
tree, we shall sometimes overload notation and use a sudntice
its root interchangeably. For example, ¥ = root(C), then
memOps (X)) refers to all the leaf nodes i@, and children(C)
refers to the children ok .

Computation dags

A computation treeC' defines acomputation dagG(C) =
(V(C), E(C)) constructed as follows and illustrated in Figure 5.
For every internal nod& € spNodes(C'), we create and place
two corresponding verticegegin(X) and end(X) in V(C).
For every leaf noder € memOps(C'), we place the single node
z in V(C). For convenience, for alt € memOps(C'), we define
begin(z) = end(z) = x.

Formally, the vertices of the graph(C) are defined as follows:

V(C) = mem0Ops(C) U U {begin(X),end(X)}

X €spNodes(C)

For any computation tree rooted at nole we define the edges
E(X) for the graphG(X) recursively:

Base case: I € memOps(C'), then defineZ(X) = 0.

Inductive case: IfX €& spNodes(C), let children(X) =
{Y1,Ys,..., Y }. If XisanS-node, then

E(X) = {(begin(X),begin(Y1)), (end(Yx),end(X))}

k—1 k
U (U {(end(m),begin(ml))}> U (U E(y;-)> .

If X is aP-node, then
k

E(X) = (U Em))
i=1

k
U (U {(begin(X), begin(V;)), (end(Y:), end<X>>}> :
=1

We shall find it convenient to overload the€A function, and
define the least common ancestor of two graph vertices €
V(C) as theLcA of the corresponding tree nodes.

The computation dag'(C') is a convenient way of representing
the flow of the program execution specified 6y Unfortunately,
our specification of computation dags via computation ttees
its the set of computation dags that can be described. licpart
lar, computation trees can only specify “series-paraltidys [5].
We might have founded our framework for transactional-memo
semantics on more-general computational dags, but thelagpde

SP Node

Closed Xaction

Open Xaction

Memory Op.

No Xaction
Closed

Open

SR ARN
@\ \ T

FIGURE 5: A sample (a) computation tre€ and (b) the corresponding
dagG(C) for a computation that has closed and open transactionhidn t
example, T is open-nested insid&; and Ty is open-nested insidé&x.
The X;'s are tree nodes that are not marked as transactions. Wenbave
specified whether each transaction is committed or aborted.

erality would not affect any of our theorems, and it would dnav
greatly complicated definitions and proofs.

We shall find it useful to define some graph notations. For a
graphG = (V, E) and vertices:, v € V, we writeu <¢ v if there
exists a path fromx to v in G, and we writeu <¢ v if u # v and
u =<¢ v. Forany dagz = (V, E), atopological sortS of G is an
ordering of all the vertices df such that for alk, v € V', we have
u < v implies thatu <s v (u comes before in S). For a dag,
we definetopo(G) as the set of all topological sorts 6f.

Transactional computation trees

We can specify transactions in a computation tfebdy marking
internal tree nodes. Marking a nodec spNodes(C) as a transac-
tion corresponds to defining a transactiBrthat contains the com-
putation subdagr(T"), wherebegin(T) is the start of the transac-
tion andend(7") is the end of the transactiGrFormally, the com-
putation tree”' specifies a setactions(C') C spNodes(C') of in-
ternal nodes asansactions and a sebpen(C) C xactions(C)
of opentransactions. The set ofosedtransactions islosed(C) =
xactions(C) — open(C). In Figure 5, noded? throughTs are
transactions, and\; through X5 are ordinary nodes. Define a
transactionI’ € xactions(C) asnestedinside another trans-
actionT” € xactions(C) if T" € ances(T'). Two transactions”
andT” areindependenif neither is nested in the other.

The computation tre€’ also specifies a sebmmitted(C) C
xactions(C) of committedtransactions. Similarly, transactions
belonging toaborted(X) = xactions(X) — committed(X)
areabortedtransactions. For a transacti@he xactions(C), the
contentof T is the set of all operations that belongfdut not to

2We assume that every leaf€ memOps(C) is its own committed, closed
transaction, but we do not mark leaves as a transactions imodel.



any of T's open or aborted subtransactions. Formally, we define

content(T) =V (T) — U V(Z) - U V(Z).

Zcopen(T)—{T} Z caborted(T)—{T}

We always haveontent(7') C V(T'), and equality holds when
T’s subtree contains no open or aborted transacfioRsr exam-
ple, in Figure 5, memory operations andus do not belong to
content(71), becausdy is an open transaction nested within
As another example from the figure, we hayec content(T})

if and only if T5 € committed(C). We also define thioldersof
avertexv € V(C) to be the set

h(v) = {T € xactions(C) : u € content(T)}
of all transactions that contain

Hidden vertices

Basic transactional semantics dictate that committedséretions
should not “see” values written by vertices belonging todbetent

of an aborted transaction. One may argue whether one aborted

transaction should be able to see values written by a analtiveted
transaction. In this paper, we take the position that up egptbint
that a transaction aborts, it should be “well behaved” artdaac
if it would commit. The well-behavedness of aborted tratisas
is implicitly assumed by the various proposals for open ingst
[16, 19, 21]. Thus, one aborted transaction should not skeva
written by other aborted transactions, although the valudtsen

after v in the computation dag, and can only observe a vertex
if it actually writes to locatiord. To define® on all vertices that
access memory locations, we assume that the verégin(C')
writes initial values to all of memory.

Together, a computation tre€ and an observer functio®
defined omem0Ops (C') specify a trace.

Sequential consistency without transactions

We now turn to using our framework to define Lamport’s clas-
sic model of sequential consistency [14] in our transaction
model. We first mimic Frigo’s definition [6] to define a sequaht
consistency memory model for computations without tratisas.
We then extend the definition to include transactions as well
Definition 1 states that a memory modal is a subset ot/,
the universe of all possible traces. Sometimes, we wishdivice
our attention to computations with only closed and/or cottedi
transactions. Thus, we define the following subsefg:of

U = {(C,®)eU:xactions(C) =0},
Uso = {(C,®)cU :open(C) =0},
Uom = {(C,P) €U : aborted(C) =0} ,
Uee = Uco NUeom -

In other words{, contains traces (whose computations) include
no transactiond4., contains traces that include only closed trans-
actionsU.om contains traces that include only committed transac-

by a vertex within an aborted transaction may be seen by other fiOns, andideg.c contains traces that include only committed and

vertices within the same transaction.

