
Memory Sharing in Cloud Servers

SUBMITTED IN FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Yaozhong Ge
BINFOTECH(HONS)

SCHOOL OF COMPUTER SCIENCE

FACULTY OF SCIENCE

QUEENSLAND UNIVERSITY OF TECHNOLOGY

2023



Dedicated to my parents for their immeasurable patience,

support, and encouragement.

i



Abstract

Over-committing computing resources is a widely adopted strategy in Infrastructure as a Service

(IaaS) cloud data centres for increased cluster utilization. In IaaS cloud data centres, virtual

machines (VMs) do not always fully utilize their provisioned resources. The existence of

the gap between the provisioned and actual utilized resources of VMs gives cloud service

providers an opportunity to over-commit resources while meeting their service-level agreements

(SLAs). Appropriate resource over-commitment enables the use of fewer physical machines

(PMs) and consequently improves the energy efficiency of a cloud data centre, which can

significantly reduce its operating cost with only a low risk of violating Quality of Service

(QoS) requirements. In principle, risks of over-committing memory resources can be hedged if

each VM on PMs consumes only a small portion of the requested memory resource. If such a

hedge fails, one of the consequences is memory overload. To handle memory overload on PMs,

cloud service providers must live migrate VMs from memory overloaded PMs to underutilized

PMs. However, in over-committed cloud data centres, live VM migration can cause cascading

overloads in the worst case.

This thesis presents systematic memory sharing frameworks for handling memory overload

of PMs in over-committed cloud data centres. There are three progressive levels of memory

sharing, one-to-one memory sharing, one-to-many memory sharing, and many-to-many mem-

ory sharing.

One-to-one memory sharing is detailed as a fundamental memory sharing system between

two machines. In the one-to-one memory sharing system, the underutilized PM is defined as

the lender PM, which can feasibly lend its spare memory resource to another PM. The memory

overload PM is defined as the borrower PM, which borrows memory resource from a remote

PM. The one-to-one memory sharing system involves a unified control algorithm for a PM

to automatically borrow memory if memory overload occurs or to lend spare memory if it is
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feasible. Moreover, the procedure for memory sharing negotiation and establishment is also

described in this memory sharing system.

One-to-many memory sharing is proposed for a lender PM to lend its spare memory resource

to many borrower PMs at the same time. By expanding one-to-many memory sharing, many-to-

many memory sharing is proposed for many lender PMs to share their spare memory resource to

many borrower PMs. In contrast to one-to-many memory sharing, in which a borrower PM can

borrow the memory resource from only one lender PM, many-to-many memory sharing allows

a borrower PM to borrow the memory resource from many lender PMs. Since one-to-many and

many-to-many memory sharing have the same requirements, memory sharing frameworks are

proposed from two perspectives: instant processing and block processing.

Instant processing of a memory sharing framework is designed for instantly pairing the

lender PM to the borrower PM for both one-to-many and many-to-many memory sharing.

It involves a clustering-based method for lender PM selection, through taking advantage of

applying machine learning to statistical information gained from resource usage trace data, in

order to reduce overhead and the risk of memory overload of lender PMs during the memory

sharing. The instant processing of a memory sharing framework also includes a mean-based

First-Fit Decreasing (FFD) method to select the lender PM.

Block processing of a memory sharing framework is also designed for both one-to-many

and many-to-many memory sharing. In the block processing of a memory sharing framework,

multiple memory borrowing requests are processed at the same time instead of being processed

one by one. This allows formulation of an optimization problem. Hence, a heuristic procedure,

Genetic Algorithm (GA), is used for lender PM selection in the block processing of the memory

sharing framework.

Experimental studies are conducted to evaluate the proposed system and frameworks. The

one-to-one memory sharing system is physically implemented and is fully functional. One-to-

many and many-to-many memory sharing frameworks are evaluated by simulation of Alibaba’s

cluster. Instant processing of a memory sharing framework provides a reasonable improvement

of memory resource utilization, while block processing of memory sharing further improves

memory utilization of the cluster in both one-to-many and many-to-many memory sharing.
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Chapter 1

Introduction

In the era of data deluge, data are being generated and disseminated by countless digital devices

at an unprecedented speed then collected and consumed by industry. Internet related companies

produce various intelligent computing services based on big data for informing better decisions

or providing product services. These intelligent computing services are commonly served

through virtual machine (VM) centred cloud services, such as Infrastructure as a Service (IaaS).

Over-committing computing resources is a widely adopted strategy for increased cluster

utilization in IaaS cloud data centres. In a cloud computing service of IaaS, computation tasks

are run in virtual machines (VMs), where VMs are deployed on physical machines (PMs).

A physical machine (PM) has to accept more VMs than its capacity, if the strategy of over-

committing computing resources is enabled. Such a strategy becomes feasible if most of the

VMs have not fully utilized their requested computing resource. However, a potential conse-

quence of over-committing computing resources is memory overload of PMs. Memory overload

occurs if memory usage exceeds a defined alarm threshold, exposing running computation tasks

at a risk of being terminated by the operating system.

In an IaaS cloud data centre, live migration of VMs is a prevailing measure to handle a

memory overloaded PM. In the live migration of VMs, one or more VMs on memory overloaded

PMs are migrated to underutilized PMs on the fly. However, this not only consumes network

bandwidth, CPU, and other resources, but also causes a temporary unavailability of the VMs

being migrated.

The main purpose of this research project is to develop an approach to sharing memory re-

sources among cloud servers. Sharing memory resources means the computer memory resource

2



1.1. RESEARCH BACKGROUND 3

of a PM can be used by other PMs in operating system level. It tends to increase computing

resource utilization and the computation reliability of Infrastructure as a Service (IaaS) and

Platform as a Service (PaaS). Moreover, sharing memory resources enables the ability to deploy

memory-intensive applications beyond the capacity of physical computing resources.

1.1 Research Background

This section describes the background information on this research, including a general back-

ground on cloud computing and a discussion of the computing resource management challenge

of cloud computing.

1.1.1 Services of Cloud Computing

There are three mainstream computing service models for clouding computing: Infrastructure

as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) [Kavis,

2014].

a Infrastructure as a Service (IaaS)

IaaS is a cloud computing offering in which a cloud service vendor provides customers access

to computing resources such as servers, storage and networking [IBM, 2019]. In IaaS, each

resource is offered as a separate service component. Thus, customers just rent necessary service

components for their business, rather than buying their own physical infrastructure [Microsoft

Azure, 2019a]. Moreover, IaaS reduces the problems for customers of managing their own

physical infrastructure and allows service components to be conveniently scaled up and down

according to demand.

IaaS allows customers to deploy their own platforms and applications on the service providers’

infrastructures, and to conveniently scale up and down to meet demand, because the computing

resources are managed by the service provider.
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b Platform as a Service (PaaS)

PaaS includes not only infrastructure resources, but also middleware, such as development tools,

database management systems and other underlying applications, in order to support a complete

web application lifecycle: building, testing, deploying, managing, and updating [Microsoft

Azure, 2019b]. Customers just need to focus on developed applications and services, while

everything else is typically managed by the cloud service vendor [Microsoft Azure, 2019b].

c Software as a Service (SaaS)

SaaS delivers software applications over a network [Cusumano, 2010]. With SaaS products,

software providers can deploy their software hosted on IaaS or PaaS, and grant customers access

to the software in the cloud environment. Software providers are responsible for managing

customer access, account creation, resource provisioning, account management in the software,

and so on.

1.1.2 Virtual Machines

The virtual machine is one of the computing resources in IaaS and PaaS. Usually, multiple VMs

are deployed on one PM, and these VMs are managed by a hypervisor, such as Kernel-based

Virtual Machine (KVM). This PM is named the host system. The Hypervisor is an operating

system component running on the host system. It manages and monitors resource utilization of

VMs, and allocates VMs a part of hardware resources, such as CPUs and memory resources. In

the cloud environment, hypervisors from multiple host systems work integrally for managing

very large numbers of VMs, and scaling resources up and down as requested by customers.

Moreover, in IaaS, customers rent VMs directly from cloud service vendors, and self-maintain

these VMs. In contrast, cloud service vendors maintain VMs in PaaS. They deploy services on

VM clusters and make services available to their customers.

1.1.3 Over-committing Computing Resource in Cloud Computing

Over-committing computing resources is a widely adopted strategy in IaaS cloud data centres

for increased cluster utilization. In IaaS cloud data centres, VMs do not always fully utilize
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their provisioned resources. The existence of a gap between the provisioned and actual utilized

resources gives cloud service providers an opportunity to over-commit resources while meeting

their Service-Level Agreements (SLAs). Appropriate resource over-commitment enables the

use of fewer PMs and consequently improves the energy efficiency of a cloud data centre. This

will significantly reduce the operating costs of the data centre, with only a low risk of violating

Quality of Service (QoS) requirements. While over-committing resources has impacts on the

performance of VMs, it shows limited performance degradation in general for the end users of

cloud services except for memory overload.

1.1.4 Memory Overload

Memory overload occurs when a PM has memory pressure over a threshold for more than five

minutes [Baset et al., 2012]. It risks the running computation tasks of being terminated by the

operating system. If the memory usage of a PM reaches its total capacity, the latest process

that requests non-existent memory resources will be terminated. In this case, the SLA and QoS

requirements may be violated.

1.1.5 Virtual Machine Live Migration

Live VM migration is a prevailing measure to handle memory overload in PMs. If a PM is

considered as being overloaded, one or more VMs running on the overloaded PM could be

migrated to other available PMs in order to avoid any violation of QoS requirements. However,

live VM migration introduces overheads to all involved entities and processes, such as the

source and destination PMs, the VM being migrated, and the VMs co-located on these two PMs

[Zhang et al., 2018]. The overheads can be a short unavailability of the VM being migrated,

extra costs of shared infrastructure resources (e.g., network bandwidth), and/or extra costs of

CPU resources on the source and destination PMs. In addition, the CPU of the source PM

could be underutilized after the VM migration. Moreover, live VM migration also affects

resource management related jobs for the cloud infrastructure, such as VM placement and VM

consolidation.
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1.1.6 Remote Direct Memory Access

Remote Direct Memory Access (RDMA) is a method of reading data from, and writing data

to, the memory of a remote machine. It neither involves any network software stack or kernel

nor consumes any CPU time for data transfers with the remote memory [Guo et al., 2016]. In

contrast, transmitting a message in a traditional socket-based model requires copy operations

through the kernel space. Therefore, RDMA eliminates context switch, intermediate data copies

in various stack, and protocol processing in contrast to the traditional model. It is one of the

capabilities of InfiniBand-networked PMs. InfiniBand is a special networking technology that

provides extremely high data throughput and very low latency, particularly in high-performance

computing, in-network computing, and data-intensive computing environments [Mauch et al.,

2013, Wu et al., 2019, Xue and Zhu, 2021]. Moreover, efficiency of VM migration can be

significantly improved by using RDMA [Huang et al., 2007].

1.2 Statement of Research Problem

Over the years, the rate of resource utilization has been enhanced in cloud data centres through

the virtualization-based over-commitment strategy and server consolidation technologies. How-

ever, there is still much room for its further improvement. For example, Alibaba’s large-scale

cloud systems show that over-committing and under-committing problems can coexist in cloud

data centres [Everman et al., 2021].

The challenge is how to further increase the memory utilization of PMs without worrying

about memory overload or frequent live VM migration operations. Firstly, over-committed PMs

should not be assigned extra computation tasks with a higher possibility of memory overload.

Secondly, under-committed PMs are kept online, even if an over-commitment strategy and

server consolidation operations are applied.

The research problem is how to share memory resources between cloud servers. Firstly,

there is no efficient approach to run applications beyond the memory capacity of the host PM.

Secondly, there is no efficient approach to utilize memory resource of the under-committed

PMs for handling memory overload occurred on the over-committed PMs. Thirdly, there is

no efficient technique to improve overall computing resource utilization of the cloud servers,

meanwhile keep computing availability.
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1.3 Motivation of the Research

Both IaaS and PaaS are commonly designed to run PMs in high or full utilization and avoid

idling VMs and PMs, in order to minimize cost of holding resources and save energy con-

sumption. However, this design may lead to a lack of computing resource in critical situations,

especially result in memory overload of the PM. There are several examples of the scenario

which can be benefited from memory sharing among cloud servers.

a Underutilized Resource Provisioning

An issue in IaaS is that VMs do not always fully utilize their provisioned resources. The issue

between provisioned and utilized resources gives cloud providers an opportunity to overbook

their infrastructures, by deploying more virtual resources than the physical resources available

[Tsitsipas et al., 2017].

b Memory Overload

Overbooking can leverage underutilized capacity in the cloud and make service more cost

efficient than before. However, memory overload occurs if resource utilization of VMs (virtual

resources) is higher than the capacity of physical resources. CPU resource overload might

slow down the computation, while memory resource overload would cause computing resource

unavailability.

A prevailing measure to handle memory overload is live VM migration. However, the

migration procedure may take longer than the duration of memory overload. With high memory

over-committing ratios, the duration of memory overload is transient in most cases. For realistic

web workloads in a data centre, the majority of memory overloads take up to two minutes,

whereas only one third of them last 10 seconds or shorter [Williams et al., 2011].

Memory sharing can be a complementary measure to live VM migration. When handling

transient memory overload, memory sharing can be a better measure than live VM migration by

temporally sharing the spare memory resource of a PM to another PM with memory overload.

It is more lightweight than live VM migration by applying RDMA to relieve the computing

pressure in order to achieve high resource utilization with low cost and increase computation
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reliability. RDMA allows sharing memory temporarily among PMs with speed similar as

ordinary memory speed.

It is worth mentioning that the memory sharing presented in this research is not designed to

replace VM live migration. Rather, it will effectively reduce the number of live VM migrations

induced by memory overload. The memory sharing is suitable for the management of transient

memory overload that lasts for a short period of time. It can be pre-activated or activated

instantly. However, for sustained memory overload, memory sharing is not recommended and

VM live migration will be more suitable. After successful migration, local memory will be

used instead of remote memory. It is noted that live migration requires to transfer the memory

pages of the VM from one PM to another PM and will typically cause unavailability of the VM

during the migration. Depending on the size of the VM, live VM migration may take seconds

or longer. It may even use RDMA of InfiniBand for the required transmission.

c Insufficient Physical Machine Capacity

Cloud vendors might find it hard to deploy memory-intensive VM instances in peak hours due

to lack of memory resource. Memory-intensive types of VM requires huge amounts of memory

resource. During peak hours, the amount of available memory resource in PMs might be limited.

This is not large enough for deploying memory-intensive VMs. Cloud vendors must delay new

deployment or perform VM consolidation in order to make enough memory resource available

for new deployments. In addition, cloud vendors have limitations on deploying a memory-

intensive VM type which requires more memory than PM capacity. However, these limitations

can be eliminated by enabling memory sharing.

d A Motivational Example

Memory sharing allows a physical machine to remotely access other physical machines’ mem-

ory resources. Since the main factor in the overload issue is the lack of local memory resources,

remote memory resources could act as extra memory resources for the overloaded physical

machine.

A motivational example is Alibaba’s 8-day trace data [Guo et al., 2019] [Alibaba Open

Source, 2018], which shows that the cluster’s average memory usage is 88%, while average
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(a) Average Resource Usage of 4, 023 PMS Over 8 Days

(b) Resource Usage of a Typical PM Over 24 Hours

Figure 1.1: Alibaba’s Cluster Trace Data
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CPU usage is 38%, as shown in Figure 1.1a. Thus, memory resource is the bottleneck of further

increment of cluster utilization.

Memory resource sharing provides an opportunity to further raise the overall memory uti-

lization of a cluster. In Alibaba’s cluster trace data, memory usage over 95% occurs 8.2% of

record. Memory usage over 90% occurs 55.7% of record. It means there is still a plenty of

room for raising overall memory utilization of the cluster.

To analyse in depth, a PM is randomly selected as an example. Figure 1.1b exhibits resource

usage of a typical PM in Alibaba’s cluster. In most time, memory usage fluctuates between

80% and 90%, while CPU usage is relatively low compared with memory. If extra computation

tasks are scheduled to this PM for increment of 10% memory utilization rate, this PM would

occur several times of memory overloads. It is unacceptable in existing systems. However,

if memory overload is handled by memory sharing through temporarily utilizing the spare

memory resource of a remote PM, such increments on memory utilization will be possible.

1.4 Technical Gaps

Efforts to solve these problems focus on improving traditional strategies, such as VM live

migration and threshold alternatives to trigger scaling procedures.

VM live migration must suspend computation tasks in VMs. Data transmission from a PM

to another requires CPU resource on both PMs for packet encapsulation and decapsulation and

occupies a part of network bandwidth to transmit persistent data and memory data of VMs. In

addition, VM live migration solves the memory resource overload problem, but brings another

problem. Migrating a VM not only relieves memory resource overload, but also reduces CPU

resource utilization. If the CPU resource is not overloaded before migration, the CPU resource

will be underutilized after migration.

Threshold alternatives focus on figuring out when to trigger a scaling procedure, which is a

sweet point between the cost and the computation reliability included in the SLA.

Memory balancing and remote memory are two major candidate approaches for handling

memory overload of PMs in cloud data centres. However, memory balancing requires the

coexistence of over- and under-committed computation tasks in the same PM. The total memory

requested from all VMs on the PM is capped by the memory capacity of the PM. In comparison,
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remote memory for PMs does not have such a limitation. However, existing efforts in remote

memory for PMs require a pre-configuration of disaggregated memory on dedicated PMs.

Furthermore, multiple or hybrid disaggregated memory designs are not essential for handling

memory overload for PMs in cloud centres.

