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Abstract Soft, disordered, micro-structured materials are
ubiquitous in nature and industry, and are different from
ordinary fluids or solids, with unusual, interesting static and
flow properties. The transition from fluid to solid—at the so-
called jamming density—features a multitude of complex
mechanisms, but there is no unified theoretical framework
that explains them all. In this study, a simple yet quanti-
tative and predictive model is presented, which allows for
a changing jamming density, encompassing the memory of
the deformation history and explaining a multitude of phe-
nomena at and around jamming. The jamming density, now
introduced as a new state-variable, changes due to the defor-
mation history and relates the system’s macroscopic response
to its micro-structure. The packing efficiency can increase
logarithmically slow under gentle repeated (isotropic) com-
pression, leading to an increase of the jamming density. In
contrast, shear deformations cause anisotropy, changing the
packing efficiency exponentially fast with either dilatancy
or compactancy as result. The memory of the system near
jamming can be explained by a micro-statistical model that
involves a multiscale, fractal energy landscape and links
the microscopic particle picture to the macroscopic con-
tinuum description, providing a unified explanation for the
qualitatively different flow-behavior for different deforma-
tion modes. To complement our work, a recipe to extract
the history-dependent jamming density from experimentally
accessible data is proposed, and alternative state-variables
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are compared. The proposed simple macroscopic constitu-
tive model is calibrated from particles simulation data, with
the variable jamming density—resembling the memory of
microstructure—as essential novel ingredient. This approach
can help understanding predicting and mitigating failure of
structures or geophysical hazards, and will bring forward
industrial process design and optimization, and help solving
scientific challenges in fundamental research.
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1 Introduction

Granular materials are a special case of soft-matter with
micro-structure, as also foams, colloidal systems, glasses,
or emulsions [1–3]. Particles can flow through a hopper
or an hour-glass when shaken, but jam (solidify) when
the shaking stops [4]. These materials jam above a “cer-
tain” volume fraction, or jamming density, referred to as
the “jamming point” or “jamming density” [3,5–23], and
become mechanically stable with finite bulk- and shear-
moduli [8,9,12,15,24–27]. Notably, in the jammed state,
these systems can “flow” by reorganizations of their micro-
structure [28,29]. Around the jamming transition, these sys-
tems display considerable inhomogeneity, such as reflected
by over-population of weak/soft/slow mechanical oscillation
modes [11], force-networks [10,30,31], diverging corre-
lation lengths and relaxation time-scales [9,13,22,32–35],
and some universal scaling behaviors [36,37]. Related to
jamming, but at all densities, other phenomena occur, like
shear-strain localization [12,16,38–40], anisotropic evolu-
tion of structure and stress [7,9,11,13,30,31,38–46], and
force chain inhomogeneity [7,19,28]. To gain a better under-
standing of the jamming transition concept, one needs to
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consider both the structure (positions and contacts) and con-
tact forces. Both of them illustrate and reflect the transition,
e.g., with a strong force chain network percolating the full
system and thus making unstable packings permanent, stable
and rigid [7,19,47–49].

For many years, scientists and researchers have consid-
ered the jamming transition in granular materials to occur
at a particular volume fraction, φJ [50]. In contrast, over
the last decade, numerous experiments and computer sim-
ulations have suggested the existence of a broad range of
φJ , even for a given material. It was shown that the critical
density for the jamming transition depends on the preparation
protocol [12,18,22,23,36,51–58], and that this state-variable
can be used to describe and scale macroscopic properties
of the system [26]. For example, rheological studies have
shown that φJ decreases with increasing compression rate
[8,57,59,60] (or with increasing growth rate of the par-
ticles), with the critical scaling by the distance from the
jamming point (φ − φJ ) being universal and independent
of φJ [20,36,51,61,62] Recently, the notion of an a-thermal
isotropic jamming “point” was challenged due to its proto-
col dependence, suggesting the extension of the jamming
point, to become a J-segment [42,60,63,64]. Furthermore, it
was shown experimentally, that for a tapped, unjammed fric-
tional 2D systems, shear can jam the system (known as “shear
jamming”), with force chain networks percolating through-
out the system, making the assemblies jammed, rigid and
stable [7,29,47,48,65,66], all highlighting a memory that
makes the structure dependent on history H . But to the best
of our knowledge, quantitative characterization of the vary-
ing/moving/changing transition points, based on H , remains
a major open challenge.

1.1 Application examples

In the fields of material science, civil engineering and geo-
physics, the materials behave highly hysteretic, non-linear
and involve irreversibility (plasticity), possibly already at
very small deformations, due to particle rearrangements,
more visible near the jamming transition [67–70]. Many
industrial and geotechnical applications that are crucial for
our society involve structures that are designed to be far from
failure (e.g. shallow foundations or underlying infrastruc-
ture), since the understanding when failure and flow happens
is not sufficient, but is essential for the realistic predic-
tion of ground movements [71]. Finite-element analyses of,
for example tunnels, depend on the model adopted for the
pre-failure soil behavior; when surface settlement is consid-
ered, the models predicting non-linear elasticity and history
dependence become of utmost importance [72]. Design and
licensing of infrastructure such as nuclear plants and long
span bridges are dependent on a robust knowledge of elastic
properties in order to predict their response to seismic ground

motion such as the risk of liquefaction and the effect of the
presence of anisotropic strata. (Sediments are one example
of anisotropic granular materials of particles of organic or
inorganic origin that accumulate in a loose, unconsolidated
form before they are compacted and solidified. Knowing their
mechanical behavior is important in industrial, geotechnical
and geophysical applications. For instance, the elastic proper-
ties of high-porosity ocean-bottom sediments have a massive
impact on unconventional resource exploration and exploita-
tion by ocean drilling programs.)

When looking at natural flows, a complete description of
the granular rheology should include an elastic regime [73],
and the onset of failure (flow or unjamming) deserves partic-
ular attention in this context. The material parameters have
a profound influence on the computed deformations prior
to failure [74,75], as the information on the material state
is usually embedded in the parameters. Likewise, also for
the onset of flow, the state of the material is characterized
by the value of the macroscopic friction angle, as obtained,
e.g., from shear box experiments or tri-axial tests. Since any
predictive model must describe the pre-failure deformation
[76] as well as the onset of flow (unjamming) of the mate-
rial, many studies have been devoted to the characteristics
of geomaterials (e.g., tangent moduli, secant moduli, peak
strength) and to the post-failure regime [77] or the steady
(critical) state flow rheology, see Refs. [40,78] and refer-
ences therein.

1.2 Approach of this study

Here, we consider frictionless sphere assemblies in a peri-
odic system, which can help to elegantly probe the behavior
of disordered bulk granular matter, allowing to focus on the
structure [3], without being disturbed by other non-linearities
[7,29,79] (as e.g. friction, cohesion, walls, environmental
fluids or non-linear interaction laws). For frictionless assem-
blies, it is often assumed that the influence of memory is of
little importance, maybe even negligible. If one really looks
close enough, however, its relevance becomes evident. We
quantitatively explore its structural origin in systems where
the re-arrangements of the micro-structure (contact network)
are the only possible mechanisms leading to the range of jam-
ming densities (points), i.e. a variable state-variable jamming
density.

In this study, we probe the jamming transition concept
by two pure deformation modes: isotropic compression or
“tapping” and deviatoric pure shear (volume conserving),
which allow us to combine the J-segment concept with a
history dependent jamming density.1 Assuming that all other

1 Tapping or compression may not be technically equivalent to the
protocol isotropic compression. In soil mechanics, the process of tap-
ping may involve anisotropic compression or shear. The process of
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deformations can be superimposed by these two pure modes,
we coalesce the two concepts of isotropic and shear induced
jamming, and provide the unified model picture, involving
a multiscale, fractal-type energy landscape [18,80–82]; in
general, deformation (or the preparation procedure) modify
the landscape and its population; considering only changes of
the population already allows to establish new configurations
and to predict their evolution. The observations of different
φJ of a single material require an alternative interpretation
of the classical “jamming diagram” [5].

