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ABSTRACT
Open nesting provides a loophole in the strict model of atomic
transactions. Moss and Hosking suggested adapting open nesting
for transactional memory, and Moss and a group at Stanford have
proposed hardware schemes to support open nesting. Since these
researchers have described their schemes using only operational
definitions, however, the semantics of these systems have not been
specified in an implementation-independent way. This paperoffers
a framework for defining and exploring the memory semantics of
open nesting in a transactional-memory setting.

Our framework allows us to define the traditional model of
serializability and two new transactional-memory models,race
freedomandprefix race freedom. The weakest of these memory
models, prefix race freedom, closely resembles the Stanfordopen-
nesting model. We prove that these three memory models are equiv-
alent for transactional-memory systems that support only closed
nesting, as long as aborted transactions are “ignored.” We prove
that for systems that support open nesting, however, the models of
serializability, race freedom, and prefix race freedom are distinct.
We show that the Stanford TM system implements a model at least
as strong as prefix race freedom and strictly weaker than racefree-
dom. Thus, their model compromises serializability, the property
traditionally used to reason about the correctness of transactions.

1. INTRODUCTION
Atomic transactions represent a well-known and useful abstrac-
tion for programmers writing parallel code. Database systems have
utilized transactions for decades [9], and more recently, transac-
tional memory [12] has become an active area of research. Trans-
actional memory (TM) describes a collection of hardware andsoft-
ware mechanisms that provide a transactional interface foraccess-
ing memory, as opposed to a database. A TM system guarantees
that any section of code that the programmer has specified as a
transaction either appears to execute atomically or appears not to
happen at all, even though other transactions may be runningcon-
currently. In the first case, we say the transaction hascommitted;
otherwise, we say the transaction hasaborted.

A TM system enforces atomicity by tracking the memory lo-
cations that each transaction in the system accesses, finding trans-
action conflicts, and aborting and possibly retrying transactions to
resolve conflicts. Most TM implementations maintain a transaction
readsetandwriteset, i.e., a list of memory locations that a transac-
tion has read from or written to, respectively. Typically, the system
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FIGURE 1: A code example where transactionI is nested insideA. The
xbegin andxend delimiters mark the beginning and end of a transaction.

reports a conflict between two transactionsA andB if both trans-
actions access the same memory location and at least one of those
accesses is a write. IfA andB conflict, then TM aborts one of the
transactions, rolls back any changes the aborted transaction made
to global memory, and clears its readset and writeset.

Transactional memory systems may supportnestingof transac-
tions. Nested transactions arise when an outer transactionA in its
body calls another transactionI . Figure 1 shows code for a trans-
actionA within which another transactionI is nested.

The database community has produced an extensive literature
on nested transactions. Moss [17] credits Davies [4] with inventing
nested transactions, and he credits Reed [23] as providing the first
implementation of what we now call closed transactions. Gray [8]
describes what we now call open transactions. The terms “open”
and “closed” nesting” were coined by Traiger [25] in 1983.

The TM literature discusses three types of nesting: flat, closed,
and open. The semantics and performance implications of each
form of nesting can be understood through the example of Figure 1.
If I is flat-nestedinsideA, then conceptually,A executes as if the
code forI were inlined insideA. With flat-nesting,I ’s reads and
writes are added directly to the readset and writeset ofA. Thus, in
Figure 1, if a concurrent transactionB tries to modify variablei
while I is running, but beforeI has committed, then ifI aborts, it
also causesA to abort (sincei belongs to the readset ofA as well).

If I is closed-nestedinside A (see, for example, [18]), then
conceptually, the operations ofI only become part ofA whenI
commits. In Figure 1, ifB tries to modifyi and causesI to abort,
then the system only needs to abort and roll backI , butB need not
abortA, becauseA has not accessed locationi yet. Thus, closed
nesting can be more efficient than flat nesting in this example.
I ’s readset and writeset are merged withA’s readset and writeset
if I commits, however. Thus, ifB tries to modifyi after I has
committed but beforeA commits, the system may still abortA.

Finally, if I is open-nestedinsideA (see [16, 19, 21, 26]), then
conceptually, the operations ofI are not considered as part ofA.
WhenI commits,I ’s changes are made visible to any other transac-
tionB immediately, in the scheme of [16],1 independent of whether

1 Several alternative policies for manipulating readsets and writesets are
suggested in both [19,21], but since [19] suggests adoptingthe same scheme
as [16], we do not discuss the alternatives in this paper.



A later commits or aborts. Thus, in Figure 1,B never abortsA, and
B’s access to variablei is never added toA’s readset or writeset.

Transactional memory with either flat or closed nesting guaran-
tees that transactions areserializable[22]: they affect global mem-
ory as if they were executed one at a time in some order, even if
in reality, several executed concurrently. Closed nestinggenerally
allows for a more efficient implementation compared with flatnest-
ing, because closed nesting allows a nested transactionI to abort
without forcibly aborting its parent transactionA, as with flat nest-
ing.

Open nesting provides a loophole in the strict guarantee of trans-
action serializability by allowing an outer transaction to“ignore”
the operations of its open subtransactions. Moss [19] describes
open nesting as a high-level construct that operates at two levels of
abstraction. Thus, open nesting may require high-level constructs
for rollbacks of aborted transactions or for concurrency control be-
tween transactions. For example, when using open nesting, pro-
grammers may need to specify a “compensating” transaction that
undoes the effect of a committed open transaction if its parent trans-
action aborts, or the programmer may need to use “abstract” locks
in the code to prevent certain transaction interleavings [19].

Indeed, even TM without any nesting can be viewed at two
levels of abstraction. For example, the hardware may implement
rollback of memory state, but rely on the programmer or compiler
to retry transactions that abort, sometimes using backoff protocols
to ensure that a given transaction eventually commits. Thus, it is
helpful to distinguish thememory modelfor TM, as the essential
memory semantics that the hardware implements, from thepro-
gram model, as the semantics that the programmer sees.

Our focus will be on memory models for TM. We shall not con-
cern ourselves with retry mechanisms, compensating transactions,
and the like. A TM system should have well-specified behavior
even as a target for compilation, when all program-level support
for transactions and nesting are put aside. Low-level software may
build upon the memory model to provide a higher level of abstrac-
tion, e.g., for open nesting, but the semantics of open nesting must
be understood by the programmers of this low-level software.

Moreover, although one may ignore the semantics of aborted
transactions at the program-model level, at the level of thememory
model, even aborted transactions must have a reasonable semantics,
at least up to the point where they abort. Thus, we shall be inter-
ested in defining memory semantics even for aborted transactions.

In this paper, we describe a framework for defining transac-
tional memory models. Our framework, which is inspired by the
computation-centric framework proposed by Frigo [6, 7], allows
TM semantics to be specified in an implementation-independent
way. Within this framework, we define the traditional model of se-
rializability and two new transactional memory models, race free-
dom and prefix-race freedom. We prove that these three memory
models are equivalent for computations that contain only closed
transactions, as long as aborted transactions are “ignored.” For sys-
tems that support open nesting, however, the three models are dis-
tinct. We show that the Stanford system [16], perhaps the most
reasonable design for open-nesting of transactional memory pro-
posed to date, implements a model at least as strong as prefix-race
freedom and strictly weaker than race freedom. Thus, their model
compromises serializability, the property traditionallyused to rea-
son about the correctness of transactions.

The remainder of this paper is organized as follows. Section2
presents several examples that illustrate program behaviors that
open nesting can admit. Section 3 defines our framework for under-
standing transactional memory models. Section 4 formally defines
the memory models of serializability, race freedom, and prefix-race
freedom. In Section 5 we prove that all three memory models are
equivalent for computations with only committed transactions, but

FIGURE 2: Two concurrent transactions that do not share any memory loca-
tions except in their nested transactions. Divide transaction A into abstract
operationsA1, I1, A2, I2, A3, and divideB into B1, J1, B2, J2, B3. The
I ’s andJ ’s represent inserts to an abstract table data structure. Schedule 1
is a serial order, Schedule 2 is an interleaved order equivalent to Schedule
1, and Schedule 3 is an interleaved order which is not serializable.

are distinct when we model aborted transactions or have opentrans-
actions. Section 6 describes an operational model for open nesting
that similar to the Stanford model [16] and shows that it imple-
ments prefix-race freedom. Section 7 offers some perspective on
open nesting and other loopholes in transactional memory.

2. SUBTLETIES WITH OPEN NESTING
This section motivates the need for a precise description ofthe
memory semantics using three examples to illustrate some sub-
tleties with open nesting. The first example shows that some de-
sirable schedules allowed by open nesting are not serializable. The
second example shows that the loss of serializability for open nest-
ing sanctions arguably bizarre program behaviors. The third exam-
ple shows that open nesting compromises composability.