The discussion above outlines the technical gaps that exist regarding our memory sharing

requirements for PMs in cloud data centres. The requirements of memory sharing are: 1) a

PM can access remote memory resources when it becomes memory overloaded; and 2) when a

PM has the spare memory resource, it can share out its memory resource to a remote PM. This

motivates the research and development of this paper on memory sharing for handling memory

overload on PMs in cloud data centres.

1.5 Research Questions and Objectives

This research project aims to develop a systematic memory sharing framework for handling

the memory overload issue for PMs in over-committed cloud data centres. It is essential to

deal with the inefficient memory resource utilization issue among multiple PMs since over-

provisioned VM causes lack of memory resource on the VM’s host system. The proposed

framework improves resource utilization by introducing a new method, memory sharing, instead

of solving research problems from optimization of an existing solution, live VM migration.

There are three levels of memory sharing: one-to-one, one-to-many, and many-to-many, and

the research questions are formed according to these levels of memory sharing. In particular,

the following research questions are addressed in this thesis:

1. One-to-one Memory sharing: How to establish a memory sharing connection between the

two PMs?

(a) One-to-one memory sharing refers to one underutilized PM that can share its spare

memory resource with one memory overloaded PM.

(b) Connection procedure between the two PMs should be designed. A PM should

automatically establish a memory sharing connection and use a remote memory

resource when memory overloading. In contrast, a PM should keep waiting to share

its spare memory resource when feasible.
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(c) A fundamental memory sharing system needs to be designed and implemented to

answer this question.

2. One-to-many Memory Sharing: How to decide which underutilized PM is selected for

memory sharing?

(a) One-to-many memory sharing refers to one underutilized PM able to concurrently

share its spare memory resource with many PMs with memory overload.

(b) This question seeks a memory sharing framework with a control or schedule algo-

rithm to select an underutilized PM for sharing its spare memory resource with a

memory overloaded PM because there can be many underutilized PMs and many

memory-overload PMs appearing at the same time in an over-committed cloud data

centre.

(c) The solution needs to be designed so that the same underutilized PM can be selected

multiple times in case the spare memory resource of an underutilized PM is large

enough for sharing with multiple PMs with memory overload.

3. Many-to-many Memory Sharing: How to decide which underutilized PMs are selected

for memory sharing?

(a) Many-to-many memory sharing refers to many underutilized PMs concurrently shar-

ing their spare memory resource with many memory-overloaded PMs.

(b) How to select multiple underutilized PMs for a memory overloaded PM, answers

this question. This design is targeted to the situation, where no one of the under-

utilized PMs can satisfy the remote memory requirements of a memory overloaded

PM although multiple underutilized PMs have the spare memory resource to share.

Many-to-many memory sharing, as the last level, is also designed to have better

memory balancing among PMs than one-to-many memory sharing.

(c) The proposed memory sharing framework needs to be expanded in order to select

multiple underutilized PMs for a single memory overload PM.

This research develops a comprehensive memory sharing framework for handling memory

overload issue in the cloud data centre. To tackle these challenging research questions, three

progressive objectives have been designed for achieving the research goal, with consideration
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that virtualization environment on PM cluster is quite complicated for directly designing and

implementing a brand-new framework:

1. Design and implement a one-to-one memory sharing system that allows a PM itself to

understand its memory usage status and automatically switch its role between an under-

utilized PM role and a memory overloaded PM role. In the role of memory overloaded,

the PM itself can automatically establish memory sharing connection to an underutilized

PM. In the role of underutilized, the PM can accept a memory sharing connection for

sharing out its spare memory resource.

2. Design a one-to-many memory sharing framework that allows multiple memory-overloaded

PMs to use spare memory resource from one underutilized PM. Depending on the number

of memory-overloaded PMs, multiple underutilized PMs can be used.

3. Design a many-to-many memory sharing framework that allows many PMs with memory

overload to use spare memory resources from many underutilized PMs.

1.6 Major Contributions and Innovations

There are three major contributions in this thesis: a one-to-one memory sharing system, and two

different approaches for both one-to-many and many-to-many memory sharing. One-to-many

and many-to-many memory sharing are jointly solved because they have very many similarities.

Regarding this, instant processing and block processing approaches to memory sharing are

proposed. The major contributions of this thesis are as follows:

1) A one-to-one memory sharing system is presented and implemented. A unified control

algorithm is designed for a PM to automatically use a remote memory resource when

memory overloading, and for a PM to automatically share out its spare memory when it

is feasible.

2) Instant processing of memory sharing is presented for both one-to-many and many-to-

many memory sharing. Memory sharing requested by memory-overloaded PMs is pro-

cessed one by one. It is similar to the first-in, first-out method, thus memory sharing

request can be processed immediately. Instant processing of memory sharing contains a
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clustering-based algorithm with tolerance of missing values for filtering PM candidates

as underutilized PMs, and a mean-based first-fit-decreasing (FFD) algorithm for instant

processing of memory sharing.

3) Block processing of memory sharing is presented for both one-to-many and many-to-

many memory sharing as well. One block of memory sharing requested by memory

overloaded PMs is processed at a time. Block processing of memory sharing utilizes a

heuristic algorithm, genetic algorithm (GA), to make a memory sharing plan for selecting

underutilized PMs.

There are four major innovations in this thesis, as follows:

1) The memory sharing system is a novel solution for handling memory overloaded of PMs,

while the existed prevailing measure to handle the memory overload problem is to migrate

out VMs running on memory overloaded PMs.

2) A new clustering method is presented for time-series data with missing values. Existed

clustering methods usually use interpolation to compensate for missing data in time-

series datasets, while our proposed clustering method can get results without the need

of interpolation for compensation.

3) The instant processing framework of memory sharing is presented for fast response to

memory sharing requirements. It can be an extra measure before performing the live

migration of VMs, because the instant processing is preferred for handling transient

overload, while the live VM migration is more suitable to handle sustained overload.

4) The block processing framework of memory sharing is presented as a complementary

solution to the instant processing framework for handling the memory overload problem

to over-committed cloud data centres. It can handle more memory overloaded PMs than

instant processing framework by enabling heuristic algorithm, genetic algorithm (GA).

1.7 Thesis Organization

The overall structure of this thesis is shown in Figure 1.2. It should be noted that algorithms

designed for instant processing of memory sharing and algorithms designed for block process-

ing of memory sharing can be used for both one-to-many and many-to-many memory sharing.
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Thus, Chapter 4 presents instant processing of memory sharing, while Chapter 5 presents block

processing of memory sharing. Frameworks in both chapters involve two variants of memory

sharing framework for one-to-many and many-to-many memory sharing.

Figure 1.2: Thesis Organizational Structure

The remainder of the thesis is organized as follows:

Chapter 2 presents the literature review of studies relevant to the handling of memory

overload issue, including VM migration, distributed shared memory, memory sharing, and

memory resource management. It also investigates issues and technical gaps in existing efforts.

Chapter 3 develops a memory sharing system for one-to-one memory sharing. With this

system, a PM can automatically share its spare memory resource when it is feasible, or access

remote memory resource as secondary memory when memory is overloaded.

Chapter 4 proposes an instant processing framework of memory sharing to process memory

sharing one-by-one. It includes two variants of the framework for both one-to-many memory

sharing and many-to-many memory sharing. A clustering method and a mean-based FFD for

memory sharing is also proposed in this chapter.

Chapter 5 proposes a block processing framework of memory sharing to process multiple
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memory sharing requests all at once. It also contains two variants of a framework for one-to-

many memory sharing and many-to-many memory sharing. A GA-based algorithm is proposed

for maximizing the rate of successful paring a memory overloaded PM with one or more PMs

with spare memory resources.

Chapter 6 concludes the thesis by summarizing the findings and contributions. Suggestions

and potential research directions for future work are also presented in this chapter.

1.8 List of Publications

The research outcomes derive a conference paper and three journal articles. The conference

paper has been presented in international symposium. One of the journal articles has been

submitted. Others are in preparation. These articles are listed below:

1) Ge, Y., Ding, Z., Tang, M., & Tian, Y. C. (2019). Resource provisioning for MapReduce

computation in cloud container environment. In IEEE 18th international symposium on

network computing and applications, pp. 1-4. Cambridge, MA, USA. IEEE

2) Ge, Y., Tian, Y. C., et al. (2023). Memory sharing for handling memory overload on

physical machines in cloud data centres. Accepted for publication in the Journal of Cloud

Computing. Relevant to Chapter 3

3) Ge, Y., Hu, S., Tian, Y. C., et al. Clustering-based memory sharing framework for

handling memory overload in over-committed cloud. In preparation for submission to

a journal. Relevant to Chapter 4.

4) Ge, Y., Tian, Y. C., et al. Genetic-algorithm based memory sharing framework for

handling memory overload in over-committed cloud. In preparation for submission to

a journal. Relevant to Chapter 5.



Chapter 2

Literature Review

In the public cloud, especially cloud computing of IaaS, there is an issue that VMs do not

always fully utilize their provisioned resources. The issue between provisioned and utilized

resources gives cloud providers an opportunity to overbook resources while meeting their SLAs.

Therefore, admission control and scheduling mechanisms can be utilized to overbook physical

resources in order to improve resource utilization and admit more applications concurrently

[Tomás and Tordsson, 2013]. Overbooking can leverage underutilized capacity in the cloud and

make its services profitable. However, overbooking may have impacts on server performance,

and even violate SLAs [Hoeflin and Reeser, 2012]. Most of the time, performance impacts

are hard for customers to observe. However, memory overload occurs when a physical host

server has memory pressure over a threshold for more than five minutes [Baset et al., 2012].

The overload could lead to SLA violations and service reliability issues. Hence, preventing or

solving memory overload issue would make overbooking unimpeded and beneficial to cloud

providers.

This chapter reviews published literature related to the research issue investigated in this

study. The rest of the chapter is organized as follows: Section 2.1 discusses VM migration

technology for avoiding or handling memory overloading of PMs in the data centre. Section 2.2

investigates distributed shared memory inspired by Single System Image (SSI) cluster, which

is a cluster of machines that operates as one single system. Section 2.3 describes what is

Remote Direct Memory Access (RDMA). Section 2.4 discusses various technologies that allow

a PM to be beneficial by using the memory resource of a remote PM. Section 2.5 investigates

methods to manage memory resources for clusters in a cloud data centre, especially for the

17
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cloud environment which has the capability for sharing spare memory resources among PMs in

the cluster. Section 2.6 discusses memory sharing management in the optimization perspective.

Finally, Section 2.7 concludes the chapter by summarizing the existing efforts related to the

research problems and gaps found in related works.

2.1 Virtual Machine Migration

Live VM migration is the process of moving power on VMs from one compute resource or

storage location to another [VMware, 2019]. It is a common scheme for solving overload

issues. There are various methodologies for live VM migration. Svärd et al. [2015] introduced

pre-copy, post-copy, and hybrid live migration. They shared the same procedure that included

creating a new paused VM in the destination PM, transferring memory pages and CPU state

from an existing VM to the new VM, resuming a new VM and destroying the existing VM. Pre-

copy and post-copy aimed to decide when to transfer memory data to the destination. Pre-copy

transferred memory pages before transferring the CPU state, while post-copy pulled memory

pages after resuming the new VM. The Hybrid method took advantages from both pre-copy and

post-copy in order to minimize the time and cost of migration. Mishra et al. [2012] mentioned

persistent storage could be excluded from migration because it was usually in other locations

and attached to the host via the network.

Apart from the migration procedure, there are three important questions to address: how to

detect the overloaded condition, which VM to be migrated, and which PM as the destination.

For detecting the overloaded condition, Wood et al. [2007] introduced black-box and grey-

box strategies to monitor the resource usage. Black-box monitors CPU, network, and memory

resource from the PM; while grey-box has access to information, such as application-level

statistics, inside the VM. Mishra et al. [2012] did a similar work to the black-box strategy.

A multi-object monitor system developed by Cao et al. [2021] combined black-box and

grey-box strategies, but its grey-box only collected OS-level statistics. Although information

from the grey-box might be quite helpful for solving other important questions, the grey-box

requires additional modifications on each VM while the black-box does not. In addition,

collecting application-level statistics could be more complicated than collecting information

in the black-box strategy.
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There are three common approaches to selecting a candidate VM for migration. Wood et al.

[2007] selected VMs where resource requirements could not be locally fulfilled. However, this

approach had the possibility of triggering cascading overloads which caused the destination PM

to be in an overloaded condition after migration.

Xiao et al. [2013], Cao et al. [2021], and Ji et al. [2018] developed holistic approaches to

solve this issue. they generated a holistic view of resource requirements and availability for all

managed VMs and PMs, and then rebalanced the resource utilization in order to figure out which

VM to be migrated. However, balancing resource utilization implies there are underutilized

resources which go against the goal of overbooking.

The last approach was affinity based which incorporated other objectives in addition to

resource requirements [Mishra et al., 2012]. Zhang et al. [2012] developed an affinity-based

approach with the objective of reducing potential overload. In order to achieve this objective,

a scattered migration algorithm was developed to scatter VMs with high utilization correlation

onto different PMs. Reducing the potential overload could reduce the migration cost in the long

term. However, resource utilization of cloud servers fluctuates over time, so this approach might

not bring expected results.

Selecting a destination PM usually depends on the available resource capacity or affinity

of the candidate VM migration. Available resource capacity-based selection considers only

if availability of resources at the destination is enough [Mishra et al., 2012]. If the holistic

approach is utilized to select a candidate VM for migration, the rebalancing plan will also

describe where to migrate candidate VMs. In addition, leveraging the affinity between VMs can

also be utilized to identify a suitable host destination PM. Zhang’s work, as mentioned above,

considered that VMs with a high utilization correlation were not favourable sharing partner in

a single PM.

The capability of VM live migration causes even impacts on the system’s performance. A

short unavailability is inevitable to candidate VMs for migration. Meanwhile, a live migration

procedure might have negative effects on performance of shared resources, such as network

bandwidth. Voorsluys et al. [2009] evaluated the effects of a VM live migration on the perfor-

mance of applications running on Xen platform and showed that the migration overhead was

acceptable in most cases but could not be disregarded. Thus, the challenge is how to further

reduce the migration overhead while increasing resource utilization.
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2.2 Distributed Shared Memory

Memory resource sharing allows a PM to remotely access other PMs’ memory resources.

Since the main factor of memory overload issue is lack of memory resources, remote memory

resources could act as extra memory resources to the overloaded PM. Thus, this potentially

avoids the need for VM migration and improves the efficiency of memory resource utilization.

Ding [2018] designed a distributed shared memory system for the virtualization environ-

ment. It utilized the ivy protocol [Li, 1988] and the network feature of RDMA for high-

speed data transfer. The distributed shared memory system abstracted memory resources from

multiple PMs to a memory resource pool in order to support a cluster of machines that appeared

to be one single system. Although Ding’s work was not directly designed for this scenario, it

proved the feasibility of sharing memory resources in a virtualization environment.

Another shared memory system was developed by Ahn et al. [2018]. It reserved some PMs

for memory sharing purposes and attached the memory resources of these PMs to machines

which required extra memory resources. The memory attachment approach allowed access to

memory resource remotely. However, those memory sharing purpose machines wasted other

resources, such as the CPU resource.

Jiang et al. [2018] developed a user-level utility for managing the memory distributed. It

linked memory page to local disk and utilized the disk address to represent the memory address

in order to access the memory resource remotely. However, the data transfer speed could not be

fast enough for the native system memory purpose.

Seshadri et al. [2015] developed a virtual memory framework. It introduced overlaying

memory resources which appended a virtual memory to the existing physical memory resource.

Virtual memory was memory resource linked to remote PMs via RDMA. It could be completely

transparent to both the hypervisor and the VM. However, dynamically resizing the overlay

memory resource was not possible in this work.

Overall, memory resource sharing among PMs is possible where RDMA is the key hardware

feature to support it. Nevertheless, there are still two challenges: how to quickly attach/detach

remote memory resource, and how to resize an attached remote memory resource.
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2.3 Remote Direct Memory Access

There are two directions for implementing memory sharing: distributed shared memory and

memory management based on Remote Direct Memory Access (RDMA). Distributed shared

memory (DSM) has been proposed and developed in 1980s and 1990s, and became a part

of single-system image (SSI) clustering system. It is a form of memory architecture where

all physical machines (PMs) use one logical memory space which is comprised of physically

separated memories. However, since modern data centres do not use SSI model to manage

their clusters and node PMs of the clusters, such a direction is not considered in this research

project. On the other hand, most of the modern data centres have an InfiniBand-enabled network

for super-fast data transfer with low latency. A networking adapter which provides support of

InfiniBand also provides a feature to access (read, write) memory on a remote physical machine

(PM) without interrupting the processing of CPU(s) on that remote PM. Hence, this research

starts from understanding how RDMA works in order to be able to do memory sharing based

on RDMA.

(a) Traditional Messaging [Cardona, 2019]

(b) RDMA Messaging [Cardona, 2019]

Figure 2.1: Traditional Messaging Versus RDMA Messaging

Remote Direct Memory Access (RDMA) is an ability to read and write data on memory

from a remote machine. According to Mellanox [Mellanox Technologies, 2019], RDMA per-

forms data transfers without involving network software stack and kernel, nor consuming any
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CPU time in the remote machine, as shown in Figure 2.1b. In contrast, transmitting a message

in a traditional socket-based model requires copy operation through kernel space, as shown in

Figure 2.1a. To sum up, RDMA eliminates context switch, intermediate data copies in various

stacks, and protocol processing in contrast to the traditional model. Thus, RDMA is widely used

for improving the performance of transferring data through a network; for example, improving

performance of MPI-based parallel computing [Liu et al., 2004].

RDMA based applications can be implemented on both Ethernet and InfiniBand. Ethernet

based implementations are based on TCP or UDP, which are either quite heavy weight (TCP-

based) or require a lossless network (UDP-based). InfiniBand is a special stand for high-

performance computing which provides extremely high data throughput and quite low latency.