Our results will provide a unified picture, including some
answers to the open questions from literature: (i) What lies
in between the jammed and flowing (unjammed) regime?
As posed by Ciamarra et al. [63]. (ii) Is there an absolute
minimum jamming density? As posed by Ciamarra et al.
[63]. (iii) What protocols can generate jammed states? As
posed by Torquato et al. [56]. (iv) What happens to the
jamming and shear jamming regime in 3D and is friction
important to observe it? As posed by Bi et al. [7]. Eventu-
ally, accepting the fact that the jamming density is changing
with deformation history, significant improvement of contin-
uum models is expected, not only for classical elasto-plastic
or rheology models, but also, e.g., for anisotropic constitu-
tive models [41,69,83,84], GSH rate type models [85,86],
Cosserat micro-polar or hypoplastic models [87–89] or con-
tinuum models with a length scale and non-locality [90,91].
For this purpose we provide a simple (usable) analyti-
cal macro/continuum model as generalization of continuum
models by adding one isotropic state-variable. Only allowing
φJ (H) to be dependent on history H [64,92], as key modifi-
cation, explains a multitude of reported observations and can
be significant step forward to solve real-world problems in
e.g. electronic industry related novel materials, geophysics
or mechanical engineering.

Recent works showed already that, along with the classi-
cal macroscopic properties (stress and volume fraction), the
structural anisotropy is an important [41,45,46,93–96] state-
variable for granular materials, as quantified by the fabric
tensor [43,69] that characterizes, on average, the geometric
arrangement of the particles, the contacts and their network,
i.e. the microstructure of the particle packing. Note that the
anisotropy alone is not enough to characterize the structure,
but also an isotropic state-variable is needed, as is the main
message of this study.

Footnote 1 continued
compression may be either isotropic or anisotropic or even involving
shear. For example, a typical soil tests may include biaxial compression,
conventional triaxial compression and true triaxial compression. In this
work, in the context of compression, we always mean true isotropic in
strain. In the context of tapping, we assume that the granular tempera-
ture, which is often assumed isotropic, does the work, even though the
tapping process is normally not isotropic. So this is an oversimplifica-
tion, and subject to future study since it was not detailed here.

1.3 Overview

The paper continues with the simulation method in Sect.
2, before the micromechanical particle- and contact-scale
observations are presented in Sect. 3, providing analytical
(quantitative) constitutive expressions for the change of the
jamming density with different modes of deformation. Sec-
tion 4 is dedicated to a (qualitative) meso-scale stochastic
model that explains the different (slow versus fast) change
of φJ (H) for different deformation modes (isotropic ver-
sus deviatoric/shear). A quantitative predictive macroscale
model is presented in Sect. 5 and verified by comparison
with the microscale simulations, before an experimental val-
idation procedure is discussed in Sect. 6 and the paper is
summarized and conclusions are given in Sect. 7.

2 Simulation method

Discrete Element Method (DEM) simulations are used to
model the deformation behavior of systems with N = 9261
soft frictionless spherical particles with average radius 〈r〉 =

1 (mm), density ρ = 2000 (kg/m3), and a uniform poly-
dispersity width w = rmax/rmin = 3, using the linear
visco-elastic contact model in a 3D box with periodic bound-
aries [44,69]. The particle stiffness is k = 108 (kg/s2),
contact viscosity is γ = 1 (kg/s). A background dissipa-
tion force proportional to the moving velocity is added with
γb = 0.1 (kg/s). The particle density is ρ = 2000 (kg/m3).
The smallest time of contact is tc = 0.2279 (µs) for a colli-
sion between two smallest sized particles [41].

2.1 Preparation procedure and main experiments

For the preparation, the particles are generated with random
velocities at volume (solid) fraction φ = 0.3 and are isotropi-
cally compressed to φt = 0.64, and later relaxed. From such a
relaxed, unjammed, stress free initial state with volume frac-
tion, φt = 0.64 < φJ , we compress isotropically further to
a maximum volume fraction, φmax

i , and decompress back to
φt , during the latter unloading φJ is identified. This process
is repeated over M (100) cycles, which provides different
isotropic jamming densities (points) φJ =: MφJ,i , related
with φmax

i and M (see Sect. 3.1).
Several isotropic configurations φ, such that φt < φ <

1φJ,i from the decompression branch are chosen as the ini-
tial configurations for shear experiments. We relax them and
apply pure (volume conserving) shear (plane-strain) with
the diagonal strain-rate tensor Ė = ±ǫ̇d (−1, 1, 0), for four
cycles.2 The x and y walls move, while the z wall remain
stationary. The strain rate of the (quasi-static) deformation is

2 This deformation mode represents the only fundamental deviatoric
deformation motion (complementary to isotropic deformation), since
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small, ǫ̇dtc < 3 × 10−6, to minimize transient behavior and
dynamic effects.3

2.2 Macroscopic (tensorial) quantities

Here, we focus on defining averaged tensorial macroscopic
quantities—including strain-, stress- and fabric (structure)
tensors—that provide information about the state of the pack-
ing and reveal interesting bulk features.

From DEM simulations, one can measure the ‘static’ stress
in the system [97] as

σ = (1/V )
∑

c∈V

lc ⊗ fc, (1)

average over all the contacts in the volume V of the dyadic
products between the contact force fc and the branch vector
lc, where the contribution of the kinetic fluctuation energy
has been neglected [41,93]. The dynamic component of the
stress tensor is four orders of magnitude smaller than the
former and hence its contribution is neglected. The isotropic
component of the stress is the pressure P = tr(σ )/3.

In order to characterize the geometry/structure of the static
aggregate at microscopic level, we will measure the fabric
tensor, defined as

F =
1

V

∑

P∈V

V P
∑

c∈P

nc ⊗ nc, (2)

where V P is the volume relative to particle P , which lies
inside the averaging volume V , and nc is the normal unit
branch-vector pointing from center of particle P to contact
c [93,98,99]. Isotropic part of fabric is Fv = tr(F). The cor-
rected coordination number [7,41] is C∗ = M4/N4, where,
M4 is total contacts of the N4 particles having at least 4
contacts, and the non-rattler fraction is fNR = N4/N . C is
the ratio of total non-rattler contacts M4 and total number

Footnote 2 continued
axial strain can be superposed by two plane-strain modes, and because
the plane-strain mode allows to study the non-Newtonian out-of-shear-
plane response of the system (pressure dilatancy), whereas the axial
mode does not. If superposition is allowed, as it seems to be the case for
frictionless particles, studying only these two modes is minimal effort,
however, we cannot directly extrapolate to more realistic materials.
3 For the isotropic deformation tests, we move the (virtual) walls and
for the shear tests, we move all the grains according to an affine motion
compatible with the (virtual) wall motion. For the case where only
the (virtual) walls move some arching near the corners can be seen
when there is a huge particle size dispersity or if there is a consid-
erable particle friction (data not shown). For the small polydispersity
and the frictionless spheres considered in this work, the system is and
remains homogeneous and the macroscopic quantities are indistinguish-
able between the two methods, however, this must not be taken for
granted in the presence of friction or cohesion, where wall motions
other than by imposed homogeneous strain, can lead to undesired inho-
mogeneities in the periodic representative volume element.

of particles N , i.e., C = M4/N = (M4/N4) (N4/N ) =

C∗ fNR, with corrected coordination number C∗ and frac-
tion of non-rattlers fNR. The isotropic fabric Fv is given by
the relation Fv = g3φC , as taken from Imole et al. [41],
with g3 ∼= 1.22 for the polydispersity used in the present
work. For any tensor Q, its deviatoric part can be defined as
Qd = sgn

(

qyy − qxx

) √

3qi j qi j/2, where qi j are the com-
ponents of the deviator of Q, and the sign function accounts
for the shear direction, in the system considered here, where a
more general formulation is given in Ref. [69]. Both pressure
P and shear stress Γ are non-dimensionalized by 2〈r〉/k to
give dimensionless pressure p and shear stress τ.

3 Micromechanical results

3.1 Isotropic deformation

In this section, we present a procedure to identify the jam-
ming densities and their range. We also show the effect of
cyclic over-compression to different target volume fractions
and present a model that captures this phenomena.

3.1.1 Identification of the jamming density

When a sample is over-compressed isotropically, the loading
and unloading paths are different in pressure p. This differ-
ence is most pronounced near the jamming density φJ , and
for the first cycle. It brings up the first question of how to
identify a jamming density, φJ . The unloading branch of a
cyclic isotropic over-compression along volume fraction φ is
well described by a linear relation in volumetric strain, with
a tiny quadratic correction [44,100,101]:

p =
φC

φJ

p0(−εv)
[

1 − γp(−εv)
]

, (3)

where p0, γp, as presented in Table 1, and the jamming den-
sity φJ are the fit parameters, and −εv = log(φ/φJ ) is the
true or logarithmic volumetric strain of the system, defined
relative to the reference where p → 0, i.e. the jamming vol-
ume fraction.