Figure 2 describes a program with nested transactions where
the use of open nesting admits a desirable schedule which is not
serializable. Moreover, a system with only flat or closed nesting
prohibits the schedule. In Figure 2, transactionA reads from global
variablea, adds a key-value pair based ona to a global table, reads
from b and adds a corresponding pair to the table, and then stores
the suma+ b into c. TransactionB performs analogous operations
ond, e, andf . The table data structure is implemented as a simple
direct-access table [3, Section 11.1] with a globalsize field to
count the number of elements in the table.

If the nested transactions (theI ’s andJ ’s) are all flat-nested or
closed-nested, then TM guarantees that the transactions are serializ-
able: the program appears to executes as though eitherA happened
beforeB (Schedule 1) orB happened beforeA. The system might
actually perform the operations in a different, interleaved order (for
example, Schedule 2), but this schedule is equivalent to oneof the
two valid serial schedules (in this case, Schedule 1). Schedule 3 is
not serializable, however, becauseJ1 (and thusB) observes the in-
termediate value ofA.size written byI1 (and thus written byA).
Consequently, Schedule 3 is prohibited with flat or closed nesting.

To improve concurrency, a programmer may wish to allow cer-
tain schedules that are not serializable, but which nevertheless are
consistent from the programmer’s point of view. A system that
can admit nonserializable schedules imposes fewer restrictions on
transactions, possibly allowing transactions to commit when they
would have otherwise aborted. For example, the programmer may



A

1 xbegin

2 read a

3 xbegin_open

4 read i

5 i i + 1

6 write i

7 xend_open

18 read b

19 c a + b

20 write c

21 xend

B

8 xbegin

9 read i

10 i i + 1

11 write i

12 xend

13 xbegin

14 read i

15 b i

16 write b

17 xend

C

A
1

I
1

A
2

FIGURE 3: A program execution permitted by open nesting. TransactionA
does not appear to execute atomically, because it can read an“inconsistent”
value forb if B andC interleave between the execution ofA1 andA2.

wish to admit Schedule3, even though theI ’s andJ ′s happen to
access the samesize field. Conceptually, the programmer may not
care in which order the table inserts occur. For example, ifI1, I2,
J1, andJ2 are open transactions, then Schedule 3 is a valid execu-
tion.

Once a TM system with open nesting admits some desirable
nonserializable schedules, however, the proverbial cat isout of the
bag. As far as the memory semantics are concerned, it seems dif-
ficult to prohibit additional program behaviors that might arguably
be undesirable. Figure 3 shows a program execution allowed by the
open-nesting implementations of [16,21]. In this example,it is pos-
sible for all transactionsA, I1, B, andC to commit, even thoughA
does not appear to execute atomically. TransactionA reads incon-
sistent data, sinceC writes tob betweenA’s reads ofa andb. Thus,
the “snapshot” of the world seen byA when it begins is different
from its snapshot part way through its computation.

Our final example illustrates how open nesting can admit sub-
tle program behaviors that affect the composability of transactions.
Consider the program in Figure 4 which describes an implementa-
tion of a simple table library that (arguably) contains an subtle flaw.
The program includes aContains(x) method to complement the
Insert(x,y) method used in Figure 2. Since thesize field is the
primary source of transaction conflicts between table operations,
theContains method “optimizes” its search method by checking
size within an open transaction.

Using TM with open nesting, in any sequence ofContains or
Insert operations, each individual operation still appears atomic.
Thus, in transactionA in Figure 4, we might expect that if the
Contains operation returns false, then the key can be safely in-
serted into the hash table without adding duplicates.

Unfortunately, one cannot correctly call bothContains and
Insert inside a transactionT and still haveT appear to be atomic.
Indeed, the open-nesting implementation described in [16]allows
the entire transactionB to execute between Lines 2 and 7 of trans-
actionA. Thus, this code shows that composability of transactions
is not preserved. When using open nesting, simply ensuring the
atomicity of individual transactions is not sufficient to guarantee
composability.

Admittedly, the examples in Figures 3 and 4 are somewhat
contrived. In particular, unlike in Figure 2, transactionsin Figures
3 and 4 cannot be partitioned into clear abstraction levels,with
each level accessing disjoint memory locations, as Moss suggests
may be necessary [19]. These examples suggest, however, that for
open nesting, the distinction between the abstract programmodel
and the low-level memory model is much more significant than for
closed or flat nesting. Thus, these examples motivate the need to
understand memory models for open nesting so that at the veryleast

FIGURE 4: Flawed implementation of a table data structure with two meth-
ods,Contains(x) andInsert(x,y). Although each method individually
appears atomic, transactionsA andB, which call those methods, may not
appear atomic. In particular, the ordering〈1, 2, 3, 4, 5, 6, 7, 8〉 is allowed.

we can understand what properties should be enforced by higher-
level mechanisms.

3. MEMORY MODELS
This section defines our framework for modeling transactional
computations. Our model is inspired by Frigo’s computation-
centric modeling of a program execution as a computation dag
(directed acyclic graph) [6] with an “observer function” which es-
sentially tells what write operation is “seen” by a read. Ourmodel
uses a “computation tree” to model both the computation dag and
the nesting structure of transactions. We first define computation
trees without transactions, then we show how transactions can be
specified, and finally, we define Lamport’s classical sequential-
consistency model [14].

Formal models for systems with nested transactions appear as
early as the work by Beeri, Bernstein, and Goodman [1]. Recent
papers providing operational semantics for open transactions in-
clude [15, 16, 21]. Although operational semantics of a TM can
provide an abstract basis for implementation, inferring emergent
properties of the system from these semantics can be quite diffi-
cult.

Our computation-centric model focuses on ana posteriorianal-
ysis of a program execution. After a program completes, we assume
the execution has generated atracewhich is abstractly modeled as a
pair (C, Φ), whereC is a “computation tree” describing the mem-
ory operations performed and transactions executed, andΦ is an
“observer function” describing the behavior of read and write op-
erations. We shall defineC andΦ more precisely below. We define
U to be the set of all possible traces(C, Φ).

Within this framework, we define a memory model as follows:
DEFINITION 1. A memory modelis a subset∆ ⊆ U .
That is,∆ represents all executions that “obey” the memory model.

Computation trees without transactions
The computation treeC summarizes the information about the
control structure of a program together with the structure of nested
transactions. We first describe how a computation tree models the
structure of a program execution in the special case where the
computation has no transactions.

Structurally, acomputation treeC is an ordered tree with
two types of nodes:memory-operation nodesmemOps(C) at the
leaves, andcontrol nodesspNodes(C) as internal nodes. Let
nodes(C) = memOps(C) ∪ spNodes(C) denote the set of all
nodes ofC.



We defineM to be the set of all memory locations. Each leaf
nodeu ∈ memOps(C) represents a single memory operation on a
memory locationℓ ∈ M. We say that nodeu satisfies theread
predicateR(u, ℓ) if u reads from locationℓ. Similarly, u satisfies
thewrite predicateW (u, ℓ) if u writes toℓ.

The internal nodesspNodes(C) of C represent the parallel
control structure of the computation. In the manner of [5], each
internal nodeX ∈ spNodes(C) is labeled as either anS-node or
P -node to capture fork/join parallelism. All the children ofanS-
node are executed in series from left to right, while the children of
anP -node can be executed in parallel.

Several structural notations will help. Denote theroot of a
computation treeC as root(C). For any internal nodeX ∈
spNodes(C), let children(X) denote the ordered set ofX ’s
children. For any tree nodeX ∈ nodes(C), let ances(X) denote
the set of all ancestors ofX in C, and letdesc(X) denote the set
of all X ’s descendants. Denote the set of proper ancestors (and de-
scendants) ofX by pAnces(X) (andpDesc(X)). Denote theleast
common ancestorof two nodesX1, X2 ∈ C by LCA(X1, X2).

Since every subtree of a computation tree is also a computation
tree, we shall sometimes overload notation and use a subtreeand
its root interchangeably. For example, ifX = root(C), then
memOps(X) refers to all the leaf nodes inC, andchildren(C)
refers to the children ofX.

Computation dags
A computation treeC defines acomputation dagG(C) =
(V (C), E(C)) constructed as follows and illustrated in Figure 5.
For every internal nodeX ∈ spNodes(C), we create and place
two corresponding vertices,begin(X) and end(X) in V (C).
For every leaf nodex ∈ memOps(C), we place the single node
x in V (C). For convenience, for allx ∈ memOps(C), we define
begin(x) = end(x) = x.

Formally, the vertices of the graphV (C) are defined as follows:

V (C) = memOps(C) ∪

0

@

[

X∈spNodes(C)

{begin(X), end(X)}

1

A .

For any computation tree rooted at nodeX, we define the edges
E(X) for the graphG(X) recursively:
Base case: IfX ∈ memOps(C), then defineE(X) = ∅.
Inductive case: IfX ∈ spNodes(C), let children(X) =
{Y1, Y2, . . . , Yk}. If X is anS-node, then

E(X) = {(begin(X), begin(Y1)) , (end(Yk), end(X))}

∪

 

k−1
[

i=1

{(end(Yi), begin(Yi+1))}

!

