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Abstract

Background: The incidence of Alzheimer’s disease (AD) strongly relates to advanced age and progressive deposition
of cerebral amyloid-beta (Aβ), hyperphosphorylated tau, and iron. The purpose of this study was to investigate the
relationship between cerebral dynamic functional connectivity and variability of long-term cognitive performance in
healthy, elderly subjects, allowing for local pathology and genetic risk.

Methods: Thirty seven participants (mean (SD) age 74 (6.0) years, Mini-Mental State Examination 29.0 (1.2)) were
dichotomized based on repeated neuropsychological test performance within 2 years. Cerebral Aβ was measured by
11C Pittsburgh Compound-B positron emission tomography, and iron by quantitative susceptibility mapping magnetic
resonance imaging (MRI) at an ultra-high field strength of 7 Tesla (7T). Dynamic functional connectivity patterns were
investigated by resting-state functional MRI at 7T and tested for interactive effects with genetic AD risk (apolipoprotein
E (ApoE)-ε4 carrier status).

Results: A relationship between low episodic memory and a lower expression of anterior-posterior connectivity was
seen (F(9,27) = 3.23, p < 0.008), moderated by ApoE-ε4 (F(9,27) = 2.22, p < 0.005). Inherent node-strength was related to
local iron (F(5,30) = 13.2; p < 0.022).

Conclusion: Our data indicate that altered dynamic anterior-posterior brain connectivity is a characteristic of low
memory performance in the subclinical range and genetic risk for AD in the elderly. As the observed altered brain
network properties are associated with increased local iron, our findings may reflect secondary neuronal changes due
to pathologic processes including oxidative stress.
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Background

Sporadic Alzheimer’s disease (AD) is the most frequent

cause of dementia [1] and is characterized pathologically

by deposition of amyloid-beta (Aβ), hyperphosphorylated

tau, and progressive neuronal dysfunction [2, 3]. Patho-

logical brain change in AD furthermore includes the

increased accumulation of cerebral iron, which has been

linked to several pathological processes associated with

risk for AD and disease progression [4–9].

Clinically, AD develops gradually and presents with pro-

gressive decline in multiple cognitive domains, particularly

affecting episodic memory, executive functioning, and per-

ceptual speed [10–13]. While these alterations may also

take place during normal aging, the concurrent incidence

of subtle cognitive dysfunction and emerging AD brain

pathology in the cognitively normal elderly is considered

to reflect a preclinical stage of AD [14, 15]. Moreover,

progression of AD is significantly affected by genetic pre-

disposition and presence of the apolipoprotein E (ApoE)

ε4 allele, which is the strongest known genetic risk factor

for late-onset AD [16–20].

A variety of noninvasive neuroimaging techniques have

been developed to assess AD pathology directly and AD-

associated neurobiological changes. Positron emission

tomography (PET) using the 11C-labeled tracer Pittsburgh

Compound-B (PiB), is a validated method for measuring

fibrillar Aβ [21, 22] and has been used to assess patho-

logical burden in several clinical studies [23–25].

Cerebral iron can be measured in vivo by applying

quantitative susceptibility mapping (QSM) magnetic res-

onance imaging (MRI) [26, 27], which has very high

signal-to-noise ratios (SNRs) when acquired at ultra-

high field strength [28, 29].

While the blood-oxygen-level dependent (BOLD)

functional MRI (fMRI) contrast reflects in vivo neuronal

activity [30, 31], an ultra-high field strength of 7 Tesla

(7T) may provide enhanced SNR and enriched contrast

[32–35]. Therefore, for the current study, a three-

dimensional T2-weighted BOLD fMRI sequence was

used (“T2-prep fMRI”), which was specifically designed

for ultra-high magnetic field strength MRI acquisition

[36]. Functional connectivity, as inferred from synchron-

ous fluctuations in activity in spatially distant brain areas

[37], is an established measure for investigating the in-

tegrity of functional brain networks and their potential

impairment in AD [38–41]. Investigation of “dynamic

functional connectivity” additionally provides informa-

tion on the expression of brain networks over time

and has been used to characterize changes in brain

network connectivity in neuropsychiatric disorders

earlier [42–45].