Equation (3), quantifies the scaled stress and is propor-
tional to the dimensionless deformation (overlap per particle

Table 1 Parameters used in Eq. (3) and Eqs. (9–11), where ‘*’ rep-
resents slightly different values than from Imole et al. [41], modified
slightly to have more simple numbers, without big deviation, and with-
out loss of generality

Quantity Isotropic Shear

p p0 = 0.042; γp = 0 ± 0.1* p0 = 0.042; γp = 0 ± 0.1*

C∗ C1 = 8.5 ± 0.3*; θ = 0.58 C1 = 8.5 ± 0.3*; θ = 0.58

fNR ϕc = 0.13; ϕv = 15 ϕc = 0.16; ϕv = 15
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size), as derived analytically [100] from the definition of
stress and converges to p → 0 when φ → φJ .

We apply the same procedure for different over-compress-
ions, φmax

i , and many subsequent cycles M to obtain MφJ,i ,
for which the results are discussed below. The material para-
meter p0 is finite, almost constant, whereas γp is small,
sensitive to history and contributes mainly for large −εv,
with values ranging around 0±0.1; in particular, it is depen-
dent on the over-compression φmax

i (data not shown). Unless
strictly mentioned, we shall be using the values of p0 and γp

given in Table 1.
Figure 1a shows the behavior of p with φ during one

full over-compression cycle to display the dependence of the
jamming density on the maximum over-compression volume
fraction and the number of cycles. With increasing over-
compression amplitude, e.g. comparing φmax

i = 0.68 and
φmax

i = 0.82, the jamming density, as realized after unload-
ing, is increasing. Also, with each cycle, from M = 1 to
M = 100, the jamming density moves to larger values. Note
that the difference between the loading and the unloading
curves becomes smaller for subsequent over-compressions.
Fig. 1b shows the scaled pressure, i.e., p normalized by
φC/φJ , which removes its non-linear behavior. p repre-
sents the average deformation (overlap) of the particles at
a given volume fraction, proportional to the distance from
the jamming density φJ .4 In the small strain region, for all
over-compression amplitude and cycles, the datasets collapse
on a line with slope p0 ∼ 0.042. Only for very strong over-
compression, −εv > 0.1, a small deviation (from linear)
of the simulation data is observed due to the tiny quadratic
correction in Eq. (3).

3.1.2 Isotropic cyclic over-compression

Many different isotropic jamming densities can be found
in real systems and—as shown here—also for the simplest
model material in 3D [64]. Figure 2a shows the evolution
of these extracted isotropic jamming densities MφJ,i , which
increase with increasing M and with over-compression φmax

i ,
for subsequent cycles M of over-compressions, the jamming
density MφJ,i grows slower and slower and is best captured
by a Kohlrausch-Williams-Watts (KWW) stretched exponen-
tial relation:

MφJ,i : = φJ (φmax
i , M)

= ∞φJ,i −
(

∞φJ,i − φc

)

exp
[

− (M/μi )
βi

]

,
(4)

with the three universal “material”-constants φc = 0.6567
(Sect. 3.2.2), μi = 1, and βi = 0.3, the lower limit of

4 The grains are soft and overlap δ increases with increasing com-
pression (φ). For a linear contact model, it has been shown in Refs.
[100,101] that 〈δ〉/〈r〉 ∝ ln (φ/φJ ) = −εv (volumetric strain).
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Fig. 1 a Dimensionless pressure p plotted against volume fraction φ

and for an isotropic compression starting from φt = 0.64 to φmax
i =

0.68 (green inverter triangle) and φmax
i = 0.82 (red bullet) and decom-

pression back to φt for M = 1, leading to 1φJ (φmax
i = 0.68) = 0.66

and 1φJ (φmax
i = 0.82) = 0.6652. The blue square data points repre-

sent cyclic over-compression to φmax
i = 0.82 for M = 100, leading

to 100φJ (φmax
i = 0.82) = 0.6692. The MφJ,i are extracted using a fit

to Eq. (3). The upward arrow the loading path (small symbols) while
the downward arrow the unloading path (big symbols). The inset is the
zoomed in regime near the jamming density, and lines are just connect-
ing the datasets. b Scaled pressure pφJ /φC plotted against volumetric
strain −εv = log(φ/φJ ) for the same simulations as a. Lines The scaled
pressure, when Eq. (3) is used, with different γp = −0.1, 0.07 and
−0.01 for green, red and blue lines respectively. The inset is the zoomed
in regime for small −εv (color figure online)

possible φJ ’s, the relaxation (cycle) scale and the stretched
exponent parameters, respectively. Only ∞φJ,i , the equilib-
rium (steady-state or shakedown [102]) jamming density
limit (extrapolated for M → ∞), depends on the over-
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Fig. 2 a Evolution of isotropic jamming densities MφJ,i after per-
forming M isotropic compression-decompression cycles up to different
maximum volume fractions φmax

i , as given in the inset. With increas-
ing φmax

i , the range of the established jamming densities MφJ,i =

φJ (M, φmax
i ) increases. The minimum (lower bound) of all MφJ,i is

defined as the critical jamming limit point, φc = 0.6567. The solid lines

through the data are universal fits to a stretched exponential [104,106–
108] with only one single variable parameter φmax

J , i.e., the upper limit

jamming density for M → ∞, which depends on φmax
i . b The first

jamming density 1φJ,i (blue square) and after many over-compression
∞φJ,i (brown bullet) are plotted against over-compression amplitude
φmax

i . Solid lines represent Eq. (5) for ∞φJ,i and (6) for 1φJ,i . The
shaded region is the explorable range of jamming densities MφJ,i ,
denoted as J-segment. The red base line the critical jamming density φc

(color figure online)

compressions φmax
i . φc is the critical density in the zero

pressure limit without previous history, or after very long
shear without temperature (which all are impossible to real-
ize with experiments or simulation–only maybe with energy
minimization).

Very little over-compression, φmax
i � φc, does not lead to

a significant increase in φJ,i , giving us information about the
lower limits of the isotropic jamming densities achievable
by shear, which is the critical jamming density φc = 0.6567.
With each over-compression cycle, MφJ,i increases, but for
larger M , it increases less and less. This is analogous to
compaction by tapping, where the tapped density increases
logarithmically slow with the number of taps. The limit value
∞φJ,i with φmax

i can be fitted with a simple power law rela-
tion:

∞φJ,i = φc + αmax
(

φmax
i /φc − 1

)β
, (5)

where the fit works perfect for φc < φmax
i ≤ 0.9, with para-

meters φc = 0.6567, αmax = 0.02±2 %, and β = 0.3, while
the few points for φmax

i ∼ φc are not well captured. The rela-
tion between the limit-value ∞φJ,i and 1φJ,i is derived using
Eq. (4):

∞φJ,i − φc =
1φJ,i − φc

1 − e−1
∼= 1.58

(

1φJ,i − φc

)

, (6)

only by setting M = 1, as shown in Fig. 2b, with perfect
match. With other words, using a single over-compression,
Eq. (6) allows to predict the limit value after first over-
compression 1φJ,i (or subsequent over-compression cycles,
using appropriate M).