The following definition describes which vertices are hidde

from which other vertices.

DEFINITION 2. For any two verticesu,v € V(C), let X =
LCA(u,v). We say that is hiddenfrom v, denotedu H v, if

u € U content(Y') .

Y €aborted(X)—{X}

In Figure 5, we haves H z» if and only if at least one o1, T4,
or T5 belongs toaborted(C'). SinceT: is an open transaction,
however, we never have, H z, if 72,73 € committed(C), even
if 71 € aborted(C). If we haveT},T; € committed(C) and
T7 € aborted(C), then we also haveg, Hv:, but notv; Hy:, and
thus the hidden relatioH is not symmetric.

Observer functions

Instead of specifying the value that a vertexe memOps(C)
reads from or writes to a memory locatidne M, we follow
Frigo’s computation-centric framework [6, 7] which abstsaaway
the values entirely. Ambserver functiod ®(v) : mem0Ops(C) —
memOps (C) U {begin(C)} tells us which vertex, € memOps(C)
writes the value of thatv sees. For a given computation tr€e
if v € memOps(C) accesses locatioh e M, then a well-formed
observer function must satisfy(v <y ®(v)) andW (®(v), £).

In other wordsp can not observe a value from a vertex that comes

31n this paper, we consider onlylobal open nestingmeaning that if7”

is open-nested i7", then it is open with respect to every transaction in

ances(T). Alternatively, one might specif§”’ asopen-nested with respect
to an ancestor transactidh. In this case, the operations 6f are excluded
from all transaction&”” on the path fronil”” up to and includingl", but
included in transactions that are proper ancestofE.dhtuitively, if 77 is
open-nested with respect 0, thenT’ commits its changes té's context
rather than directly to memory. Global open-nesting is therspecial case
when all open transactions are open with respeebte (C).

4Our definition of® is similar to Frigo’s [6], but with a salient difference,
namely, Frigo’s observer function gives values for all meymocations,
not just for the location that a vertex accesses. Moreok&Y, (v, £), Frigo
defines®(v) = v, whereas we defin@(v) = u for someu # v.

closed transactions.

We now follow Frigo [6] in defining a “last-writer” observer
function.
DEFINITION 3. Consider a tracgC, ®) € U and a topological
sortS € topo(G(C)). Forall v € memOps(C') such thatR(v, £) vV
W (v, ), the last writer of v according toS, denotedLs(v), is
the uniqueu € memOps(C) U {begin(C)} that satisfies three
conditions:
1. W(u,t),
2. u <s v, and
3. 1w stW(w,f) A (u <s w <s v).

In other words, if vertex accesses (reads or writes) locatipthe
last writer ofv is the last vertex, beforev in the orderS that writes
to location/.

We can use the last-writer function to define sequentialisens
tency for computations containing no transactions.

DEFINITION 4. Sequential consistencfor computations without
transactions is the memory model

SC ={(C,®) € Uy : IS € topo(G(C)) s.t.® = Ls} .

By this definition, a tracéC, ®) € U, is sequentially consistent if
there exists a topological saft of G(C') such that the observer
function @ satisfies®(v) = Ls(v) for all memory operations
v € memOps(C). Definition 4 captures Lamport’s notion [14] of
sequential consistency: there exists a single order orpatations
that explains the execution of program. Figure 6 shows a Eamp
computation dag>(C') and two possible observer functionB;
and®,. The trace(C, ®1) is sequentially consistent, bo€, ®2)

is not.

Transactional sequential consistency

We now extend the definition of sequential consistency toaat
for transactions. Our definition does not attempt to modehitity,
however — that is the topic of Section 4. It simply models that
a transaction outside an aborted transaction cannot “saleles
written by the aborted transaction. Moreover, our definitisakes
the assumption that an aborted computation is consistett the
point that it aborts.



FIGURE 6: Examples of sequential consistency for a compu-
tation C' with only committed transactions. Shown is the com-
putation dag G(C). For the observer function®; given by
(®1(1) = 0,P1(2) =1,P1(3) = 0,P1(4) =0, P1(5) = 2), the
trace (C,®1) is sequentially consistent, with the topological sort
S = (0,1,2,3,4,5) of G(C). For the observer functio®, given by
(P2(1) =0,P2(2) =1,P2(3) = 0,P2(4) = 0,P2(5) = 1), however,

the trace (C, ®2) is not sequentially consistent, because there is no

topological sort consistent with the last-writer function

We first redefine the last-writer function to take abortedigra
actions into account. Intuitively, another transactionwgtl not be
able to “see” the values of an aborted transaction.
DEFINITION 5. Consider a tracgC, ®) € U and a topological
sortS € topo(G(C)). Forall v € memOps(C') such thatR(v, £) v
W (v, £), thetransactional last writerof v according taS, denoted
Xs(v), is the unique: € memOps(C) U {begin(C)} that satisfies
four conditions:

1. W(u,?),

2. u<s v,

3. ~(uHv), and

4. Vw (W(w, ) A (u <s w <s v)) = wHv.

The first two conditions for the transactional last-writanétion
X are the same as for the last-writer functién The third and
fourth conditions of Definition 5 parallel the third conditi of
Definition 3, except that now ignores vertices or w that write to
£ but which are hidden from.

2. VT € xactions(C) andVv € V(C), we havebegin(T) <s
v <s end(T) impliesv € V(T)).

Informally, an execution belongs t97 if there exists an ordering
on all operationsS such that the observer functidnis the trans-
actional last writetY’s, and for every transactidfi, the vertices in
V(T') appear contiguous if.

