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Abstract

In the age of Internet of Things (IoT), embed-

ded devices ranging from ARM Cortex M0s with

hundreds of KB of RAM to Arduinos with 2KB

RAM are expected to perform increasingly so-

phisticated classification tasks, such as voice and

gesture recognition, activity tracking, and biomet-

ric security. While convolutional neural networks

(CNNs), together with spectrogram preprocessing,

are a natural solution to many of these classifica-

tion tasks, storage of the network’s activations

often exceeds the hard memory constraints of em-

bedded platforms. This paper presents memory-

optimal direct convolutions as a way to push clas-

sification accuracy as high as possible given strict

hardware memory constraints at the expense of

extra compute. We therefore explore the oppo-

site end of the compute-memory trade-off curve

from standard approaches that minimize latency.

We validate the memory-optimal CNN technique

with an Arduino implementation of the 10-class

MNIST classification task, fitting the network

specification, weights, and activations entirely

within 2KB SRAM and achieving a state-of-the-

art classification accuracy for small-scale embed-

ded systems of 99.15%.

1. Introduction

Moving machine learning inference from the cloud to

energy-efficient edge devices is a research topic of grow-

ing interest. Running machine learning models locally may

help mitigate privacy concerns associated with a user’s raw

sensor data and can enable truly autonomous operation by

eliminating the need for a data connection. In this applica-

tion paradigm, often assimilated with the Internet of Things
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(IoT), the machine learning model is trained on a server

and subsequently deployed across a large number of edge

devices. Consequently, these platforms must have sufficient

local memory to store the weights, biases, activations and

configuration parameters associated with typical machine

learning algorithms. However, low-cost IoT hardware is

severely resource constrained (often just 2-16KB of mem-

ory), which stands at odds with the memory-hungry nature

of top-performing algorithms, such as deep CNNs.

To address this issue, recent work has looked at memory-

efficient alternatives to CNNs and has asked the question:

Given a (small) fixed memory budget, what is the maximum

classification accuracy that one can achieve? In this quest,

Gupta et al. (2017) advocated k-Nearest Neighbor (KNN)

models to utilize a memory size as low as 2KB (Arduino

UNO platform). Similarly, Kumar et al. (2017) proposed

a sparse tree-based algorithm, building on the assumption

that a CNN can not run on a device with KB-size memory.

However, with the departure from CNNs, which are known

to achieve state-of-the-performance, there is an inherent

sacrifice in classification accuracy that is difficult to recoup

by engineering a new algorithm. For example, the 2KB tree-

based approach of Kumar et al. (2017) is limited to 94.38%

accuracy on a two-class MNIST-2 dataset (Jose et al., 2013).

This paper presents strategies for implementing CNNs under

strict memory resource constraints. While the described

techniques are generally applicable, we illustrate their utility

through the implementation of a 2KB, four-layer CNN for

image classification, thus imposing similar constraints as

in Kumar et al. (2017). We show that despite this extreme

resource scarcity, a test accuracy of 99.15% is achievable

for the original MNIST-10 dataset from LeCun et al. (1998).

The main contributions of this work are: (1) identification of

a method for memory-optimal direct convolution along with

a proof of its optimality and (2) an example implementation

of MNIST-10 classification on a 2KB Arduino platform.

The latter should be viewed as an illustrative case study

on the asymptotic limits of memory size reduction. As

such, it is not necessarily practical or optimized for other

performance aspects such as throughput and compute energy.

Figure 1 gives a taste of the results of our approach. Code

and supplemental material are available here.

https://github.com/agural/memory-optimal-direct-convolutions
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Figure 1. Activation memory versus convolution strategy for the

strategies of Section 3.4 applied to our network. Inference time

is also given for each strategy applied to all convolution layers.

Herringbone is the only method that does not corrupt the data.

2. Related Work

There is a large body of literature dealing with resource-

efficient machine learning inference. Here, we review a

subset of contributions that focus on similar KB-level mem-

ory footprints as considered in our work, as well as a few

methods for efficient convolution computation.