Thus, the isotropic jamming density φJ is not a unique

point, not even for frictionless particle systems, and is depen-
dent on the previous deformation history of the system
[63,82,103], e.g. over-compression or tapping/driving (data
not shown). Both (isotropic) modes of deformation lead
to more compact, better packed configurations [7,47,104].
Considering different system sizes, and different prepara-
tion procedures, we confirm that the jamming regime is the
same (within fluctuations) for all the cases considered (not
shown). All our data so far, for the material used, are consis-
tent with a unique limit density φc that is reached after large
strain, very slow shear, in the limit of vanishing confining
pressure. Unfortunately this limit is vaguely defined, since
it is not directly accessible, but rather corresponds to a vir-
tual stress-free state. The limit density is hard to determine
experimentally and numerically as well. Reason is that any
slow deformation (e.g. compression from below jamming)
also leads to perturbations (like tapping leads to granular
temperature): the stronger the system is perturbed, the bet-
ter it will pack, so that usually φJ > φc is established.
Repeated perturbations lead to a slow stretched exponen-
tial approach to an upper-limit jamming density φJ → φmax

J

that itself increases slowly with perturbation amplitude, see
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Fig. 3 a Snapshots of unjammed, fragile and shear jammed states,
when the force networks are percolated in none, one or two, and all the
three directions, respectively. Only the largest force network, connect-
ing strong forces, f ≥ k〈 f 〉, with k = 2.2 are shown for the three states
for clarity, and hence the white spaces in the background. b Plot of C∗

and cluster sizes ξ/L in the three directions for extension in x- and com-
pression in y-directions against the non-rattler fraction fNR , along the
loading path for an isotropic unjammed initial state with volume frac-
tion φ = 0.6584 and φJ

(

φmax
i = 0.82, M = 1

)

=: 1φJ,i = 0.6652.
The upward arrow indicates direction of loading shear strain

Fig. 2b. The observation of different φJ of a single mate-
rial, was referred to as J-segment [63,103], and requires
an alternative interpretation of the classical “jamming dia-
gram” [5,7,66], giving up the misconception of a single,
constant jamming “density”. Note that the J-segment is not
just due to fluctuations, but it is due to the deformation his-
tory, and with fluctuations superposed. The state-variable φJ

varies due to deformation, but possibly has a unique limit
value that we denote for now as φc. Jammed states below φc

might be possible too, but require different protocols [105],
or different materials, and are thus not addressed here. Next,
we discuss the concept of shear jammed states [7] below
φJ .

3.2 Shear deformation

To study shear jamming, we choose several unjammed states
with volume fractions φ below their jamming densities
1φJ,i , which were established after the first compression-
decompression cycle, for different history, i.e., various
previously applied over-compression to φmax

i . Each con-
figuration is first relaxed and then subjected to four iso-
choric (volume conserving) pure shear cycles (see Sect.
2.1).

3.2.1 Shear jamming below φJ (H)

We confirm shear jamming, e.g., by a transition in the coor-
dination number C∗, from below to above its isostatic limit,

C∗
0 = 6, for frictionless grains [13,31,38,41]. This was con-

sistently (independently) reconfirmed by using percolation
analysis [7,30], allowing us to distinguish the three differ-
ent regimes namely, unjammed, fragile and shear jammed
states during (and after) shear [66], as shown in Fig. 3a. We
study how the k−cluster, defined as the largest force net-
work, connecting strong forces, f ≥ k favg [109,110], with
k = 2.2, different from k = 1 for 2D frictional systems
[7], percolates when the initially unjammed isotropic system
is sheared. More quantitatively, for an exemplary volume
fraction φ

(

φmax
i = 0.82, M = 1

)

= 0.6584, very close to
φc, Fig. 3b shows that fNR increases from initially zero to
large values well below unity due to the always existing rat-
tlers. The compressive direction percolating network ξy/L y

grows faster than the extension direction network ξx/Lx ,
while the network in the non-mobile direction, ξz/L z , lies
in between them. For fNR > 0.82 ± 0.01, we observe that
the growing force network is percolated in all three direc-
tions (Fig. 3a), which is astonishingly similar to the value
reported for the 2D systems [7]. The jamming by shear
of the material corresponds (independently) to the crossing
of C∗ from the isostatic limit of C∗

0 = 6, as presented in
Fig. 3b.

From this perspective, when an unjammed material is
sheared at constant volume, and it jams after application
of sufficient shear strain, clearly showing that the jamming
density has moved to a lower value. Shearing the system
also perturbs it, just like over-compression; however, in addi-
tion, finite shear strains enforce shape- and structure-changes
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Fig. 4 Cluster sizes ξ/L , fNR (top panel), over three strain cycles (bot-

tom panel) for φ = 0.6584 and jamming density φJ

(

φmax
i = 0.82,

M = 1) =: 1φJ,i = 0.6652. Dashed horizontal black line represents

transition from unjammed to shear jammed states. The cluster sizes are
smoothed averages over two past and future snapshots

and thus allow the system to explore new configurations;
typically, the elevated jamming density φJ of a previously
compacted system will rapidly decrease and exponentially
approach its lower-limit, the critical jamming density φc,
below which no shear jamming exists. Note that we do not

exclude the possibility that jammed states below φc could
be achieved by other, special, careful preparation proce-
dures [111].

Next, we present the evolution of the strong force net-
works in each direction during cyclic shear, as shown in
Fig. 4, for the same initial system. After the first loading, at
reversal fNR drops below the 0.82 threshold, which indicates
the breakage/disappearance of strong clusters, i.e. the system
unjams. The new extension direction ξy/L y drops first with
the network in the non-mobile directions, ξz/L z , lying again
in between the two mobile direction. With further applied
strains, fNR increases and again, the cluster associated with
the compression direction grows faster than in the extension
direction. For fNR above the threshold, the cluster perco-
lates the full system, leading to shear jammed states again.
At each reversal, the strong force network breaks/fails in all
directions, and the system gets “soft” or even unjams tem-
porarily. However, the network is rapidly re-established in the
perpendicular direction, i.e., the system jams and the strong,
anisotropic force network again sustains the load. Note that
some systems with volume fraction higher and away from φc

can resist shear strain reversal as described and modeled in
Sect. 5.1.3.

3.2.2 Relaxation effects on shear jammed states

Here, we will discuss the system stability by looking at
the macroscopic quantities in the saturation state (after
large shear strain), by relaxing them sufficiently long to
have non-fluctuating values in the microscopic and macro-
scopic quantities. Every shear cycle after defining e.g. the
y−direction as the initial active loading direction, has two
saturation states, one during loading and, after reversal, the
other during unloading. In Fig. 5, we show values attained by
the isotropic quantities pressure p, isotropic fabric Fv and the
deviatoric quantities shear stress τ, shear stress ratio τ/p, and
deviatoric fabric Fd for various φ given the same initial jam-
ming density φJ

(

φmax
i = 0.82, M = 1

)

=: 1φJ,i = 0.6652.
Data are shown during cyclic shear as well as at the two
relaxed saturation states (averaged over four cycles), leading
to following observations:

(i) With increasing volume fraction, p, Fv and τ increase,
while a weak decreasing trend in stress ratio τ/p and
deviatoric fabric Fd is observed.

(ii) There is almost no difference in the relaxed states
in isotropic quantities, p and Fv for the two direc-
tions, whereas it is symmetric about zero for deviatoric
quantities, τ, τ/p, and Fd. The decrease in pressure dur-
ing relaxation is associated with dissipation of kinetic
energy and partial opening of the contacts to “dissi-
pate” the related part of the contact potential energy.
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Fig. 5 Scatter plots of isotropic quantities a pressure p, b isotropic
fabric Fv and deviatoric quantities, c shear stress τ, d shear stress ratio
τ/p, and e deviatoric fabric Fd for various φ and jamming density
φJ

(

φmax
i = 0.82, M = 1

)

=: 1φJ,i = 0.6652. Black times symbols

represent the initial loading cycle, while the green plus and blue asterisk

represent states attained for φ < φJ and φ > φJ , respectively for the

subsequent shear. Cyan bullet and the brown square are states chosen
after large strain during loading and unloading shear respectively, and
are relaxed. The red and purple lines indicate the critical jamming den-
sity φc = 0.6567 and the jamming density 1φJ,i respectively (color
figure online)

However, Fv remains at its peak value during relax-
ation. It is shown in Sect. 2.2 that Fv = g3φC , as taken
from Imole et al. [41], with g3 ∼= 1.22 for the poly-
dispersity used in the present work. Thus we conclude
that the contact structure is almost unchanged and the
network remains stable during relaxation, since during
relaxation φ does not change.

(iii) For small volume fractions, close to φc, the system
becomes strongly anisotropic in stress ratio τ/p, and
fabric Fd rather quickly, during (slow) shear (envelope
for low volume fractions in Fig. 5d, e), before it reaches
the steady state [49].

(iv) It is easy to obtain the critical (shear) jamming den-
sity φc from the relaxed critical (steady) state pressure
p, and shear stress τ, by extrapolation to zero, as the
envelope of relaxed data in Fig. 5a, c.

We use the same methodology presented in Eq. (3) to
extract the critical jamming density φc. When the relaxed

p is normalized with the contact density φC , we obtain
φc = 0.6567 ± 0.0005 by linear extrapolation. A similar
value of φc is obtained from the extrapolation of the relaxed
τ data set, and is consistent with other methods using the
coordination number C∗, or the energy [112]. The quantifi-
cation of history dependent jamming densities φJ (H), due
to shear complementing the slow changes by cyclic isotropic
(over)compression in Eq. (4), is discussed next.