Race freedom

Our definition of race freedom is motivated by the observatiat
actual TM implementations allow independent transactionis-
terleave their executions provided that one transacti@s dot try
to write to a memory location accessed by the other trarmacti
Normally, with only closed-nested transactions and ignpoper-
ations from aborted transactions, we expect to be able toarege
any interleaved execution order allowed by race freedom amt
equivalent serializable order. As we shall see in Sectidghé&two
models are indeed equivalent for computations having diolyec
and committed transactions. With aborted and open transadn
the model, however, we shall discover that the models atiedis

To define race freedom, we first describe what it means to have
a transactional race between a memory operation and a ¢tanmsa
with respect to a topological sort of the computation dag.
DEFINITION 8. Let C' be a computation tree, and suppose that
S € topo(G(C)) is a topological sort of7(C'). A (transactional)
race with respect toS occurs between € V(C) and T €
xactions(C), denoted by the predicatRACEs(v,T), if v ¢
V(T) and there exists @ € content(T') satisfying the following
conditions:
1. - (vHw),
2.3 € Mst.(R(v,0) NW(w, )V (W(v,£) A R(w,£)) V

(W (v,£) AW (w,?)), and
3. begin(7T) <s v <s end(T) .
The notion of a race is easier to understand when all traiosact
are committed, in which case no vertices are hidden from each

Sequential consistency can now be defined for computations other. Intuitively, a race occurs between transacfiband a ver-

that include transactions. The definition is exactly likdibiéon 4,
except that the last-writer functiofis is replaced by the transac-
tional last-writer functionX’s.

DEFINITION 6. Transactional sequential consistenéythe mem-
ory model

TSC ={(C,®) €U : IS € topo(G(C)) st.® = Xs} .

4. TRANSACTIONAL MEMORY MODELS

In this section, we use our framework to define three diffetrams-
actional memory models: serializability, race freedond prefix-
race freedom. The intuition behind all three memory model®i
find a single linear orde$ on all operations that both “explains” all
memory operations and provides guarantees about evergatan
tion. Serializability requires that all transactions agpas contigu-

ous inS. Race freedom weakens serializability by allowing trans-

actions that do not “conflict” to interleave their memory ogi@®ns

in S. Finally, prefix-race freedom weakens race freedom by only

prohibiting conflicts with the prefix of a transaction.

Serializability

Serializability [22] is the standard correctness condifior trans-
actional systems.

DEFINITION 7. The serializability transactional memory model,
ST, is the set of all tracegC, ®) € U for which there exists a
topological sortS € topo(G(C)) that satisfies two conditions:

1. ® = Xs, and

texv ¢ V(T') appearingbetweebegin(7") andend(T) in S if
v “conflicts” with some vertex: € content(T'), where by “con-
flicts,” we mean that writes to a location that reads or writes, or
vice versa.

We can now define race freedom.
DEFINITION 9. Therace-freetransactional memory modé&FT
is the set of all trace$C, ®) € U for which there exists a topolog-
ical sortS € topo(G(C)) satisfying two conditions:
1. ® = Xs, and
2.Yv € V(C) andVT € xactions(C), “RACEs(v,T) .

The first condition of race freedom is the same as for sealliity,
that the observer function is the transactional last wrikee sec-
ond condition allows an operatianto appear betweebegin(T")
andend(T) in S, but only provided no race betweemndT’ exists.

Prefix-race freedom

The notion of a prefix-race is motivated by the operationaia®
tics of TM systems. As two transactioisand T’ execute, ifT”’
discovers a memory-access conflict between a vertexT”’ and
T, then the conflict must be with a vertexdhthat has already exe-
cuted, that is, the prefix @ that executes before For prefix-race
freedom, no such conflicts may occur.

DEFINITION 10. Let C be a computation tree, and lef €
topo(G(C)) be a topological sort ofG(C). A (transactional)
prefix-race with respect toS occurs betweenv € V(C) and
T € xactions(C), denoted by the predicaterRACEs (v, T'), if
v ¢ V(T) and there exists av € content(7’) satisfying the
following conditions:

1. -(vHw)



2.3 € Mst.(R(v,6) N W(w,€))V (W(v,£) AN R(w,£)) V
(W (v,£) AW (w,£)).
3. begin(T) <s w <s v <s end(T) .
Thus, this definition is identical to Definition 8, except thhe
potential conflicting vertexv must occur before in S.
The notion of a prefix-race gives rise to an corresponding mem
ory model in which prefix-races are absent.
DEeFINITION 11. Theprefix-race-freetransactional memory mod-
el PRFT is the set of all trace$C, ®) € U for which there exists
a topological sortS € topo(G(C)) satisfying two conditions:
1. ® = Xs, and
2. Vv € V(C) andVT € xactions(C), -PRACEs(v,T) .

Thus, prefix-race freedom describes a weaker model than race

freedom, where a vertex is only guaranteed to not to conflict
with the vertices of transactiof that appear before in S. If a
“nontransactional” leaf node € memOps(C') runs in parallel with

a transactiorl’, all of Definitions 7, 9, and 11 check whether
interleaves withirf’s execution. Thus, these models can be thought
of as guaranteeing “strong atomicity” in the parlance ofriglell,
Lewis, and Martin [2]. In Scott's model [24], ReEs(v, T') and
PRACEs (v, T') can be viewed as particular “conflict functions.”

Relationships among the models

The following theorem shows that the memory models as pteden
are progressively weaker.

THEOREM 1. ST C RFT C PRFT .

PrRooOFE Follows directly from Definitions 7, 9, and 11. O

For computations with only closed and committed transastio
prefix-race freedom and serializability are equivalentyasshall
see in Section 5. When open and aborted transactions ari-cons
ered, all three models are distinct.

5. DISTINCTNESSOF THE MODELS

In this section, we study the memory models of serializghili
prefix-race freedom, and race freedom. Specifically, we stav
for computations containing only committed and closed da&n

tions, all three models are equivalent. We also demonsthate
when aborted and/or open transactions are allowed, ak timiced-

els are distinct.

Dependency graphs

Before addressing the distinctness of the memory modedsttiir

we first present an alternative characterization of sedplectn-
sistency for the special case of computations with only cdtech
transactions. The idea of a “dependency” graph is to addsetige
the computation dag to reflect the dependencies imposedeby th
observer function.

DEFINITION 12. The set oflependencedges of a tracéC, @) €
Uecom is ¥ q(C, @) = {(u,v) € V(C) x V(C) : u= ®(v)}, and
the set ofintidependencyedges isl, (C, @) = {(u,v) € V(C)x
V(C) : (P(u) = ®(v)) A W(v,£)}. Thedependency graptof
(C, @) is the graphDG(C, ®) = (V, E), whereV = V(C) and
E=E(C)UT4(C,2)UTy(C, D).
The sets¥, and ¥, capture the usual notions of dependency
and antidependency edges from the study of compilers [13]. A
dependency edge:, v) indicates that observed the value written
by u. An antidependency edde:, v) means that if both, andv
observe the same write to a locatinand if v performs a write,
thenu must “come before’.