Thus, most RDMA based applications are based on InfiniBand.

2.4 Memory Sharing

Two main directions to mitigate memory pressure on machines are dynamic memory balancing

and remote memory paging.

2.4.1 Dynamic Memory Balancing

In general, dynamic memory balancing can be adopted to re-balance provisioned memory

resources for VMs running on a single PM. Several memory management mechanisms and

policies are designed to dynamically re-allocate memory resources of VMs through the memory

ballooning technique. The ballooning technique can reclaim the memory pages considered as

the least valuable by the operating system running in a VM.

Moltó et al. [2016] proposed a memory over-subscription framework for over-committing

the memory resource of PMs in cloud by providing automatic vertical elasticity to adapt the

memory size of the VMs to their current memory consumption, where the ballooning technique

is used for memory reallocation and VM live migration is used to prevent memory overload of

the PM.

Another method to balance memory usage among VMs in a single PM is based on idle

memory tax. The idle memory tax rate will increase if the ratio of idle memory to active
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memory for the VM rises. Waldspurger [2003] introduced the concepts of idle memory tax,

content-based page sharing, and hot I/O page remapping, for VMware ESX Servers. The idle

memory tax was proposed to achieve efficient memory utilization while maintaining perfor-

mance isolation. Moreover, content-based page sharing, and hot I/O page remapping can take

advantage of transparent page remapping in order to eliminate redundancy while reducing the

overheads of memory page copying.

Zhang et al. [2017b] also designed an automatic memory control system based on idle

memory tax for the Xen hypervisor. The control system was based on the ballooning driver

of the Xen hypervisor. However, the continuous calculation of the idle memory tax for each

VM causes a high CPU overhead.

In addition, memory can be balanced among VMs in a single PM through a prediction-based

strategy with periodical memory monitoring, prediction, and reallocation. A memory predictor

was developed to estimate the amount of re-claimable memory and additional memory required

for reducing VM paging penalty [Zhao et al., 2009]. It consists of two effective memory

predictors. One predictor is used to estimate the amount of memory which is available for

reclaiming without a notable decrement on performance.

Another predictor is to estimate additional memory which is required for reducing the VM

paging penalty. Wang et al. [2016] studied how to predict memory usage based on the working

set size of VMs. They used a simulation tool to represent a sequential workload, and an

offline profiling tool which can incur huge overhead if used online. Such predictions could

be difficult to build in an environment with time-varying workloads. However, an accurate

prediction requires computerized profiling, which is difficult to build in an environment with a

time-varying workload.

As an alternative to the dynamical re-allocation of memory to the VMs on a single PM, using

the memory resources of the host PM as a swap space of the VMs can also implement memory

balancing among the VMs. Zhang et al. [2017a] proposed a shared memory swapper framework

to improve VM swapping performance, which provided just-in-time performance recovery for

memory intensive applications to quickly regain their runtime momentum instead of relying on

costly page faults. However, it is not as efficient as using host memory via ballooning.

Apart from the VM-orientated memory balancing mechanisms described above, there are

a few application-oriented methods, which measures memory usage for application in order
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to precisely allocate sufficient memory resource. Zhou et al. [2004] used the dynamic miss-

ratio curve that plots the application’s page miss-ratios against varying amounts of memory

to measure an application’s memory requirement. Hines et al. [2011] introduced a policy

framework that determines the application’s memory assignments by linear optimization.

Other approaches include improvement of the swap subsystem and joint provisioning. Amit

et al. [2014] solved various types of superfluous swap operations, decayed swap file sequen-

tially, and ineffective prefetching decision for the swap subsystem of the KVM hypervisor.

Meng et al. [2010] designed a resource provisioning strategy to seek favourable VMs combina-

tions and estimate the size of jointly provisioning VMs.

2.4.2 Disaggregated Memory and Remote Memory Paging

Memory balancing among PMs is more complicated than among VMs in a single PM because

each single PM has a fixed amount of physical memory. As the memory resource of a PM

cannot be physically moved to another PM, moving memory pages between the main memory

and secondary memory is implemented in operating systems to overcome the limitation of the

physical memory in PMs. Since a PM’s memory resource cannot be reallocated, the mainstream

approach is the method of moving memory pages between the main memory and secondary

storage. A memory disaggregated PM contains only a limited amount of local memory, while

it is able to utilize free memory elsewhere in the same local network over a network connection

[Ruan et al., 2020]. This is also called remote memory paging.

Existing efforts have been made toward disaggregated memory for various targets, including

the PM, hypervisor, and computation. Extending the concept of secondary memory, the remote

memory paging technique has also been developed. It enables a memory disaggregated PM

to use free memory of other PMs in the same local network over a network connection [Ruan

et al., 2020].

a Physical Machine

To mitigate the memory load of a PM, a partial memory resource from remote PMs can be

abstracted as a block device and then used as a local swap device.
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Choi et al. [2017] evaluated the performance of using a remote block device as a swap

through TCP/IP and RDMA. They found using RDMA can provide an increase in speed of 20

times in read operation and 6 times in write operation faster than using TCP/IP. RDMA-based

remote block device had 2 times the speedup compared to HDD for quick-sorting. This study

confirmed only the feasibility of using remote block device as swap space.

Srinuan et al. [2020] designed a mechanism of remote memory tracking and swap space

management for the use of memory resources from remote PMs. Their approach establishes

a memory pool across node PMs in a cluster and lets the process’s page table track remote

memory page frames, in order to enhance memory aggregation from connected PMs. However,

it is designed for the connected server cluster, involving compute nodes and memory nodes,

implying that the CPU resources of the memory nodes are wasted.

In addition to one back-end swap device, several frameworks are designed in the form of

hybrid swap. For example, the Gu et al. [2017], and Liang et al. [2005] utilized remote memory

and hard disk together for enhanced reliability. However, constantly reading/writing on a disk

slows down the performance of other I/O operations and consumes network bandwidth if the

disk is connected via a network such as iSCSI.

Cao and Liu [2020] designed a hierarchical disaggregated memory orchestration system.

The system enables inactive page compression and swap-out optimization for a reduced size of

the page. Also, it is embedded with a selection mechanism to choose the most suitable back-

end device. The hybrid swap architecture is further enhanced by Newhall et al. [2016] through

allowing node RAM, disk, flash SSD, PCM, and network storage devices as swap devices.

All these approaches not only have I/O performance impact, but also demand other resources

and consequently increase extra operation costs. For example, writing inactive pages to the local

device, such as disk and SSD, can impact I/O performance, while choosing the most suitable

back-end device can produce computation overhead.

Such design of multi-back-end devices for swap space is similar to hybrid memory. Tan

et al. [2020] presented an adaptive data migration approach for hybrid Non-Volatile Random

Access Memory (NVRAM) systems. It involves two components, where one eliminates invalid

page migrations and another component only rewrites dirty data back when the page is swapped

back to NVRAM.
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Liu et al. [2020] proposed object-level memory allocation and a migration mechanism of

a hybrid memory system. Their work requires a profiling tool to characterize memory access

patterns of objects in all execution phases of applications, and a performance model for static

memory allocation at start up and dynamic object migration at runtime. However, application

source codes are required to be transformed via static code instrumentation in order to work

with the object-level memory allocation and migration mechanism.

Ye et al. [2008] presented an analysis of hypothetical hybrid main memory, which was

comprised of a first-level Dynamic Random-Access Memory (DRAM) and a 10-100x slower

second-level memory. They found workloads had large performance degradation when run on

hybrid main memory systems.

Moreover, Oura et al. [2017] designed multi-thread page-swap protocols to accelerate re-

mote memory enabled swap operations. Based on that, they developed distributed large memory

for processing large-size data that exceeds the main memory capacity of the PM. Their work

allows the running of multi-thread programs written in OpenMP and POSIX threads for large-

scale problems in which the problem data size is larger than the memory resource capacity of

the PM for computation. However, the design is for large memory and requires modifications

to user programs, increasing the difficulty for end users.

Compress memory [Zhou et al., 2018] [Li et al., 2021] [Roy et al., 2001] [Pekhimenko

et al., 2013] [Gupta et al., 2010] can be also utilized to extend PM memory capacity so that

the memory load of a PM is mitigated. However, this is not discussed in this literature review

because memory compression is not involved in this research.

b Hypervisor

Remote memory paging works not only on multiple PMs, but also on multiple VMs on a

single PM. Koh et al. [2019] and Lim et al. [2012] designed hypervisor-oriented frameworks

to swap inactive memory pages from VMs to remote memory connected to the host PM.

Koh et al. [2019] designed a hypervisor-integrated disaggregated memory system, which could

dynamically select optimal block size for each memory region depending on the degrees of

spatial locality for different regions of memory in a VM. Lim et al. [2012] extended the Xen

hypervisor to emulate the disaggregated memory, where remote pages are swapped into local

memory on-demand upon access.
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Cao and Liu [2018] further added page compression during memory paging from a VM

to the host PM. They presented a shared-memory based memory paging service to improve

VM memory swapping performance through redirecting the VM swap traffic to a compressed

shared memory swap area; meanwhile the swap page table is compressed to form an efficient

index structure in order to improve utilization of the shared memory swap area.

Kocharyan et al. [2020] presented a system to monitor the working sets of VMs and re-

claim unused memory of VMs through Xen balloon driver for paging memory from memory

overloaded VMs to VMs on other PMs.

Deshpande et al. [2010], Hines and Gopalan [2007] developed a fully transparent distributed

system within the Xen hypervisor to coordinate the use of cluster-wide memory resources for

large memory and I/O intensive workloads.

In addition, Williams et al. [2011] indicated that using remote memory for VMs requiring

extra memory for a sustained period of time was inefficient. They found that it is inefficient to

use remote memory for VMs that need extra memory resources for a long duration. For such

VMs, they pointed out that live VM migration could be better than remote memory.

Overall, a single PM usually has multiple running VMs, and managing a remote swap device

for VMs is more complicated than for PMs.

c Computation

It is worth mentioning that swapping inactive memory pages may not be the most efficient

method for some memory intensive computations [Kissel and Swany, 2016]. Distributed in-

memory key-value store can be used for applying remote memory resources to a program

[Dragojević et al., 2014]. The memory load of a PM can be mitigated if an application stores

its runtime data in remote memory.

SpongeFile [Elmeleegy et al., 2014] is a logical byte array comprised of large chunks that

can be stored in other PMs. It is designed specifically for distributed MapReduce computation.

However, this and other similar methods are designed for special purposes, and thus are not a

general solution to the mitigation of the memory load of PMs cloud data centres.

Ahn et al. [2018] designed a virtual shared memory framework, which provided parameter

sharing via shared memory between distributed processes in order to improve communication
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performance.

Overall, in past two decades, efforts have focused on balancing VM memory on a single

PM, and how to design and implement a remote memory paging system. With the emerge of

high-performance storage devices, the performance of remote memory paging systems has not

yet been compared with NVMe SSD. In addition, there is lack of research into how remote

memory paging helps with memory overload challenge.

2.5 Memory Resource Management

In data centres, available memory resources come from multiple cloud servers, and the amount

of available memory resource changes over the time. Thus, memory resource management

based on memory resource sharing is required for data centres. Memory resource management

needs to address two important questions: when to acquire extra memory resource, and which

machine should provide how much memory resource to which machine.

In determining when to acquire extra memory resource, Beloglazov and Buyya [2013], Ya-

dav and Rama Krishna [2019], and Patel and Patel [2018] developed threshold-based overload

detection mechanisms. A threshold-based mechanism monitors memory usage in real-time. If

memory usage goes over a given threshold, it would trigger extra memory resource allocation.

However, a threshold-based mechanism might trigger allocation too late if the given threshold

was quite close to the capacity. On the other hand, if the given threshold was quite low, it might

trigger allocation too early and causing an underutilized resource. In addition, Beloglazov’s

work required knowing of stationary workload and state configuration, which would not work

on unknown workloads that cloud servers usually have. Therefore, an improved threshold-

based mechanism or a completely new mechanism is required to determine when to acquire

extra memory resource.

In order to determine which machine should provide how much memory resource to which

machine, Zhang et al. [2017b] introduced idle memory tax which is adopted from economic

theory. The high idle memory tax applied to VMs which had low memory utilization. In

contrast, low idle memory tax applied to VMs which had high memory utilization. Thus,

balancing idle memory tax determined which should provide memory resource and which could

acquire the extra memory resource. Zhao et al. [2009] developed another memory resource
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balancer. In addition to monitor memory resource usage, it utilized prediction techniques to

predict memory needs, and rebalance memory resource periodically. However, the memory

needs of cloud servers could be unpredictable because running processes might be unknown

and could not be profiled. In addition, it might be complicated to calculate a rebalancing plan

for a huge quantity of machines because these works were designed for single PM which only

has a few VMs.

Dynamic bin packing algorithm might be another approach to determine which machine

should provide how much memory resource to which machine. In a bin packing problem,

items in different sizes must be packed into a limited number of bins while minimizing the

number of bins used. Furthermore, in a dynamic bin packing problem, items arrive and depart

dynamically. Memory resource management in data centres has a similar problem. In memory

resource management, item represents requested remote memory resource, and bin represents

available memory resource located in PM. The basic goal of memory resource management

is allocating available memory resource to machines which request remote memory resource.

Thus, memory resource management could be considered as the dynamic bin packing problem,

but the size of bin dynamically changes. A fully dynamic bin packing algorithm might be

beneficial for this challenge. Ivkovic and Lloyd [1998], Feldkord et al. [2018], Berndt et al.

[2020], and Seiden [2002] designed dynamic bin packing algorithms (e.g., Myopic packing and

Harmonic++). These algorithms had similar performance results. However, they all required

a few existed bins to be repacked. Johnson [1974] and Li et al. [2016] designed dynamic

bin packing algorithms with the goal of minimizing computation time cost. Compared to the

work discussed above, their algorithms had a lower cost of computation time but had worse

performance. To sum up, an existing dynamic bin packing algorithm could be modified in order

to solve the issue. The choice of existing dynamic bin packing algorithms could be according

to the focus: faster computation speed or better computation result.

2.6 Optimization for Memory Sharing Management

The occurrence of memory overload is a consequence of an uneven distribution of overall work

on cloud resources, which can be solved from various perspectives. A conventional approach to

address memory sharing problem is scheduling algorithms, such as the memory scheduling

algorithm and the process scheduling algorithm. However, scheduling algorithms may not
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achieve the “best” design relative to the memory sharing problem, although they can solve

the problem. In fact, memory sharing can also be managed from the optimal perspective. The

memory management problem for memory sharing is a discrete optimization problem, in which

an object such as an integer, permutation or graph can be found from a countable set.

2.6.1 Bin Packing Problem

The optimization problem for memory sharing management can be considered as the bin pack-

ing problem. Memory overloaded PMs require additional memory resources to overcome the

memory overload problem. These additional memory resources are remotely shared from spare

memory resources of other PMs. Hence, it can be considered as the required additional memory

resources are packed into bins, which are spare memory resources of other PMs.

Ant Colony Optimization (ACO) [Dorigo et al., 2006] is one of the most recent techniques

for approximate optimization, which is inspired by the ants’ foraging behaviour. Ants commu-

nicate indirectly by means of chemical pheromone trails, which allows them to find shortest

paths between their nest and food sources. This characteristic of the ant colony is exploited in

ACO for solving discrete optimization problems.

Brugger et al. [2004] presented a metaheuristic solution method based on ACO for solving

one-dimensional bin packing problem. In the proposed metaheuristic solution method, a pre-

processing procedure is proposed to reduce the actual problem size faced by the ants for improv-

ing the efficiency of the algorithm. A new pheromone decoding scheme and a new pheromone

update strategy are also proposed to further improve the performance of the proposed algorithm.

Levine and Ducatelle [2004] presented a pure ACO method for the bin packing problem, and

a hybrid approach which contains a local search algorithm for augmentation of the proposed

pure ACO method. They found the hybrid approach can have better performance in certain

problem classes than the pure ACO method and other existing evolutionary methods.

Particle Swarm Optimization (PSO) [Kennedy and Eberhart, 1995] is a population-based

algorithm. It is initialized with a population of candidate solutions. A particle represents as

a candidate solution which is associated a randomized velocity and moves through the search

space. Each particle keeps track of its coordinates in the search space, which are associated

with its best solution or the overall best value all particles have achieved so far. The PSO is
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robust and fast in solving nonlinear, non-differentiable, multimodal optimization problems.

Liu et al. [2008] proposed a multi-objective evolutionary PSO algorithm as a solution for

the bin packing problem. The solution incorporates the concept of Pareto’s optimality to evolve

a series of solutions along the trade-off surface. Thus, it does not need a combination of both

objectives into a composite scalar weighting function.

Abdul-Minaam et al. [2020] proposed an adaptive procedure to solve the one-dimensional

bin packing problem, which involves using of PSO algorithm and fitness-dependent optimizer.

The proposed algorithm uses a modified first fit heuristic approach to generate a feasible initial

population and adjusts the parameters to search for the final optimal solution.

Genetic algorithm (GA) [Goldberg and Holland, 1988] is a probabilistic search algorithm in-

spired by the mechanics of natural selection and natural genetics. It starts with a set of solutions

called population, where each solution is represented by a chromosome. The population size is

preserved throughout all generations. In each generation, fitness of each chromosome is evalu-

ated. According to the fitness values, chromosomes for the next generation are probabilistically

selected and randomly mate and produce offspring, where crossover and mutation randomly

occurs during produce of the offspring. Since chromosomes with a high fitness value are highly

likely to be selected, chromosomes from the new generation may have a higher average fitness

value than those from the old generation. The process of evolution is repeated until a given end

condition is satisfied.