The primary aim of this study was to investigate whether

dynamic expression of cognitive brain networks relates to

interindividual variation of cognitive performance in

healthy elderly subjects and their genetic predisposition

for AD. Considering that “stationary” connectivity is sig-

nificantly affected by local neurodegenerative brain change

[46–50], the second aim of this study was to examine the

relationship between dynamic network expression and

neuropathology. 11C-PiB-PET and QSM-MRI were thus

used for measuring neuropathological burden, as indicated

by the accumulation of cerebral Aβ and iron. QSM-MRI

and resting state T2-prep fMRI were performed at an

ultra-high field strength of 7T. Interindividual variability of

cognitive performance over time was assessed by perform-

ing two neuropsychological tests for each participant,

2 years apart.

Methods

Study population

The study sample included 37 (13 females and 24 males)

cognitively normal Swiss-German elderly adults (mean

age (SD) 73 (6.6) years, range 62–89 years, mean educa-

tion (SD) 14 (3) years, range 8–20) living in the canton

Zurich from an ongoing study [51], who received ultra-

high field strength MRI at 7T and neuropsychological

follow-up after 2 years (Table 1). Genotyping of the

APOE gene (rs429358 and rs7412) revealed 13 carriers

Table 1 Mean scores of neuropsychological tests at inclusion of study and follow-up, as well as changes (%) in performance
between sessions

Test Inclusion Follow-up p value* Total sample (n = 37),
% change per year

No decline, %
change per year

No decline
p value*

Decline, % change
per year

Decline p value*

MMSE 29.03 (1.17) 29.03 (1.19) 1.00 0.00 1.83% (n = 23) <0.001 –1.97% (n = 14) <0.0001

BNT 14.32 (1) 14.46 (0.84) 0.53 0.01 1.45% (n = 33) <0.01 –5.53% (n = 4) <0.015

DSF 6.81 (1.66) 6.84 (1.55) 0.94 0.02 10.32% (n = 24) <0.01 –14.09% (n = 13) <0.001

DSB 6.08 (1.57) 5.95 (1.73) 0.73 0.00 10.32% (n = 20) <0.001 –11.69% (n = 17) <0.0001

TMT B/A 2.83 (1.27) 2.61 (1) 0.41 0.00 17.51% (n = 19) <0.002 –18.84% (n = 18) <0.001

VLMT delayed recall 8.49 (3.92) 9.62 (4.21) 0.23 0.19 46.22% (n = 19) <0.001 –9.31% (n = 18) <0.01

Values are shown as mean (SD)
*Follow-up versus inclusion

BNT Boston Naming Test, DSB Digit Span Backward, DSF Digit Span Forward, MMSE Mini-Mental State Examination, TMT B/A Trail Making Test part B/part A, VLMT

Verbal Learning and Memory Test
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with at least one ApoE-ε4 allele (two subjects had the

genotype ε4/ε4). All study procedures were carried out

in concordance with regulations issued by the local

ethics authority (Kantonale Ethikkommission Zürich,

www.kek.zh.ch), as well as good clinical practice (GCP)

guidelines and the declaration of Helsinki [52]. Written

informed consent was obtained from all participants be-

fore inclusion in the study. Inclusion criteria were age

between 55 and 80 years, no significant cognitive impair-

ment as indicated by Mini-Mental State Examination

(MMSE) <26, no acute medical or neurological comor-

bidities, and no present psychiatric disorder or current

substance abuse. Exclusion criteria included evidence of

infarction and focal or significant hemorrhagic lesions in

the MRI, as indicated in detail previously for neuroimag-

ing studies on nondemented elderly populations at our

center [8, 41, 51, 53].

Cognitive assessment of participants

All subjects were evaluated by neuropsychological tests

as described previously [51]. For the current study,

neuropsychological follow-up was scheduled after 2 years

and included German language versions of the MMSE

as a general measure of cognitive performance [54], as

well as domain-specific testing using the Digit Span

Forward (DSF) and Digit Span Backward (DSB) for

measuring working memory [55], the delayed recall

Verbal Learning and Memory Test (VLMT) [56] for

assessing episodic memory, the abbreviated CERAD

Boston Naming Test (BNT) on confrontational word re-

trieval [57, 58], and the ratio between part B and A of

the Trail Making Test (TMT) as a measure of executive

function [59]. To characterize the performance of each

measure over time, the percentage difference between

follow-up value and baseline was used to obtain yearly

variability ratios (relative change per 365 days) for each

participant and each investigated cognitive domain.