There are a few examples of ML techniques targetting KB-

size devices. Gupta et al. (2017) presents ProtoNN, a k-

Nearest Neighbor model optimized for small-memory foot-

print by storing a judicious selection of training data. A

2KB version of ProtoNN achieves 93.25% on MNIST-2.

Kumar et al. (2017) presents Bonsai, tree-based algorithm

utilizing sparse projections from the input data into a lower-

dimensional space. A 2KB version of Bonsai achieves

94.38% on MNIST-2. Kusupati et al. (2018) presents Fast-

GRNN, a sequential model making use of residual network

connections and low rank matrices. A 6KB version of Fast-

GRNN achieves 98.20% on MNIST-10.

Unlike previous approaches to ML for tiny embedded de-

vices, our work focuses on CNNs. There exists a large

body of work on optimizing CNNs. There are algorithmic

speedups, such as the Fast Fourier Transform (FFT) (Vasi-

lache et al., 2014) and Winograd Transform (Lavin & Gray,

2016), which convert convolutions into point-multiplies.

There are also hardware/software speedups, such as un-

rolling convolutions into matrix multiplies (Chellapilla et al.,

2006; Chetlur et al., 2014) to make use of gemm libraries.

However, while there is an abundance of research into CNN

speedup optimization, memory optimization research is

more sparse. Motivated by CNN unrolling, Cho & Brand

(2017) propose a partial unrolling of input features that

wastes much less memory in duplications while still taking

advantage of BLAS gemm speedups. However, as Zhang

et al. (2018) points out, even this partial unrolling uses

additional memory beyond direct convolution approaches.

Instead, Zhang et al. (2018) propose using direct convolu-

tions for “zero-memory overhead” and demonstrate that by

carefully reordering the for-loops, one can exceed gemm

speed. However, it is important to understand that this is

“zero-memory overhead” beyond the memory required to

store input and output activations. In this paper we show

that one can in fact do even better by overwriting stale input

activations to store new output activations.

3. Memory-Optimal Convolutions

We start by restricting our attention to 2D convolutions with

odd square kernels, valid padding, and stride of 1. This

covers the most common use case for convolutional layers

in memory-constrained applications. The valid padding

helps reduce activation storage and the other restrictions are

commonly found in popular CNN architectures (Krizhevsky

et al., 2012; Simonyan & Zisserman, 2014). Extensions

to this restricted case are considered in the supplementary

material.

The general observation that direct convolutions can be per-

formed in a more memory-efficient manner compared to

the “naive” approach of maintaining a separate area of mem-

ory for convolution outputs stems from the observation that

convolutions are local operations, so pixels in input feature

maps are computational dependencies of only a small num-

ber of output features. Therefore, after an input pixel has

satisfied all of its dependencies, its memory can be deleted

and used to store output feature pixels. In the restricted

setting described above, two major cases are important for

analysis: same/decreasing channel depth, analyzed in Sec-

tion 3.3 and increasing channel depth, in 3.4.

We additionally note that some of the analyses in the follow-

ing sections are motivated by an understanding of memory

layout. For the following analyses, activations are stored in

memory in height, width, channel order, as shown at the top

of Figure 2.

3.1. Notation

In this section, we will consider a convolution layer taking

an hin×win×fin input feature map to an hout×wout×fout
output feature map. The convolution kernel size is kh × kw
(kh = kw = k for the restricted case). The padding and

stride restrictions imply hout = hin − (kh − 1) and wout =
win−(kw−1). For convenience, assume hout ≥ wout in the

following sections (a transpose as described in Section 4.1

can be used if this is not the case).