∪

 

k
[

i=1

E(Yi)

!

.

If X is aP -node, then

E(X) =

 

k
[

i=1

E(Yi)

!

∪

 

k
[

i=1

{(begin(X), begin(Yi)) , (end(Yi), end(X))}

!

.

We shall find it convenient to overload theLCA function, and
define the least common ancestor of two graph verticesu, v ∈
V (C) as theLCA of the corresponding tree nodes.

The computation dagG(C) is a convenient way of representing
the flow of the program execution specified byC. Unfortunately,
our specification of computation dags via computation treeslim-
its the set of computation dags that can be described. In particu-
lar, computation trees can only specify “series-parallel”dags [5].
We might have founded our framework for transactional-memory
semantics on more-general computational dags, but the added gen-

FIGURE 5: A sample (a) computation treeC and (b) the corresponding
dagG(C) for a computation that has closed and open transactions. In this
example,T2 is open-nested insideT1 and T8 is open-nested insideT7.
The Xi’s are tree nodes that are not marked as transactions. We havenot
specified whether each transaction is committed or aborted.

erality would not affect any of our theorems, and it would have
greatly complicated definitions and proofs.

We shall find it useful to define some graph notations. For a
graphG = (V, E) and verticesu, v ∈ V , we writeu �G v if there
exists a path fromu to v in G, and we writeu ≺G v if u 6= v and
u �G v. For any dagG = (V, E), a topological sortS of G is an
ordering of all the vertices ofV such that for allu, v ∈ V , we have
u ≺G v implies thatu <S v (u comes beforev in S). For a dagG,
we definetopo(G) as the set of all topological sorts ofG.

Transactional computation trees
We can specify transactions in a computation treeC by marking
internal tree nodes. Marking a nodeT ∈ spNodes(C) as a transac-
tion corresponds to defining a transactionT that contains the com-
putation subdagG(T ), wherebegin(T ) is the start of the transac-
tion andend(T ) is the end of the transaction.2 Formally, the com-
putation treeC specifies a setxactions(C) ⊆ spNodes(C) of in-
ternal nodes astransactions, and a setopen(C) ⊆ xactions(C)
of opentransactions. The set ofclosedtransactions isclosed(C) =
xactions(C) − open(C). In Figure 5, nodesT1 throughT8 are
transactions, andX1 through X5 are ordinary nodes. Define a
transactionT ∈ xactions(C) as nestedinside another trans-
actionT ′ ∈ xactions(C) if T ′ ∈ ances(T ). Two transactionsT
andT ′ areindependentif neither is nested in the other.

The computation treeC also specifies a setcommitted(C) ⊆
xactions(C) of committed transactions. Similarly, transactions
belonging toaborted(X) = xactions(X) − committed(X)
areabortedtransactions. For a transactionT ∈ xactions(C), the
contentof T is the set of all operations that belong toT but not to

2 We assume that every leafx ∈ memOps(C) is its own committed, closed
transaction, but we do not mark leaves as a transactions in our model.



any ofT ’s open or aborted subtransactions. Formally, we define

content(T ) = V (T ) −
[

Z∈open(T )−{T}

V (Z) −
[

Z∈aborted(T )−{T}

V (Z) .

We always havecontent(T ) ⊆ V (T ), and equality holds when
T ’s subtree contains no open or aborted transactions.3 For exam-
ple, in Figure 5, memory operationsu1 andu2 do not belong to
content(T1), becauseT2 is an open transaction nested withinT1.
As another example from the figure, we havev2 ∈ content(T4)
if and only if T5 ∈ committed(C). We also define theholdersof
a vertexv ∈ V (C) to be the set

h(v) = {T ∈ xactions(C) : u ∈ content(T )}

of all transactions that containv.

Hidden vertices
Basic transactional semantics dictate that committed transactions
should not “see” values written by vertices belonging to thecontent
of an aborted transaction. One may argue whether one aborted
transaction should be able to see values written by a anotheraborted
transaction. In this paper, we take the position that up to the point
that a transaction aborts, it should be “well behaved” and act as
if it would commit. The well-behavedness of aborted transactions
is implicitly assumed by the various proposals for open nesting
[16, 19, 21]. Thus, one aborted transaction should not see values
written by other aborted transactions, although the valueswritten
by a vertex within an aborted transaction may be seen by other
vertices within the same transaction.

The following definition describes which vertices are hidden
from which other vertices.
DEFINITION 2. For any two verticesu, v ∈ V (C), let X =
LCA(u, v). We say thatu is hidden fromv, denoteduHv, if

u ∈
[

Y ∈aborted(X)−{X}

content(Y ) .

In Figure 5, we havev2Hz2 if and only if at least one ofT1, T4,
or T5 belongs toaborted(C). SinceT2 is an open transaction,
however, we never haveu1Hz2 if T2, T3 ∈ committed(C), even
if T1 ∈ aborted(C). If we haveT1, T4 ∈ committed(C) and
T7 ∈ aborted(C), then we also havey1Hv1, but notv1Hy1, and
thus the hidden relationH is not symmetric.

Observer functions
Instead of specifying the value that a vertexv ∈ memOps(C)
reads from or writes to a memory locationℓ ∈ M, we follow
Frigo’s computation-centric framework [6,7] which abstracts away
the values entirely. Anobserver function4 Φ(v) : memOps(C) →
memOps(C) ∪ {begin(C)} tells us which vertexu ∈ memOps(C)
writes the value ofℓ that v sees. For a given computation treeC,
if v ∈ memOps(C) accesses locationℓ ∈ M, then a well-formed
observer function must satisfy¬(v ≺G(C) Φ(v)) andW (Φ(v), ℓ).
In other words,v can not observe a value from a vertex that comes

3 In this paper, we consider onlyglobal open nesting, meaning that ifT ′

is open-nested inT , then it is open with respect to every transaction in
ances(T ). Alternatively, one might specifyT ′ asopen-nested with respect
to an ancestor transactionT . In this case, the operations ofT ′ are excluded
from all transactionsT ′′ on the path fromT ′ up to and includingT , but
included in transactions that are proper ancestors ofT . Intuitively, if T ′ is
open-nested with respect toT , thenT ′ commits its changes toT ’s context
rather than directly to memory. Global open-nesting is thenthe special case
when all open transactions are open with respect toroot(C).
4 Our definition ofΦ is similar to Frigo’s [6], but with a salient difference,
namely, Frigo’s observer function gives values for all memory locations,
not just for the location that a vertex accesses. Moreover, if W (v, ℓ), Frigo
definesΦ(v) = v, whereas we defineΦ(v) = u for someu 6= v.

after v in the computation dag, andv can only observe a vertex
if it actually writes to locationℓ. To defineΦ on all vertices that
access memory locations, we assume that the vertexbegin(C)
writes initial values to all of memory.

Together, a computation treeC and an observer functionΦ
defined onmemOps(C) specify a trace.

Sequential consistency without transactions
We now turn to using our framework to define Lamport’s clas-
sic model of sequential consistency [14] in our transactional
model. We first mimic Frigo’s definition [6] to define a sequential-
consistency memory model for computations without transactions.
We then extend the definition to include transactions as well.

Definition 1 states that a memory model∆ is a subset ofU ,
the universe of all possible traces. Sometimes, we wish to restrict
our attention to computations with only closed and/or committed
transactions. Thus, we define the following subsets ofU :

U0 = {(C, Φ) ∈ U : xactions(C) = ∅} ,

Uclo = {(C, Φ) ∈ U : open(C) = ∅} ,

Ucom = {(C, Φ) ∈ U : aborted(C) = ∅} ,

Uc&c = Uclo ∩ Ucom .

In other words,U0 contains traces (whose computations) include
no transactions,Uclo contains traces that include only closed trans-
actions,Ucom contains traces that include only committed transac-
tions, andUc&c contains traces that include only committed and
closed transactions.

We now follow Frigo [6] in defining a “last-writer” observer
function.
DEFINITION 3. Consider a trace(C, Φ) ∈ U0 and a topological
sortS ∈ topo(G(C)). For all v ∈ memOps(C) such thatR(v, ℓ)∨
W (v, ℓ), the last writer of v according toS , denotedLS(v), is
the uniqueu ∈ memOps(C) ∪ {begin(C)} that satisfies three
conditions:
1. W (u, ℓ),
2. u <S v, and
3. ¬∃w s.tW (w, ℓ) ∧ (u <S w <S v).

In other words, if vertexv accesses (reads or writes) locationℓ, the
last writer ofv is the last vertexu beforev in the orderS that writes
to locationℓ.

We can use the last-writer function to define sequential consis-
tency for computations containing no transactions.
DEFINITION 4. Sequential consistencyfor computations without
transactions is the memory model

SC = {(C, Φ) ∈ U0 : ∃S ∈ topo(G(C)) s.t.Φ = LS} .