The following lemma, presented without proof, shows that in
the universe of all traces with only committed transacti@angace

Control Edge

Dependency Edge  Anti-dependency Edge

FIGURE 7: Dependency graplBG(C, 1) andDG(C, @) for the traces
from Figure 6. SincgC, ®1) € SC, the graphDG(C, ®1) is acyclic,
but since(G, ®2) ¢ SC, the graphDG(C, ®2) contains a cycle, namely
(2,3,4,5,2).

(C,®) is sequentially consistent if and only if the dependency
graphDG(C, ®) is acyclic®

LEMMA 2. Suppose thatC, ®) € Ucom. Then, we haveC, @) €

SC if and only if the dependency grafpG(C, @) is acyclic. [

Figure 7 shows the dependency graphs for the example traces
from Figure 6. Whereas the tra@€, ®1) is sequentially consistent,
the tracg(C, ®;) is not. Equivalently by Lemma 2, the dependency
graphDG(C, ®,) is acyclic, but the grapPG(C, ®2) is not.

We can now prove the equivalence of serializability, raee{r
dom, and prefix-race freedom when we consider only comumsiti
with committed and closed transactions.

THEOREM 3. ST NUee = RFT NUcgee = PRET N Ucgee.

PrROOF. Since Theorem 1 shows th&dfl’ C RFT C PRFT, it
suffices to prove thaPRFT N Uecgee T ST N Uecgec-

We start by defining some terminology. Farv € V(C),
define thealternation countof v andv as

A, v) = [a(u)] + [a(v)| = 2 [a(LCA(u, v))] -

(The holders functiom was defined in Section 3.) Thud,(u, v)
counts the number of transactiofisc xactions(C') that contain
eitherw or v, but not both. For any topological saft of G(C),
define thealternation countof S, denotedalt(S), as the sum of
all A(u,v) for consecutive, andv in S. Intuitively, alt(S) counts
the number of times we “switch” between transactions as we ru
throughsS.

We prove by contradiction that for any tra¢€, ®) € Usg.c,
we have(C,®) € PRFT implies (C,®) € SC. Suppose
that a trace(C,®) € U.g. exists that is prefix-race free but
not serializable. Consider any prefix-race-free topolaigisort
S € topo(DG(C,®)) that has a minimum alternation count
alt(S) over all sorts intopo(DG(C, ®)). By Lemma 2,S satisfies
the condition® = Xs (the first condition for all three transactional
models).

Since (C,®) ¢ ST, some transactiod’ exists that is not
contiguous inS (and therefore violates the second condition in
Definition 7). LetT be such a transaction, and ket be the first
vertex such thaty ¢ V(T') andbegin(T) <s v <s end(T).
Choose vertices <s u1 <s uz <s v1 <s 12 <s w1 <s W2,

50ne must extend the definition of an antidependency edge dwepr
an analogous result when the computationhas aborted transactions.
Lemma 2 does not hold without the assumption that every wwoita lo-
cation also performs a read.
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FIGURE 8: Two topological sorts of a computation gragh(C) for a
hypothetical tracgC, ®) which is prefix-race free, but not serializable.
TransactionT is not contiguous in the topological saft in (a). One
can convertS into the topological sortS’ in (b). Doing so reduces the
alternation count.

such thatu; = begin(7") as shown in Figure 8(a). Define the sets
A1, A2, andA; as follows:

A1 = {zeV(T):u <sz<su},

Ay = {zeV(C)-V(T):v1 <sz<swv2}, and

As = {zeV(T):w <sz<sw2} .

Define two setsd; = {x € V(T):u1 <s z <s u2} and

As = {z € V(T) : w1 <s z <s w2} whose vertices all belong
toV(T'). Defineds = {2 e V(C) = V(T) : v1 <s © <s va2} as
the set interleaved between the contiguous fragmerits of
FromS, we construct the new ordé¥ shown in Figure 8(b) in
which the intervalsA; and A, are interchanged. We shall show
that (1) S’ € topo(DG(C, ®)) (and therefored = Xs:), (2)
&' is still a prefix-race-free topological sort &1G(C, ®), and (3)
alt(8") < alt(8), thereby obtaining the contradiction this not
a prefix-race-free topological sort with minimum alterpatcount.
To prove these three facts, we shall use a “nonconflicting”
property: no pair of vertices € A; andz € A, exist such that

thatbegin(7T1) <s w <s end(7T1) <s v. Sinceend(7:) and
v swapped, we must hawend(71) € A; andv € A,. Since
A1 C content(T), it follows thatend(T1) € content(7"), and
thusTy must be nested withifi'. Consequently, we hawe € A,
which cannot occur because of the nonconflicting property.

To establish (3), thatlt(S’) < alt(S), let us examine the
differenced = alt(S) — alt(S’) in the alternation counts of
andS’. The only terms that contribute foare at the boundaries of
A1 andAz. We have that

0 = A(t,ur) + A(uz,v1) + A(vz, wi)
—A(t,v1) — A(v2,u1) — A(ugz,w)
= 2(Jn(LCA(t, v1))| + [h(LCA(v2, uw1))|
+B(LCA(uz, w1))| — [R(LCA(t, u1))]
—|n(LCA(uz, v1))| — [b(LCA(v2,w1))]) -
By construction, we know thafui,us, w1, w2} C V(T),
whereas none of, v1, andv; haveT as an ancestor. For any

y € V(T)andz ¢ V(T), we haveL.CA(y, z) = LCA(T), z), which
yields

§ = 2(In(LCA(t,v1))| + [n(LCA(uz,w1))|
— [B(LCA(Z, T))[ — [n(LCA(T, v1))]) -

SinceLCA(uz,w1) € desc(T'), we Knowh(LCA(uz,w1)) 2
h(7T') and |h(LCA(uz,w1))| > [n(T)|. Sincet,v1 ¢ V(T), we
haveh(LCA(T,t)) C h(T) andh(LCA(T,v1)) C h(T).® Thus,

[h(LCA(uz, w1))| > max {|h(LCA(T' 1))], [n(LCA(T' v1))|}
and a similar algebra yields

[b(LCA(t, v1))| > min {|n(LCA(T 1)), [R(LCA(T’ v1))]} -
Consequently, we conclude thiait= alt(S) — alt(S’) > 0. O