We refer to input/output feature maps interchangeably with

input/output images. A pixel of a feature map is given by

its row and column coordinates and includes all channels

at that location in the feature map. An output pixel is “pro-

cessed” or “computed” (opposite “unprocessed”) if it has

been evaluated and stored in memory. We say an input pixel

is “stale” (opposite “live”) if, during the direct convolution

calculation, it is no longer a dependency of some unpro-



Memory-Optimal Direct Convolutions

… … 

… … 

𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 ≤ 𝑓𝑓𝑖𝑖𝑖𝑖 

𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 > 𝑓𝑓𝑖𝑖𝑖𝑖 

input pixel 

output pixel 

stale pixel 

kernel 

0 3 

6 9 

1 
2 

4 
5 

10 
11 

features 

height 

width 

Figure 2. Arrangement of pixels in memory (top) and consider-

ations for where to place output activations based on how fin
compares to fout.

cessed output pixel. We use the term “debt” or “cost” to

refer to the accrued additional memory requirements on top

of the memory required to store just the input feature map.

The opposite of “debt” is “payout” or “payback,” which is

the memory freed when input pixels become stale.

3.2. Assumptions for Memory Optimality

Memory optimality will be proven for lossless direct con-

volutions in which all input features are loaded in memory

(not streamed1). We assume that an input pixel does not

become stale until all its dependent output pixels have been

written to memory. This is in contrast to algorithms like

the Winograd (Lavin & Gray, 2016) and FFT transforms

that generate intermediate results that have sufficient in-

formation to recover the output pixels, therefore allowing

input pixels to be deleted2. In our analyses, we only count

memory used to store activations (ignoring O(1) additional

memory for, eg, loop variables).

3.3. Case: Same or Decreasing Channel Depth

Consider processing output pixels in row-major order. The

top-left input pixel only has a single output pixel dependent

because of valid-padding. Therefore, as soon as the top-left

output pixel is processed, the input pixel can be deleted.

Since fout ≤ fin, the output pixel can be stored in the

memory that the now-stale input pixel used to occupy. A

similar argument holds as additional pixels are processed

since there will always be a top-left corner pixel after each

input pixel removal.

Overall, an additional fout memory is required over the

1An interesting alternative to the methods of this paper is to
compute sub-feature maps of multiple convolution layers at a time
in a pipeline fashion.

2Our lossless assumption and basic information theory implies
that these methods can not improve on required memory.

memory used to store the input activations. The middle

row of Figure 2 shows how fout extra memory is initially

required, but afterwards, the stale input is sufficient to store

output activations. While it is intuitive that this approach

achieves optimal memory use, it is nonetheless instructive to

analyze, since this builds intuition necessary for Section 3.4.

Claim 1. The row-major traversal strategy is memory-

optimal for direct convolution with same or decreasing

channel depth and restrictions described in Section 3.

Proof. For any method of computing the direct convolution,

there will be some point in the procedure when exactly

one output pixel has been processed. At any point prior

to this computation, all hin · win · fin activations must

stay in memory, since computation dependencies are only

removed when all channels of an output pixel are computed.

The memory required to store the channels of the output

pixel is fout. So no matter what method is used for direct

convolution, an absolute minimum of hin ·win · fin + fout
memory must be available. Since the proposed algorithm

achieves this lower bound, it is optimal.

3.4. Case: Increasing Channel Depth

When fout > fin, additional memory is required, since

output pixels will not fit in the vacancy of the input pixels

as described in Section 3.3 and as seen in the bottom of

Figure 2. Three approaches to dealing with this issue are

presented here. In Section 3.4.1 a “replace” strategy that

follows the row-major approach of Section 3.3 is described.

In Section 3.4.2, a different computation order for output

pixels is described and proven to be memory-optimal. In

Section 3.4.3, a less computationally-intensive algorithm

that is nonetheless near memory-optimal is described. Algo-

rithmic implementation details are described in Section 4.

3.4.1. REPLACE STRATEGY

In the replace strategy, output pixels are computed in

row-major order. To analyze the memory requirements

of this strategy, we keep track of the memory debt ac-

crued at each step. For example, to compute the first

output pixel, we accrue a debt of fout then delete the

input pixel, which pays back fin memory. For a given

row, the sequence of debts and paybacks are L =
[fout,−fin, fout,−fin, . . . , fout,−k ·fin], where there are

wout copies of fout. Note the last pixel is unique and pays

back k · fin. Thus, each row accrues debt D(wout) =
wout(fout − fin)− (k − 1)fin, but the peak debt within a

row is D(wout) + kfin. The total peak debt is:

Drp = (hout − 1)D(wout) +D(wout) + kfin

= hout (wout(fout − fin)− (k − 1)fin) + kfin
(1)
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This replace method is not memory optimal. Note that after

each output pixel of the bottom row is computed, k−1 input

pixels become stale, but this memory is not conveniently

laid out in memory and can not be directly used. This

observation motivates the “herringbone” strategy in the next

section, which we prove to be memory-optimal.