By this definition, a trace(C,Φ) ∈ U0 is sequentially consistent if
there exists a topological sortS of G(C) such that the observer
function Φ satisfiesΦ(v) = LS(v) for all memory operations
v ∈ memOps(C). Definition 4 captures Lamport’s notion [14] of
sequential consistency: there exists a single order on all operations
that explains the execution of program. Figure 6 shows a sample
computation dagG(C) and two possible observer functions,Φ1

andΦ2. The trace(C,Φ1) is sequentially consistent, but(C, Φ2)
is not.

Transactional sequential consistency
We now extend the definition of sequential consistency to account
for transactions. Our definition does not attempt to model atomicity,
however — that is the topic of Section 4. It simply models that
a transaction outside an aborted transaction cannot “see” values
written by the aborted transaction. Moreover, our definition makes
the assumption that an aborted computation is consistent upto the
point that it aborts.



FIGURE 6: Examples of sequential consistency for a compu-
tation C with only committed transactions. Shown is the com-
putation dag G(C). For the observer functionΦ1 given by
〈Φ1(1) = 0,Φ1(2) = 1, Φ1(3) = 0,Φ1(4) = 0, Φ1(5) = 2〉, the
trace (C, Φ1) is sequentially consistent, with the topological sort
S = 〈0, 1, 2, 3, 4, 5〉 of G(C). For the observer functionΦ2 given by
〈Φ2(1) = 0,Φ2(2) = 1, Φ2(3) = 0,Φ2(4) = 0, Φ2(5) = 1〉, however,
the trace (C, Φ2) is not sequentially consistent, because there is no
topological sort consistent with the last-writer function.

We first redefine the last-writer function to take aborted trans-
actions into account. Intuitively, another transaction should not be
able to “see” the values of an aborted transaction.
DEFINITION 5. Consider a trace(C,Φ) ∈ U and a topological
sortS ∈ topo(G(C)). For all v ∈ memOps(C) such thatR(v, ℓ)∨
W (v, ℓ), thetransactional last writerof v according toS , denoted
XS(v), is the uniqueu ∈ memOps(C)∪ {begin(C)} that satisfies
four conditions:
1. W (u, ℓ),
2. u <S v,
3. ¬(uHv), and
4. ∀w (W (w, ℓ) ∧ (u <S w <S v))⇒ wHv.

The first two conditions for the transactional last-writer function
X are the same as for the last-writer functionL. The third and
fourth conditions of Definition 5 parallel the third condition of
Definition 3, except that nowv ignores verticesu or w that write to
ℓ but which are hidden fromv.

Sequential consistency can now be defined for computations
that include transactions. The definition is exactly like Definition 4,
except that the last-writer functionLS is replaced by the transac-
tional last-writer functionXS .
DEFINITION 6. Transactional sequential consistencyis the mem-
ory model

TSC = {(C, Φ) ∈ U : ∃S ∈ topo(G(C)) s.t.Φ = XS} .

4. TRANSACTIONAL MEMORY MODELS
In this section, we use our framework to define three different trans-
actional memory models: serializability, race freedom, and prefix-
race freedom. The intuition behind all three memory models is to
find a single linear orderS on all operations that both “explains” all
memory operations and provides guarantees about every transac-
tion. Serializability requires that all transactions appear as contigu-
ous inS . Race freedom weakens serializability by allowing trans-
actions that do not “conflict” to interleave their memory operations
in S . Finally, prefix-race freedom weakens race freedom by only
prohibiting conflicts with the prefix of a transaction.

Serializability
Serializability [22] is the standard correctness condition for trans-
actional systems.
DEFINITION 7. The serializability transactional memory model,
ST , is the set of all traces(C, Φ) ∈ U for which there exists a
topological sortS ∈ topo(G(C)) that satisfies two conditions:
1. Φ = XS , and

2. ∀T ∈ xactions(C) and∀v ∈ V (C), we havebegin(T ) ≤S

v ≤S end(T ) impliesv ∈ V (T )).

Informally, an execution belongs toST if there exists an ordering
on all operationsS such that the observer functionΦ is the trans-
actional last writerXS , and for every transactionT , the vertices in
V (T ) appear contiguous inS .

Race freedom
Our definition of race freedom is motivated by the observation that
actual TM implementations allow independent transactionsto in-
terleave their executions provided that one transaction does not try
to write to a memory location accessed by the other transaction.
Normally, with only closed-nested transactions and ignoring oper-
ations from aborted transactions, we expect to be able to rearrange
any interleaved execution order allowed by race freedom into an
equivalent serializable order. As we shall see in Section 5,the two
models are indeed equivalent for computations having only closed
and committed transactions. With aborted and open transactions in
the model, however, we shall discover that the models are distinct.

To define race freedom, we first describe what it means to have
a transactional race between a memory operation and a transaction
with respect to a topological sort of the computation dag.
DEFINITION 8. Let C be a computation tree, and suppose that
S ∈ topo(G(C)) is a topological sort ofG(C). A (transactional)
race with respect toS occurs betweenv ∈ V (C) and T ∈
xactions(C), denoted by the predicateRACES(v, T ), if v /∈
V (T ) and there exists aw ∈ content(T ) satisfying the following
conditions:
1. ¬ (vHw),
2. ∃ℓ ∈ M s.t.(R(v, ℓ) ∧ W (w, ℓ)) ∨ (W (v, ℓ) ∧ R(w, ℓ)) ∨

(W (v, ℓ) ∧W (w, ℓ)), and
3. begin(T ) ≤S v ≤S end(T ) .

The notion of a race is easier to understand when all transactions
are committed, in which case no vertices are hidden from each
other. Intuitively, a race occurs between transactionT and a ver-
tex v /∈ V (T ) appearingbetweenbegin(T ) andend(T ) in S if
v “conflicts” with some vertexu ∈ content(T ), where by “con-
flicts,” we mean thatv writes to a location thatu reads or writes, or
vice versa.

We can now define race freedom.
DEFINITION 9. Therace-freetransactional memory modelRFT

is the set of all traces(C, Φ) ∈ U for which there exists a topolog-
ical sortS ∈ topo(G(C)) satisfying two conditions:
1. Φ = XS , and
2. ∀v ∈ V (C) and∀T ∈ xactions(C), ¬RACES(v, T ) .

The first condition of race freedom is the same as for serializability,
that the observer function is the transactional last writer. The sec-
ond condition allows an operationv to appear betweenbegin(T )
andend(T ) in S , but only provided no race betweenv andT exists.

Prefix-race freedom
The notion of a prefix-race is motivated by the operational seman-
tics of TM systems. As two transactionsT andT ′ execute, ifT ′

discovers a memory-access conflict between a vertexv ∈ T ′ and
T , then the conflict must be with a vertex inT that has already exe-
cuted, that is, the prefix ofT that executes beforev. For prefix-race
freedom, no such conflicts may occur.
DEFINITION 10. Let C be a computation tree, and letS ∈
topo(G(C)) be a topological sort ofG(C). A (transactional)
prefix-race with respect toS occurs betweenv ∈ V (C) and
T ∈ xactions(C), denoted by the predicatePRACES(v, T ), if
v /∈ V (T ) and there exists aw ∈ content(T ) satisfying the
following conditions:
1. ¬(vHw)



2. ∃ℓ ∈ M s.t.(R(v, ℓ) ∧ W (w, ℓ)) ∨ (W (v, ℓ) ∧ R(w, ℓ)) ∨
(W (v, ℓ) ∧W (w, ℓ)).

3. begin(T ) ≤S w <S v ≤S end(T ) .

Thus, this definition is identical to Definition 8, except that the
potential conflicting vertexw must occur beforev in S .

The notion of a prefix-race gives rise to an corresponding mem-
ory model in which prefix-races are absent.
DEFINITION 11. Theprefix-race-freetransactional memory mod-
el PRFT is the set of all traces(C,Φ) ∈ U for which there exists
a topological sortS ∈ topo(G(C)) satisfying two conditions:
1. Φ = XS , and
2. ∀v ∈ V (C) and∀T ∈ xactions(C), ¬PRACES(v, T ) .

Thus, prefix-race freedom describes a weaker model than race
freedom, where a vertexv is only guaranteed to not to conflict
with the vertices of transactionT that appear beforev in S . If a
“nontransactional” leaf nodev ∈ memOps(C) runs in parallel with
a transactionT , all of Definitions 7, 9, and 11 check whetherv
interleaves withinT ’s execution. Thus, these models can be thought
of as guaranteeing “strong atomicity” in the parlance of Blundell,
Lewis, and Martin [2]. In Scott’s model [24], RACES(v, T ) and
PRACES(v, T ) can be viewed as particular “conflict functions.”

Relationships among the models
The following theorem shows that the memory models as presented
are progressively weaker.
THEOREM 1. ST ⊆ RFT ⊆ PRFT .

PROOF. Follows directly from Definitions 7, 9, and 11.

For computations with only closed and committed transactions,
prefix-race freedom and serializability are equivalent, aswe shall
see in Section 5. When open and aborted transactions are consid-
ered, all three models are distinct.