Dokeroglu and Cosar [2014] proposed scalable hybrid parallel algorithms for solving one-

dimensional bin packing problems. The proposed hybrid parallel algorithms combine parallel

computation techniques, evolutionary grouping GA metaheuristics, and bin-oriented heuristics

to obtain a solution in polynomial running times.

Kröger [1995] presented a sequential and a parallel GA for solving the constrained two-

dimensional bin packing problem. The concept of meta-rectangles is proposed and incorpo-

rated into the algorithm for temporarily fixing hyperplanes of existing solutions. So that the

hierarchical structure of packing schemes with guillotine constraint is exploited to reduce the

complexity of the problem without impacting the quality of the solutions generated.

Sridhar et al. [2017] presented a combinational of heuristic GA for solving three-dimensional
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bin packing optimization problem, where each bin is arbitrary sized rectangular prismatic con-

tainer. The optimization goal of the proposed method is to minimize the empty volume inside

the container instead of satisfying various practical constraints like box orientation, stack pri-

ority, container stability, weight constraint, overlapping constraint, shipment placement con-

straint.

There are several other optimization algorithms for the bin packing problems, such as whale

optimization, simulated annealing, grasshopper optimization, and so on.

Abdel-Basset et al. [2018] presented an improved Lévy-based whale optimization algo-

rithm, as a new variant of the whale optimization algorithm. The proposed algorithm is suitable

to search the combinatorial search space of the bin packing problem.

Rao and Iyengar [1994] proposed a bin packing method based on simulated annealing

method for several specific scenarios, such as a static task allocation in process scheduling and

batch processing. The authors found the quality of the solutions obtained by the stochastic

method are consistently stable, while the quality of the solutions obtained by the heuristic

methods are problematic-instance dependent which is erratic.

The grasshopper optimization algorithm is a new metaheuristic algorithm for solving the bin

packing problem. It is widely used in a variety of industrial scenarios because of easy deploy-

ment and high accuracy. However, it has some shortcomings, such as unbalanced processes

of exploration and exploitation, unstable convergence speed, and easy to fall into the local

optimum. Feng et al. [2020] enhanced grasshopper optimization algorithm by using a nonlinear

convergence parameter, niche mechanism, and the β-hill climbing technique to overcome the

shortcomings of the grasshopper optimization algorithm.

Martello et al. [2000] defined an exact branch-and-bound algorithm for the three-dimensional

bin packing problem by introducing an exact algorithm with incorporation of original approxi-

mation algorithms for filling a single bin.

Gupta and Ho [1999] proposed a heuristic algorithm to solve the one-dimensional bin

packing problem. The proposed heuristic algorithm is useful for solving the problem which

requires most of the bins to be exactly filled. It means the proposed algorithm cannot give an

optimal result if the sum of requirements of items is higher than twice the bin capacity.
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Overall, the bin packing problem is an NP-hard optimization problem, and many meta-

heuristic algorithms have been proposed to solve it. The optimization problem for memory

sharing management is similar as the one-dimensional bin packing problem, while existing

metaheuristic algorithms in solving multi-dimensional bin packing problem may not be nec-

essary for our problem. In addition, Haouari and Serairi [2009] investigated six metaheuristic

optimization algorithms for solving the one-dimensional bin packing problem, and found that

the GA performed very well and required short CPU times.

2.6.2 Load Balancing

In addition to manage memory sharing by bin packing algorithms, the memory sharing can also

be considered as to rebalance overall memory resources among PMs in cloud data centres. Load

balancing can ensure that no PM is memory overloaded. It also helps to improve the efficiency

of the utilization of resources. Load balancing and better use of resources is considered as the

optimization problem and are ensured by numerous available algorithms, such as ACO, PSO,

and GA.

Li and Wu [2019] presented a task scheduling algorithm based on ACO for solving the

load imbalance problem in System Wide Information Management (SWIM) task scheduling.

By using the hardware performance and quality index and load standard deviation function of

SWIM resource nodes to update the pheromone for ACO, the proposed algorithm can reduce

the task execution time and improve the utilization of SWIM system resources with a more load

balanced state.

Another ACO-based task scheduling algorithm for cloud computing was presented by Li

et al. [2011]. With consideration of first come first served policy, the proposed algorithm

dynamically adapts the scheduling strategy to the changing environment and the types of tasks,

so that it can balance the entire system load and minimize the makespan of a given task set.

Xu et al. [2018] presented a VM allocation algorithm based on ACO to achieve multi-

dimensional resource load balancing of all PMs in cloud data centres. The proposed algorithm

customizes the ACO in the context of VM allocation and introduces an improved PM selection

strategy to the basic ACO in order to prevent the premature convergence or falling into the local

optima.
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Balanced load distribution of workloads among nodes in the cloud environment was pre-

sented by Nishant et al. [2012] and Gao and Wu [2015]. The approach proposed by Nishant

et al. [2012] detects overloaded and underloaded nodes and thereby performs operations based

on the identified nodes. In different from the original ACO approach, which each ant builds their

own individual result set and it is then built into a complete solution, the proposed approach

lets the ants continuously update a single result set rather than updating their own result set.

Gao and Wu [2015]focused more on minimizing the time cost of the dynamic load balancing

strategy based on the ACO. To quickly find out the candidate nodes for load balancing, the

moving probability of ants, whether the forward ant meets the backward ant in the neighbour

node, is defined by the combination of task execution prediction.

Ramezani et al. [2014] and Pan and Chen [2015] proposed task-based system load balancing

methods based on PSO to achieve system load balancing in the cloud environment. The method

proposed by Ramezani et al. [2014] only transfers extra tasks from an overloaded VM instead

of migrating the entire overloaded VM to the new host PM. Pan and Chen [2015] proposed

an improved PSO algorithm to establish a corresponding resource-task allocation model with

consideration of the characteristics of complex networks because of uncertainty of resource

nodes in the cloud computing environment.

PSO can be combined with other metaheuristic algorithms. Visalakshi and Sivanandam

[2009] presented a hybrid PSO method, which combines a simulated annealing method, for

solving the task assignment problem. The tasks are independent and non-preemptive in nature.

The proposed algorithm dynamically schedules heterogeneous tasks on to heterogeneous pro-

cessors in a distributed setup in order to have a balanced load among the processors. Golchi et al.

[2019] presented a hybrid of firefly algorithm and improved PSO algorithms for reaching the

better average load and improving the important metrics, such as effective resource utilization

and the response time of tasks.

Dasgupta et al. [2013] and Makasarwala and Hazari [2016] proposed GA-based load balanc-

ing strategies for balancing the load of workloads among PMs in cloud data centres. They found

the GA-based load balancing strategy outperformed the existing approaches, such as First Come

First Serve (FCFS), Round Robing (RR) and a local search algorithm Stochastic Hill Climbing

(SHC).

Yadav et al. [2021] used a GA to manage incoming traffic distribution over various VMs
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for resource allocations. They found that the GA provided better performance in terms of

optimizing the resource utilization, while minimizing the average response time and preventing

overload on VMs.

Chou et al. [2014] presented a GA-based load balancing system for efficiently distributing

large data from clients to different servers, in Software-Defined Networking (SDN) environ-

ment. They found GA-based algorithm had better performance than load-based, random, and

RR.

An improved GA was proposed by Liu et al. [2017] for balancing the load of VMs. The

optimization accuracy of the GA was improved by the improvement of selection and crossover

operators in the genetic process. Their improved GA had better load balancing performance

than traditional GA and RR.

Parallel GA is an algorithm that uses multiple GAs to solve a single task. Wang and Li

[2016] proposed a multi-population GA for task scheduling. They used the min-min and max-

min algorithm to initialize the population in order to boost the search efficiency. Metropolis

criterion was used to screen the offspring for accepting poor individuals with a certain proba-

bility, in order to maintain population diversity and avoid the local optimum. Ashouraei et al.

[2018] proposed another parallel GA-based method for scheduling tasks with priorities in order

to achieve better SLA. The Parallel GA presented by Effatparvar and Garshasbi [2014] is also

for tasks scheduling and load balancing to reduce the total response time and increase the system

utilization.

GA can also be combined with other optimization algorithms. Xue et al. [2019] proposed

a dynamic load balancing scheme which integrates GA with ACO for further enhancing the

performance of software-defined networking. It capitalizes the merit of fast global search of

GA and efficient search of an optimal solution of ACO to assign the network traffic to the

resources in such a way that no one resource is overloaded and therefore the overall performance

is maximized.

In addition to pure metaheuristic optimization algorithms, machine learning and deep learn-

ing are also used for optimization of load balancing challenges.

Talaat et al. [2020] presented a dynamic resource allocation method based on reinforcement

learning and GA for load balancing of resource utilization in fog computing. The proposed
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dynamic resource allocation method can handle the incoming requests, and distributes them be-

tween the available servers equally, according to continuous monitored information of network

traffic and server load.

Kaur et al. [2020] presented a deep learning-based framework for workflow execution in the

cloud environment. Convolutional Neural Networks (CNN) are used to make effective and ac-

curate decisions for resource allocation to the incoming requests, by choosing the most suitable

resource to complete the incoming requests. By enabling CNN, the proposed framework uses

a deep learning-based technique to obtain the optimal schedule for dynamically provisioning

resources for VMs and balancing the load of VMs.

Overall, the GA is initially a discrete technique that is also suitable for combinatorial

problems, while the PSO is a continuous technique that is very poorly suited to combinatorial

problems if there is no improvement nor combination with other metaheuristics. Moreover, the

ACO has been found that it falls into the local optima quickly. Hence, the GA is possible to be

used for balancing memory resources among PMs in cloud data centres. It is also proven that

having a better performance than RR, especially for complex cases.

2.7 Literature Review Summary

Cloud vendors are now more and more interested in over-committing their computing resources

to maximize the resource utilization and minimize operating costs. While over-committing

resources has impacts on the performance of VMs, it shows limited performance degradation in

general for the end users of cloud services except for memory overload. This chapter presented

a literature review investigating handling memory overload PM from various perspectives,

including improvements on live VM migration, dynamic memory balancing among VMs hosted

on a PM, disaggregated memory, remote memory paging, and memory resource management.

In order to handle memory overload, there are several important issues for live VM mi-

gration: how to live migrate a VM, how to predict or detect the memory overload condition,

which VM should be migrated, and which PM should accept VM migration. Although there are

lots of existing well-designed approaches to address these issues, these can produce additional

overhead and memory overloaded PMs. In fact, memory overload lasts for a short duration.

If the memory overload occurs for quite a long time, it can be considered as the failure of
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VM placement or the over-committing strategy. Thus, a lightweight approach is required for

handling memory overload.

Distributed shared memory shows solving the research problem from a completely different

perspective. Distributed shared memory addresses physically separated memories as a single

shared address space. However, implementation of distributed shared memory is complex and

requires modification of existing systems.

Memory sharing becomes the mainstream approach for handling memory overload of VMs

by dynamic memory balancing, or handling memory overloaded PMs by disaggregated memory

and remote memory paging. Dynamic memory balancing re-allocates memory resources of

VMs on the fly. Provisioned memory resource will be reduced if a VM uses a small portion of

allocated memory resource, and vice versa. Disaggregated memory and remote memory paging

allow a PM to use a memory resource located in a remote PM. Such designs can help to answer

the research problem by implementing memory sharing through a method of remote memory

paging. However, most of the efforts require dedicated PMs to act as a memory resource

provider, meanwhile the space of remote memory paging cannot be dynamically attached or

detached.

Literature related to memory resource management shows several directions for designing

algorithms for memory sharing. When to trigger the memory sharing can be inspired by a

threshold-based mechanism. Moreover, how to select a memory underutilized PM for a memory

overloaded PM can be inspired by existing algorithms for solving bin packing problems. In

addition, another perspective can be balancing memory utilization among PMs in cloud data

centres by memory sharing. The literature shows the GA can provide a better performance than

the RR.



Chapter 3

Memory Sharing System

Memory overload is a critical issue in over-committed clouds, which impacts computation

workload and service stability. It occurs when a Physical Machine (PM) has memory pressure

over a threshold for more than a given duration, such as five minutes [Baset et al., 2012].

Computation workloads on low priority of Quality of Service (QoS) will be paused or ter-

minated to renounce their memory resource, so that workloads with strict QoS requirement can

be maintained. Therefore, a memory disaggregation mechanism is demanded to deal with the

memory overload problem for over-committing the memory resources of PMs in cloud data

centres.

A prevailing measure to handle memory overload PM is the live virtual machine (VM)

migration. However, live VM migration is a heavyweight solution, which introduces overheads

to both source and destination PMs and migrated VMs. It also occupies network bandwidth

and CPU time during migration. In addition, the duration of doing live VM migration may be

longer than the duration of memory overload.

In most cases, the duration of memory overload is transient, even at high memory over-

committing ratios. For realistic web workloads in a data centre, about 88% of overload events

take less than 2 minutes, while 30.6% of the overload events only last 10 seconds or shorter

[Williams et al., 2011]. Thus, memory overload could be classified into two types: transient

overload and sustained overload. VM live migration is suitable for sustained overload, while

it is too heavyweight for transient overload. As most memory overload events are transient, a

lightweight approach with more flexible use and reuse of existing hardware memory resources

is preferable for handling memory overload of PMs.

38
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With the emerge of high-speed network devices and technologies, such as Remote Direct

Memory Access (RDMA) and InfiniBand, a PM can reduce its memory load by remote memory

paging with another PM. Transmitting a message in the traditional socket-based model requires

copy operations through the kernel space and consumes CPU time for data transfers. In contrast,

RDMA is a method of reading data from, and writing data to, the memory device of a remote

machine without involving the network software stack and kernel, which eliminates context

switch, intermediate data copies in various stack, and protocol processing in contrast to the tra-

ditional model [Guo et al., 2016]. It is carried by InfiniBand, which is a networking technology

that provides extremely high data throughput and low latency, particularly in high-performance

and in-network computing environments [Xue and Zhu, 2021]. Recent research shows RDMA

and InfiniBand networking have been utilized for disaggregated memory in over-committed

clouds. A memory overloaded PM can swap memory pages out of its physical memory to the

physical memory of a dedicated or underutilized PM.

Memory sharing, as a complementary solution to live VM migration, is also called memory

disaggregation. The principle of memory sharing is to offload part of memory pressure to a

remote PM. The memory sharing system is designed for handling memory overload of physical

machines (PMs) in the cloud data centre. The feasibility of swap-based memory sharing is

disscussed in the previous chapter. However, how to establish a connection between the two

PMs is still a challenge, especially when to connect and disconnect a remote in-memory block

device and how two PMs communicate to establish such connection.

In this chapter, a memory sharing system, which integrates a mechanism of threshold-

based memory overload detection, is presented for handling memory overload of InfiniBand

networked PMs in data centres. It enables a PM with memory overload to automatically borrow

memory from a remote PM with spare memory, thus handling the memory overload problem.

Overall, the main contributions of this chapter include:

1) A memory sharing system architecture is presented for handling memory overload of

PMs in cloud data centres;

2) A unified control algorithm is designed for a PM to automatically borrow memory when

memory overloading and lend spare memory when feasible; and

3) The memory sharing system is physically implemented and experimentally evaluated in
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terms of its functionality and read/write performance.

The measured performance of our memory sharing system in read/write speed is similar to

that of accessing a local Non-Volatile Memory Express Solid-State Drive (NVMe SSD).

The rest of the chapter is organized as follows: Section 3.1 describes the technical gaps and

motivation. Then, Section 3.2 exhibits how RDMA operates. Section 3.3 shows the designs

of the memory sharing procedure and feasibility examination. The architecture of our memory

sharing system is presented in Section 3.4. Section 3.5 shows the design of the control algorithm

for memory borrowing and lending. This is followed by system implementation in Section 3.6.

Section 3.7 describes the conduct of experiments for performance evaluation. Finally, Section

3.8 concludes the chapter.

3.1 Technical Gaps and Motivation

Memory balancing and remote memory are two major candidate approaches for handling mem-

ory overload of PMs in cloud data centres. However, memory balancing requires the coexistence

of over- and under-committed computation tasks in the same PM. The total memory requested

from all VMs on the PM is capped by the memory capacity of the PM. In comparison, remote

memory for PMs does not have such a limitation. However, existing efforts in remote memory

for PMs require a pre-configuration of disaggregated memory on dedicated PMs. Furthermore,

multiple or hybrid disaggregated memory designs are not essential for handling memory over-

load for PMs in cloud data centres.

Therefore, technical gaps exist regarding our memory sharing requirements for PMs in cloud

data centres, i.e., 1) a PM can access remote memory resources when it becomes memory

overload; and 2) when a PM has the spare memory resource, it can dynamically share out its

memory resource to a remote PM. This motivates the research and the development of this

chapter on memory sharing for handling memory overload on PMs in cloud data centres.

3.2 Operations of Remote Direct Memory Access

RDMA over InfiniBand uses Queue Pair (QP) to transfer data messages. Each communication

endpoint needs to create an QP in order to talk to each other. Each QP is constrained by a Send



3.2. OPERATIONS OF REMOTE DIRECT MEMORY ACCESS 41

Queue (SQ) which handles outbound data transfer and a Receive Queue (RQ) which handles

inbound data transfer.

RDMA over InfiniBand supports three operation modes: send/receive operation, read/write

operation, and atomic operations. The send/receive operation is a bilateral operation, where

the receiver must be involved in order to complete the operation. In practice, the send/receive

operation is mostly used to transmit control messages, while data messages are mostly trans-

mitted through read/write operation. The read/write operation, on the other hand, is a one side

operation, where the receiver is not involved during the operation. Moreover, atomic operations

are atomic extensions to RDMA operations. These operations include atomic fetch/add and

compare/swap. The atomic fetch/add operation increments value of a specified virtual address

with a given value. The atomic compare/swap operation compares value of a specified virtual

address with a given value, and swap value if they are not equal.