3.4.2. HERRINGBONE STRATEGY

Intuitively, accrued debt can be minimized by prioritizing

the collection of large payouts near the edges of the im-

age. In the replace strategy, the edges are only encountered

after processing wout output pixels. However, after a suffi-

cient number of rows have been processed, edges could be

reached faster by processing a column of pixels rather than

another row of pixels.

25 cost; 20 free 30 cost; 32 free 55 cost; 60 free 

… 

0 1 2 3 4 5 6 7 

8 15 16 17 18 19 20 21 

9 22 28 29 30 31 32 33 

10 23 34 39 40 41 42 43 

11 24 35 44 48 49 50 51 

12 25 36 45 52 55 56 57 

13 26 37 46 53 58 60 61 

14 27 38 47 54 59 62 63 

Herringbone tile Order of Convolutions 

Figure 3. Motivating concept for herringbone (top) and order of

pixel traversal (bottom left) with colors indicating rows and

columns that are processed sequentially. The name comes from

the herringbone tile (bottom right, image of floor tile from Home

Depot R©) which has the same row-column alternations.

The herringbone strategy proceeds iteratively on rows

or columns of the output feature map, greedily taking

whichever will accumulate the least debt. The result is an

alternating compute procedure of row-column-row-column,

which resembles the herringbone tile pattern as seen in Fig-

ure 3. Using this strategy, the amount of debt accrued for

each row and column decreases as the algorithm progresses

on later iterations.

To analyze the memory use of this strategy, we employ the

same debt function D(x) = x(fout − fin) − (k − 1)fin
as in Section 3.4.1, giving the total debt accrued when pro-

cessing a row or column of x output pixels. Following

the herringbone method, the sequence of debts (positive or

negative) will be LD = [D(wout), D(hout − 1), D(wout −
1), D(hout − 2), . . . , D(1), D(1)] for a square output fea-

ture map. If hout > wout, LD will contain hout −wout + 1
copies of D(wout) at the beginning of the list. Therefore,

the peak debt is:

Dhb = max
i

i
∑

j=1

LD(j) + kfin

where the additional kfin is due to the input memory

required to generate the last output pixel and the maxi
is required since LD may eventually become negative.

One interpretation of
∑i

j=1
LD(j) is that it is simply

noutfout − ninfin where nout is the number of output pix-

els that have been computed and nin is the number of stale

(non-dependency) input pixels after processing those out-

put pixels, provided we have just finished one of the rows

or columns. We can see this formula only depends on the

number of processed input and output pixels.

Since LD is monotonically non-increasing, we can find the

maximum prefix sum by finding when D(x) ≤ 0 ⇒ x ≤
(k − 1)fin/(fout − fin) = x∗. This means that the worst

case memory will happen when the remaining output pixels

form a square of side length ⌊x∗⌋. Therefore:

Dhb = noutfout − ninfin + kfin

= (houtwout − ⌊x∗⌋2)fout
− (hinwin − (⌊x∗⌋+ k − 1)2 − k)fin (2)

Claim 2. The herringbone strategy is memory-optimal for

direct convolution with increasing channel depth and re-

strictions described in Section 3.

Proof. For any method of computing the direct convolution,

there will be some point in the procedure when ncrit =
(houtwout − ⌊x∗⌋2) output pixels have been processed and

no others have been processed. Just prior to this point,

there are nunproc = ⌊x∗⌋2 + 1 unprocessed output pixels

and therefore at least nlive = (⌊x∗⌋ + k − 1)2 + k input

pixels are not stale by Lemma 3.1. Therefore, the minimum

possible memory deficit just before processing ncrit output

pixels is:

Dmin = noutfout + ninfin

= (houtwout − ⌊x∗⌋2)fout − (hinwin − nlive)fin

= Dhb

No matter what method is used for direct convolution, a

minimum of Dmin = Dhb additional memory is required.