3.3 Jamming phase diagram with history H

We propose a jamming phase diagram with shear strain,
and present a new, quantitative history dependent model
that explains jamming and shear jamming, but also predicts
that shear jamming vanishes under some conditions, namely
when the system is not tapped, tempered or over-compressed
before shear is applied. Using εd and φ as parameters, Fig.
6a shows that for one initial the history dependent jamming
state at 1φJ,i , there exist sheared states within the range
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Fig. 6 Phase diagram and scaling with φc to replace the MφJ,i ’s.
a Phase diagram showing the different states: unjammed, isotropic
jammed, shear unjammed, fragile and shear jammed, for one partic-
ular case of φJ

(

φmax
i = 0.82, M = 1

)

=: 1φJ,i = 0.6652. b Plot
of minimum strain needed to jam states prepared from the first over-
compression cycle with different φmax

i , as given in the legend. The inset

shows the collapse of the states using a scaled definition that includes
distance from both isotropic jamming density MφJ,i and critical jam-
ming density φc, using Eq. (7). We only show data for the states for
φ < 1φJ,i that after the first isotropic compression decompression cycle
jam by applying shear

φc ≤ φ ≤ φJ (H), which are isotropically unjammed. After
small shear strain they become fragile, and for larger shear
strain jam and remain jammed, i.e., eventually showing the
critical state flow regime [45,46], where pressure, shear stress
ratio and structural anisotropy have reached their saturation
levels and forgotten their initial state (data not shown). The
transition to fragile states is accompanied by partial per-
colation of the strong force network, while percolation in
all directions indicates the shear jamming transition. Above
jamming, the large fraction of non-rattlers provides a persis-
tent mechanical stability to the structure, even after shear is
stopped.

For φ approaching φc, the required shear strain to jam εS J
d

increases, i.e., there exists a divergence “point” φc, where
‘infinite’ shear strain might jam the system, but below which
no shear jamming was observed. The closer the (constant)
volume fraction φ is to the initial 1φJ,i , the smaller is εS J

d .
States with φ ≥ 1φJ,i are isotropically jammed already
before shear is applied.

Based on the study of many systems, prepared via
isotropic over-compression to a wide range of volume frac-
tions φmax

i ≥ φc, and subsequent shear deformation, Fig. 6b
shows the strains required to jam these states by applying
pure shear. A striking observation is that independent of the
isotropic jamming density 1φJ,i , all curves approach a unique

critical jamming density at φc ∼ 0.6567 (see Sect. 3.2.2).
When all the curves are scaled with their original isotropic
jamming density MφJ,i as φsc = (φ − φc) /

(

MφJ,i − φc

)

they collapse on a unique master curve

(

εS J
d /ε0

d

)α

= − log φsc = − log

(

φ − φc

MφJ,i − φc

)

, (7)

shown in the inset of Fig. 6b, with power α = 1.37 ± 0.01
and shear strain scale ε0

d = 0.102 ± 0.001 as the fit parame-
ters. Hence, if the initial jamming density MφJ,i or φJ (H)

is known based on the past history of the sample, the shear
jamming strain εS J

d can be predicted.
From the measured shear jamming strain, Eq. (7), knowing

the initial and the limit value of φJ , we now postulate its
evolution under isochoric pure shear strain:

φJ (εd) = φc + (φ − φc) exp

[(
(

εS J
d

)α
− (εd)α

(

ε0
d

)α

)]

. (8)

Inserting, εd = 0, εd = εS J
d and εd = ∞ leads to

φJ = MφJ,i , φJ = φ and φJ = φc, respectively. The jam-
ming density evolution due to shear strain εd is faster than
exponential (since α > 1) decreasing to its lower limit φc.
This is qualitatively different from the stretched exponen-
tial (slow) relaxation dynamics that leads to the increase of
φJ due to over-compression or tapping, see Fig. 7a for both
cases.

4 Meso-scale stochastic slow dynamics model

The last challenge is to unify the observations in a quali-
tative model that accounts for the changes in the jamming
densities for both isotropic and shear deformation modes.
Over-compressing a soft granular assembly is analogous to
small-amplitude tapping [21,47,104] of more rigid particles,
in so far that both methods lead to more compact (efficient)
packing structures, i.e., both representing more isotropic per-
turbations, rather than shear, which is deviatoric (anisotropic)
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Fig. 7 Relaxation mechanisms and dynamics in an energy landscape
due to memory effects. a Evolution of the jamming densities φJ (H)

due to isotropic and deviatoric (shear) history H . Solid lines represent
isotropic compression decompression cycles for three different φmax

i ,
leading to an increase in φJ (H) by slow stretched exponential relax-
ation, see Eq. (4). Dashed lines represent the much faster decrease in
φJ (H) due to shear strain εd , using Eq. (8). b The sketch represents
only a very small, exemplary part of the hierarchical, fractal-type energy
landscape. The red horizontal line is the (quenched) average, while the

dotted horizontal line is the momentary average φJ (H) (of the ensem-
ble of states, where the population is represented by green circles). The
blue solid arrows show (slow) relaxation due to perturbations, while
the dashed arrows indicate (fast) re-arrangements (re-juvenation) due
to finite shear strain. The green dots with their size represent the popula-
tion after some relaxation, in contrast to a random, quenched population
where all similar valleys would be equally populated [81] (color figure
online)

in nature. These changes are shown in Fig. 2a, where the orig-
inally reported logarithmically slow dynamics for tapping
[107,108,113] is very similar to our results that are also very
slow, with a stretched exponential behavior; such slow relax-
ation dynamics can be explained by a simple Sinai-Diffusion
model of random walkers in a random, hierarchical, frac-
tal, free energy landscape [106,114] in the (a-thermal) limit,
where the landscape does not change—for the sake of sim-
plicity.

The granular packing is represented in this picture by
an ensemble of random walkers in (arbitrary) configuration
space with (potential) energy according to the height of their
position on the landscape. (Their average energy corresponds
to the jamming density and a decrease in energy corresponds
to an increase in φJ (H), thus representing the “memory”
and history dependence with protocol H .) Each change of
the ensemble represents a rearrangement of packing and
units in ensemble represent sub-systems. Perturbations, such
as tapping with some small-amplitude (corresponding to
“temperature”) allow the ensemble to find denser configura-
tions, i.e., deeper valleys in the landscape, representing larger
(jamming) densities [22,82]. Similarly, over-compression
is squeezing the ensemble “down-hill”, also leading to an
increase of φJ , as presented in Fig. 7b. Larger amplitudes
will allow the ensemble to overcome larger barriers and thus
find even deeper valleys. Repetitions have a smaller chance
to do so—since the easy reorganizations have been realized
previously—which explains the slow dynamics in the hier-
archical multiscale structure of the energy landscape.

In contrast to the isotropic perturbations, where the
random walkers follow the “down-hill” trend, shear is

anisotropic and thus pushing parts of the ensemble in “up-
hill’ direction’. For example, under planar simple shear, one
(eigen) direction is extensive (up-hill) whereas an other is
compressive (down-hill). If the ensemble is random, shear
will only re-shuffle the population. But if the material was
previously forced or relaxed towards the (local) land-scape
minima, shear can only lead to a net up-hill drift of the ensem-
ble, i.e., to decreasing φJ , referred to as dilatancy under
constant stress boundary conditions.

For ongoing over-compression, both coordination number
and pressure slowly increase, as sketched in Fig. 8, while the
jamming density drifts to larger values due to re-organization
events that make the packing more effective, which moves
the state-line to the right (also shown in Fig. 7a). For decom-
pression, we assume that there are much less re-organization
events happening, so that the pressure moves down on the
state-line, until the system unjams. For ongoing perturba-
tions, at constant volume, as tapping or a finite temperature,
Tg , both coordination number and pressure slowly decrease
(data not shown), whereas for fixed confining pressure the
volume would decrease (compactancy, also not shown).

For ongoing shear, the coordination number, the pres-
sure and the shear stress increase, since the jamming density
decreases, as sketched in Fig. 9 until a steady state is reached.
This process is driven by shear strain amplitude and is much
faster than the relaxation dynamics. For large enough strain
the system will be sufficiently re-shuffled, randomized, or
“re-juvenated” such that it approaches its quenched, random
state close to φc (see Fig. 7a).