Subjects were allocated to the group “Decline” if the re-

spective yearly variability ratios were negative and to the

group “No Decline” if ratios were equal or better than at

inclusion (Table 1).

Acquisition of MRI data

Participants underwent one session of scanning using a Phi-

lips 7-Tesla Achieva whole-body scanner (Philips Health-

care, Best, The Netherlands) equipped with a Nova Medical

quadrature transmit head coil and 32-channel receive coil

array, located at the Swiss Federal Institute of Technology

(ETH) in Zurich, as reported previously [8, 41, 53]. For the

current study, this scanner was used to acquire T1-

weighted MP2RAGE image [60] data (TR/TE = 4.8 ms/

2.1 ms, voxel size = 0.6 × 0.6 × 0.6 mm3, SENSE-factor = 2 ×

1 × 2, scan duration = 7:50 min) for referencing and auto-

mated image segmentation. Resting-state fMRI data was

acquired using a 3D T2-prep gradient recalled echo (GRE)

sequence, optimized for ultra-high field strength acquisition

[36] (TR = 2 s, TRGRE/TEGRE = 3.08 ms/1.6 ms, voxel size =

1.5 × 1.5 × 1.5 mm3, scan duration = 7:03 min). Iron load

was measured by QSM-MRI at ultra-high field strength

using a multi-echo three-dimensional gradient recalled echo

(GRE) sequence with three echoes (TR/TE/ΔTE= 23/6/

6 ms, flip angle = 10°, voxel size = 0.5 × 0.5 × 0.5 mm3,

SENSE-factor = 2.5 × 1 × 2, flow-compensated, scan dur-

ation = 13:48 min) for acquiring anatomical MR measures

of magnitude and phase for calculation of QSM images

using a previously described pipeline [8, 29].

Acquisition of PET data

Cerebral Aβ was measured with 11C-PiB-PET [8, 41, 53].

Briefly, participants were administered a dose of 350 MBq

of the 11C-labeled tracer intravenously and cerebral amyl-

oid deposition was estimated based on late frame signals

representing 50–70 min. Measures of individual brain Aβ

load were derived from the ratio of standardized uptake

values (SUV) of regional PiB referenced to cerebellar SUV

after coregistration using the PMOD brain tool (PNEURO)

software, Version 3.4 (PMOD Technologies Ltd., Zurich,

Switzerland).

Processing of fMRI data

Structural and functional images were preprocessed with

a standardized in-house-developed preprocessing pipeline

[61] implemented in MATLAB scripts (MATLAB 2015b,

Version 8.6; MathWorks Inc., Natick, MA, USA), which

included functions from SPM8, SPM12 (http://www.fil.io-

n.ucl.ac.uk/spm/) and DPARSFA toolboxes [62]. Images

were spatially realigned and smoothed (FWHM= 5 mm).

Nuisance variables were regressed out from the regional

time series (these included linear and quadratic trends, six

head motion parameters, average cerebrospinal fluid sig-

nal from ventricular masks and white matter signal from

white matter masks). All the functional data was postpro-

cessed using the Artifact Detection Tool (ART; www.nitr-

c.org/projects/artifact_detect/), resulting in exclusion of

three subjects from further analysis due to excess motion

(>2 mm). The remaining 37 functional volumes were re-

gionally parcellated using the automated anatomical label-

ing (AAL) atlas [63], resulting in the definition of 90

anatomical grey-matter regions of interest. Regional mean

time series were then extracted by averaging the prepro-

cessed BOLD signal over all voxels in each region and fil-

tered with a band-pass filter cutoff (0.017–0.15 Hz), as

performed previously for investigating dynamic functional

networks at rest [45].