Since the proposed algorithm achieves this lower bound, it

is optimal.
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Lemma 3.1. The minimum number of input pixel depen-

dencies for n2 + 1 output pixels and odd kernel size k is

(n+ k − 1)2 + k.

Proof. Let B(p) be a function giving the input pixel depen-

dencies for pixel p and B(P ) =
⋃

p∈P

B(p). B(P ) gives

the set of pixels within Chebyshev distance (k − 1)/2 of

any pixel in P . We are interested in finding |B(S∗)|, where

S∗ = argminS |B(S)|, subject to |S| = n2 + 1.

Define a pixel p ∈ S at location (xp, yp) to be a “top-left cor-

ner pixel” if pixel (xp, yp−1) ∈ S and (xp+1, yp) ∈ S and

no pixels in S besides p have coordinates (x, y) satisfying

both x ≤ xp and y ≥ yp. Define “top-right,” “bottom-left,”

and “bottom-right” corner pixels analogously and say that

p is a “corner pixel” if it is any one of these four types of

corner pixels (refer to Figure 4a for an illustration). Notice

that if p is a corner pixel in S, then |B(S−p)| = |B(S)|−1,

since |B(p)−B(S)| = |B(p)− (B(p1)
⋃

B(p2)) | = 1.

We assume that an optimal S∗ is connected and orthogonally

convex3 (Fink & Wood, 1996). Suppose the tight bounding

rectangle R of S∗ has dimensions r × c, rc ≥ n2 + 1. We

can repeatedly remove corner pixels of this rectangle until

rc− (n2 + 1) corner pixels are removed to restore S∗ from

R. This can be seen by noting that S∗ has pixels on each

of the four edges of R, since R is tight, and S∗ must have

a staircase boundary between adjacent pairs of these edge

pixels (Nicholl et al., 1983). It is easy to see that these four

staircases can be produced by repeated corner pixel removal,

as seen in Figure 4b. Therefore,

B(S∗) = B(R)− (#removed corner pixels)

= (r + k − 1)(c+ k − 1)− (rc− (n2 + 1))

= n2 + (k − 1)2 + 1 + (k − 1)(r + c)

However, r+c ≥ r+(n2+1)/r ≥ 2
√
n2 + 1 > 2n. Since

r and c are integers, r + c ≥ 2n+ 1. Then,

B(S∗) ≥ n2 + (k − 1)2 + 1 + (k − 1)(2n+ 1)

= (n+ k − 1)2 + k

Optimality of the herringbone method requires a memory-

efficient way to access the stale inputs. This is problematic

when computing a column of pixels, as pointed out in Sec-

tion 3.4.1. Two approaches can be used to solve this prob-

lem: shifting and transposing, as summarized in Figure 5.

The first approach is to shift input pixels in memory every

time a later input pixel becomes stale to fill in the stale spot

3A proof of this fact is not too insightful and is provided in the
supplementary material.
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Figure 4. Example of a corner pixel p with k = 5 (a) and example

of a sequence of corner pixel removals to get from R to S∗ (b).

Shift method: for columns, shift previous non-stale pixels to fill stale pixel

Transpose method: process a row, transpose, process a row, transpose, …

Figure 5. Shifting to claim fragmented stale pixels (top) and using

transposes to never have fragmented stale pixels (bottom).

and open free memory at the front of the input activations.

This algorithm takes O(houtwouthinwinfin).

The second approach is to perform an in-place transpose

when switching between row and column processing45.

Because transposes only need to be performed between

entire rows and columns, the computational complexity

is reduced to O((hout + wout)Ttranspose(hin, win, fin)).
In Section 4.1, an in-place transpose with complexity

O(hinwin(c + fin)) is presented. Empirically, we find

that c is usually less than 5 for problem sizes of interest.