Mellanox mentions in the user manual [Mellanox Technologies, 2015] that Mellanox Infini-

Band supports three RDMA transport modes: Reliable Connection (RC), Unreliable Connec-

tion (UC), and Unreliable Datagram (UD), as shown in Table 3.1. The Reliable Datagram is not

supported.

Table 3.1: Transport Modes of Queue Pair
Operation Unreliable Datagram

(UD)
Unreliable

Connection (UC)
Reliable Connection

(RC)
Send/Receive ✓ ✓ ✓

RDMA Write ✓ ✓

RDMA Read ✓

Atomic operations ✓

Reliability ✓

Multicast ✓

Max message size MTU 1 GB 1 GB

In these three transport modes, RC supports all operation types which include send/receive,

write/read, and atomic operations. RC is a reliable connection while the other two modes

are not. UC supports send/receive and RDMA write, while UD only supports send/receive.

In addition, UD is a multicast communication with a maximum message size the same as a

maximum transmission unit. UC and RC have one gigabyte of maximum message size limit.



42 CHAPTER 3. MEMORY SHARING SYSTEM

3.2.1 Common Prerequisites for RDMA Operations

There are a few prerequisites for transmitting data through RDMA. Firstly, both server and

client side are required to register a Memory Region (MR) which tells the kernel that a segment

of the memory address is reserved for RDMA communication and creates a channel from

InfiniBand to MR. Secondly, the server and the client need to resolve addresses of each other.

Address resolution methods include assigning IP addresses to server and client and connecting

via IP address or discovering and connecting via InfiniBand specific protocols.

3.2.2 Send/Receive Procedure

Figure 3.1: RDMA Send/Receive

Figure 3.1 shows the procedure of RDMA send/receive. Both server and client need to es-

tablish a QP and a Complete Queue (CQ). QP is required to handle inbound/outbound data flow

by InfiniBand. CQ is used to inform the program when a send/receive operation is completed.

The Work Queue Element (WQE) is placed in the send queue and receive queue. It describes

types of operation (either send or receive) and the memory address of the buffer. A WQE placed

in the sender’s send queue contains the memory address of the buffer that needs to be sent

from the MR to the client. Whereas a WQE placed in the receiver’s receive queue contains

the memory address of arriving buffer in MR. Once a transaction (either send or receive) is
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completed, a Completion Queue Element (CQE) will be placed on CQ.

3.2.3 Write/Read Procedure

Figure 3.2: RDMA Write/Read

The Write/Read Procedure, on the other hand, is straightforward. The program just needs to

ask InfiniBand to copy a buffer located in a machine to another machine. Figure 3.2 describes

RDMA Write/Read Procedure where Machine A is the sender and Machine B is the receiver.

Performing the RDMA write operation requires the program to tell the following information

to InfiniBand in Machine A: operation type (either write or read), buffer address in Machine A,

buffer address in Machine B, and key of MR in Machine B. Key of MR is used to identify a

specific MR because there might be more than one MR in Machine B. If it is a read operation,

InfiniBand will copy the buffer from the given memory address of a given MR in Machine B to

give a buffer address in Machine A. Whereas, the buffer in Machine A will be copied to a given

location in Machine B if it is RDMA write operation.

In practice, the buffer address and key of MR in the receiver machine is not fixed. RDMA

send/receive is usually used for exchanging the buffer address and the key between sender and

receiver in order to make the RDMA write/read be operable.
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3.3 Design of Memory Sharing Procedure and Feasibility Study

The operations of RDMA are validated in our existing workstations by implementing and

evaluating a fundamental memory sharing model. Based on several key findings from validation

of RDMA operations, a procedure of one-to-one memory sharing is designed, and its feasibility

is investigated in this section.

3.3.1 Fundamental Memory Sharing

A fundamental memory sharing model with various RDMA workloads is implemented for

feasibility examination in order to confirm whether InfiniBand can manage remote memory

resources and is the same as what it is expected. Potential issues have been investigated by the

feasibility examination and are considered in the algorithm and mechanism design introduced

in the rest chapters of this thesis.

In the feasibility examination, it is confirmed that the buffer address and key of the MR can

be exchanged between a server and a client through RDMA send/receive operation, and the

RDMA write/read operation can be performed to exchange given data. The examination starts

from registering MR with a given size and establish QP in both server and client. Then, the

server listens on a random port in order to be connected with a client. When a client connects

to the server, they send both the buffer address and key of MR to another through RDMA

send/receive, followed by writing some data to remote memory. After that, they both read and

print received data in standard output.

Several of RDMA operation’s behaviours in various unusual situations are also examined.

Four key points are found, which need to be attended to in algorithm and mechanism design, as

shown below:

1) A WQE must be placed in RQ before placing a WQE in SQ. It means RDMA receive

on receiver side must be performed prior to RDMA send on sender side. Otherwise, the

RDMA send would fail.

2) RDMA write/read allows the local MR and remote MR to have different sizes. It cannot

transmit a buffer which has a larger size than the local MR or remote MR.

3) One machine can register multiple MRs.
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4) Registering MRs takes time. The larger size of MR results in longer duration of MR

registration. Moreover, the duration of releasing MR is not affected by size of MR.

3.3.2 One-to-One Memory Sharing

Feasibility examination of one-to-one memory sharing confirms that a PM can use the memory

resource of a remote PM as its swap space in order to handle memory overloading, while the

fundamental memory sharing described in the above section only confirms how RDMA sends

and reads data.

Figure 3.3: One-to-One Memory Sharing

One-to-one memory sharing examination is shown in Figure 3.3. PM-A represents the PM

which requires memory resource from another PM. PM-B represents the PM which shares out

its spare memory resource.

The data transfer protocol for exchanging data between PM-A and PM-B is based on NVMe

over Fabric (NoF). NoF is a protocol for transferring storage commands of Non-Volatile Mem-

ory Express (NVMe) block device between client nodes and target nodes over InfiniBand or

Ethernet networks through RDMA [Guz et al., 2017]. It standardizes the wired data transfer

process and hardware drivers for efficient access over RDMA-capable networks with minimal

processing required by the target node.

The procedure of one-to-one memory sharing is described below: At first, a ram disk block
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device provided by Linux kernel is created on PM-B. Then, the NoF subsystem is set up on PM-

A, where its backing store block device is a ram disk block device. Now PM-A can connect

the subsystems on PM-B through NoF. A new block device will show up on /dev path. Finally,

PM-A activates the new block device that just showed up as a secondary memory device, which

is swap space.

PM-A can use the memory resource of PM-B as its swap space now. Figure 3.3 shows

how a memory page P1 is swapped from PM-A into PM-B, and memory page P2 from PM-B

to PM-A. In addition, examination of the behaviours of secondary memory indicates that the

operating system may take a quite long time to swap in memory pages from a remote PM to

the main memory. By default, the operating system’s kernel iterates over the swapped pages for

searching every swapped out page, which can take a quite long time depends on the number of

swapped pages. It is recommended to iterate over processes in order to recall swapped pages to

the main memory.

3.4 System Architecture of One-to-one Memory Sharing

This section describes our memory sharing system architecture. Depending on the memory

utilization, a PM may require additional memory from other PMs, or has spare memory to

share out to other PMs. Therefore, each PM may play a role at same time as either a memory

borrower or a memory lender. A PM that is using remote memory resources for handling

memory overload is a borrower PM. In contrast, a PM that is providing its memory resource for

a remote PM to use is referred to as a lender PM. In general, a PM may change its role from a

borrower to lender or vice versa over time.

Our memory sharing system is shown in Figure 3.4. It is composed of three main compo-

nents, that is, a controller, a virtual block device, and a data transfer protocol:

1) The controller is implemented as a user space application. It decides when remote mem-

ory is required.

2) The virtual block device is embedded in a kernel space module. It stores inactive memory

pages exchanged from the memory device.

3) The data transfer protocol is designed for command execution and data transfer. It defines
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Figure 3.4: System Architecture of Memory Sharing

how the memory pages are transferred between the borrower and lender PMs.

As shown in Figure 3.4, the memory sharing requires a cooperation within the user space

application (Controller), the kernel space module (Virtual Block Device), and the data transfer

protocol. The solid arrows in the figure represent program command execution, while the dotted

line arrows indicate data transfer routes. The hardware directly involved in the system operation

includes the memory on each PM and InfiniBand-internetworked PMs.

3.4.1 Controller

A controller is designed for each PM that participates in memory sharing. It monitors the

system memory information and manages the virtual block device of the PM. Logically, a PM

may borrow memory from, or lend memory to, another PM. Therefore, the controller on the

PM acts as either a borrower controller or a lender controller, but not both, at a time. If a PM is

required to borrow memory from a remote PM that has spare memory to share out, the controller

on this PM becomes a borrower controller, while the controller on the remote PM becomes a

lender controller. With the change of the memory status of the PM, the controller on a PM may

change its role from a borrower controller to a lender controller or vice versa.

For a borrower controller running on a borrower PM, if the used memory of the PM reaches

a given threshold, the borrower controller communicates and exchanges memory sharing infor-

mation with a lender PM for establishing memory sharing, followed by activating the virtual

block device, which is linked to a lender PM through the data transfer protocol. Then, it enables
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swap space so that the kernel exchanges inactive memory pages from the physical memory to

the virtual block device. If the borrower PM is no longer considered as being overloaded, the

borrower controller disables swap and detaches the virtual block device of remote memory.

The lender controller is activated passively by a memory sharing request. When handling a

request for sharing memory from a borrower PM, it creates a virtual block device and reserves

sufficient memory resources for sharing. If the virtual block device is disconnected from the

borrower PM, the lender controller will clean up the virtual block device and free up the memory

space that was shared out previously.

3.4.2 Virtual Block Device

The virtual block device is a logical storage interface on a borrower PM or a physical storage

disk on a lender PM. While logically it is used like a hard disk, it behaves differently on

borrower and lender PMs.

On a borrower PM, the virtual block device abstracts a hard disk to the operating system. It

performs as a logical interface to accept block I/O requests. These block I/O requests are then

passed through to a lender PM via InfiniBand networking.

On a lender PM, the virtual block device abstracts an in-memory hard disk that stores sectors

in RAM. As memory is allocated only when requested, the amount of memory the virtual

block device occupies changes over time depending on how much data needs to be stored.

For example, on a virtual block device of 2 GiB, only 1 GiB memory will be consumed if only

1 GiB data needs to be stored. When the stored data is deleted from the virtual block device,

the virtual block device will free up this previously occupied block of memory.

3.4.3 Data Transfer Protocol

The data transfer protocol for memory sharing is developed based on NVMe over Fabric (NoF)

from existing systems. NVMe is designed to work over a Peripheral Component Interconnect

Express (PCIe) bus. Legacy storage stacks for accessing a storage device over the network

could be used to operate NVMe devices. However, the requirements of synchronizations and

command translation largely offset the benefits of NVMe devices for remote access.

NoF is a protocol for transferring NVMe storage commands between client nodes and target
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Figure 3.5: System Swap Diagram in Our Memory Sharing System

nodes over InfiniBand or Ethernet networks through RDMA [Guz et al., 2017]. It standardizes

the wired data transfer process and hardware drivers for efficient access over RDMA-capable

networks with minimal processing required by the target node.

The data transfer protocol together with the virtual block device in our memory sharing

system is shown in the logical diagram of Figure 3.5. It encapsulates a block I/O request, sends

the request to the target node through RDMA, decapsulates the block I/O request, and finally

passes the block I/O request to the storage virtual block device. This enables efficient data

transfer from a borrower PM to a lender PM and vice versa.

3.4.4 State Machine

With the design of the dual controller role described previously in section 3.4.1, the controller

has three states: borrower, lender, and neutral. It stays in the Neutral state when the PM neither

borrows nor lends memory resource. Transitions of these three states are demonstrated in state

machine shown in Figure 3.6. They are discussed below.

When a PM boot up, it runs under a low level of workload. The controller stays at the

Neutral state with no need to borrow memory from other PMs. Meanwhile, the PM has not

shared out any spare memory resource yet to other PMs.

Then, the controller may stay at the Neutral state if it does not need to borrow memory from
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Figure 3.6: State Machine of the Memory Sharing System

other PMs or there is nowhere to borrow memory from. The controller may transit from the

Neutral state to the Borrower state if it requires memory from other PMs, or to the Lender state

if it is requested memory by other PMs and has spare memory to share out.

For the Borrower state, there are only two possible transitions: to either stay as itself or back

to the Neutral state. If memory borrowing is maintained, the controller stays in the Borrower

state. Otherwise, if memory borrowing is no longer needed or the lending PM cancels its

memory sharing, the controller deactivates the memory borrowing and switches back to the

Neutral state.

Similar to the Borrower state, the Lender state also has two possible transitions: to either

stay as itself or back to the Neutral state. If the memory lending is maintained, the controller

stays in the Lender state. Otherwise, if memory lending becomes infeasible due to the lack

of spare memory or the borrowing PM terminates its memory borrowing, the lender controller

deactivates memory lending and transits back to the Neutral state.

In the state machine of Figure 3.6, the transitions of the states occur periodically rather than

instantly. They require the operations of all components in the system architecture on the same

PM. They also need the cooperation of the controllers on both borrower PM and lender PM for

memory sharing between the two PMs. This will be achieved through the design of signalling,

as will be discussed later. Moreover, it is seen from the state machine Figure 3.6) that there are

no direct transitions between the Borrower state and Lender state.
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3.4.5 Signalling of Events

For cooperation of various components in a controller on a single PM or two controllers on two

PMs, signalling events become important in the architectural design of the memory sharing sys-

tem. In terms of the intended functions, there are generally two types of signalling: signalling

for memory sharing activation and signalling for memory sharing deactivation.

There are two scenarios of memory sharing activation, as shown in Figure 3.7. Normally,

lender PM-B has to prepare its lender virtual block device and change its state to lender before

creating the borrower’s virtual block device and establishing a memory sharing connection on

borrower PM-A (Figure 3.7a). However, lender PM-B may reject memory sharing if it does not

have enough spare memory resource for lending (Figure 3.7b).

Memory deactivation can be triggered by either borrower PM-A or lender PM-B. If memory

overloading no longer exists, borrower PM-A will disconnect the remote memory resource

before notifying lender PM-B for cleaning up of the lender virtual block device and reverting

to Neutral state (Figure 3.8a). In a similar way, if lender PM-B becomes memory overloaded,

and no longer has spare memory resource for sharing, it will request borrower PM-A to stop

borrowing memory (Figure 3.8b).
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Algorithm 1: Controller Algorithm
Initialization: Set StateF lag ← Neutral

1 for Every monitoring period do
2 if StateF lag is Neutral then
3 Execute Algorithm 2 for Neural state;
4 else if StateF lag is Borrower then
5 Execute Algorithm 3 for Borrower state;
6 else

// StateF lag is Lender
7 Execute Algorithm 4 for Lender state;

8 return

3.5 Memory Sharing Control Algorithms

This section describes how the controller on a borrower PM determines to activate memory shar-

ing and how the controller on a lender PM responds. The pseudocode of controller algorithm is

shown in Algorithm 1.

A PM needs to have the ability to dynamically switch its role between a borrower PM and

a lender PM, as well as keep in the Neutral state. Algorithm 1 describes a unified flag-based

controller for all memory sharing operations. In each period cycle, the controller decides the

next state flag depending on its memory utilization and memory sharing request.

There are three flags, Neutral, Borrower, and Lender, which correspond with the three

states described in Section 3.4.4. The controller with the Neutral flag decides if the PM can

maintain Neutral flag or needs transition to the other flag: either the borrower controller or

lender controller flag (lines 2-3). For the Borrower and Lender state, the controller decides if

the PM can maintain the current state or needs revert back to the Neutral state.

Activation or Deactivation of the memory borrower and lender occurs on state transition.

When transiting from neutral to other states, the memory borrower or lender is activated. On

the other hand, the memory borrower or lender is deactivated when transiting to Neutral. This

is decided by a controller with the borrower flag (lines 4-5) and lender flag (lines 6-7). Hence,

the Borrower and Lender state must be transited to Neutral state prior to switching the lender or

borrower.
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Algorithm 2: Controller Algorithm for Neutral State
Data : StateF lag, Mreq, Ms, Mt, Mu, St, Tupper

Output : StateF lag
Initialization: Set StateF lag ← Neutral

1 if Transition to Neutral itself, i.e., no request or request infeasible (Mreq > Ms), then
2 if request infeasible, i.e., Mreq > Ms, then
3 Reject it by sending response mem bor rej;

4 if memory borrowing needed, i.e., Mu > Tupper ×Mt, then
5 Send memory request mem bor req;

6 else if Transition to Borrower state, i.e., mem bor ack received, then
7 Activate memory Borrower;
8 StateF lag ← Borrower;
9 else

// Transiiton to Lender state
10 Activate memory Lender;
11 Send response mem bor ack;
12 StateF lag ← Lender;

13 return StateF lag;

3.5.1 Algorithm for Neutral state

The controller algorithm for the Neutral state is shown in Algorithm 2. The default flag (main-

tain Neutral state) will be returned if there is no Application Programming Interface (API)

request received or the requested remote memory resource cannot be fulfilled (lines 1-5). During

the stay of Neutral, current memory usage is examined against the threshold in order to detect

memory overloading (lines 4-5). A request for borrowing memory resource mem bor req is

sent if the threshold is reached.

State transitions are described in lines 6-12. Receiving mem bor ack results in memory

borrower activation (line 6-8). Memory lender is activated only if requested memory resource

mreq is smaller than memory reserved for sharing ms (lines 9-12). Otherwise, borrower’s

request is rejected (lines 2-3). Calculation of ms will be explained in Section 3.5.3.