Assessment of dynamic functional connectivity

A whole brain dynamic functional connectivity (FC)

matrix for each subject was calculated using a sliding time

Quevenco et al. Alzheimer's Research & Therapy  (2017) 9:24 Page 3 of 11

http://www.kek.zh.ch/
http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
http://www.nitrc.org/projects/artifact_detect/
http://www.nitrc.org/projects/artifact_detect/


window approach (window size = 30 TRs = 60 s; step =1

TR = 2s) to calculate the time-varying correlations

between BOLD fluctuations in distinct brain regions, as

reported previously [45, 64]. Briefly, in order to account

for spurious fluctuations while preserving meaningful fluc-

tuations within the time windows, the window size was

determined by calculating 1/smallest frequency in the

data, represented by the high-pass filter cutoff [64]. The

FC matrices obtained for all windows were then vector-

ized and temporally concatenated to obtain a dFC (con-

nections × time) matrix, which was normalized by first

removing the global mean and dividing for the global

standard deviation and secondly applying a row-wise

demeaning to focus on the exclusive contributions of

dynamics. Finally, dFC data were concatenated into a

(connections × time*subjects) matrix and principal com-

ponent analysis (PCA) was used for reducing data dimen-

sionality and to define subject specific eigenconnectivities,

referring to distinct connectivity patterns [45] (i.e., build-

ing blocks of dFC, highlighting dominant patterns of FC

increase/decrease that recur across time and in the popu-

lation). For the current study, the following properties of

dynamic network connectivity were investigated: 1) Time-

contributed weights and percentage of positive weights

were obtained for identified connectivity patterns as a

measure of dynamic FC changes and compared between

groups for inferring expression of connectivity patterns

within the acquired fMRI data (“network expression”).

Effects of cognitive decline and ApoE-ε4 status on

changes in dynamic FC network expression were assessed

using a multivariate Hotelling’s T2 test. Singular value de-

composition with bootstrapping matched to a Procrustes

transform [65] was conducted to test the reproducibility

of the eigenconnectivity patterns [66]. Through this

process, the stronger connections are attributed higher

values and the weaker connections are gradually dis-

carded. This eases interpretation without affecting group

comparison tests and these data were therefore used for

the visualization of the eigenconnectivity networks. 2.)

Node strengths for significant connectivity patterns were

calculated as a graph theoretical measure indicating in-

volvement of a particular region in a network, as derived

from the sum of all connection weights for all connections

attached to a given node [67].

Statistical analysis

All data processing was performed in MATLAB (2015b,

Version 8.6) and its Statistics and Machine Learning Tool-

box (Version 10.0). A Hotelling’s T2 multivariate test in

combination with sequentially rejective Holm-Bonferroni

correction [68] for investigating variability indices pertain-

ing to six neuropsychological tests was used to assess

relationship with expression of dynamic connectivity pat-

terns. To follow-up on significant associations, secondary

analysis investigated: 1) interactive effects of test perform-

ance and ApoE-ε4 on network alterations using a multi-

variate Hotelling’s T2 test; and 2) relationships between

node strength of significant connectivity patterns and local

Aβ and iron load, respectively, by applying false discovery

rate (FDR)-corrected permutation-based multivariate

analysis of variance (MANOVA) [69]. Effect sizes of differ-

ences between the “Decline” and “No decline” groups were

estimated using Cohen’s d [70].

Results

Stratification of the study sample by identification of

participants with lower cognitive performance after

2 years

Participants were neuropsychologically tested at baseline

and after 2 years (mean (SD) follow-up time between

testing, 719 (277) days). All participants had normal

levels of general cognitive performance both at inclusion

(mean (SD) MMSE 29.03 (1.17)), as well as at follow-up

(mean (SD) MMSE 29.03 (1.19), mean average change

per year 0.39%) and for the entire population (n = 37) no

significant difference between baseline and follow-up

could be observed for the investigated neuropsycho-

logical tests. For stratifying the study population by

cognitive performance over time, a subgroup of “de-

cliners” was defined that included subjects with negative

yearly variability ratios for each cognitive domain.