Both approaches leave the output in herringbone order. Sec-

tion 4.2 discusses an efficient solution to return the feature

map to row-major order.

3.4.3. SINGLE TRANSPOSE STRATEGY

While the herringbone method is memory-optimal, it is com-

putationally expensive because of the required memory ma-

nipulations. We now demonstrate that a single well-placed

transpose can yield most (or sometimes all) of the memory

benefits, while significantly reducing computational load.

The single transpose method uses standard row-major or-

4A transpose is equivalent to switching between row-major to
column-major storage in memory.

5The convolution kernel must be transposed as well.
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der for several rows as given in (4), then transposes the

remaining input activations and processes the remaining

rows (former columns) to completion.

Let r be the number of rows remaining after hout − r
rows have already been processed (each processed row

adding wout(fout − fin) − (k − 1)fin debt, as analyzed

in Section 3.4.1). Two cases need to be analyzed sepa-

rately: either the remaining columns do not add debt, if

r(fout − fin) − (k − 1)fin ≤ 0, or they do. An anal-

ysis similar to that of Section 3.4.2 shows that the op-

timal row on which to perform the transpose is r∗
1

=
⌊(k − 1)fin/(fout − fin)⌋ for case 1, or r∗

2
= r∗

1
+ 1 for

case 2. The total debt is elegantly expressed in terms of the

optimal debt Dhb.

Dst = Dhb +min(woutα, (k − 1)fin)− r∗
1
α (3)

where α = (k − 1)fin mod (fout − fin). The first term in

the min function is from case 1 (r = r∗
1
) and the second is

from case 2 (r = r∗
1
+ 1). This makes it clear that:

r∗ =

{

r∗
1

woutα ≤ (k − 1)fin

r∗
1
+ 1 else

(4)

From (3), it can be seen that the single transpose method

is optimal when wout = r∗
1
, (k − 1)fin = r∗

1
α, or α = 0.

This last condition holds when (k − 1)fin divides fout −
fin. Compared to the herringbone computation complexity

of O((hout + wout)Ttranspose(hin, win, fin)), the single

transpose method is O(Ttranspose(r
∗, win, fin)), a factor

of approximately (hout + wout)hin/r
∗ times faster.

Figure 10 shows that over a range of randomly generated

network architectures, the herringbone method (blue dot)

and the transpose method (red dot) have nearly identical

memory requirements.

4. Implementation Details

In the herringbone strategy described in Section 3.4.2, the

proof of optimality ignored memory requirements of per-

forming transposes. Here, we present a memory-efficient

in-place transpose. Using insights gained from this in-place

transpose, an inverse herringbone transform is also proposed,

to allow efficient “unwrapping” of the output feature map

that results from processing in herringbone order.

4.1. Memory-Efficient Transpose

The basic technique for in-place memory manipulations is

to decompose the desired memory permutation (such as a

transpose) into disjoint cycles, then rotate elements in each

of these cycles. To make this algorithm memory efficient, it

uses a light-weight successor function mapping each mem-

ory location i to another location j, indicating the memory

at location j should be moved to i. Recursive application of

the successor function thus generates a cycle and the whole

cycle can be rotated with one auxiliary memory cell for

matrix element storage6.

All cycles can be rotated by iterating over all elements in

memory, to find starting positions, and only rotating cycles

that have not yet been visited. Traditionally, extra memory

is used to keep track of the visited cycles (Windley, 1959;

Laflin & Brebner, 1970). An alternative zero-memory-cost

way to ensure unique cycles is to only perform the rotation

if the starting position is the minimum element in its cycle.

This can be verified by running through the cycle once

without any data movement (Morini, 2017).

Finally we address how to compute the successor function.