If both mechanisms, relaxation by temperature, and con-
tinuous shear are occurring at the same time, one can reach
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Fig. 8 Schematic sketch of the evolution of the system in stress-density
space, e.g., pressure, a starting from a state (point) slightly above jam-
ming, under b isotropic compression, and c further compression, the
system reaches a higher stress level, while the jamming density moves
to the right (larger densities). d For isotropic decompression (exten-
sion) the system reduces pressure and the jamming density remains

(almost) constant, until for e ongoing decompression, the system unjams
and reaches a density below the jamming density. (For tapping (not
shown), the density of the system would remain fixed, the jamming den-
sity would increase for ongoing perturbations, so that the stress would
reduce and the system could even unjam if the density is low enough.)
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Fig. 9 Schematic sketch of the evolution of the system under isochoric
(volume conserving, represented by the dashed vertical red line) shear
in stress-density space, think of shear stress, which is just proportional
to pressure, a starting from the state (point Fig. 8e) slightly below
jamming, which was previously over-compressed. Under shear b the
jamming density shifts to the left until it reaches the actual density, at
which c shear jamming kicks in, i.e., stress increases above zero. From
this state, for d shear reversal, the jamming density moves to the right

again and the system can unjam. For ongoing shear, e at a higher den-
sity, at finite granular temperature Tg , the jamming density is increased
by the perturbations due to Tg while shear, at the same time, decreases
the jamming density, as indicated by the two arrows, which resembles
a steady state. A change of either shear rate or temperature will then
lead to either transient shear-thickening or shear-thinning, before a new
steady state path is reached

another (non)-“equilibrium” steady state, where the jamming
density remains constant, balancing the respective increasing
and decreasing trends, as sketched in Fig. 9e.

5 Macroscopic constitutive model

In this section, we present the simplest model equations,
as used for the predictions, involving a history dependent
φJ (H), as given by Eq. (4) for isotropic deformations and
Eq. (8) for shear deformations. The only difference to Imole
et al. [41], where these relations are taken from, based on
purely isotropic unloading, is the variable φJ = φJ (H).

5.1 Presentation and model calibration

5.1.1 During cyclic isotropic deformation

During (cyclic) isotropic deformation, the evolution equation
for the corrected coordination number C∗ is:

C∗ = C0 + C1

(

φ

φJ (H)
− 1

)θ

, (9)

with C0 = 6 for the frictionless case and parameters C1 and
θ are presented in Table 1. The fraction of non-rattlers fNR

is given as:

fNR = 1 − ϕcexp

[

−ϕv

(

φ

φJ (H)
− 1

)]

, (10)

with parameters ϕc and ϕv presented in Table 1. We mod-
ify Eq. (3) for the evolution of p together with the history
dependent φJ = φJ (H) so that,

p =
φC

φJ (H)
p0(−εv)

[

1 − γp(−εv)
]

, (11)

with parameters p0 and γp presented in Table 1, and the
true or logarithmic volume change of the system is −εv =

log(φ/φJ (H)), relative to the momentary jamming density.
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The non-corrected coordination number is C = C∗ fNR, as
can be computed using Eqs. (9) and (10). Also the parameters
C1, θ for C∗, ϕc, ϕv for fNR, and p0, γp for pressure p are
similar to Imole et al. [41], with the second order correction
parameter γp most sensitive to the details of previous defor-
mations; however, not being very relevant since it is always
a small correction due to the product γp(−εv).

The above relations are used to predict the behavior of
the isotropic quantities: dimensionless pressure p and coor-
dination number C∗, during cyclic isotropic compression, as
well as for the fraction of non-rattlers for cyclic shear, with
corresponding parameters presented in Table 1. Note that
during isotropic deformation, φJ (H) was changed only dur-
ing the compression branch, using Eq. (4) for fixed M = 1
using φmax

i as variable, but is kept constant during unload-
ing/expansion.

The above relations are used to predict the behavior of
the isotropic quantities: dimensionless pressure p and coor-
dination number C∗, by only adding the history dependent
jamming density φJ (H) to the constitutive model, as tested
below in Sect. 5.2.

5.1.2 Cyclic (pure) shear deformation

During cyclic (pure) shear deformation, a simplified equation
for the shear stress ratio τ/p is taken from Imole et al. [41],
where the full model was introduced as rate-type evolution
equations, and further calibrated and tested by Kumar et al.
[69]:

τ/p = (τ/p)max −

[

(τ/p)max − (τ/p)0
]

exp [−βsεd ] ,

(12)

with (τ/p)0 and (τ/p)max the initial and maximum (satura-
tion) shear stress ratio, respectively, and βs its growth rate.5

Similarly, a simplified equation for the deviatoric fabric Fd

can be taken from Refs. [41,69] as:

Fd = Fd
max −

[

Fd
max − Fd

0
]

exp [−βFεd ] , (13)

with Fd
0 and Fd

max the initial and maximum (saturation)
values of the deviatoric fabric, respectively, and βF its growth
rate. The four parameters (τ/p)max, βs for τ/p and Fd

max,
βF for Fd are dependent on the volume fraction φ and are well
described by the general relation from Imole et al. [41] as:

Q = Qa + Qc exp

[

−Ψ

(

φ

φJ (H)
− 1

)]

, (14)

5 Note that the model in the form used here is ignoring the presence of
kinetic energy fluctuations, referred to as granular temperature Tg , or
fields like the so-called fluidity [90,91,115], that introduce an additional
relaxation time-scale, as is subject of ongoing studies.

Table 2 Parameters for Eqs. (12) and (13) using Eq. (14), with slightly
different values than from Imole et al. [41], that are extracted using the
similar procedure as in Imole et al. [41], for states with volume fraction
close to the jamming volume fraction

Evolution parameters Qa Qc Ψ

(τ/p)max 0.12 0.091 7.9

βs 30 40 16

Fd
max 0 0.17 5.3

βF 0 40 5.3

where Qa , Qc and Ψ are the fitting constants with values
presented in Table 2.

For predictions during cyclic shear deformation, φJ (H)

was changed with applied shear strain εd using Eq. (8). Fur-
thermore, the jamming density is set to a larger value just
after strain-reversal, as discussed next.

5.1.3 Behavior of the jamming density at strain reversal

As mentioned in Sect. 3.2, there are some states below φJ ,
where application of shear strain jams the systems. The dens-
est of those can resist shear reversal, but below a certain
φcr ≈ 0.662 < φJ , shear reversal unjams the system again
[116]. With this information, we postulate the following:

(i) After the first phase, for large strain pure shear, the sys-
tem should forget where it was isotropically compressed
to before i.e., MφJ,i is forgotten and φJ = φc is real-
ized.

(ii) There exists a volume fraction φcr, above which the
systems can just resist shear reversal and remain always
jammed in both forward and reverse shear.

(iii) Below this φcr, reversal unjams the system. Therefore,
more strain is needed to jam the system (when com-
pared to the initial loading), first to forget its state before
reversal, and then to re-jam it in opposite (perpendicu-
lar) shear direction. Hence, the strain necessary to jam
in reversal direction should be higher than for the first
shear cycle.

(iv) As we approach φc, the reverse strain needed to jam the
system increases.

We use these ideas and measure the reversal shear strain
ε

S J,R
d , needed to re-jam the states below φcr, as shown

in Fig. 10. When they are scaled with φcr as φsc =

(φ − φc) / (φcr − φc), they collapse on a unique master
curve, very similar to Eq. (7):

(

ε
S J,R
d /ε

0,R
d

)α

= − log φsc = − log

(

φ − φc

φcr − φc

)

, (15)
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Fig. 10 Phase diagram showing the minimum reversal shear strain
ε

S J,R
d needed to jam the states below φcr , for states prepared from the

first over-compression cycle with different φmax
i , as given in the legend.

The inset shows a collapse of the states using a similar scaled definition
as Eq. (7) that includes the distance from both φcr and critical jamming
density φc, using Eq. (15)

shown in the inset of Fig. 6b, with the same power α =

1.37 ± 0.01 as Eq. (7). Fit parameter strain scale ε
0,R
d =

0.17 ± 0.002 > ε0
d = 0.102, is consistent with the above

postulates (iii) and (iv).
The above relations are used to predict the isotropic and

the deviatoric quantities, during cyclic shear deformation, as
described next, with the additional rule that all the quantities
attain value zero for φ ≤ φJ (H). Moreover, for any state
with φ ≤ φcr, shear strain reversal moves the jamming den-
sity to φcr, and the evolution of the jamming density follows
Eq. (15).