Decliners thus included four subjects for the Boston

Naming Test (average yearly change –5.53%), 13 subjects

for the Digit Span Forward Test (average yearly change

–14.09%), 17 subjects for the Digit Span Backward Test

(average yearly change –11.69%), 18 subjects for Trail-

Making Test ratio (average yearly change –18.84%), and

18 subjects for the VLMT delayed recall test (average

yearly change –9.31%) (Table 1). By generating a Venn

diagram, a small degree of overlap between decline in

the respective domains could be visualized (Fig. 1), indi-

cating no participant with concurrent decline in all five

tests and only two subjects with declined performance

in four out of five tests. Moreover, the null hypothesis

that the performed tests for domain performance

assessed one common factor was dismissed by means of

a factor analysis (χ2(5) = 11.995, p < 0.04).

Lower expression of an anterior-posterior network in

subjects with declined episodic memory performance

Individuals characterized as having memory decline showed

reduced expression of an anterior-posterior connectivity

pattern, which remained significant (alpha = 5%) after ap-

plying Holm-Bonferroni correction for multiple testing

(Roy’s maximum root F(9,27) = 3.23, p < 0.0078; factor load-

ing –0.521; Fig. 2a and b). No significant effects (Roy’s max-

imum root test, indicated are uncorrected p values without

adjustment for multiple testing) on dynamic FC were found
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Fig. 1 Venn diagram illustrating the relationship of “decliners” among the different strata. Each circle is labeled according to the neuropsychological
test it represents: A, delayed recall Verbal Learning and Memory Test; B, Digit Span Backward test; C, Trail-Making Test; D, Digit Span Forward test; E,
Boston Naming Test). The small circle without a label in the same color as E also illustrates decliners in the Boston Naming Test

Fig. 2 a Coronal, sagittal and axial views of the 2% strongest connections in brain space of the anterior-posterior network. Brain regions are
shown as spheres where their size represents their degree and color represents the algebraic sign of relative node strength (red for positive, blue
for negative). Connections follow the same color scheme. b Corresponding eigenconnectivity for anterior-posterior network. Plot follows an identical
color scheme as the glass brains. Each number on the x and y axes represents a label on the AAL atlas
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for groups defined by the cognitive tests Boston Naming

(F(9,27) = 0.53, p = 0.85), Digit Span Forward (F(9,27) =

1.33, p = 0.27), Digit Span Backward (F(9,27) = 0.97, p =

0.48) and Trail Making Test B/A (F(9,27) = 0.84, p = 0.6).

Node strength is associated with higher regional iron, but

not amyloid-beta

The observed relationship between memory decline and

anterior-posterior network expression was followed up

for potential relationships between node strength of

significant connectivity patterns and neuropathology, by

permutation MANOVA. This approach yielded a set of

five nodes where nodal contributions to the network

were associated with significantly higher susceptibility, as

an indicator of local iron, in subjects with lower memory

performance at follow-up, compared to those with equal

or better performance (F(1,35) = 13.1, p < 0.022, FDR-

corrected; Fig. 3c). The most distinct increases for local

iron were observable for the left Precuneus (Cohen’s d =

0.493), right Caudate (d = 0.410) and right anterior Cingu-

late (d = 0.160) (Fig. 4). While no significant relationship

between regional network contribution and local Aβ

load could be observed for any of the identified nodes

(p = 0.128, uncorrected), the association between node

strength in the anterior-posterior network and mem-

ory decline was not significant when correcting iron

levels for Aβ (t(27) = 12.49, p = 0.1).

Combined effects of ApoE-ε4 and declined episodic

memory performance on network expression

A multivariate Hotelling's T2 test was used to investigate

whether the observed change of dynamic connectivity in a

context of memory decline relates to the individual risk of

developing AD. Participants with both ApoE-ε4, as well as

declined memory over 2 years (n = 6), were tested against

the rest of the sample (n = 31), resulting in significant dif-

ferences in the percentage of positive weights between

groups (Roy’s maximum root F(9,27) = 2.22, p < 0.005).