In Laflin & Brebner (1970); Morini (2017), it is given as:

f(i;h,w) = (i mod h) · w + ⌊i/h⌋ (5)

where i is the location in memory and h× w are the image

dimensions. To derive this result, we must determine what

index j contains the memory needed at index i. Viewed from

the transpose perspective, i = r ·h+ c is located at (c, r) =
(i mod h, ⌊i/h⌋). From the untransposed perspective, this

is (r, c) = (⌊i/h⌋, i mod h), which results in an index j =
r · w + c = f(i;h,w), as in (5). Figure 6 illustrates this

technique with a small example.
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4 5 6 7 

8 9 10 11 
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1 5 9 

2 6 10 

3 7 11 

0 1 2 3 4 5 6 7 8 9 10 11 

0 4 8 1 5 9 2 6 10 3 7 11 

For each start: 

 Check if start > any other element in its cycle 

 If not, rotate elements in the cycle 

Successor: 𝑗𝑗 = 𝑖𝑖 mod 𝐻𝐻 ⋅ 𝑊𝑊 + 𝑖𝑖/𝐻𝐻  

mem layout A 

mem layout B 

Figure 6. Example for transposing a 3× 4 array in-place.

4.2. Memory-Efficient Inverse Herringbone

To invert the herringbone pattern of output pixels, we note

that we are simply trying to perform a particular permutation

on the memory elements and therefore we can use an in-

place permutation again, except with a different successor

function. The herringbone pattern is only interesting for the

w × w square at the end of the output activations, so we

restrict our attention to this case.

6Or zero, if using the XOR swap trick.
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As before, we consider a “next” element with some un-

permuted index whose memory needs to be moved to the

“current” element (r, c) with some permuted index. The per-

muted case is simply row-major form, so i = r · w + c and

therefore r = ⌊i/w⌋ and c = i mod w. For the unpermuted

case, refer to Figure 3. The indices of a given “shell” can be

referenced to the index w2 − n2, where n is the side-length

of the square contained within the shell. Then, behavior can

be split between the upper and lower triangular regions for

the two halves of the shell: c ≥ r and c < r. When c ≥ r,

the index is j = w2 − (w − r)2 + c− r. When c < r, the

index is j = w2 − (w− c− 1)2 − (w− c− 1) + r− c− 1.

Simplifying, we get:

f(i;w) =

{

r(2w − r − 1) + c c ≥ r

c(2w − c− 2) + w + r − 1 else
(6)

5. Case Study

We verify the feasibility of the herringbone method with

a case study implementing an MNIST classifier on an Ar-

duino, followed by a discussion of results.

5.1. MNIST on Arduino
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Figure 7. Overview of implemented Arduino system and our CNN

architecture. SRAM is split into the network serialization, network

activations, and program stack. New layers are built at the front

of activations memory (light blue arrow), while current layers are

made stale at the back (green arrow).

Figure 7 shows an overview of the hardware setup. A single

Arduino based on the ATmega328P chip is employed for

the classification task. Network parameters and images

are streamed in through serial communications, then the

Arduino runs its CNN and returns the output class via serial.

A network architecture search is performed to find the best

quantized network by validation performance. Figure 8

shows a random sample of these networks and their float

versus quantized performance. After this search, hand tun-

ing is used to optimize the architecture to the one shown in

Figure 7. The network is trained in Keras/TensorFlow with

Table 1. Results Summary.

RESULT VALUE

MEMORY 434.5 B (ACT) / 1512.5 B (WTS)
TOTAL, SERIALIZED 1960 B
PROGRAM SIZE 6514 B
INFERENCE TIME 684 MS (NOT OPTIMIZED)
ACCURACY 99.11% (DEV) / 99.15% (TEST)

Adam (Abadi et al., 2015; Chollet et al., 2015; Kingma &

Ba, 2014) for 50 epochs in floating point and 200 epochs

with 4-bit quantized training using the straight-through esti-

mator and ALT training (Courbariaux et al., 2016; Jain et al.,

2019). Additional techniques used to maximize classifica-

tion accuracy can be found in the supplemental material.

The CNN is then implemented in hardware. Verification

is performed both for intermediate activations in a single

test image and for the 16-bit output logits for all 10,000

test images to ensure a 100% match. A summary of the

results is provided in Table 2. In Figure 1, the benefits of

non-naive methods are made clear. For our network, the

single transpose method only costs an additional 3B beyond

herringbone. However, when including peak stack usage we

only have 2B spare, necessitating the use of herringbone.