3.5.2 Algorithm for Borrower Controller

Activation and deactivation of the borrower controller is determined by a dual threshold mech-

anism in order to avoid faulty or frequent activation of memory sharing. The first threshold

is an alarm threshold Tupper. In our memory sharing system, a PM is considered as memory
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Algorithm 3: Controller Algorithm for Borrower State
Data : StateF lag, Mu, Mt,Su, Tlower

Output : StateF lag
Initialization: Set StateF lag ← Borrower

1 if memory borrowing still needed (i.e., Mu + Su >= Tlower ×Mt) and feasible (i.e., no
mem len fin received) then

2 Do nothing (i.e., maintain Borrower stater);
3 else
4 Deactivate memory borrower;
5 Send mem bor fin;
6 StateF lag ← Neutral;

7 return StateF lag;

Algorithm 4: Controller Algorithm for Lender State
Data : Mt, Mu, StateF lag, Tupper

Output : StateF lag
Initialization: Set StateF lag ← Lender

1 if memory lending not terminated by Borrower, i.e., no mem bor fin received, then
// Maintain Lender state

2 if lending likely becomes infeasible (Mu > Tupper ×Mt) then
3 Send mem len fin to prepare deactivation;

4 else
5 Deactivate memory Lender;
6 StateF lag ← Neutral;

7 return StateF lag;

overloaded if its memory usage is beyond the alarm threshold Tupper. As realistic memory

usage may fluctuate around Tupper, another threshold Tlower is set to decide whether memory

sharing can be deactivated.

The algorithm for the borrower controller decides whether the memory borrower should be

maintained. It only involves the second threshold part of the dual threshold mechanism, while

the first threshold part is involved in line 4 of Algorithm 3. Borrower controller is maintained if

memory usage is still higher than threshold Tlower and no termination request mem len fin is

received (line 1).

Deactivation of memory borrower requires the sum of used memory Mu and used swap

space Su be smaller than threshold Tlower because memory pages in swap space will be fetched

back to main memory during deactivation of the memory borrower. In addition, request mem lend fin

may be sent from the lender PM to indicate that the lender PM is unable to keep sharing memory

remotely. After deactivation of the memory borrower, it is necessary to notify the memory
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lender by sending a mem bor fin request.

3.5.3 Algorithm for Lender Controller

This section describes how to calculate the size of the shareable memory resource and when the

memory lender can be deactivated.

The remote memory resource can be reserved via a pre-configuration or dynamical config-

uration. The capacity of the shareable memory resource, Ms, can be calculated from either a

pre-configured method or a dynamic method. The pre-configured method derives Ms from the

total memory Mt less the reserved memory for all other applications, Mr, i.e.,

Ms = Mt −Mr (3.1)

The dynamical configuration requires Mu to be known in advance. The dynamic method

calculates Ms from the total memory Mt less used memory Mu, i.e.,

Ms = Mt −Mu (3.2)

With this method, Ms needs to be updated periodically with Eq. (3.2) because Mu changes over

time.

The shareable memory resource Ms is examined against the requested memory resource in

order to determine whether the lender PM has sufficient spare memory resource for sharing.

It is different from how much memory has been shared out. When the lender PM shares its

memory resource to a borrower PM, it only reserves and shares out the requested amount of the

memory resource sent by the borrower PM.

Deactivation of the memory lender depends on whether request mem bor fin is received

(line 1), as shown in Algorithm 4. Request mem bor fin sent by borrower PM triggers

deactivation of the memory lender. However, the controller checks whether the lender PM

becomes memory overloaded in the process of maintaining the Lender state (line 2). If the

lender PM becomes memory overloaded, the lender controller will send a request mem len fin

to the borrower PM for termination of memory sharing. The borrower PM has to suspend or

migrate running workloads and pull back swapped memory pages in order to complete the
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termination of memory sharing.

3.6 Memory Sharing System Implementation

All components of the proposed memory sharing system are deployed on each of the PMs in a

cloud data centre though not all of them need to execute at the same time. Their implementations

are shown in Fig. 3.9 from the programming perspective. Overall, the controller of our memory

sharing system is implemented as a user space program because it requires communications

between PMs. Network communications must be managed by a kernel based Netfilter. The

virtual block device is implemented as a kernel module interacting with other kernel functions.

Moreover, our memory sharing system is implemented in Go and C languages, where the

controller is implemented in Go and the virtual block device in implement in C.

Figure 3.9: Implementation of memory sharing in user and kernel spaces on each PM. Solid
arrows represent state transition between four modules: memory usage monitor, decision maker
module, borrower module, and lender module. Dashed arrows represent input for triggering
state transition.
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Figure 3.10: Controller Flowchart

3.6.1 Controller Implementation

The controller is implemented in a modular program with several bundled modules including

a memory usage monitor, an API listener, a decision maker module, a borrower module, and

a lender module. The memory usage monitor and API listener run concurrently in separate

lightweight threads managed by the Go runtime.

They dynamically activate/deactivate the borrower module or lender module, as shown

in the orange blocks in Figure 3.9. The solid arrow represents the state transition between
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Figure 3.11: System Logic in Swim-Lane Diagram

four modules: memory usage monitor, decision maker module, borrower module, and lender

module. The dashed arrow represents input for triggering the state transition. After collecting

memory information, the state is transited from memory usage monitor to decision maker

module for deciding if the borrower or lender needs to be activated or do nothing. Such logic

is presented as a flowchart in Figure 3.10, where the memory usage monitor keeps periodically

gathering memory information until the controller exits. Moreover, activation of the lender
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module depends on events from the API listener. It is activated only if the decision maker

module finds the lender PM can fulfill the requirement of the memory sharing request sent by

the borrower PM.

More detailed operations of the controller and the relationships of the controller modules and

Virtual Block Device are depicted in a system logic diagram in Figure 3.11. The red line arrow

represents the final action of each system component. Apart from the controller, implementation

of other system components will be described in subsections below.

Memory Usage Monitor. This module tracks the system memory usage and passing the in-

formation to decision maker module. It obtains the memory information of the PM periodically

via a low-level system call to kernel/proc/meminfo.

API Listener. This module listens on controller APIs which are served and requested

through HTTP methods. There are five API methods: mem bor req and mem bor fin are sent

by the borrower PM; mem bor ack, mem bor rej, and mem len fin are sent by the lender PM.

Decision Maker Module. The dual-threshold mechanism is implemented in this module

to decide if the borrower module or lender module needs to be activated. Activation of the

borrower module is put into account if the passed memory information comes from the memory

usage monitor only, while the activation decision for the lender module is made if the passed

memory information additionally contains the requested memory resource Mreq received from

API listener.

Borrower Module. The commands mem bor req and mem bor fin are sent out by the bor-

rower module for borrow operations of the remote memory resource. The command mem bor req

contains a parameter Mreq, which defines how much remote memory resource is required. The

lender’s return (mem bor ack) has a parameter NoF Qualified Name (NQN), which is used to

identify the virtual block device on the lender PM. Once NQN is obtained from the lender

PM, the borrower module will use the NVMe-cli tool with NQN to connect the remote virtual

block device, and then set up and enable the swap device. If memory overload no longer exists,

the borrower module will remove the swap device and then issue a mem bor fin command to

notify lender PM. In addition, if mem len fin is received, the borrower module will move remote

paging to local swap device and then issue a mem bor fin command.

Lender Module. When this module is activated, it configures the virtual block device with
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the size of remote memory, sets the virtual block device address and NQN for NoF subsystem,

and returns mem bor ack with NQN. mem bor rej may be returned for being unable to share

memory. In response to mem bor fin, the lender module asks the virtual block device module to

clean up the memory previously shared out. In addition, the lender module communicates with

the virtual block device through Netlink. Netlink (AF NETLINK) is used to transfer information

between the kernel and user-space processes. It consists of a standard sockets-based interface

for user space processes and internal kernel APIs for kernel modules. Moreover, if the lender

PM becomes memory overloaded, the lender module will send a mem len fin command to the

borrower PM to request a halt to memory sharing.

3.6.2 Implementation of Virtual Block Device

In the implementation of our memory sharing system, the virtual block device as a logical

interface on a borrower PM is generated by NoF. On a lender PM, the virtual block device

is implemented as a physical storage. Its logical structure is shown in Figure 3.12. In Fig-

ure 3.12, the yellow-shaded blocks represent three main data structures of the virtual block de-

vice: netlink kernel cfg (netlink), gendisk, and radix tree root (radix tree). They are discussed

below.

The data structure netlink kernel cfg (Netlink). Netlink is served for listening requests

from the lender module. The request in a Netlink message is to either configure gendisk

(set capacity(), add disk(), etc.) or clean up the radix tree (radix tree delete()).

Data structure gendisk. A block device is defined by gendisk, which describes how to

handle block I/O requests. block device operation only needs the following structure data of

the block device: heads, sectors, and cylinders. An alternative make request() function for the

block device is needed to define for request queue. make request() performs data read and write

operations through calling radix tree lookup() and radix tree insert(), respectively.

Data structure radix tree root. Blocks are stored in the data structure of the radix tree

provided by the Linux kernel library <linux/radix-tree.h>.
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Figure 3.12: The Kernel Module of a Virtual Block Device as a Storage on a Lender PM

3.7 Experimental Evaluation

This section reports the experiments to verify the feasibility of the memory sharing system

presented in this chapter for handling memory overload. It will show that remote memory can

be attached and detached dynamically on the fly. It will also demonstrate that the read/write

performance of remote memory operations is acceptable. The experiments aim to verify that

memory sharing could have reasonable performance by comparing the performance of remote

memory with the fastest possible local storage device under the simulation of memory page

swapping.

3.7.1 Feature Comparisons with Existing Solutions

There are two essential feature requirements for memory sharing in cloud data centres. Firstly,

memory sharing should be transparent to process, which allows a PM, or a running process to

use a remote memory resource without modification to the program source code. Otherwise,
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Table 3.2: Comparisons of Our Method in This Chapter With Existing Solutions
Virtual block Transparent Dynamic
device Based to process PM role

AIFM Ruan et al. [2020]
DLM Oura et al. [2017]
COMEX Srinuan et al. [2020] ✓

XMemPod Cao and Liu [2020] ✓

SMB Ahn et al. [2018] ✓

RMBD Choi et al. [2017] ✓ ✓

Infiniswap Gu et al. [2017] ✓ ✓

HPBD Liang et al. [2005] ✓ ✓

Nswap2L Newhall et al. [2016] ✓ ✓

Our Framework ✓ ✓ ✓

the virtualization environment, such as VM and container, cannot benefit from memory sharing.

Secondly, a PM should be able to dynamically share out its memory resource or use a remote

memory resource because any PM in cloud data centres can be memory overloading or have

spare memory resource.

Feature comparison with existing solutions is conducted based on how the solution is im-

plemented, and the two requirements described above. Result is shown in Table 3.2. Most of

the solutions are virtual block device based and are transparent to process by design. However,

all of them are statically memory sharing, which pre-configures the PM for sharing out memory

and the PM for accessing memory resource on a remote PM.

3.7.2 Memory Sharing Behaviour

We monitor memory information changes from start to end of PM overloading. A mock appli-

cation is implemented and deployed to overload the PM. It keeps requesting memory allocation

and filling up the allocated memory with random characters, until 1.5 times of memory resource

capacity is used. Figure 3.13 exhibits the lender and borrower system in runtime, where y-axis

represents the size of memory usage and x-axis represents time. It is conducted by running

a mock application to overload the memory resource of PM A and PM B sequentially. The

memory shortfall (swap) on the PM with Borrower role is filled up by the same amount of

RAM from the PM with Lender role. The memory borrowing procedure is triggered at around
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20 seconds, at which time swap is enabled for utilization. The memory usage growth from

Figure 3.13b confirms the usage of remote memory in the lender system. The growth trend of

swap in the borrower PM (i.e., the pink area in Figure 3.13a) is the same as the growth trend

of RAM in the lender PM (i.e., the blue area in Figure 3.13b). This means that the memory

shortfall on the borrower PM is filled up by the same amount of RAM from the lender PM

though our memory sharing system.

The PM roles change after 2 minutes of this experiment. Borrower PM no longer has

memory overload at the 124 second, while lender PM is pressed by the mock application for

memory overloading. Lender PM, shown in Figure 3.13b, becomes memory overloaded and

starts borrowing memory at the 147 second. It borrows memory resource from PM of Figure

3.13a. At this time, the PM roles of lender and borrower are switched.

3.7.3 Benchmark Applications

To evaluate the performance of our memory sharing system, we adopt two types of benchmarks:

IOzone and DaCapo. These benchmarks are described in the following:

Benchmark IOzone. IOzone (version 3.490) is a filesystem benchmark tool, which gen-

erates and measures a variety of file operations [Che et al., 2008]. In our tests, 4 KiB buffer

random read and write operations are selected for gaining theoretical performance on exchang-

ing inactive memory pages.

Benchmark DaCapo. DaCapo (version 9.12) [Blackburn et al., 2006] is a Java benchmark

suite used to measure the performance of memory management and computer architecture

communities. It consists of a set of 14 open-source, real-world applications with non-trivial

memory loads. For our tests, we select three memory-intensive applications from DaCapo

applications, i.e., h2, tradebeans, and tradesoap.

3.7.4 Experimental Setup for Performance Evaluation

In our experiments, two InfiniBand-networked workstations are used: one as a borrower PM

and the other as a lender PM. Each of them has a 24-core Intel Xeon 5118 processor, 256

GiB 2666MHz Hynix Memory, Samsung NVMe SSD PM981 (270,000 IOPS Max on 4 KiB

random read, 420,000 IOPS Max on 4 KiB random write), and Mellanox ConnectX-3 Pro
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Figure 3.13: Experimental Results of Memory Usage Over Time
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56GbE adapter card that supports RDMA. The OS used is Red Hat Enterprise Linux 7.7 64-bit,

whose kernel is Linux 3.10.0.

Table 3.3: Experimental Setup for Performance Evaluation
Bare-metal Docker KVM/QEMU VM

Application IOzone DaCapo
(tradesoap, tradebeans, h2)

Swap Source Remote NVMe, Disabled, Remote

The setup for the theoretical performance experiments and practical experiments are detailed

in Table 3.3, where Remote represents using our memory sharing system, NVMe represents

using a local NVMe SSD as a swap device, and Disabled represents using system memory only.

IOzone is used to test theoretical performance, while three applications from the DaCapo suite

are used to test practical performance on two popular virtualization environments, Docker and

KVM-based VM.

The three applications selected from the DaCapo benchmark applications are executed in

container and VM environments, respectively. Thus, Docker (version 19.03.8) and Kernel-

based Virtual Machine (KVM) are deployed in the two workstations. The performance of

our memory sharing system is measured for both the Docker-based and KVM-based system

configurations. Moreover, performance evaluation is conducted by comparing our memory

sharing system with local NVMe SSD based swap device and local RAM only.

Docker is utilized for emulating memory-critical scenarios where available memory re-

sources are limited to each application and thus the application is forced to use remote memory

in most of its running time. The Docker image is Red Hat Universal Base Images (version 8.1),

which involves a Java SE Runtime Environment (build 14). Each container instance can access

512 MiB memory and all PM swap space.

KVM is utilized for emulating memory-flexible scenarios in a VM-based cloud environ-

ment, which in our design will use remote memory only when the hosting PM becomes memory-

overloaded. Two VMs are deployed on a PM, where one VM runs benchmark suite applications,

and the other runs mock applications that will overload the PM. The guest OS of the VMs is

Fedora 33 64-bit, whose kernel is Linux 5.10.19. It involves OpenJDK Runtime Environment

20.9 (build 15.0.2). Each of the VMs is assigned 12 CPUs and 250 GiB memory because each

KVM-based VM functions as a Linux process where the Linux kernel of the host PM allocates
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memory only when requested.
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Figure 3.14: The performance of random read and write operations on the 4K-buffer block I/O
benchmark.

3.7.5 Theoretical Performance

We aim to verify that memory sharing could have a reasonable performance by using IOzone

benchmark tool to test remote memory as a dedicated filesystem. In our experiments, remote

memory is manually attached as virtual block device. 4 KiB buffer random read and write

operations are tested on the attached block device. Figure 3.14 shows the throughput and latency

results of 4 KiB buffer random read and write operations.

Our experiments show that remote memory always outperforms local NVMe SSD in both

throughput and latency. In comparison with RAM, remote memory has a slightly higher speed

than RAM on random write but is much slower than RAM on random read. This is also

confirmed on operation latency. Random read on remote memory is slow because read op-

erations end when a buffer has been put in a given destination memory address. However, write

operations on remote memory are marked as being completed when the buffer is sitting in the

RDMA working queue for directly writing to remote memory.
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3.7.6 Memory Sharing on The DaCapo Benchmark Suite

Three applications, tradesoap, tradebeans, and h2 are selected from the DaCapo benchmark

suite to examine the performance of remote memory. It is expected that remote memory could

achieve a similar performance as the local NVMe SSD which is currently one of the fastest

storage devices available.
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Figure 3.15: Comparisons of the execution time performance averaged from 10 runs for
DaCapo applications (tradesoap, tradebeans, h2) in Docker and KVM/QEMU environments.

Figure 3.15 shows the results of running selected applications without memory overload.

In this case, neither remote memory nor NVMe SSD based swap space is used because the
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host system is not yet out of memory. Thus, remote memory is not triggered, and application

performance is identical.

Figure 3.16 shows the results of running selected applications during system overloading.