5. DISTINCTNESS OF THE MODELS
In this section, we study the memory models of serializability,
prefix-race freedom, and race freedom. Specifically, we showthat
for computations containing only committed and closed transac-
tions, all three models are equivalent. We also demonstratethat
when aborted and/or open transactions are allowed, all three mod-
els are distinct.

Dependency graphs
Before addressing the distinctness of the memory models directly,
we first present an alternative characterization of sequential con-
sistency for the special case of computations with only committed
transactions. The idea of a “dependency” graph is to add edges to
the computation dag to reflect the dependencies imposed by the
observer function.
DEFINITION 12. The set ofdependencyedges of a trace(C, Φ) ∈
Ucom is Ψd(C, Φ) = {(u, v) ∈ V (C)× V (C) : u = Φ(v)}, and
the set ofantidependencyedges isΨa(C,Φ) = {(u, v) ∈ V (C)×
V (C) : (Φ(u) = Φ(v)) ∧ W (v, ℓ)}. Thedependency graphof
(C, Φ) is the graphDG(C, Φ) = (V, E), whereV = V (C) and
E = E(C) ∪Ψd(C, Φ) ∪Ψa(C, Φ).
The setsΨd and Ψa capture the usual notions of dependency
and antidependency edges from the study of compilers [13]. A
dependency edge(u, v) indicates thatv observed the value written
by u. An antidependency edge(u, v) means that if bothu andv
observe the same write to a locationℓ, and if v performs a write,
thenu must “come before”v.

The following lemma, presented without proof, shows that in
the universe of all traces with only committed transactions, a trace

FIGURE 7: Dependency graphsDG(C, Φ1) andDG(C, Φ2) for the traces
from Figure 6. Since(C, Φ1) ∈ SC , the graphDG(C, Φ1) is acyclic,
but since(G,Φ2) /∈ SC , the graphDG(C, Φ2) contains a cycle, namely
〈2, 3, 4, 5, 2〉.

(C, Φ) is sequentially consistent if and only if the dependency
graphDG(C, Φ) is acyclic.5

LEMMA 2. Suppose that(C, Φ) ∈ Ucom. Then, we have(C, Φ) ∈
SC if and only if the dependency graphDG(C, Φ) is acyclic.

Figure 7 shows the dependency graphs for the example traces
from Figure 6. Whereas the trace(C, Φ1) is sequentially consistent,
the trace(C, Φ2) is not. Equivalently by Lemma 2, the dependency
graphDG(C, Φ1) is acyclic, but the graphDG(C, Φ2) is not.

We can now prove the equivalence of serializability, race free-
dom, and prefix-race freedom when we consider only computations
with committed and closed transactions.
THEOREM 3. ST ∩ Uc&c = RFT ∩ Uc&c = PRFT ∩ Uc&c.

PROOF. Since Theorem 1 shows thatST ⊆ RFT ⊆ PRFT , it
suffices to prove thatPRFT ∩ Uc&c ⊆ ST ∩ Uc&c.

We start by defining some terminology. Foru, v ∈ V (C),
define thealternation countof u andv as

A(u, v) = |h(u)|+ |h(v)| − 2 |h(LCA(u, v))| .

(The holders functionh was defined in Section 3.) Thus,A(u, v)
counts the number of transactionsT ∈ xactions(C) that contain
eitheru or v, but not both. For any topological sortS of G(C),
define thealternation countof S , denotedalt(S), as the sum of
all A(u, v) for consecutiveu andv in S . Intuitively, alt(S) counts
the number of times we “switch” between transactions as we run
throughS .

We prove by contradiction that for any trace(C, Φ) ∈ Uc&c,
we have (C, Φ) ∈ PRFT implies (C, Φ) ∈ SC . Suppose
that a trace(C, Φ) ∈ Uc&c exists that is prefix-race free but
not serializable. Consider any prefix-race-free topological sort
S ∈ topo(DG(C, Φ)) that has a minimum alternation count
alt(S) over all sorts intopo(DG(C, Φ)). By Lemma 2,S satisfies
the conditionΦ = XS (the first condition for all three transactional
models).

Since (C, Φ) /∈ ST , some transactionT exists that is not
contiguous inS (and therefore violates the second condition in
Definition 7). LetT be such a transaction, and letv1 be the first
vertex such thatv1 /∈ V (T ) andbegin(T ) <S v <S end(T ).
Choose verticest <S u1 ≤S u2 <S v1 ≤S v2 <S w1 <S w2,

5 One must extend the definition of an antidependency edge to prove
an analogous result when the computationC has aborted transactions.
Lemma 2 does not hold without the assumption that every writeto a lo-
cation also performs a read.



FIGURE 8: Two topological sorts of a computation graphG(C) for a
hypothetical trace(C, Φ) which is prefix-race free, but not serializable.
TransactionT is not contiguous in the topological sortS in (a). One
can convertS into the topological sortS′ in (b). Doing so reduces the
alternation count.

such thatu1 = begin(T ) as shown in Figure 8(a). Define the sets
A1, A2, andA3 as follows:

A1 = {x ∈ V (T ) : u1 ≤S x ≤S u2} ,

A2 = {x ∈ V (C)− V (T ) : v1 ≤S x ≤S v2} , and

A3 = {x ∈ V (T ) : w1 ≤S x ≤S w2} .

Define two setsA1 = {x ∈ V (T ) : u1 ≤S x ≤S u2} and
A3 = {x ∈ V (T ) : w1 ≤S x ≤S w2} whose vertices all belong
to V (T ). DefineA2 = {x ∈ V (C)− V (T ) : v1 ≤S x ≤S v2} as
the set interleaved between the contiguous fragments ofT .

FromS , we construct the new orderS ′ shown in Figure 8(b) in
which the intervalsA1 and A2 are interchanged. We shall show
that (1) S ′ ∈ topo(DG(C, Φ)) (and thereforeΦ = XS′ ), (2)
S ′ is still a prefix-race-free topological sort ofDG(C, Φ), and (3)
alt(S ′) < alt(S), thereby obtaining the contradiction thatS is not
a prefix-race-free topological sort with minimum alternation count.

To prove these three facts, we shall use a “nonconflicting”
property: no pair of verticesy ∈ A1 andz ∈ A2 exist such that
y and z access the same memory location and one of them is a
write. Otherwise we have PRACES(z, T ) by definition becausey ∈
content(T ), z 6∈ V (T ), andbegin(T ) <S y <S z <S end(T ).
Thus,A1 andA2 do not perform “conflicting” accesses to memory.

To establish (1), thatS ′ ∈ topo(DG(C, Φ)), we show that
for any y ∈ A1 and z ∈ A2, no edge(y, z) belongs to the
graphDG(C, Φ). If we have (y, z) ∈ Ψd(C, Φ) ∪ Ψa(C, Φ),
theny andz access the same memory location and one of those
accesses is a write, contradicting the nonconflicting property above.
Alternatively, if we have(y, z) ∈ E(C), thenLCA(y, z) must be an
S-node withy to the left ofz. Sincez /∈ V (T ), we haveLCA(T, z)
(= LCA(y, z)) is anS-node, and thus we haveend(T ) ≺ z. Thus,
S was not a valid sort ofDG(C,Φ), and(y, z) /∈ E(C).

To establish (2), thatS ′ is prefix-race free, we show that swap-
ping A1 andA2 cannot introduce any prefix races that weren’t al-
ready there inS . Suppose that there is a prefix-race inS ′. Then,
there must exist av ∈ V (C) and a transactionT1 ∈ xactions(C)
satisfying all three conditions of Definition 10 forS ′. Let w ∈
content(T1) be the candidate vertex that satisfies the three con-
ditions. In particular, the third condition gives usbegin(T1) <S′

w <S′ v <S′ end(T1). We consider two cases, each of which
leads to a contradiction.

In the first case, suppose thatv <S w. Sincev and w swap
in the two orders, we must havev ∈ A1 andw ∈ A2. But, then
they conflict by the second condition of Definition 10, which cannot
occur because of the nonconflicting property above.

In the second case, suppose thatw <S v. Since there is no
prefix-race inS , the only situation in which this can happen is
whenv falls entirely outside transactionT1 in S , which is to say

that begin(T1) <S w <S end(T1) <S v. Sinceend(T1) and
v swapped, we must haveend(T1) ∈ A1 and v ∈ A2. Since
A1 ⊆ content(T ), it follows thatend(T1) ∈ content(T ), and
thusT1 must be nested withinT . Consequently, we havew ∈ A1,
which cannot occur because of the nonconflicting property.

To establish (3), thatalt(S ′) < alt(S), let us examine the
differenceδ = alt(S) − alt(S ′) in the alternation counts ofS
andS ′. The only terms that contribute toδ are at the boundaries of
A1 andA2. We have that

δ = A(t, u1) + A(u2, v1) + A(v2, w1)

−A(t, v1)− A(v2, u1)− A(u2, w1)

= 2 (|h(LCA(t, v1))|+ |h(LCA(v2, u1))|

+|h(LCA(u2, w1))| − |h(LCA(t, u1))|

−|h(LCA(u2, v1))| − |h(LCA(v2, w1))|) .