Aborted transactions

We now consider computations with aborted transactionsai&e
unaware of any prior work on transactional semantics thpliex

y and z access the same memory location and one of them is altly models aborted transactions. The reason is Simplenvdmm-

write. Otherwise we haveHACEs (z, T') by definition becausg €
content(T'), z € V(T), andbegin(T) <s y <s z <s end(T).
Thus,A; and A2 do not perform “conflicting” accesses to memory.
To establish (1), tha’ € topo(DG(C, ®)), we show that
foranyy € A; andz € Az, no edge(y,z) belongs to the
graph DG (C, ®). If we have (y,z) € V4(C,P) U ¥y(C, ),

putations have only closed transactions, aborted transaaio not
affect a program’s output. Since TM systems do not allow cétmm
ted transactions to observe data directly from aborteds#etions,
in most cases, vertices from aborted transactions aredraeserve
arbitrary valueg.

In a system with open nesting, however, we must include

theny and z access the same memory location and one of those aborted transactions in the memory model if we wish to under-

accesses is a write, contradicting the nonconflicting ptgdove.
Alternatively, if we havgy, z) € E(C), thenLCA(y, z) must be an
S-node withy to the left ofz. Sincez ¢ V(T'), we haveL.CA(T, z)
(= LCA(y, z)) is anS-node, and thus we hawad(T) < z. Thus,
S was not a valid sort 0bG(C, @), and(y, z) ¢ E(C).

To establish (2), thas’ is prefix-race free, we show that swap-
ping A; and A, cannot introduce any prefix races that weren't al-
ready there inS. Suppose that there is a prefix-racedh Then,
there must exista € V(C) and a transactioffi; € xactions(C)
satisfying all three conditions of Definition 10 f&'. Let w €

content(71) be the candidate vertex that satisfies the three con-

ditions. In particular, the third condition gives bsgin(71) <s/
w <s/ v <s end(T1). We consider two cases, each of which
leads to a contradiction.

In the first case, suppose that<s w. Sincev and w swap
in the two orders, we must havee A; andw € A,. But, then
they conflict by the second condition of Definition 10, whiemoot
occur because of the nonconflicting property above.

In the second case, suppose that<s v. Since there is no
prefix-race inS, the only situation in which this can happen is
whenw falls entirely outside transactiofi; in S, which is to say

stand what happens when an open transaction commits buatrits p
ent aborts. We contend that a reasonable transactionabtams/
model for open transactions must not only model abortedséan
tions, but it should also guarantee that an aborted transdEtis
consistent up to the point it aborts. Otherwise, any opetrang-
actions withinT’ may obtain inconsistent values and still commit.
The next theorem shows that when aborted transactions are
modeled, the three transactional memory models are distinc

THEOREM 4. ST NUcio € RFTNUc1o € PRFT N Ucio -

=

PrRoOOF Since Theorem 1 shows th&fl" C RFT C PRFT,
we need only show thaf7T N Ue, # RFT N U, and that
RET NUecio # PRFT NUgo.

We first exhibit a computation that is race free but not se-
rializable. Consider the computation dég shown in Figure 9.
Let (C1,®1) be the trace that generatés where transactions

81n this case, we have a proper subset becate€T’, t), LCA(T,v1) €
pAnces(T) and we excludd’.

"This intuition is not strictly true in a model that does notabze an
executiona posteriorj since control flow can be affected by inconsistent
data and prevent a program from terminating.



FIGURE 9: An example distinguishing the memory models. The transac-

tions Ty andT3 are closed-nested inside 0f. If transactionTy commits,
then this computation is not serializable, becdligenust interleave inside
of Ty. If both transactiongs and73 abort, then the execution is race free.
If Ty aborts andl’s commits, then this execution is not race free, but it is
prefix-race free.

T, and T3 abort but transactiofi, commits. We shall show that
(01,@1) € RFT, bUt(C1,(I’1) é ST.

If transactionT, commits, then for any topological saft sat-
isfying Xs = ®, we must have) <s 3 <s 6 <s 9. Thus, T
cannot be contiguous withifi, implying that(C1, ®1) ¢ ST.

We can show thatCy, ®1) is race free, however. Lef be
(0,1,...,12). One can verify that; is indeed the transactional
last-writer function according t& (sinceT; commits,—(6H9),
and thusb; (9) = Xs(9)). The only transactions that might violate
the second condition of Definition 9 are transactions thahaio
appear contiguous i§, in this case, onlyZ. The only candidate
vertexv for RACEs (v, T1) isv = 6. SinceT: is an aborted sub-
transaction off;, however, neitheB or 9 belong tocontent (71 ).
Thus, pickingS = (0, 1, ..., 12) ensures thdl; causes no races.

FIGURE 10: When all transactions commit, this computation dagC')
with observer edge®; is not serializable, but is race free. This trace
represents Schedule 3 from the program in Figure 2.

FIGURE 11: When all transactions commit, this computation dzgC>)

We next exhibit a computation that is prefix-race free but not with observer edge®; is prefix-race free, but not race free, because a race

race free. Consid€iC2, ®2) as the trace generating the same com-
putation dag= from Figure 9, but this time witfi; aborted and’;
andT}; committed. We shall show thdC>, ®2) ¢ RFT, but that
(02, CI’Q) € PRFT.

To show that(C>, ®2) is not race free, observe that in any
topological sortS € topo(G) for which ® = Xs, we must have
RACEs(6,T1), sincebegin(T1) <s 6 <s end(11), vertices6
and9 access the same memory locatiorand vertexs is a write,
and —(6H9). The orderS = (0,1,...,12) is prefix-race free,
however, sincd £s 6. The only transactions that might violate
the second condition of prefix-race freedom are those thatotlo
appear contiguous i, in this case, onlyl. When we look at
the vertexv = 6 that falls betweemegin(71) andend(71), we
only look at the prefix ofl} beforev (vertices1 through4) for a
prefix-race conflict, and there is none.

The proof holds whetheéF; commits or aborts.

Open transactions

We now study computations with open transactions but whitre a
transactions commit. In this context, the three mod&ls RF'T,
and PRF'T are distinct.