5.2. Discussion

One might wonder whether the techniques described in this

paper are practically useful. We claim that first, the replace

method described in Sections 3.3 and 3.4.1 is a generally

useful technique that can be applied to any convolutional

layer. Second, the herringbone and single-transpose tech-

niques from Sections 3.4.2 and 3.4.3 are useful for 2D or 3D

valid-padded CNNs in which (a) channel depth increases,

(b) kernel size is greater than 1, and (c) kernel size is not too

small compared to feature map width and height. Figure 8

shows that the models near the Pareto frontier tend to have

increasing channel depth and 3 × 3 kernels, satisfying (a)

and (b). Meanwhile, our limitation to small devices virtu-

ally guarantees that (c) holds. More directly, the bottom

left plot of Figure 8 shows that models at the Pareto frontier

are disproportionately likely to benefit from the herringbone

method.

Figure 10 shows the error versus activation memory require-

ment across the different convolution computation strategies

discussed in Section 3.4. The difference between the naive

method and all other methods is substantial and can be qual-

itatively seen to affect performance. One way to get a more

quantitative sense of the expected impact of a decrease in

memory efficiency is to look at the slope of the Pareto fron-

tier of this curve. Below 1KB, the validation error appears

to rise 10x for every 10x decrease in activation memory

(cyan line). In other words, there is a constant (memory
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Figure 8. Pareto curves for 1000 randomly selected architectures examining the impact of different architecture features. Models are

trained for 5 epochs with floating point weights/activations (red dots), then 5 epochs with quantized weights/activations (blue dots).
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Figure 9. Comparison of our 2KB CNN classifier to results from

Kumar et al. (2017); Gupta et al. (2017); Kusupati et al. (2018).

× error) product in this regime. Since the naive method

has roughly twice the memory use of herringbone (see Fig-

ure 1), it may be expected to have twice the error for a given

memory constraint. The improvements between the replace

method and herringbone are more modest, but appear to

be more pronounced for higher-achieving models. So, they

could still be predicted to affect performance on average by

≈ 10% relative error.

A Pareto frontier can also be seen in Figure 8. Of partic-

ular interest is the existence of a soft knee around 2KB,

where extra memory has diminishing returns. This could

explain why we achieved such a high accuracy compared

to related work in Figure 9 — 2KB is close to the cliff of

accuracy degradation, meaning even small memory-use non-

optimalities can have a large impact. In contrast to our work,

the related works typically take a more balanced approach to

the memory-compute trade-off. For the 2KB environment,

we may surmise MNIST is an approximate lower bound on

problem complexity where our methods would boost accu-

racy. However, even for simpler classification problems, our

methods could still free memory for other processes.

6. Conclusion

In this paper, we analyzed the minimum memory required

to run CNN inference so that we could maximize classifica-
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Figure 10. Comparing activation weight storage (4-bit) between

four different convolution strategies as described in Section 3

across a range of randomly-generated network architectures. The

dotted cyan line gives a rough position for the Pareto frontier.

tion accuracy on memory-constrained devices. For a given

convolution layer, when channel depth increases, we saw

that the herringbone method was optimal and showed that

it can be implemented with in-place memory permutations.

We used this optimality to show that a single well-placed

transpose was nearly or exactly optimal and additionally

benefited from a significant reduction in computational com-

plexity.

We then demonstrated these techniques on an Arduino

for MNIST classification and achieved a test accuracy of

99.15%, which is state-of-the-art for models with compa-

rable memory constraints. This demonstrates the effective-

ness of CNN classification even on small embedded de-

vices. While our focus application was narrow, the replace

technique applies to all CNNs and the herringbone/single-

transpose techniques apply to many CNNs. MNIST classifi-

cation in itself may not be all that attractive, but CNNs in

conjunction with spectrograms of time-series sensor data

could enable a suite of KB-level smart device applications.
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