By construction, we know that{u1, u2, w1, w2} ⊆ V (T ),
whereas none oft, v1, and v2 have T as an ancestor. For any
y ∈ V (T ) andz /∈ V (T ), we haveLCA(y, z) = LCA(T, z), which
yields

δ = 2 (|h(LCA(t, v1))|+ |h(LCA(u2, w1))|

− |h(LCA(t, T ))| − |h(LCA(T, v1))|) .

SinceLCA(u2, w1) ∈ desc(T ), we knowh(LCA(u2, w1)) ⊇
h(T ) and |h(LCA(u2, w1))| ≥ |h(T )|. Sincet, v1 /∈ V (T ), we
haveh(LCA(T, t)) ⊂ h(T ) andh(LCA(T, v1)) ⊂ h(T ).6 Thus,

|h(LCA(u2, w1))| > max {|h(LCA(T, t))|, |h(LCA(T, v1))|} ,

and a similar algebra yields

|h(LCA(t, v1))| ≥ min {|h(LCA(T, t))|, |h(LCA(T, v1))|} .

Consequently, we conclude thatδ = alt(S)− alt(S ′) > 0.

Aborted transactions
We now consider computations with aborted transactions. Weare
unaware of any prior work on transactional semantics that explic-
itly models aborted transactions. The reason is simple: when com-
putations have only closed transactions, aborted transactions do not
affect a program’s output. Since TM systems do not allow commit-
ted transactions to observe data directly from aborted transactions,
in most cases, vertices from aborted transactions are free to observe
arbitrary values.7

In a system with open nesting, however, we must include
aborted transactions in the memory model if we wish to under-
stand what happens when an open transaction commits but its par-
ent aborts. We contend that a reasonable transactional consistency
model for open transactions must not only model aborted transac-
tions, but it should also guarantee that an aborted transaction T is
consistent up to the point it aborts. Otherwise, any open subtrans-
actions withinT may obtain inconsistent values and still commit.

The next theorem shows that when aborted transactions are
modeled, the three transactional memory models are distinct.
THEOREM 4. ST ∩ Uclo ( RFT ∩ Uclo ( PRFT ∩ Uclo .

PROOF. Since Theorem 1 shows thatST ⊆ RFT ⊆ PRFT ,
we need only show thatST ∩ Uclo 6= RFT ∩ Uclo and that
RFT ∩ Uclo 6= PRFT ∩ Uclo.

We first exhibit a computation that is race free but not se-
rializable. Consider the computation dagG shown in Figure 9.
Let (C1, Φ1) be the trace that generatesG, where transactions

6 In this case, we have a proper subset becauseLCA(T, t), LCA(T, v1) ∈
pAnces(T ) and we excludeT .
7 This intuition is not strictly true in a model that does not analyze an
executiona posteriori, since control flow can be affected by inconsistent
data and prevent a program from terminating.



FIGURE 9: An example distinguishing the memory models. The transac-
tionsT2 andT3 are closed-nested inside ofT1. If transactionT4 commits,
then this computation is not serializable, becauseT4 must interleave inside
of T1. If both transactionsT2 andT3 abort, then the execution is race free.
If T2 aborts andT3 commits, then this execution is not race free, but it is
prefix-race free.

T2 andT3 abort but transactionT4 commits. We shall show that
(C1, Φ1) ∈ RFT , but(C1, Φ1) /∈ ST .

If transactionT4 commits, then for any topological sortS sat-
isfying XS = Φ, we must have0 <S 3 <S 6 <S 9. Thus,T1

cannot be contiguous withinS , implying that(C1, Φ1) /∈ ST .
We can show that(C1, Φ1) is race free, however. LetS be

〈0, 1, . . . , 12〉. One can verify thatΦ1 is indeed the transactional
last-writer function according toS (sinceT4 commits,¬(6H9),
and thusΦ1(9) = XS(9)). The only transactions that might violate
the second condition of Definition 9 are transactions that donot
appear contiguous inS , in this case, onlyT1. The only candidate
vertexv for RACES(v, T1) is v = 6. SinceT2 is an aborted sub-
transaction ofT1, however, neither3 or 9 belong tocontent(T1).
Thus, pickingS = 〈0, 1, . . . , 12〉 ensures thatT1 causes no races.

We next exhibit a computation that is prefix-race free but not
race free. Consider(C2, Φ2) as the trace generating the same com-
putation dagG from Figure 9, but this time withT2 aborted andT3

andT4 committed. We shall show that(C2, Φ2) /∈ RFT , but that
(C2, Φ2) ∈ PRFT .

To show that(C2, Φ2) is not race free, observe that in any
topological sortS ∈ topo(G) for which Φ = XS , we must have
RACES(6, T1), sincebegin(T1) <S 6 <S end(T1), vertices6
and9 access the same memory locationx, and vertex6 is a write,
and¬(6H9). The orderS = 〈0, 1, . . . , 12〉 is prefix-race free,
however, since9 ≮S 6. The only transactions that might violate
the second condition of prefix-race freedom are those that donot
appear contiguous inS , in this case, onlyT1. When we look at
the vertexv = 6 that falls betweenbegin(T1) andend(T1), we
only look at the prefix ofT1 beforev (vertices1 through4) for a
prefix-race conflict, and there is none.

The proof holds whetherT1 commits or aborts.

Open transactions
We now study computations with open transactions but where all
transactions commit. In this context, the three modelsST , RFT ,
andPRFT are distinct.
THEOREM 5. ST ∩ Ucom ( RFT ∩ Ucom ( PRFT ∩ Ucom .

PROOF. Since Theorem 1 shows thatST ⊆ RFT ⊆ PRFT ,
we need only show thatST ∩ Ucom 6= RFT ∩ Ucom and that
RFT ∩ Ucom 6= PRFT ∩ Ucom. The trace in Figure 10 shows
a (C1, Φ1) /∈ ST , but (C1, Φ1) ∈ RFT . Figure 11 shows
(C2, Φ2) /∈ RFT , but(C2, Φ2) ∈ PRFT .

Trade-offs among the models
The three transactional memory models of serializability,race free-
dom, and prefix-race freedom exhibit different behaviors inTM
systems that have open transactions.

With serializability, for any trace(C, Φ) ∈ ST , we can
“change” the trace to convert any open transactionT ′ nested in-

FIGURE 10: When all transactions commit, this computation dagG(C1)
with observer edgesΦ1 is not serializable, but is race free. This trace
represents Schedule 3 from the program in Figure 2.

FIGURE 11: When all transactions commit, this computation dagG(C2)
with observer edgesΦ2 is prefix-race free, but not race free, because a race
exists between vertices13 and15.

side a committed transactionT from open to closed while still
keeping the sameΦ, and still be serializable. Thus, in some sense,
with serializability, open nesting only differs from closed nesting if
an open transaction commits, but its parent aborts.

Race-freedom appears to be more difficult to implement than
either serializability or prefix race-freedom. For example, consider
the example from Figures 3 and 11. After an transactionI1 (open-
nested inA) commits, any number of other transactions (B and
C) can read values written by that open transaction and commit
their changes, all before the original outer transactionA completes.
To support race freedom, it seems we may need to maintain the
footprints ofB andC even after they have committed to detect a
future conflict withA.

6. THE ON OPERATIONAL MODEL
This section presents an abstract operational model for open nest-
ing, called theON model, which is a generalization of the Stanford
model [16]. We prove that theON model implements at least prefix
race-freedom but is strictly weaker than race freedom.

We begin our description of theON model by defining some
notation. For any setS ⊆ nodes(C) of tree nodes, letlowest(S)
be the nodeX ∈ S such thatS ⊆ ances(X), if such aX exists.
Otherwise, definelowest(S) = null. Thus, if all nodes inS all
fall on one root-to-leaf path inC, thenlowest(S) is the lowest
node on that path. Definehighest(S) in a similar fashion. For any
T ∈ xactions(C), definexparent(T ) = lowest(ances(T ) ∩
xactions(C)), that is, xparent(T ) is the transactional parent
of T . For anyX ∈ nodes(C), let xAnces(X) = ances(X) ∩
xactions(C) be the set of transactional ancestors ofX.

Abstractly, we shall view theON model for open nesting as
a nondeterministic state machineON that constructs a sequence
of traces. The initial trace contains a computation tree consisting



of a singleS-noderoot(C) ∈ spNodes(C) with associated sets
xactions(C) = {root(C)} andopen(C) = committed(C) =
aborted(C) = ∅ and an empty observer functionΦ. By assuming
thatroot(C) ∈ xactions(C), we simplify the description of the
model by treating the entire computationC as a global closed trans-
action in which other transactions are nested. The computation also
maintains an initially empty auxiliary setdone(C) ⊆ nodes(C)
of nodes that have finished their execution. The computationtree
C and all these associated sets only grow during the execution.