THEOREM 5. ST NUcom € RFT N Ucom € PRFT N Ucom -

= =

ProOOF Since Theorem 1 shows th&fl" C RFT C PRFT,
we need only show thaf T N Ucom # RFT N Ucom and that
RFT N Ucom # PRFT N Usom. The trace in Figure 10 shows
a(Cy,®1) ¢ ST, but (C1,®1) € RFT. Figure 11 shows
(02, CI’Q) ¢ RFT, bU'[(OQ7 CI’Q) € PRFT. O

Trade-offs among the models

The three transactional memory models of serializabiiétye free-
dom, and prefix-race freedom exhibit different behaviors' M
systems that have open transactions.

With serializability, for any trace(C,®) € ST, we can
“change” the trace to convert any open transacfidmested in-

exists between verticels3 and15.

side a committed transactidfi from open to closed while still
keeping the sam, and still be serializable. Thus, in some sense,
with serializability, open nesting only differs from clabeesting if
an open transaction commits, but its parent aborts.

Race-freedom appears to be more difficult to implement than
either serializability or prefix race-freedom. For examplensider
the example from Figures 3 and 11. After an transacfiofopen-
nested inA) commits, any number of other transactiord$ §nd
C) can read values written by that open transaction and commit
their changes, all before the original outer transactia@ompletes.
To support race freedom, it seems we may need to maintain the
footprints of B andC' even after they have committed to detect a
future conflict with A.

6. THE ON OPERATIONAL MODEL

This section presents an abstract operational model far opst-
ing, called theON model, which is a generalization of the Stanford
model [16]. We prove that th@ N model implements at least prefix
race-freedom but is strictly weaker than race freedom.

We begin our description of th©@ N model by defining some
notation. For any sef C nodes(C') of tree nodes, letowest(.S)
be the nodeX € S such thatS C ances(X), if such aX exists.
Otherwise, defin@owest(S) = null. Thus, if all nodes inS all
fall on one root-to-leaf path i€, thenlowest(S) is the lowest
node on that path. Defineighest(S) in a similar fashion. For any
T € xactions(C), definexparent(7') = lowest(ances(T) N
xactions(C)), that is, xparent(7") is the transactional parent
of T'. For anyX € nodes(C), let xAnces(X) = ances(X) N
xactions(C) be the set of transactional ancestorsxof

Abstractly, we shall view theDN model for open nesting as
a nondeterministic state machif@V that constructs a sequence
of traces. The initial trace contains a computation treesismimg



of a singleS-noderoot(C) € spNodes(C') with associated sets
xactions(C) = {root(C)} andopen(C) = committed(C) =
aborted(C) = () and an empty observer functidn By assuming
thatroot(C') € xactions(C), we simplify the description of the
model by treating the entire computatiéhas a global closed trans-
action in which other transactions are nested. The conipatatso
maintains an initially empty auxiliary selone(C') C nodes(C)
of nodes that have finished their execution. The computatiem
C and all these associated sets only grow during the execution
At any time during the computation, a subsetady(C) of
S-nodes are designated esady, meaning that they can issue a
program instruction, which includeead, write, fork, join,
xbegin, xbegin open, and xend. The ON machine nondeter-
ministically chooses a read§-node to issue an instruction, and
the machine processes the instruction which augmgrit®) by
adding nodes to the tree and to its associated sets. Unliier ot
associated setszady(C') may grow and shrink during execution.
We shall factor the description of the state machin&” by
describing the creation of the computation té@@and the observer
function ® separately.
Creating the computation tree
How the computation tre€' evolves depends on the instructions
that are issued nondeterministically. L&t be the S-node that
issues an instruction. The instructions are handled asWsll
e read from a location! € M: If the read causes a conflict
(more about conflicts when we describe the creation of the
observer function) with one or more transactions, dbtre
deepest such transactidn by adding all transactiong” &
desc(T)Nxactions(T') —done(C') both toaborted(C') and
to done(C'). Keep checking for and aborting conflicting trans-
actionsT’, deepest to shallowest, until no such conflicting trans-
actions exist. Then, create a newad nodev € memOps(C') as
the last child of theS-node X. Add v to done(C).

e yrite to a locatior¥ € M: Similar toread.

e fork: Create a newP-nodeY € nodes(C) as a child ofX,
and create two new$-nodes as children of". Add these two
children toready(C'), and removeX from ready(C).

¢ join: Test whetherX's sibling belongs todone(C). If yes,
then addX and therparent(X) todone(C'). RemoveX from
ready(C), and addparent (parent (X)) (the grandparent of
X which is anS-node) toready(C). If no, then removeX
from ready(C), and addX to done(C').

¢ xbegin: Create a nevws-nodeY € nodes(C') as the last child
of X. Add Y to xactions(C'). RemoveX from ready(C),
and addY” to ready(C').

¢ xbegin_open: Similar toxbegin, but also add” to open(C).

¢ xend: Test whetherX € xactions(C). If yes, removeX
from ready(C'), and addparent(X) to ready(C). Add X
to done(C') and tocommitted(C). If no, error.
The ON machine maintains several invariants. All transactioes ar
S-nodes. EveryP-node has ag-node as its parent and has exactly
two S-nodes as children. If asi-node is ready, none of its ancestors
are ready.
Creating the observer function

To create the observer function, tlieN model maintains aux-

iliary state to keep track of how values are propagated among

transactions and global memory. Specifically, every tretirsa

8The ON machine uses a “pessimistic” concurrency control mechanis
in that it immediately aborts a conflicting transacti@h upon conflict.
Moreover, it always abort§" rather than its own transaction. One could
abort the transaction performing thead, but the model is simpler by
always abortindl” and not providing a hondeterministic choice.

T € xactions(C') maintains areadsetR(7") and awriteset
W(T). The readseR(T) is a set of pairg¢,v), wherel{ € M
is a memory location and € memOps(C) is the memory oper-
ation that read fron?, that is, we maintain the invariarR(v, £)
for all (¢,v) € Ureractions(c) B(T)- The writeseti(T’) is sim-
ilarly defined. We initializeR(root(C)) W(root(C))
{(¢,begin(root(C))) : £ € M}.