Secondary testing of ApoE-ε4 carriers against noncarriers

within the group of subjects with declined memory indi-

cated a nominally significant difference in the percentage

of positive weights between groups (Roy’s maximum root

F(9,8) = 5.29, p < 0.03). Here, the factor loadings of each

eigenconnectivity point to three connectivity patterns that

drive this group difference: the global network expression

(factor loading –0.5), a fronto-temporal network (factor

loading –0.44), and a fronto-occipital network (factor load-

ing –0.48). These findings indicate a significant difference

in specific network expression associated with ApoE-ε4 car-

rier status and memory decline, concerning: 1) a pattern

showing the alteration of global connectivity (first eigen-

connectivity, positive pattern); 2) the alteration between

anterior-posterior network connectivity (negative pattern)

and interhemispheric fronto-temporal (positive pattern)

connectivity (second eigenconnectivity); and 3) the alter-

ation between parieto-temporal connections (negative pat-

tern) and fronto-occipital connectivity (positive pattern)

(Fig. 5). The negative sign of the factor loadings indicate

that these networks show an increase in the negative pat-

terns and decrease in the positive patterns.

Discussion

By implementing dynamic functional connectivity ana-

lysis on ultra-high field strength MRI at 7T, reduced ex-

pression of a dynamic anterior-posterior brain network

could be identified as a correlate of low episodic mem-

ory performance over time in cognitively normal elderly

subjects. While strength of nodes implicated in this net-

work related to mean regional susceptibility as a meas-

ure of local iron accumulation, no significant association

could be observed for local Aβ plaque density, as in-

ferred by PiB standardized uptake value ratio (SUVR).

As dynamic functional connectivity changes relates to

both lower episodic memory and ApoE-ε4, our findings

Fig. 3 a Exemplary 11C-PiB-PET image, indicating regional distribution of standardized uptake value ratio (SUVR) as a measure of local Aβ
deposition. b Exemplary QSM image at 7T, indicating regional distribution of susceptibility as used for inferring on local iron load. c Correlation
between node strength of the anterior-posterior network and local iron load. Significance as indicated by alpha of 5% after correction for multiple
testing (FDR) was reached at –log10(p) = 1.3
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may reflect brain change taking place in subjects at

increased risk for AD and preclinical stages of AD, re-

spectively. To our knowledge, this is the first study that

demonstrates a relationship between memory decline

within the normal range and altered dynamic network

connectivity as a potential correlate of increased risk for

AD in the healthy elderly.

Assessment of pathological burden included estima-

tion of Aβ plaque density by administering 11C-PiB-PET,

as has been demonstrated to be valid for characterizing

progression of AD pathology previously [21, 71–73].

Additionally, iron was measured by QSM-MRI [26, 27]

which was performed at ultra-high field strength for maxi-

mizing signal quality [28]. While functional connectivity

analysis of BOLD-fMRI data is a well-established measure

of neural integrity in AD [38, 39, 74], for the current

study, T2-prep fMRI was used to avoid signal contortion

near air cavities, but which nevertheless benefits from high

SNR at 7T [36]. Moreover, dynamic functional connectiv-

ity [42] was assessed for inferring on the temporal expres-

sion of connectivity patterns by integrating information

on both the regional extent and temporal evolution of co-

herent BOLD activity [45, 64]. The studied population was

cognitively assessed by performing tests and follow-up for

language capacity, working memory, episodic memory,

and executive function within 2 years. While neuro-

psychological assessment over time has been suggested

previously to be a particularly reliable measure of cogni-

tive performance in the elderly [75, 76], the investigated

study population in our study remained relatively stable

regarding test performance within the study period. How-

ever, by splitting the study population by algebraic sign of

yearly variability ratios, two subgroups that significantly

differed regarding their rate of decline in the investigated

cognitive domains could be identified that only showed

moderate overlap regarding cognitive domains affected by

lower performance over time. Some participants in our

study performed better at follow-up, which may be ex-

plained by practice effects as reported previously for longi-

tudinal studies on cognitively normal elderly subjects [77].