Docker represents running applications in container instance which simulates critical situation,

while KVM/QEMU represents running applications in KVM-based VM which simulates prac-

tical situation. In simulation of a critical situation, container instance has limitation of 512

MiB memory and no limitation on swap space. Thus, most benchmark applications’ data are

exchanged to remote memory. In a practical situation, there is no limitation for VMs. PM is

put into overloading status before running selected applications. Therefore, inactive memory

pages of other system processes may be exchanged to remote memory in VM experiments. In

addition, applications are killed (out-of-memory) by the operating system kernel if the remote

memory or NVMe SSD based swap is disabled. Thus, there is no performance result for RAM

only case.

The results indicate that remote memory has similar performance as local NVMe SSD based

swap. Remote memory occasionally has better or worse performance than local NVMe SSD

based swap, depending on how an application manages its data in memory. The NVMe SSD

based swap has advantages on exchanging large consistent buffers by design, since it can read

and write buffers from a clump of blocks. On the other hand, the remote memory has to read

or write buffers one by one because InfiniBand sequentially handles the RDMA operations.

Moreover, the remote memory has slight advantages on exchanging tiny and scattered buffers,

as shown in Figure 3.14, because RAM is truly random access.

In cloud data centres, the remote memory can have both cost and performance advantages

over swapping to local disks. Memory sharing reuses spare memory resources located in the

remote PM, whilst swapping to local disks requires a dedicated disk space for swapping. In

a typical setting of cloud data centers, disks are remotely attached via NAS or SANs, which

physically are not a part of the PMs, although they are transparent to the PMs [Choudhary et al.,

2017, Mulahuwaish et al., 2022]. Swapping to such remotely attached disks cannot bring the

same performance as swapping to real local disks attached to PMs. If swapping to SATA-based

SSD or HDD, the performance will be much worse than remote memory because these types of

disk devices are generally much slower than NVMe SSD.
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Figure 3.16: Execution time performance averaged from 10 runs for DaCapo applications
(tradesoap, tradebeans, and h2) in Docker and KVM/QEMU environments.
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3.8 Summary of Chapter

In this chapter, we have presented a memory sharing system with which a memory overloaded

PM automatically borrows memory resources from a remote PM with spare memory to share

out. Our system allows a PM to be over-committed through provisioning more memory re-

sources than its capacity. Unlike traditional methods, such as VM live migration, our system can

handle memory overload without interrupting or suspending running applications. In addition,

memory sharing is transparent to system processes, including applications, VMs, and container

instances. We have also designed a unified control algorithm. The borrower PM automati-

cally borrows memory based on a dual-threshold trigger, while the lender reserves sufficient

spare memory resources for memory sharing. Experimental studies have been conducted on

InfiniBand-networked PMs to demonstrate that the memory sharing system is fully functioning

as designed. The overall performance of the memory sharing system in the speed and execution

time for remote memory access has been shown experimentally to be similar to that for access-

ing a local NVMe SSD as a swap space. Depending on how an application manages its data in

memory, remote memory can occasionally have better or worse performance than local NVMe

SSD based swap operations.

This chapter has shown the feasibility and full functionality of memory sharing in cloud

data centres. Extending the work presented in this chapter, the work of memory sharing with

multiple borrowers and multiple lenders is shown in following chapters. This requires planning,

scheduling, and optimization of memory resources from numerous PMs in a data centre.



Chapter 4

Instant Processing of Memory Sharing

The previous chapter addresses how to automatically share memory resources between two

physical machines (PMs). The PM which shares out its spare memory resource is defined as a

lender PM, while the PM which utilizes another PM’s memory resource as swap space is defined

as a borrower PM. In the memory sharing system for memory sharing between two PMs, the

role of lender PM and borrower PM can be transferred according to the instant memory usage

of that PM. Moreover, a PM is in the neutral state if it is not memory overloading nor lending

its spare memory resource.

Despite the progress in reusing the spare memory resource of lender PMs for borrower PMs,

it is still lacking with regard to dynamically pairing borrower PMs and lender PMs because

cloud data centres have numerous PMs which are grouped as clusters other than just two PMs,

as assumed in the previous chapter. In cloud data centres, the borrower PM needs an ability to

find a suitable lender PM for its memory disaggregation. Since the role of a PM dynamically

changes between borrower, lender, and neutral state, it is required that the proposed framework

can instantly find a lender PM for a borrower PM. In addition, the feasibility of many borrower

PMs using the spare memory resource of many lender PMs has been confirmed in Chapter 3. It

suggests that the proposed framework may find one or more lender PMs for a borrower PM.

The memory overload problem can be dealt with by temporary memory paging from a

memory overloaded PM to a memory underutilized PM on demand. The two PMs should be

reverted to their original state once memory overload no longer exists. This is expected to

maximize the success of PMs pairing, while minimizing the possibility of memory overload of

the PMs whose spare memory resource is used by other PMs.

71
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This chapter proposes a memory sharing framework for handling memory overload oc-

curring on multiple PMs at the same time. Memory resource is dynamically and temporarily

shared from lender PM to borrower PM. According to the discussion above, two variants of

the instant processing of memory sharing framework are proposed in this chapter. In the first

variant, a borrower PM can use memory resource from only one lender PM. The second variant

of the framework handles this using a different approach, which allows a borrower PM to use

memory resource from multiple lender PMs. Furthermore, a lender PM can share its spare

memory resource to multiple borrower PMs in both variants of the framework. Experiments in

the proposed framework are conducted and evaluated in this chapter to investigate performance

difference.

The goal of the instant processing framework of memory sharing is to maximize the success

of PMs pairing, while minimizing the possibility of memory overload on lender PMs and the

overhead of managing connections between the borrower PM and lander PM. To minimize the

overhead of managing memory sharing connections, a profile-guided clustering algorithm is

proposed to find lender candidates for instant processing of memory sharing.

Overall, this chapter makes following main contributions:

1) A profile-guided clustering algorithm with tolerance of missing values for filtering PM

candidates to share memory;

2) A memory sharing framework is designed for sharing memory resource between many

borrower PMs and one lender PM (one-to-many);

3) A variant of the instant processing framework of memory sharing, which supports sharing

memory resource between many borrower PMs and many lender PMs (many-to-many);

4) The instant processing framework of memory sharing is experimentally evaluated in terms

of its simulated improvement on resource utilization of cloud data centre.

The rest of the chapter is organized as follows: Section 4.1 discusses the background

problem and research motivation for this chapter. Section 4.2 describes designs of one-to-many

and many-to-many memory sharing and their feasibility examinations. Section 4.3 presents

the architecture of the instant processing framework of memory sharing. Section 4.4 designs

the one-to-many and many-to-many control algorithm for global controller, and the clustering
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algorithm for the lender PM selection is detailed in Section 4.5. Experimental studies are

conducted in Section 4.6 to validate the performance of our system. Finally, Section 4.7

concludes the chapter.

4.1 Problem Analysis and Motivation

Over the years, an over-commitment strategy has been widely adopted for enhancing resource

utilization of cloud data centres. However, computation tasks with low priority would be

terminated if the host PM becomes memory overloaded.

4.1.1 Case Study

Alibaba’s large-scale cloud system is a cloud data centre that matches the problem scenario.

Its open trace data shows that over-subscription and under-subscription problems can coexist

in cloud data centers [Everman et al., 2021]. Such cloud systems involve both online services

(a.k.a. long running applications) and batch workloads co-located in every machine in the

Alibaba’s cluster, where tasks may be terminated due to insufficient computing resources.

Figure 4.1: Average Memory Usage Over 8 Days in the Alibaba Data Centre

An 8-day trace data [Alibaba Open Source, 2018, Guo et al., 2019] shows that the cluster’s

average memory usage is 88%, as shown in Figure 4.1. A majority of PMs have a memory

usage over 80%. However, there are still numerous PMs that have an average memory usage
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around and under 20%, which gives the opportunity of balancing memory usage among PMs

by an over-committing strategy and memory sharing between underutilized PMs and memory

overloaded PMs.

The challenge is how to allow setting a higher level of over-commitment than the existing

one without worrying about task termination caused by memory overload. Firstly, the scheduler

should not assign extra computation tasks to high memory utilization PMs, as this increases the

possibility of memory overload. Secondly, low memory utilization PMs and under-subscribed

PMs should be kept online.

4.1.2 Technical Gaps and Motivation

Existing efforts have proved that the memory overloading issue of a PM can be handled by using

memory resources on remote PMs. Most of them require a pre-configuration of disaggregated

memory on dedicated PMs. Moreover, some efforts design multiple and hybrid disaggregated

memory for handling memory overload of PMs in cloud data centres. However, there is a lack

of effort focusing on how to benefit cloud data centres by applying memory sharing.

Therefore, technical gaps exist regarding our memory sharing requirements for PMs in cloud

data centres, i.e., 1) a memory overloaded PM can find and choose a PM that has spare memory

resource in a short time with low overhead; and 2) when a PM has shared its spare memory

resource, it has a low possibility of becoming memory overloaded.

Since cloud data centres trace the resource usage of each machine for analysis, a machine

learning method can be applied for finding a part of PMs with a similar pattern. A clustering

method can be applied for grouping lender PM candidates based on statistical information or

knowledge gained from resource usage trace data. By selecting feasible PMs from grouped

lender PM candidates, the overhead of selecting the feasible underutilized PM can be reduced.

This can also reduce the possibility of becoming memory overloaded when sharing out spare

memory resource. In addition, this research is also motivated by the demand on a clustering

method with tolerance of missing value because it is found that Alibaba’s cluster data, as shown

in the case study in Section 4.6.1, has massive missing values among all recorded PMs.
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4.2 Design of Memory Sharing and Feasibility Study

By extending the principle of one-to-one memory sharing described in Section 3.3, this section

illustrates the one-to-many memory sharing procedure and many-to-many memory sharing

procedure. The feasibility of these procedures is examined and explained in this section.

4.2.1 One-to-Many Memory Sharing

One-to-many memory sharing demonstrates that one PM can share its spare memory resource

to many PMs. The verification of its feasibility utilizes similar methods as one-to-one memory

sharing. However, there are three PMs as shown in Figure 4.2. PM-A1 and PM-A2 are PMs

which use the remote memory resource, while PM-B is the PM which shares out its spare

memory resource.

Figure 4.2: One-to-Many Memory Sharing

In this feasibility verification, PM-B creates two ram disk block devices, and sets up these

block devices as two NoF subsystems for sharing memory to PM-A1 and PM-A2. Then, PM-

A1 and PM-A2 can connect a unique NoF subsystem and write memory pages to the memory

space of PM-B through RDMA.

An example with four memory paging operations is illustrated in Figure 4.2. PM-B is

located in the middle of the figure. It shares its spare memory resource to other two PMs, PM-

A1 and PM-A2, which are located on both sides of the figure. Memory page P1 and P3 are

swapped into PM-B. Memory page P2 is swapped out from PM-B to PM-A1, while memory

page P4 is swapped out from PM-B to PM-A2.
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4.2.2 Many-to-Many Memory Sharing

Many-to-Many Memory Sharing demonstrates a complex scenario. There are many PMs which

use remote memory resources, and many PMs which provide their spare memory resources

for sharing to other PMs. In this case, multiple secondary memory devices are required to

link multiple NoF subsystems published by different PMs. Multiple secondary devices can be

directly handled by the swap feature of the operating system. By default, the operating system

swaps memory pages to multiple swap spaces by a round-robin scheduler to balance the usage

of each swap space.

Figure 4.3: Many-to-Many Memory Sharing

In the feasibility verification of many-to-many memory sharing, as shown in Figure 4.3, PM-

B1 and PM-B2 share out their spare memory for using by PM-A1 and PM-A2. Both PM-B1

and PM-B2 prepare two ram disk block devices and NoF subsystems for memory sharing. Each

of PM-A1 and PM-A2 connects two NoF subsystems, where one NoF subsystem is from PM-

B1 and another is from PM-B2. The swap activation is performed twice in order to activate two

back-end devices for swap space as secondary memory. The operating system automatically

utilizes both swap devices with balancing scheduling.

The feasibility study of this model also shows multiple swap devices can be deactivated in a

different order than activation. This means it is feasible to convert from many-to-many memory

sharing to one-to-many or one-to-one memory sharing on the fly whenever it is necessary.
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During deactivation of the secondary memory device, memory pages are transferred from the

deactivating NoF subsystem to existing online secondary memory devices.

4.3 Architecture of Instant Processing Framework

Our instant processing framework of memory sharing is proposed with one global controller and

multiple local controllers for memory sharing among a cluster of PMs. The global controller

runs on the management PM of the cluster. It can be a standalone PM or the PM which plays the

role of cluster hypervisor manager. The local controller runs on every PM which has required

borrowing remote memory resource or lending memory resource.

Figure 4.4: Brief Architecture of One-to-Many Memory Sharing System

Figure 4.4 shows the broad architecture of the instant processing of memory sharing frame-

work. Each PM is connected through the InfiniBand-enabled network for memory sharing and

management communication. The local controller running on each PM consists of three main

modules: memory usage monitor, lender controller, and borrower controller. The memory usage

monitor observes system memory usage only, with no prior knowledge of running workloads.

The lender and borrower controller are used for management connection of memory sharing.

More details of these modules have been well explained in Chapter 3. In addition, the memory

usage monitor is slightly different from what is explained in Chapter 3. It not only monitors

memory usage of its PM, but also reports observed memory usage to the global controller.

The global controller periodically collects instant memory usage of PMs. It also makes the

decision for the borrower PM to select the lender PM according to collected memory usage trace
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data from each PM of the cluster. Modules in the global controller and how they are operated

with modules in the local controller are displayed in Figure 4.5. Depending on how the lender

PM is selected, there are three or four modules in the global controller.

Figure 4.5: Architecture of One-to-Many Memory Sharing System

Memory Usage Trace Data Pool tracks memory usage of all PMs in the cluster. It receives

usage data sent by the memory usage monitor from each PM. Such memory usage trace data is

used by the model trainer to generate the lender PM candidate model.

Model Trainer generates the lender PM candidate model. The algorithm of how to generate

such model is described in Section 4.5. It updates in each service cycle.

Relationship State Keeper stores relationships of the lender PM and borrower PM. Each

relationship entry contains information of the lender PM ID, borrower PM ID and size of

memory shared from the lender PM to the borrower PM. The relationship entry is created by

the lender selector once a lender PM is selected for sharing memory resource to a borrower

PM. However, deletion of the relationship entry is done by the borrower PM, after successful

disconnection of the remote memory resource. The deletion of the relationship entry does not

require notifying to the lender selector.

Lender Selector handles the request asking for the memory lender sent by the borrower

controller of the local controller. Depending on the global controller algorithm, it can instantly

make multiple borrower PMs and a lender PM as a pair or make multiple borrower PMs and

multiple lender PMs as a pair. Lender PM candidates are filtered and selected by the model

trainer. The paired information is stored as relationship entries in the relationship state keeper.
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4.4 Global Controller Algorithms

The global controller algorithm defines how lender PMs are selected for borrower PMs to handle

their memory overloading by memory sharing. There are two types of global controller: one-

to-many memory sharing controller and many-to-many memory sharing controller, where one-

to-many and many-to-many represent the type of lender-borrower pair. One-to-many represents

a memory sharing relationship where one lender PM shares its spare memory resource to many

borrower PMs. Many-to-many represents a memory sharing relationship that many lender PMs

concurrently share their spare memory resource to many borrower PMs.

In both one-to-many and many-to-many memory sharing control, whether a lender PM

candidate can share its spare memory resource to a specific borrower PM depends on evaluation

of shareable memory. Memory sharing becomes feasible only if the lender PM has the positive

result of shareable memory.

Ms = Mt × Tlower −Mreq −Mu −Mshared (4.1)

The shareable memory size is calculated by Equation (4.1). The PM running in normal state

means the sum of memory used Mu and memory resource which has been shared Mshared

is smaller than the lower threshold. Thus, Ms is positive in normal state. By subtracting

requested memory resource Mreq, Ms may be still positive, which indicates memory sharing

for the requester borrower PM is feasible. On the other hand, it is infeasible to share a memory

resource if Ms is negative after subtracting requested memory resource Mreq.

4.4.1 One-to-many Memory Sharing Controller

In instant processing of memory sharing, the one-to-many memory sharing controller finds a

lender PM for borrower PMs. It finds one lender PM for one borrower PM at a time. If more

than one borrower PM asks for a lender PM at the same time, it handles the requests one by

one.

Figure 4.6 exhibits how the one-to-many memory sharing controller handles the memory

borrowing request sent by the borrower PM. There are two threads of works running concur-

rently: memory usage trace data pool and lender selector.
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Figure 4.6: Process of One-to-Many Memory Sharing Controller in Instant Processing

Memory usage trace data pool stores the most recent memory usage data sent by the memory

usage monitor in each local controller of node PMs. The memory usage data is then used by

model trainer to filter and sort node PMs in order to generate a list of lender PM candidates.

The filter and sort computation is clustering-based, which will be detailed in Section 4.5.

To respond to a memory borrowing request sent by borrower PM, the lender selector finds

a feasible lender PM picked from lender PM candidates. This process is shown in the green

rectangle of Figure 4.6. The lender selector picks a lender PM candidate M 235 from the

clustering result. Since M 235 has a borrower-lender relationship, the lender selector also

obtains the borrower-lender relationship entry of M 235 from the relationship state keeper.

It then examines the feasibility of lending memory resource by M 235, according to current

memory usage and the size of memory shared. If it is feasible, the lender selector will update

the relationship entry in the relationship state keeper followed by responding to the borrower

PM the result. On the other hand, this process is repeated if the examination fails.