The ON model maintains two invariants concerning readsets
and writesets. First, it maintaing7’) C R(T") for every transaction
T € xactions(C), that is, a write to a location also counts as a
read to that location. Seconkl;7") andw(7") each contain at most
one pair(¢,v) for any locatior¢. Because of this second invariant,
we employ the shorthartie R(7") to mean that there exists a node
usuchthat/, ) € R(T'), and similarly forw(7"). We also overload
the union operator to accommodate this assumption: if weewri
R(T) < R(T) U {(£,u)}, then if there exist$/,v’) € R(T), we
mean to replace it witli¢, ). Likewise, ifu accesses a locatidh
we employ the shorthand € R(7T") to mean tha(¢,u) € R(T),
and similarly forw(T").

The state machin®N handles events as follows, wheke is
the S-node that issues the instruction:

e read from location? € M: If there exists & € xactions(C)
— done(C) — ances(X) such that? € W(T), then a conflict
occurs. Let be the read operation added as the last child of
Define S; = {T € xactions(C)Nances(v): ¢ € R(T)},
let 7’ = lowest(S,), and let(¢,u) € R(T"). Add (£,u) to
R(T), and se®(v) = u.
write to a location/ € M: Similar toread, but to check for
a conflict, test whether there existsla € xactions(C) —
done(C) — ances(X) such that¢ € R(T'). Find u in the
same way, and ad(¢,u) both toR(7") and tow(7), and set
D(v) = u.
xbegin andxbegin_open: Initialize R(Y) = @ andw(Y) = 0.
xend: If X € closed(C), then addR(X) to R(xparent (X))
and addw(X) to W(xparent(X)). If X € open(C), then
let Q = xAnces(T). For any (¢,u) € W(T), let oy =
{T" € Q|¢eRr(T)}. For all suchT' € ay, R(T') «
R(T") U {(¢,u)}. Similarly, let 3, = {T" € Q| ¢ € W(T")}.
ForallT" € B¢, W(T') — W(T") U {(£,u)}.

e fork or join: No action.

The Stanford model [16] is similar to thi@ N model, except that
it only supports “linear” nesting (transactions can haveparllel
transactions within them) and the choice of which transacto
abort is nondeterministic. Neither of these differencdscas the
theorems that deal with th@ N model, assuming they implement
their system with pessimistic concurrency control.

Prefix race-freedom ofON

We now prove that th&d N model is prefix-race free with respect
to the natural topological so§ of G(C') created by the nonde-
terministic operation of th& N machine. Specifically, as theN
model generates a tra¢€’, ®), it creates tree nodesdes(C') =
spNodes(C) U memOps(C') and eventually marks these nodes as
“done” by placing them indone(C'). We can view this process
as determining the topological sa$tof G(C) as follows. When
a nodeX € nodes is created, the vertekegin(X) € V(C)
is appended t&S. When a node is marked as done, the vertex
end(X) € V(C) is appended t&. If the nodeX is a memory
operation, we haveegin(X) = end(X) = X, and we view it as
being appended only once. It is straightforward to verifgtii is
indeed a topological sort @¥(C'), and indeed oDG(C, ®).

We begin with a definition of time in th&® N model. Ifv €
V(C) is the ¢th element ofS, we say thatv occurs attime ¢,
and we writet = S(v). Thus, for allu,v € V(C), we have



u <s vifand only if S(u) < S(v). We can view the evolution
of (C,®) over time as a sequend¢e€’™, ®®) fort = 0,1,...,
where the operation that occurs at titnereateg C™", ™)) from
(C*=Y a(=1) For convenience, however, we shall omit time
indices unless clarity demands it.

We define two time-sensitive sets. The seadtivetransactions
at any given time isactive(C') = xactions(C) — done(C).
The spine of a memory locatiorY € M at any given time is
spine({) = {T € active(C) : £ € W(T)}.

We now state a structural lemma that describes invariarttseof
computation tre€”’ as it evolves.

LEMMA 6. The ON machine maintains the following invariants:

1. If T € active(C), then we haveAnces(T') C active(C).

2. Ifv e W(T), thenv € V(T).

3. All transactions inspine(¢) are on the same root to leaf path
in C, and hence the nodewest (spine({)) exists.

4.1f ¢ € R(T), whereT € active(C), then we have either
spine(¢) C ances(T') or T’ € ances(lowest(spine({))).

5. 1f (¢,u) € R(T) for someT € active(C), then(¢,u) €

W(T"), whereT’ = lowest(xAnces(7T) N spine()).

6. Let (¢,u) € W(T1) and (¢,v) € W(Tz), whereT}, T €

spine(?). If T € ances(T%), thenu <s v.

7. Let(4,u) € W(T) and letu <s v such thatW (v, ). Then, we
havev € desc(T).
PROOF Induction on time. (]

The next three lemmas describe additional structure ofdhe c
putation tree.
LEMMA 7. For all T € aborted(C) and T’ € active(C), if
v € content(T), then we have ¢ W(T"). O

LEMMA 8. If v € memOps(C) accesses € M, then at timeS (v),

we havespine(¢) C ances(v). 4
LEMMA Q. For all v € V(C), T € aborted(C), andw €
content(7), if end(7T") <s v, then we havevHv. (]

The next lemma shows that a memory location written within
a transaction remains in the writeset of some active descerud
the transaction.
LEMMA 10. Letw € memOps(C) N content(7") be a memory
operation in a transactio’ € xactions(C'), and suppose that
W (w, £) for some locationd € M. Then, at all timeg in the
range S(w) < ¢t < S(end(T)), we havel € W(T") for some
T' € desc(T) Nactive(T).

added toR(xparent(v)), andxparent(v) ¢ desc(T"), because
otherwisev € desc(T’) C desc(T). Therefore, at timeS(v), we
havel € R(xparent(v)) and¢ € W(T"), which violates Invariant 4
in Lemma 6.

The case wheR(u, ¢) is analogous. |

The next series of lemmas show that the observer function
created by th@ N machine is the transactional last-writer function
according taS.

LEMMA 12. For all T € xactions(C), T' € active(C), and
u € content(7T), if T ¢ committed(C) at timet andu € W(T")
attimet, thenT” € desc(T).

PROOF SKETCH. One can prove by induction that at any time
such thatS(u) < ¢ < S(end(T)), we haveh(u) C xAnces(u) —
pAnces(T") andh(u) N (open(T) — {T}) = 0. O
LEMMA 13. For any v € mem0Ops(C), if ®(v) = w, then
—(uHv).