Any other deformation mode, can be written as a unique

superposition of pure isotropic and pure and axial shear
deformation modes [117]. Hence the combination of the
above can be easily used to describe any general deformation,
e.g. uniaxial cyclic compression (data not presented) where
the axial strain can be decomposed in two plane strain modes.

5.2 Prediction: minimal model

Finally, we test the proposed history dependent jamming
density φJ (H) model, by predicting p and C∗, when a gran-
ular assembly is subjected to cyclic isotropic compression
to φmax

i = 0.73 for M = 1 and for M = 300 cycles,
with ∞φJ,i = 0.667, as shown in Fig. 11a, b. It is observed
that using the history dependence of φJ (H), the hysteretic
behavior of the isotropic quantities, p and C∗, is very well
predicted, qualitatively similar to isotropic compression and
decompression of real 2D frictional granular assemblies, as
shown in by Bandi et al. [58] and Reichhardt and Reichhardt
[22].

In Fig. 11c, we show the evolution of the deviatoric quan-
tities shear stress ratio τ/p and deviatoric fabric Fd, when
a system with φ = 0.6584, close to φc, and initial jam-
ming density φJ (0) = 0.6652, is subjected to three shear
cycles (lowest panel). The shear stress ratio τ/p is initially
undefined, but soon establishes a maximum (not shown) and
decays to its saturation level at large strain. After strain rever-
sal, τ/p drops suddenly and attains the same saturation value,
for each half-cycle, only with alternating sign. The behavior
of the anisotropic fabric Fd is similar to that of τ/p. Dur-
ing the first loading cycle, the system is unjammed for some
strain, and hence Fd is zero in the model (observations in
simulations can be non-zero, when the data correspond to
only few contacts, mostly coming from rattlers). However,
the growth/decay rate and the saturation values attained are
different from those of τ/p, implying a different, indepen-
dent stress- and structure-evolution with strain—which is at
the basis of recently proposed anisotropic constitutive mod-
els for quasi-static granular flow under various deformation
modes [41]. The simple model with φJ (H), is able to pre-
dict quantitatively the behavior the τ/p and Fd after the first
loading path, and is qualitatively close to the cyclic shear
behavior of real 2D frictional granular assemblies, as shown
in Supplementary Fig. 7 by Bi et al. [7].

At the same time, also the isotropic quantities are very well
predicted by the model, using the simple equations from Sect.
5.1, where only the jamming density is varying with shear
strain, while all material parameters are kept constant. Some
arbitrariness involves the sudden changes of φJ at reversal, as
discussed in Sect. 5.1. Therefore, using a history dependent
φJ (H) gives hope to understand the hysteretic observations
from realistic granular assemblies, and also provides a simple
explanation of shear jamming. Modifications of continuum
models like anisotropic models [41,69], or GSH type models
[85,86], by including a variable φJ , can this way quantita-
tively explain various mechanisms around jamming.

6 Towards experimental validation

The purpose of this section is two-fold: First, we propose
ways to (indirectly) measure the jamming density, since it is
a virtual quantity that is hard to measure directly, just as the
“virtual, stress-free reference state” in continuum mechan-
ics which it resembles. Second, this way, we will introduce
alternative state-variables, since by no means is the jamming
density the only possibility.

Measuring φJ from experiments Here we show the proce-
dure to extract the history dependent jamming density φJ (H)

from measurable quantities, indirectly obtained via Eqs. (9),
(10), (11), and directly from Eq. (8). There are two reasons
to do so: (i) the jamming density φJ (H) is only accessible
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Fig. 11 Model prediction for cyclic loading: a Dimensionless pressure
p and b coordination number C∗ plotted against volume fraction φ for
an isotropic compression starting from φt = 0.64 to φmax

i = 0.73
(small symbols) and decompression (big symbols) back to φt , with
∞φJ,i = 0.667, for M = 1 (red bullet) and for M = 300 (blue

square). c Deviatoric stress ratio τ/p and deviatoric fabric Fd, frac-
tion of non-rattlers fNR , coordination number C∗, pressure p and
history dependent jamming density φJ (H) over three pure shear strain

cycles (bottom panel) for φ = 0.6584 and initial jamming density
φJ

(

φmax
i = 0.82, M = 1

)

=: 1φJ,i = 0.6652. Solid lines through the
data are the model prediction, involving the history dependent jam-
ming density φJ (H), using Eq. (4) for isotropic deformation and Eq.
(8) for shear deformation, and others. Dashed red lines in fNR and C∗

represent transition from unjammed to shear jammed states, whereas
in φJ (H) the red line indicates the critical jamming density φc (color
figure online)

in the unloading limit p → 0, which requires an experiment
or a simulation to “measure” it (however, during this mea-
surement, it might change again); (ii) deducing the jamming
density from other quantities that are defined for an instanta-
neous snapshot/configuration for p > 0 allows to indirectly
obtain it—if, as shown next, these indirect “measurements”
are compatible/consistent: Showing the equivalence of all
the different φJ (H), proofs the consistency and complete-
ness of the model and, even more important, provides a way

to obtain φJ (H) indirectly from experimentally accessible
quantities.

For isotropic compression Figure 12 shows the evolution of
φJ (H), measured from the two experimentally accessible
quantities: coordination number C∗ and pressure p, using
Eqs. (9) and (11) respectively for isotropic over-compression
to φmax

i = 0.82 over two cycles. Following observations can
be made: (i) φJ for isotropic loading and unloading can be
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Fig. 12 a Evolution of the history dependent jamming density φJ (H)

during isotropic over-compression to φmax
i = 0.82 for two cycles, cal-

culated back from the measured quantities: coordination number C∗

(green) and pressure p (red), using Eqs. (9) and (11) respectively. The
bullet and square represent the first and second cycle respectively. Solid

lines are the loading path while the dashed lines the unloading path for
the corresponding cycle. Evolution of history dependent jamming den-
sity φJ (H) using b coordination number C∗ and c pressure p for three
levels of over-compression φmax

i , as shown in the inset. Solid black line

Eq. (4) with M = 1, and ∞φJ,i calculated using Eq. (5) (color figure
online)
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Fig. 13 Evolution of the history dependent jamming density φJ (H)

during pure shear, calculated back from the measured quantities: coor-
dination number C∗, fraction of non-rattlers fNR and pressure p, using
Eqs. (9), (10), and (11) respectively, as marked with arrows. The vol-
ume fraction is constant, φ = 0.66, and the initial jamming density
φJ

(

φmax
i = 0.82, M = 1

)

=: 1φJ,i = 0.6652 is greater than φ (repre-
sented by horizontal cyan line). The solid black line represents Eq. (8),
and the dashed vertical line represents the shear strain needed to jam
the system, εS J

d , from which on—for larger shear strain—the system is
jammed (color figure online)

extracted from C∗ and p, (ii) it rapidly increases and then
saturates during loading, (iii) it mimics the fractal energy
landscape model in Fig. 4 from Luding et al. [114] very well,
(iv) while is was assumed not to change for unloading, it
even increases, which we attribute to the perturbations and
fluctuations (granular temperature) induced during the quasi-
static deformations, (v) the indirect φJ are reproducible and
follow the same master-curve for first over-compression as
seen in Figs. 12, independent of the maximum—all following
deformation is dependent on the previous maximum density.

For shear deformation Figure 13 shows the evolution of
φJ (H), measured from the two experimentally accessible
quantities: coordination number C∗ and pressure p, using
Eqs. (9) and (11) respectively during volume conserving
shear with φ = 0.66, and the initial jamming density
φJ

(

φmax
i = 0.82, M = 1

)

=: 1φJ,i = 0.6652 > φ and
shows good agreement with the theoretical predictions using
Eq. (8) after shear jamming. Thus the indirect measurements
of φJ (H) can be applied if φJ (H) < φ; the result deduced
from pressure fits the best, i.e., it interpolates the two others
and is smoother.