At any time during the computation, a subsetready(C) of
S-nodes are designated asready, meaning that they can issue a
program instruction, which includeread, write, fork, join,
xbegin, xbegin open, and xend. The ON machine nondeter-
ministically chooses a readyS-node to issue an instruction, and
the machine processes the instruction which augments(C, Φ) by
adding nodes to the tree and to its associated sets. Unlike other
associated setsready(C) may grow and shrink during execution.

We shall factor the description of the state machineON by
describing the creation of the computation treeC and the observer
functionΦ separately.

Creating the computation tree
How the computation treeC evolves depends on the instructions
that are issued nondeterministically. LetX be theS-node that
issues an instruction. The instructions are handled as follows:
• read from a locationℓ ∈ M: If the read causes a conflict

(more about conflicts when we describe the creation of the
observer function) with one or more transactions, abort8 the
deepest such transactionT by adding all transactionsT ′ ∈
desc(T )∩xactions(T )−done(C) both toaborted(C) and
to done(C). Keep checking for and aborting conflicting trans-
actionsT , deepest to shallowest, until no such conflicting trans-
actions exist. Then, create a newread nodev ∈ memOps(C) as
the last child of theS-nodeX. Add v to done(C).

• write to a locationℓ ∈ M: Similar toread.
• fork: Create a newP -nodeY ∈ nodes(C) as a child ofX,

and create two newS-nodes as children ofY . Add these two
children toready(C), and removeX from ready(C).

• join: Test whetherX ’s sibling belongs todone(C). If yes,
then addX and thenparent(X) todone(C). RemoveX from
ready(C), and addparent(parent(X)) (the grandparent of
X which is anS-node) toready(C). If no, then removeX
from ready(C), and addX to done(C).

• xbegin: Create a newS-nodeY ∈ nodes(C) as the last child
of X. Add Y to xactions(C). RemoveX from ready(C),
and addY to ready(C).

• xbegin open: Similar toxbegin, but also addY to open(C).
• xend: Test whetherX ∈ xactions(C). If yes, removeX

from ready(C), and addparent(X) to ready(C). Add X
to done(C) and tocommitted(C). If no, error.

TheON machine maintains several invariants. All transactions are
S-nodes. EveryP -node has anS-node as its parent and has exactly
twoS-nodes as children. If anS-node is ready, none of its ancestors
are ready.

Creating the observer function
To create the observer function, theON model maintains aux-
iliary state to keep track of how values are propagated among
transactions and global memory. Specifically, every transaction

8 The ON machine uses a “pessimistic” concurrency control mechanism
in that it immediately aborts a conflicting transactionT upon conflict.
Moreover, it always abortsT rather than its own transaction. One could
abort the transaction performing theread, but the model is simpler by
always abortingT and not providing a nondeterministic choice.

T ∈ xactions(C) maintains areadsetR(T ) and a writeset
W(T ). The readsetR(T ) is a set of pairs(ℓ, v), whereℓ ∈ M
is a memory location andv ∈ memOps(C) is the memory oper-
ation that read fromℓ, that is, we maintain the invariantR(v, ℓ)
for all (ℓ, v) ∈

S

T∈xactions(C) R(T ). The writesetW(T ) is sim-
ilarly defined. We initializeR(root(C)) = W(root(C)) =
{(ℓ, begin(root(C))) : ℓ ∈M}.

The ON model maintains two invariants concerning readsets
and writesets. First, it maintainsW(T ) ⊆ R(T ) for every transaction
T ∈ xactions(C), that is, a write to a location also counts as a
read to that location. Second,R(T ) andW(T ) each contain at most
one pair(ℓ, v) for any locationℓ. Because of this second invariant,
we employ the shorthandℓ ∈ R(T ) to mean that there exists a node
u such that(ℓ, u) ∈ R(T ), and similarly forW(T ). We also overload
the union operator to accommodate this assumption: if we write
R(T ) ← R(T ) ∪ {(ℓ, u)}, then if there exists(ℓ, u′) ∈ R(T ), we
mean to replace it with(ℓ, u). Likewise, ifu accesses a locationℓ,
we employ the shorthandu ∈ R(T ) to mean that(ℓ, u) ∈ R(T ),
and similarly forW(T ).

The state machineON handles events as follows, whereX is
theS-node that issues the instruction:
• read from locationℓ ∈M: If there exists aT ∈ xactions(C)
− done(C) − ances(X) such thatℓ ∈ W(T ), then a conflict
occurs. Letv be the read operation added as the last child ofX.
Define Sℓ = {T ∈ xactions(C) ∩ ances(v) : ℓ ∈ R(T )},
let T ′ = lowest(Sℓ), and let(ℓ, u) ∈ R(T ′). Add (ℓ, u) to
R(T ), and setΦ(v) = u.

• write to a locationℓ ∈ M: Similar toread, but to check for
a conflict, test whether there exists aT ∈ xactions(C) −
done(C) − ances(X) such thatℓ ∈ R(T ). Find u in the
same way, and add(ℓ, u) both toR(T ) and toW(T ), and set
Φ(v) = u.

• xbegin andxbegin open: Initialize R(Y ) = ∅ andW(Y ) = ∅.
• xend: If X ∈ closed(C), then addR(X) to R(xparent(X))

and addW(X) to W(xparent(X)). If X ∈ open(C), then
let Q = xAnces(T ). For any (ℓ, u) ∈ W(T ), let αℓ =
{T ′ ∈ Q | ℓ ∈ R(T ′)}. For all suchT ′ ∈ αℓ, R(T ′) ←
R(T ′) ∪ {(ℓ, u)}. Similarly, let βℓ = {T ′ ∈ Q | ℓ ∈ W(T ′)}.
For allT ′ ∈ βℓ, W(T ′)← W(T ′) ∪ {(ℓ, u)}.

• fork or join: No action.
The Stanford model [16] is similar to theON model, except that

it only supports “linear” nesting (transactions can have noparallel
transactions within them) and the choice of which transaction to
abort is nondeterministic. Neither of these differences affects the
theorems that deal with theON model, assuming they implement
their system with pessimistic concurrency control.

Prefix race-freedom ofON

We now prove that theON model is prefix-race free with respect
to the natural topological sortS of G(C) created by the nonde-
terministic operation of theON machine. Specifically, as theON

model generates a trace(C, Φ), it creates tree nodesnodes(C) =
spNodes(C) ∪ memOps(C) and eventually marks these nodes as
“done” by placing them indone(C). We can view this process
as determining the topological sortS of G(C) as follows. When
a nodeX ∈ nodes is created, the vertexbegin(X) ∈ V (C)
is appended toS . When a node is marked as done, the vertex
end(X) ∈ V (C) is appended toS . If the nodeX is a memory
operation, we havebegin(X) = end(X) = X, and we view it as
being appended only once. It is straightforward to verify thatS is
indeed a topological sort ofG(C), and indeed ofDG(C,Φ).

We begin with a definition of time in theON model. If v ∈
V (C) is the tth element ofS , we say thatv occurs attime t,
and we writet = S(v). Thus, for allu, v ∈ V (C), we have



u ≤S v if and only if S(u) ≤ S(v). We can view the evolution
of (C, Φ) over time as a sequence(C(t), Φ(t)) for t = 0, 1, . . .,
where the operation that occurs at timet creates(C(t), Φ(t)) from
(C(t−1), Φ(t−1)). For convenience, however, we shall omit time
indices unless clarity demands it.

We define two time-sensitive sets. The set ofactivetransactions
at any given time isactive(C) = xactions(C) − done(C).
The spine of a memory locationℓ ∈ M at any given time is
spine(ℓ) = {T ∈ active(C) : ℓ ∈ W(T )}.

We now state a structural lemma that describes invariants ofthe
computation treeC as it evolves.
LEMMA 6. TheON machine maintains the following invariants:
1. If T ∈ active(C), then we havexAnces(T ) ⊆ active(C).
2. If v ∈ W(T ), thenv ∈ V (T ).
3. All transactions inspine(ℓ) are on the same root to leaf path

in C, and hence the nodelowest(spine(ℓ)) exists.
4. If ℓ ∈ R(T ), whereT ∈ active(C), then we have either

spine(ℓ) ⊆ ances(T ) or T ∈ ances(lowest(spine(ℓ))).
5. If (ℓ, u) ∈ R(T ) for someT ∈ active(C), then (ℓ, u) ∈

W(T ′), whereT ′ = lowest(xAnces(T ) ∩ spine(ℓ)).
6. Let (ℓ, u) ∈ W(T1) and (ℓ, v) ∈ W(T2), where T1, T2 ∈

spine(ℓ). If T1 ∈ ances(T2), thenu ≤S v.
7. Let(ℓ, u) ∈ W(T ) and letu <S v such thatW (v, ℓ). Then, we

havev ∈ desc(T ).
PROOF. Induction on time.