ProOOF Assume for contradiction thatHv holds. Then, there
existsT' € pDesc(LCA(u,v)) N aborted(C) such thatu €
content (7). If the ON machine set®(v) = u, thenu € R(T")
for someT” € xAnces(v). By Invariant 5 in Lemma 6, it fol-
lows thatu € W(T"), whereT” € ances(T"), and hencel’ €
ances(T") by Lemma 12. Therefore, we ha¥e€ ances(v), and
LCA(u,v) =T € pDesc(T"). Contradiction. O

We say that a vertex € mem0Ops(C) isalive, denotechlive(v),
if h(v) N aborted(C) = 0.
LEMMA 14. Letw € V(C) be the last vertex irS such that
W (w,¥) andalive(w). Then, there exist&') € spine(¢) such
that (¢, w) € W(T").
PROOFSKETCH. At time S(w), by Invariant 3 of Lemma 6, we
have (¢,w) € W(xparent(w)) and xparent(w) € spine(¥).
Assume for contradiction that is not on the spine. Since is
alive,w can only be removed frompine(¢) by being overwritten
by somey such thai¥ (y, £) holds, andw <s y (from Invariant 6
from Lemma 6). Sincev is the last writer to/ which is alive, we
have—alive(y). One can show thatalive(w) in this case. [

LEMMA 15. For u,v € memOps(C) that both access a memory
location? € M, if ®(v) = u, then for anyw € memOps(C') such
thatu <s w <s v and W (w, ¢), we havewHv.

PrRoOOF Assume for the purpose of contradiction that there exists
aw € memOps(C) such thatu <s w <s v, W(w, £), and—wHwv.

PrROOF. We proceed by induction on time. For the base case, at Consider the last such.

timeS(w), location? is added tdi(xparent (w)), andxparent (w)

€ desc(T) Nactive(T). For the inductive step, léte w(T") for
someT” € desc(T) Nactive(T). Once a location is added to a
transaction’s writeset, it is never removed until the teani®n com-
mits or aborts. Ifl” = T, then we are done. Otherwise, we have
T' € pDesc(T') and by definition ofcontent(T'), it follows that

T" ¢ open(C) Uaborted(C). Therefore, at time (end(T")), lo-
cation/ is added tai(xparent (7)), at which timexparent (7”)

is an active descendant 6t O

We can now prove that th@ N model admits no prefix-races.

LEMMA 11. For all v € memOps(C) andT' € xactions(C), we

have—PRACEs (v, T).

PROOF Suppose for contradiction thaRRCEs (v, T). Then, by

Definition 10, we have ¢ V(T') (or equivalentlyl’ ¢ ances(v)),

and there exists a» € content(T") such that—(vHw) and

begin(T) <s w <s v <s end(T"), wherev andw access the

same locatiorf € memOps(C') and one of those accesses is a write.
Consider the case whéi (u, £). By Lemma 10, at timeS(v)

we havel € W(T"), whereT”’ € desc(T). Attime S(v), vertexv is

If w € content(T") for someT € aborted(CS()), then by
Lemma 9 we havev Hv.

If w is not in the contents of any aborted transaction at time
S(v), then by Lemma 14, we have € W(T) for some trans-
actionT € spine(¢) andT € ances(v) by Lemma 8. Let
Tr = lowest({T € xAnces(v) : £ € R(T)}), and letTw =
lowest ({7 € xAnces(v) : £ € W(T)}). If ®(v) = w, then we
haveu € R(Tr), since theON machine always reads from the
lowest ancestor that hdsin its readset. By Invariant 5, we have
u € W(Tw), but sinceu <s w, we haveTy € pAnces(T') by
Invariant 6 in Lemma 6. Therefor@, is a lower ancestor af than
Tw, contradicting the fact thélfyy is the lowest ancestor afwith
£in its writeset. [l

We now can prove that the observer function for & model
is the transactional last-writer function.
LEMMA 16. Ifthe ON model generates an executigfi, ), then
D = Xs.
PROOF Let ®(v,¢) = w. To be the transactional last writer
Xs, the observer functio® must satisfy four conditions. The first



two, W(u,¢) andu <s v, hold by theON machine’s operation.
Lemmas 13 and 15 provide the last two conditions. O

THEOREM 17. The ON model implements prefix race-free free-
dom.

PrROOFR Combine Lemmas 11 and 16. O

7. CONCLUSION

Open nesting provides a loophole in the strict serialiigbile-
quirement for transactional programs, but at what cost ¢gam
understandability? When we began our study, we believadtien
nesting could be modularized so that users of a subroutingdwo
not need to know whether the subroutine uses open nestirigr-un
tunately, as we saw in Section 2, Figure 4, implementing ot
ing using prefix-race freedom can lead to unexpected profpam
havior if the programmer is unaware of the existence of opsamst
actions in subroutines. Race-freedom admits similar ataumsde-
havior. At least at the level of memory semantics, it seentigelg
that such anomalous behaviors can be completely and saéely h
den.

Our study leaves open the possibility, however, that opetr ne
ing can be modularized at the level of program semanticscispe
cally, one may be able to devise a program semantics for op&n n
ing, as discussed in [20], and formally relate it to a memooget

in such a way that anomalies in the memory model do not propa- [13]
gate to the program model. For example, the anomalous memory

semantics for open nesting provided by prefix-race freedagitm
be able to be hidden from programmers at a higher level withou
sacrificing the advantages of open nesting. Such a progrararse
tics for open nesting would allow a user to be oblivious torope
transactions in libraries. Unfortunately, our research imade us
doubtful that program semantics can offer an elegant ansnbe
modularity question for open nesting.

Perhaps we should seek loopholes for TM other than open nest-

ing. For example, Herlihgt al.[11] have proposed an early-release
mechanism for dropping locations from a transaction’s seadr
writeset. Zilles and Baugh [27] have suggested a mechanism f
pausing and resuming a transaction to allow the executigroof
transactional code. Harris [10] has proposed an extectadraab-
straction for performing 1/0O. We have not studied these rwde
enough to say whether like open nesting, they provide armmsal
or difficult semantics.

If ever a safe loophole can be punched in the steel armor &f cla
sical transaction memory, however, we believe that a peeais
derstanding of the system’s memory semantics will be necgss
We hope that our work will offer insight into how transactbn
memory loopholes, such as open nesting, might be safelg-intr
duced.
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