Our finding of an association between memory per-

formance and dynamic connectivity appears consistent

with a concatenation of earlier reports on altered func-

tional connectivity in AD [50, 78, 79] as well as associa-

tions between distinct cognitive impairment and increased

AD risk [15, 80]. Central nodes of the dynamic anterior-

posterior network found to be associated with episodic

memory performance exhibited increased iron for the

lower episodic memory group. The strongest effects were

observable for the left precuneus, right caudate, and right

anterior cingulate. This observation appears consistent

with previous reports on subcortical regions being primar-

ily affected by iron accumulation in neurodegenerative

brain disorders [81, 82]. While no differences in local Aβ

plaque density were measured as being associated with

network dynamics, a distinct impact of ApoE-ε4 on net-

work expression was observable, suggesting an association

with an increased risk for AD. Moreover, cerebral iron

Fig. 4 Group differences between subjects with lower memory performance after 2 years and subjects without decline at follow-up, as measured
by VLMT delayed recall, in iron load of significant nodes in the anterior-posterior network (MANOVA, p < 0.05 after correction for multiple testing
by FDR). Indicated is the susceptibility measure, as a quantitative susceptibility mapping (QSM)-derived inference on local iron content. Numbers
refer to the effect size, as calculated by Cohen’s d
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accumulation may reflect pathological processes impli-

cated in AD [81, 83–85], and local interactions of accu-

mulated iron have been suggested previously to promote

neuronal damage in the context of AD [6, 7, 85–88].

These earlier considerations on interactions between iron

and AD pathology may be consistent with our lack of

identifying significant associations between local iron and

network-dynamics, when iron was corrected for Aβ.

While our data indicate memory decline within the nor-

mal range as a potential correlate of altered dynamic net-

work connectivity and increased genetic risk for AD, our

findings might furthermore support earlier considerations

on the relevance of pathological processes reflected by

local iron, such as oxidative stress, free radical activity,

and mitochondrial dysfunction [83, 84]. These processes

may be reflected by functional changes, primarily affecting

brain regions with high metabolic activity and increased

susceptibility to age-related damage [89]. Considering

these pathological processes as secondary to the earlier

manifestation of AD pathology, they nevertheless may

substantially contribute to cognitive decline [4, 81, 90, 91]

and may thus represent a correlate of the well-

established phenomenon of functional disconnection in

AD [39, 50, 89]. This interpretation may be consistent

with previous considerations on a stronger association

of functional impairment with secondary pathological

processes than with Aβ plaque density itself [92, 93].

The following limitations have to be allowed for when

appraising our reported findings. While neuropsycho-

logical performance was assessed based on measures

within 2 years, neuroimaging was performed only once

and thus only confers cross-sectional information. Add-

itional longitudinal studies are necessary to investigate

the temporal relationship of the different constituents of

pathological burden, which included Aβ plaque density

and iron load in the current study. As the number of

study participants affected by cognitive decline, and thus

power to identify functional correlates of low perform-

ance, varied between the domains investigated, negative

findings for language capacity, working memory, and ex-

ecutive function need to be interpreted with caution.

Moreover, while MRI at ultra-high field strength may

Fig. 5 Axial, sagittal and coronal views of the 2% strongest connections in brain space of a global, fronto-temporal, and fronto-occipital network (rows
1–3, respectively), demonstrated to drive the group difference between subjects who display both APOE-e4 expression and memory decline versus
the remaining sample. Brain regions are shown as nodes (spheres) where their size represents their degree and the color code matches the algebraic
sign of relative node strength (red and yellow for positive, green, turquoise and blue for negative). Connections follow the same color scheme
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provide advantages in SNR and thus facilitate detection

of pathological change [28], reproducibility of findings

may be difficult as it requires the implementation of

sequences that were originally performed on 7T on more

readily available clinical scanners with lower field

strength.

Conclusions

While the association between memory decline in the

elderly and emerging AD-related pathology is well estab-

lished, our findings suggest that variation in the subclinical

range of memory performance may be linked to alter-

ations in functional network dynamics. Moreover, our data

suggest that altered network dynamics reflect regional

pathological burden, as characterized by increased iron

accumulation, and also genetic risk, as conferred by

ApoE-ε4. Additional studies are necessary to clarify

whether the observed dynamic functional changes reflect

impaired neural integrity and thus possibly a symptom-

free stage of incipient cognitive disorder, or alternatively

may represent adaptive mechanisms activated for main-

tenance of brain functionality during aging.
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