The next three lemmas describe additional structure of the com-
putation tree.
LEMMA 7. For all T ∈ aborted(C) and T ′ ∈ active(C), if
v ∈ content(T ), then we havev /∈ W(T ′).

LEMMA 8. If v ∈ memOps(C) accessesℓ ∈ M, then at timeS(v),
we havespine(ℓ) ⊆ ances(v).

LEMMA 9. For all v ∈ V (C), T ∈ aborted(C), and w ∈
content(T ), if end(T ) <S v, then we havewHv.

The next lemma shows that a memory location written within
a transaction remains in the writeset of some active descendant of
the transaction.
LEMMA 10. Let w ∈ memOps(C) ∩ content(T ) be a memory
operation in a transactionT ∈ xactions(C), and suppose that
W (w, ℓ) for some locationℓ ∈ M. Then, at all timest in the
range S(w) < t < S(end(T )), we haveℓ ∈ W(T ′) for some
T ′ ∈ desc(T ) ∩ active(T ).
PROOF. We proceed by induction on time. For the base case, at
timeS(w), locationℓ is added toW(xparent(w)), andxparent(w)
∈ desc(T )∩ active(T ). For the inductive step, letℓ ∈ W(T ′) for
someT ′ ∈ desc(T ) ∩ active(T ). Once a location is added to a
transaction’s writeset, it is never removed until the transaction com-
mits or aborts. IfT ′ = T , then we are done. Otherwise, we have
T ′ ∈ pDesc(T ) and by definition ofcontent(T ), it follows that
T ′ /∈ open(C)∪ aborted(C). Therefore, at timeS(end(T ′)), lo-
cationℓ is added toW(xparent(T ′)), at which timexparent(T ′)
is an active descendant ofT .

We can now prove that theON model admits no prefix-races.
LEMMA 11. For all v ∈ memOps(C) andT ∈ xactions(C), we
have¬PRACES(v, T ).
PROOF. Suppose for contradiction that PRACES(v, T ). Then, by
Definition 10, we havev /∈ V (T ) (or equivalently,T /∈ ances(v)),
and there exists aw ∈ content(T ) such that¬(vHw) and
begin(T ) <S w <S v <S end(T ), wherev andw access the
same locationℓ ∈ memOps(C) and one of those accesses is a write.

Consider the case whenW (u, ℓ). By Lemma 10, at timeS(v)
we haveℓ ∈ W(T ′), whereT ′ ∈ desc(T ). At timeS(v), vertexv is

added toR(xparent(v)), andxparent(v) /∈ desc(T ′), because
otherwisev ∈ desc(T ′) ⊆ desc(T ). Therefore, at timeS(v), we
haveℓ ∈ R(xparent(v)) andℓ ∈ W(T ′), which violates Invariant 4
in Lemma 6.

The case whenR(u, ℓ) is analogous.

The next series of lemmas show that the observer function
created by theON machine is the transactional last-writer function
according toS .

LEMMA 12. For all T ∈ xactions(C), T ′ ∈ active(C), and
u ∈ content(T ), if T /∈ committed(C) at timet andu ∈ W(T ′)
at timet, thenT ′ ∈ desc(T ).

PROOF SKETCH. One can prove by induction that at any timet
such thatS(u) ≤ t < S(end(T )), we haveh(u) ⊆ xAnces(u) −
pAnces(T ) andh(u) ∩ (open(T )− {T}) = ∅.

LEMMA 13. For any v ∈ memOps(C), if Φ(v) = u, then
¬(uHv).

PROOF. Assume for contradiction thatuHv holds. Then, there
exists T ∈ pDesc(LCA(u, v)) ∩ aborted(C) such thatu ∈
content(T ). If the ON machine setsΦ(v) = u, thenu ∈ R(T ′)
for someT ′ ∈ xAnces(v). By Invariant 5 in Lemma 6, it fol-
lows thatu ∈ W(T ′′), whereT ′′ ∈ ances(T ′), and henceT ∈
ances(T ′′) by Lemma 12. Therefore, we haveT ∈ ances(v), and
LCA(u, v) = T ∈ pDesc(T ). Contradiction.

We say that a vertexv ∈ memOps(C) isalive, denotedalive(v),
if h(v) ∩ aborted(C) = ∅.
LEMMA 14. Let w ∈ V (C) be the last vertex inS such that
W (w, ℓ) andalive(w). Then, there exists(T ) ∈ spine(ℓ) such
that (ℓ, w) ∈ W(T ′).
PROOF SKETCH. At time S(w), by Invariant 3 of Lemma 6, we
have (ℓ,w) ∈ W(xparent(w)) and xparent(w) ∈ spine(ℓ).
Assume for contradiction thatw is not on the spine. Sincew is
alive,w can only be removed fromspine(ℓ) by being overwritten
by somey such thatW (y, ℓ) holds, andw <S y (from Invariant 6
from Lemma 6). Sincew is the last writer toℓ which is alive, we
have¬alive(y). One can show that¬alive(w) in this case.

LEMMA 15. For u, v ∈ memOps(C) that both access a memory
locationℓ ∈ M, if Φ(v) = u, then for anyw ∈ memOps(C) such
thatu ≺S w ≺S v andW (w, ℓ), we havewHv.

PROOF. Assume for the purpose of contradiction that there exists
aw ∈ memOps(C) such thatu ≺S w ≺S v, W (w, ℓ), and¬wHv.
Consider the last suchw.

If w ∈ content(T ) for someT ∈ aborted(C(S(v))), then by
Lemma 9 we havewHv.

If w is not in the contents of any aborted transaction at time
S(v), then by Lemma 14, we havew ∈ W(T ) for some trans-
action T ∈ spine(ℓ) and T ∈ ances(v) by Lemma 8. Let
TR = lowest({T ∈ xAnces(v) : ℓ ∈ R(T )}), and let TW =
lowest({T ∈ xAnces(v) : ℓ ∈ W(T )}). If Φ(v) = u, then we
haveu ∈ R(TR), since theON machine always reads from the
lowest ancestor that hasℓ in its readset. By Invariant 5, we have
u ∈ W(TW ), but sinceu <S w, we haveTW ∈ pAnces(T ) by
Invariant 6 in Lemma 6. Therefore,T is a lower ancestor ofv than
TW , contradicting the fact thatTW is the lowest ancestor ofv with
ℓ in its writeset.

We now can prove that the observer function for theON model
is the transactional last-writer function.
LEMMA 16. If theON model generates an execution(C, Φ), then
Φ = XS .
PROOF. Let Φ(v, ℓ) = u. To be the transactional last writer
XS , the observer functionΦ must satisfy four conditions. The first



two, W (u, ℓ) andu ≺S v, hold by theON machine’s operation.
Lemmas 13 and 15 provide the last two conditions.

THEOREM 17. TheON model implements prefix race-free free-
dom.

PROOF. Combine Lemmas 11 and 16.

7. CONCLUSION
Open nesting provides a loophole in the strict serializability re-
quirement for transactional programs, but at what cost to program
understandability? When we began our study, we believed that open
nesting could be modularized so that users of a subroutine would
not need to know whether the subroutine uses open nesting. Unfor-
tunately, as we saw in Section 2, Figure 4, implementing opennest-
ing using prefix-race freedom can lead to unexpected programbe-
havior if the programmer is unaware of the existence of open trans-
actions in subroutines. Race-freedom admits similar anomalous be-
havior. At least at the level of memory semantics, it seems unlikely
that such anomalous behaviors can be completely and safely hid-
den.

Our study leaves open the possibility, however, that open nest-
ing can be modularized at the level of program semantics. Specifi-
cally, one may be able to devise a program semantics for open nest-
ing, as discussed in [20], and formally relate it to a memory model
in such a way that anomalies in the memory model do not propa-
gate to the program model. For example, the anomalous memory
semantics for open nesting provided by prefix-race freedom might
be able to be hidden from programmers at a higher level without
sacrificing the advantages of open nesting. Such a program seman-
tics for open nesting would allow a user to be oblivious to open
transactions in libraries. Unfortunately, our research has made us
doubtful that program semantics can offer an elegant answerto the
modularity question for open nesting.

Perhaps we should seek loopholes for TM other than open nest-
ing. For example, Herlihyet al.[11] have proposed an early-release
mechanism for dropping locations from a transaction’s readset or
writeset. Zilles and Baugh [27] have suggested a mechanism for
pausing and resuming a transaction to allow the execution ofnon-
transactional code. Harris [10] has proposed an external-action ab-
straction for performing I/O. We have not studied these models
enough to say whether like open nesting, they provide anomalous
or difficult semantics.

If ever a safe loophole can be punched in the steel armor of clas-
sical transaction memory, however, we believe that a precise un-
derstanding of the system’s memory semantics will be necessary.
We hope that our work will offer insight into how transactional-
memory loopholes, such as open nesting, might be safely intro-
duced.
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