7 Summary, discussion and outlook

In summary, this study presents a quantitative, predictive
macroscopic constitutive model that unifies a variety of
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phenomena around and above jamming, for quasi-static
deformation modes. The most important ingredient is a scalar
state-variable that characterizes the packing “efficiency” and
responds very slowly to (isotropic, perturbative) deforma-
tion. In contrast, it responds fast, saturating exponentially
with finite shear deformation. This different response to the
two fundamentally different modes of deformation (isotropic
or deviatoric, shear) is (qualitatively) explained by a stochas-
tic (meso-scale) model with fractal (multiscale) character. All
simulation results considered here are quantitatively matched
by the macroscopic model after including both the isotropic
and the anisotropic microstructure as state-variables. Dis-
cussing the equivalence of alternative state-variables and
ways to experimentally measure the model parameters con-
cludes the study and paves the way to apply the model to
other, more realistic materials. The following subsections
wrap up some major aspects of this study and also add some
partly speculative arguments about the wider consequences
of our results for rheology as well as an outlook.

7.1 Some questions answered

The questions posed in the introduction can now be answered:
(i) The transition between the jammed and flowing (unjam-
med) regimes is controlled by a single new, isotropic, history
dependent state-variable, the jamming density φJ (H) (with
history H as shorthand place-holder for any deformation
path), which (ii) has a unique lower critical jamming density
φc when p → 0, reached after long shear without tem-
perature Tg , so that (iii) the history (protocol dependence)
of jamming is completely encompassed by this new state-
variable, and (iv) jamming, unjamming and shear jamming
can all occur in 3D without any friction, only by reorganiza-
tions of the micro-structure.

7.2 Lower limit of jamming

The multiscale model framework implies now a minimum φc

that represents the (critical) steady state for a given sample
in the limit of vanishing confining stress, i.e., the lower limit

of all jamming densities. This is nothing but the mean lowest
stable random density a sheared system “locally” can reach
due to continuously ongoing shear, in the limit of vanishing
confining stress.

This lower limit is difficult to access in experiments and
simulations, since every shear also perturbs the system lead-
ing at the same time to (slow) relaxation and thus a competing
increase in φJ (H). However, it can be obtained from the
(relaxed) steady state values of pressure, extrapolated to zero,
i.e., from the envelope of pressure in Fig. 5. Note that either
fluctuations, special deformation modes or careful prepa-
ration procedures e.g. energy minimization techniques or
manual construction [9,23] may lead to jammed states at

even lower density than φc, from which starting to shear
would lead to an increase of the jamming density (a mecha-
nism which we could not clearly identify from our frictionless
simulations due to very long relaxation times near jamming
for soft particles). This suggests future studies in the presence
of friction so that one has a wider range of jamming densities
and lower density states will be much more stable as com-
pared to the frictionless systems. In this work, we focused on
fixed particle size polydispersity with uniform size distribu-
tion. We expect the effects of polydispersity [44] will have
similar order of explorable jamming range as in this work,
whereas friction etc. will cause larger explorable jamming
ranges [92] and bigger changes in the calibrated parameters.

7.3 Shear jamming as consequence of a varying φJ (H)

Given an extremely simple model picture, starting from an
isotropically unjammed system that was previously com-
pressed or tapped (tempered), shear jamming is not anymore
a new effect, but is just due to the shift of the state-variable
(jamming density) to lower values during shear. In other
words, shear jamming occurs when the state-variable φJ (H)

drops below the density φ of the system.
Even though dilatancy is that what is typically expected

under shear (of a consolidated packing), also compactancy
is observed in some cases [41] and can be readily explained
by our model. Given a certain preparation protocol, typi-
cally a jamming density φJ > φc will be established for a
sample, since the critical limit φc is very difficult to reach.
When next a shear deformation is applied, it depends e.g.
on the strain rate whether dilatancy or compaction will be
observed: if the shear mode is “slower” than the preparation,
or if φJ > φc, dilatancy is expected as a consequence of
the rapidly decreasing φJ of the sample. In contrast, for a
relatively “fast”, violent shear test (relative to the previous
preparation and possibly relaxation procedure), compactancy
also can be the result, due to an increase of φJ during shear.

7.4 Rheology

The multiscale models presented in this study, based on data
from frictionless particle simulations, imply that a superpo-
sition of the two fundamental deformation modes (isotropic
and deviatoric, i.e. plane strain pure shear) is possible or, with
other words, that the respective system responses are mostly
decoupled as shown for the non-Newtonian rheology of sim-
ple fluids in Ref. [117]. Even though this decoupling is mostly
consistent with our present data (the responses to isotropic
and deviatoric deformations are mostly independent and can
be measured independently), this separation and superposi-
tion cannot be taken for granted for more realistic granular
and powder systems.
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Nevertheless, the meso-scale model presented here, as
based on a multi-scale energy landscape, explains com-
pactancy and dilatancy, at constant confining stress, as
caused by an increasing jamming density, or a decreas-
ing jamming density, respectively (not shown). Similarly, at
constant volume, the pressure either decreases or increases
(pressure-dilatancy) due to an increasing or decreasing jam-
ming density, respectively.

The model also allows to explain other rheological phe-
nomena as shear-thinning (e.g., due to an increasing jamming
density, at constant volume) or shear-thickening (e.g., due to
a decreasing jamming density, at constant volume). As gener-
alization of the present work, also the (granular) temperature
(fluctuations of kinetic energy) can be considered, setting an
additional (relaxation) time-scale, which effects the interplay
between (shear) strain-rate and the evolution of the jamming
density, so that even in a presumed “quasi-static” regime
interesting new phenomena can be observed and explained.

7.5 Towards experimental validation

The history dependent jamming density φJ (H) is difficult
to access directly, but can consistently be extracted from
other, experimentally measurable quantities, e.g. pressure p,
coordination number C∗ or fraction of non-rattlers fNR. We
explain the methodology to extract φJ (H) experimentally,
and confirm by indirect measurement, as detailed in Sect. 6,
that the jamming density is indeed increasing during isotropic
deformation and decreasing during shear, consistently also
when deduced from these other quantities.

With other words, we do not claim that the jamming den-
sity is the only choice for the new state-variable that is
needed. It can be replaced by any other isotropic quantity
as, e.g. the isotropic fabric, the fraction of non-rattlers, the
coordination number, or an empirical stress-free state that is
extrapolated from pressure (which can be measured most
easily), as long as this variable characterizes the packing
“efficiency”.

Since an increased packing efficiency could be due to
ordering (crystallization), we tried to, but could not trace
any considerable crystallization and definitely no phase-
separation. We attribute this to the polydispersity of the sizes
of the particles used being in the range to avoid ordering
effects, as studied in detail in Ref. [118]. Quantities like the
coordination number, which can tremendously increase due
to crystallization, did not display significant deviation from
the random packing values and, actually, it even decreases in
the unloading phases, relative to the initial loading phase, see
Fig. 11b. This is not a proof that there is no crystallization
going on, it is just not strong enough to be clearly seen. The
reasons and micro-structural origin of the increased packing
efficiency, as quantified by the new state-variable, are subject
of ongoing research.

7.6 Outlook

Experiments should be performed to calibrate our model
for suspended soft spheres (e.g. gels, almost frictionless)
and real, frictional materials [119–121]. Over-compression is
possible for soft materials, but not expected to lead to consid-
erable relaxation due to the small possible compressive strain
for harder materials. However, tapping or small-amplitude
shear can take the role of over-compression, also leading to
perturbations and increasing φJ , in contrast, large-amplitude
shear leads to decreasing φJ and can be calibrated indirectly
from different isotropic quantities. Note that the accessible
range of φJ −φc is expected to much increase for more real-
istic systems, e.g., with friction, for non-spherical particle
shapes, or for cohesive powders.

From the theoretical side, a measurement of the multiscale
energy landscape, e.g. the valley width, depth/shapes and
their probabilities [81] should be done to verify our model-
picture, as it remains qualitative so far. Finally, applying our
model to glassy dynamics, ageing and re-juvenation, and fre-
quency dependent responses, encompassing also stretched
exponential relaxation, see e.g. Lieou and Langer [122], is
another open challenge for future research. All this involves
the temperature as a source of perturbations that affect the
jamming density, and will thus also allow to understand more
dynamic granular systems where the granular temperature is
finite and not negligible as implied in most of this study for
the sake of simplicity. A more complete theory for soft and
granular matter, which involves also the (granular) tempera-
ture, is in preparation.

Last, but not least, while the macro/continuum model pre-
dicts a smooth evolution of the state variables, finite-size
systems display (system-size dependent) fluctuations that
only can be explained by a meso-scale stochastic model as
proposed above, with particular statistics as predicted already
by rather simple models in Refs. [28,123,124].
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