The control algorithm for the lender selector is shown in Algorithm 5. It examines lender

PM candidates in a dual loop, which walks through all PMs (line 2) in every group of the

clustering result (line 1). The examination varies according to the borrower-lender relationship

of the examined PM (line 3). The size of the memory resource which has been shared will

be taken into account if the examined PM has an existing borrower-lender relationship entry

(lines 3-6). Otherwise, only the used memory and requested memory are computed against
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Algorithm 5: One-to-Many Control Algorithm for Lender Selection (Clustering)
Input : Clustering computation result.
Output : Selected Lender PM

1 for each group in clustering result do
2 for each PM in PMs of this group do
3 if this PM has borrower-lender relationship entry then
4 Calculate Ms by Equation (4.1);
5 if Ms is positive then
6 Set this PM as selected PM;
7 Stop the loops;

8 else
9 if sum of Mu and mreq is smaller than threshold then

10 Set this PM as selected PM;
11 Stop the loops;

12 Update borrower-lender relationship entry to Relationship State Keeper;
13 Return selected lender PM;

the threshold in order to determine the feasibility of sharing out the memory resource from the

examined PM (lines 8-9).

Algorithm 6: One-to-Many Control Algorithm for Lender Selection (Mean-based
FFD)

Input : Average memory usage of all PMs
Prerequisite: List of PMs is sorted by average memory usage in increment order.
Output : Selected Lender PM

1 for each PM in list of PMs with increment order on average memory usage do
2 if this PM has borrower-lender relationship entry then
3 Calculate Ms by Equation (4.1);
4 if Ms is positive then
5 Set this PM as selected PM;
6 Stop the loops;

7 else
8 if sum of Mu and mreq is smaller than threshold then
9 Set this PM as selected PM;

10 Stop the loops;

11 Update borrower-lender relationship entry to Relationship State Keeper;
12 Return selected lender PM;

Another control algorithm, Mean-based First-Fit-Decreasing (Mean-based FFD), for lender

selector is shown in Algorithm 6. It examines lender PM candidates in a single loop, which

walks through all PMs (line 1) to find a lender PM which is feasible to accept the memory
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borrowing request. The examination part (lines 2-10) is the same as the clustering-based control

algorithm.

4.4.2 Many-to-many Memory Sharing Controller

The many-to-many memory sharing controller allows a borrower PM to use memory resource

from multiple lender PMs at the same time. It has three differences from the one-to-many

memory sharing controller. Firstly, the many-to-many memory sharing controller requires an

extra process prior to memory selection, which is splitting off the memory borrowing request.

Secondly, the memory selection algorithm is required to run multiple times for completing a

memory borrowing request. Thirdly, selection results are grouped to form a single response to

the borrower PM. These are detailed in Figure 4.7.

Figure 4.7: Process of Many-to-Many Memory Sharing Controller in Instant Processing

Splitting off the memory borrowing request is executed ahead of lender selection. An

example is demonstrated in Figure 4.7, by assuming that all the PMs have the same memory

capacity.. Borrower PM M 320 requests a remote memory resource with normalized size of

3%. Such a size of remote memory resource is split into three sub-requests as tasks to the

lender selector. In addition, each task has equal size of requested memory, while the normalized
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minimum size of requested memory for the task is 1%.

The lender selector runs the lender selection algorithm multiple times to find the lender PM

for each task. As shown in the green rectangle, it selects lender PM M 882, M 721, and M 235

as lenders to borrower PM M 320. It then updates the lender PMs’ borrower-lender relationship

entries, followed by returning a grouped result to borrower PM M 320.

Algorithm 7: Many-to-Many Control Algorithm for Lender Selection (Clustering)
Input : Clustering computation result.
Output : Selected Lender PMs

1 Split Mreq to multiple lender selection tasks;
2 for each task in lender selection tasks do
3 Do Algorithm 5 for this task;
4 if has returned value (lender PM is found) then
5 Add to selected lender PMs;
6 Update borrower-lender relationship entry to Relationship State Keeper;
7 else
8 Revert updates of borrower-lender relationship entry executed in this loop;
9 Stop the loop;

10 Return selected lender PMs;

The whole process of many-to-many memory sharing controller is also detailed in Algo-

rithm 7. The memory borrowing request is split as first step (line 1). Algorithm 5 is performed

for selecting the lender PM for each split task (lines 2-3). In each lender selection task, if a

lender PM is selected, the borrower-lender relationship entry will be updated (line 6) in order to

reflect this lender PM reservation for further runs of Algorithm 7. However, if Algorithm 7 re-

turns no lender is selected, it will be necessary to revert updates of borrower-lender relationship

entry (line 8). In addition, the number of returned lender PMs from Algorithm 7 needs to be

checked against the number of split lender selection tasks. The many-to-many lender selection

is successful only if these numbers are equal. Otherwise, it fails to find lender PMs for requester

borrower PM.

Many-to-many memory sharing control algorithm for mean-based FFD, as shown in Figure

8, is slightly different from clustering-based. In mean-based FFD, sorted lender PM candidates

are looped first (line 1). In each loop, memory borrowing requests are looped (line 2) to assign

multiple memory borrowing requests to the lender PM candidate selected in the first loop when

it is feasible.
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Algorithm 8: Many-to-Many Control Algorithm for Lender Selection (Mean-based
FFD)

Input : Average memory usage of all PMs
Prerequisite: List of PMs is sorted by average memory usage in increment order.
Output : Selected Lender PM

1 for each PM in list of PMs with increment order on average memory usage do
2 for each task in lender selection tasks do
3 if this PM has borrower-lender relationship entry then
4 Calculate Ms by Equation (4.1);
5 if Ms is positive then
6 Set this PM as selected PM;
7 Stop the loops;

8 else
9 if sum of Mu and mreq is smaller than threshold then

10 Set this PM as selected PM;
11 Stop the loops;

12 Update borrower-lender relationship entry to Relationship State Keeper;
13 Return selected lender PM;

4.4.3 Capability and Feasibility of Global Controller

It is assumed there is always a solution for the global controller. There is certainly at least

one feasible PM for sharing memory, if the cluster runs under its capacity. However, if the

overall memory usage of the cluster runs near or over the limit of the memory resource, there

will be no solution for the global controller, which will result in the global controller unable

to find any feasible lender PM for memory sharing. Such case can be considered as the failure

on resource provisioning of the cluster. To avoid occurrence of this case, it is assumed one or

more additional PMs is automatically booted up in order to prevent the cluster running over its

capacity. Memory sharing becomes feasible with these additional PMs.

According to the assumption above, the global controller can always find a solution. The

FFD can always guarantee a feasible solution by its nature. Similar to the FFD, our proposed

algorithm orders the candidate lender PMs by descending size, and then and then call the first-fit

bin packing.
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4.5 PM Clustering Algorithm

The clustering algorithm is designed to group PMs with similar trend of memory usage changes.

Traditional time series clustering methods cannot be applied because they cannot handle the

situation of missing data in time series. Since memory usage data is tracked in cloud data

centres, it is common that the data of one or more PMs is missed on a time point. The reasons

could be such PMs are suspended for energy saving purpose or such PMs are temporarily

unresponsive due to various errors.

4.5.1 Mean Profile

The principle of our clustering algorithm is to create a new line, called ’mean profile’, based

on the average value of each time point. Then, PMs can be clustered according to the distance

between them and the mean profile.

Given a set of data patterns X = (x1,x2, ...xM), where xi = (xi1, xi2, ..., xiT ) is the vector,

i = 1, ..., Nm, Nm is the total number of machines and T is the total time points.

The similarity (distance) of two machines, xi and xj , is represented by

d(xi,xj) =

√√√√ 1

T

T∑
t=1

(xit − xjt)2 (4.2)

Mean profile can be calculated by

µ = (µ1, ..., µT ) = (
1

Nm

Nm∑
i=1

xi1, ....,
1

Nm

Nm∑
i=1

xiT ). (4.3)

The distance between each machine and the mean profile is

d(xi,µ) =

√√√√ 1

T

T∑
t=1

(xit − µt)2. (4.4)
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4.5.2 Clustering Method

The clustering method is run on the model trainer in order to filter and narrow down lender

candidates for lender selector. It is designed to allow the borrower PM to ask limited PMs for

the lender candidate instead of all PMs, meanwhile reducing the risk of overloading the lender

PM.

There are several steps to do the clustering computation:

1) Calculate mean profile for filtered PMs by Equation (4.3).

2) Calculate distance to mean profile for each PM from filtered PMs, by Equation (4.4).

3) Group result of distance to mean profile, and form 10 groups because memory usage of

each PM is normalized which is between 0 and 100. It means that distance to mean profile

is between 0 and 100 as well.

4) Sort PMs in each group by their standard deviation.

The clustering computation is represented as a clustering algorithm, as shown in Algo-

rithm 9, for one-to-many and many-to-many memory sharing frameworks. Prior to clustering,

PMs under any of the following conditions are filtered out (lines 2-7): PM with memory usage

higher than cluster’s average memory usage and PM with more than a certain value of trace

data missed. For Alibaba’s trace data [Alibaba Open Source, 2018], such value can be 20%,

as shown in Figure 4.8. Then, the mean profile and distance between mean profile and PMs

are calculated in lines 8-9 and 10-11 respectively. Lines 12-15 describes how to group the

clustering results. The remainder of division by ten is used to group clustering results based on

the distance to mean profile in multiples of ten. Finally, the PMs of each clustering group are

sorted (lines 16-17).

4.6 Experimental Studies and Evaluation

This section analyses cluster trace data published by Alibaba Group and describes the conduct

of experiments to investigate improvement on memory resource utilization of the modern cloud

data centre. The experiment is conducted in the form of simulation, using cluster trace data

published by Alibaba. The simulation is implemented in Go programming language.
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Algorithm 9: Clustering Method for Filtering and Sorting Node PMS to Lender PM
Candidates

Input : Memory usage trace data pool.
Output: Lender PM candidates in form of PM clustering groups.

1 Calculate mean of memory usage of the whole cluster;
2 for each PM in memory usage trace data pool do
3 Calculate mean of memory usages of this PM;
4 Calculate standard deviation of memory usages of this PM;
5 Count how many time points have no memory usage data for this PM;
6 if the mean is under the mean of the cluster and percentage of missing data is

under 20% then
7 Add to lender PM candidates;

8 for each PM in lender PM candidates do
9 Calculate mean profile by Equation (4.3);

10 for each PM i in lender PM candidates do
11 Di ← Calculate distance between this PM and mean profile by Equation (4.4);

12 Generate 10 empty groups;
13 for each PM i in lender PM candidates do
14 g ← the least integer value greater than or equal to 100−Di

10
;

15 Add this PM to clustering group g;

16 for each group of generated groups do
17 Sort PMs of this group by their standard deviation in increasing order;

18 Return PM clustering groups in decreasing order;

4.6.1 Alibaba Cluster Trace

The cluster trace data is sampled from one of Alibaba’s production clusters [Alibaba Open

Source, 2018], which has both online services (a.k.a. long-running applications) and batch

workloads co-located in every PM of the cluster.

Figure 4.8: The Percentage of Missing Data for Each PM
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Resource usage of 4023 PMs in a period of 8 days is recorded in cluster data. Resource

usage is observed every ten seconds. Thus, there are 69120 observed time points for each PM.

However, every PM has more than one time point missed. The percentage of missing data for

each machine is presented in Figure 4.8. The PM m 3330 has the smallest proportion, 5.90%,

of missing value; while m 3539 has the largest proportion of missing values, 94.84%. Thus,

PMs whose percentage of missing data over 20% are removed prior to clustering modelling.

This results in 4000 PMs that are left for clustering modelling.

4.6.2 Clustering Modeling

Firstly, the average memory usage for each PM in 69120 time points is calculated. Average

memory usage for the whole cluster is also calculated, which is 88%. PMs with average memory

usage higher than the cluster’s average memory usage are filtered out. PMs with missed trace

data in more than 20% of time points are also filtered out. This results in 469 PMs being left

for clustering.

Secondly, the mean profile is calculated, which means the mean of 469 PMs for each time

point. The range of the mean profile is between 57.85 and 93. The total length of the mean

profile is 69120. However, there are 1878 points missed from the profile mean because there

are no observed values in these time points for all PMs.

The next stage is to calculate distance between each machine and mean profile in each time

point, followed by grouping the clustering result into ten groups. In order to clearly exhibits

trend of each group, the mean profile of each group is calculated and shown in Figure 4.9 and

Table 4.1. Only seven groups are displayed because there is not any PM whose distance away

from the mean profile is larger than 70.

Finally, PMs in each group of clustering result are sorted based on their standard deviation.

4.6.3 Experimental Setup

The experiment is conducted by adding additional workload to each PM in the cluster. The

memory usage data of each machine is recorded every ten seconds and is normalized to be

shown in range from 0 to 100, which represents the percentage of memory usage to the ca-

pacity of the PM. Additional workload is added directly to the normalized memory usage. For



4.6. EXPERIMENTAL STUDIES AND EVALUATION 89

Figure 4.9: Clustering Results: Mean Profile and Clustering Result

Table 4.1: Clustering Results: Mean Profile of Clusters
Cluster PM Count Mean SD Min Max

4 28 6.03 4.67 1 98
5 73 18.44 30.50 1 98
6 1 40.29 28.52 19 93
7 4 38.48 7.39 17 98
8 42 82.89 13.37 2 98
9 314 85.76 6.72 2 98

10 7 73.34 1.45 62 82

example, if the recorded memory usage is 95%, it will be shown as 98, in the experiment with

additional 3% workload. Memory usage in the experiment can be higher than 100% after adding

additional workload. Such a case is treated as memory overload.

The experiment is aimed to verify if: 1) the proposed memory sharing framework can

improve memory resource utilization of cloud data centres; 2) clustering can reduce the number

of lender candidates, while maintaining a reasonable performance.

The publicly accessible data used for simulation in the experiment is Alibaba’s 8-day trace

data [Alibaba Open Source, 2018]. A certain workload is added to each PM in Alibaba’s cluster

in order to simulate memory overload based on real data. During the experiment, memory usage

over 98% is considered as memory overload. In addition, the experiment is conducted with four

levels of additional workload; 2%, 3%, 4%, and 5% of normalized memory capacity of the PM.

To evaluate the performance, the clustering-based FFD (Algorithm 5 and Algorithm 7)

and mean-based FFD (Algorithm 6 and Algorithm 8) approach are compared with standard

deviation based FFD (SD). SD is similar as mean-based FFD. However, in SD, the lender PM
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candidates are sorted based on standard deviation instead of the mean of 8-day memory usage

in incremental order.

4.6.4 Experiment Condition

a Memory Overload of PMs Caused by Additional Workload

Figure 4.10: Count of Memory Overloading PMS Over the Time

Figure 4.10 shows how many PMs are under memory overloading in each time stamp after

applying additional workloads on each PM. Since the average memory usage of overall cluster is

around 88%, 5% additional workloads result in much more memory overloaded PMs than with

3% and 4% additional workloads. The number of memory overloaded PMs is up to 151 and

145 at a time point, for 3% and 4% additional workload respectively. However, such number

increases to 707 with 5% additional workloads.

b Comparison of Lender PM Candidate

Table 4.2: Number of Lender PM Candidates
Additional Workload SD Clustering Mean-based FFD

2% 4023 469 4023
3% 4023 469 4023
4% 4023 469 4023
5% 4023 469 4023

All 4023 PMs are considered as lender PM candidates, as shown in Table 4.2, while the

proposed clustering-based method (Clustering) has 469 lender PM candidates scattered in 7

groups.
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4.6.5 Experimental Evaluation

Experiments are done for both one-to-many and many-to-many memory sharing. The following

are recorded for analysis: numbers about memory sharing requested by borrower PMs, numbers

about maintaining memory sharing connection between the borrower PM and lender PM, and

the number of distinct lender PM used in the experiment.

a Success Rate on Pairing Lender PM to Borrower PM
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(a) Percentage of Successful Pairing Lender PM With Borrower PM in One-
to-Many Memory Sharing
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to-Many Memory Sharing

Figure 4.11: Percentage of Successful Pairing Lender PM With Borrower PM in Instant
Processing of Memory Sharing
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The success rate on pairing the lender PM with the borrower PM in many-to-many memory

sharing is calculated through dividing the count of successful pairing by the total count of

memory borrowing requested by the borrower PM. Failure of pairing lender PM with borrower

PM represents extra PMs are required to boot up in order to allow the global controller to

find feasible lender PMs to memory borrowing requests. Figure 4.11a shows the success

rate for one-to-many memory sharing, while many-to-many is shown in Figure 4.11b. Each

figure is composed by results on four levels of additional workloads with three different control

algorithms to select the lender PM.

Mean-based FFD and SD have similar performance, which are higher than clustering. SD

has better result on 4% and 5% additional workload than mean-based FFD, while its perfor-

mance is slightly better than mean-based FFD in other scenarios. In addition, the drop in

success rate over the increment of additional workload is reasonable. Success rate on 5% ad-

ditional workload declines steeply because the number of memory borrowing request increases

dramatically in such additional workload, as shown in Figure 4.10.

In contrast, clustering has quite low success rates on 5% additional workload performed for

one-to-many memory sharing and all experiments for many-to-many memory sharing, although

it is not designed for achieving a high success rate of pairing lender PM with the borrower PM.

The reason for such a low success rate is that clustering only has around one tenth of lender PM

candidates compared with others.

b Success Rate for Maintaining Memory Sharing Connection

The success rate of keeping memory sharing connection is calculated on the percentage of

duration for which the lender PM can keep fulfilling the memory sharing requirement. Such

duration is interrupted if the lender PM becomes memory overloaded during the connection of

memory sharing with the borrower PM. All approaches have acceptable performance, where

all of them have a result over 99.6%, as shown in Figure 4.12a (one-to-many memory sharing)

and Figure 4.12b (many-to-many memory sharing). The clustering has the best performance in

all experiments except for experiments with 2% additional workloads. Mean-based FFD has a

similar performance as clustering, while SD has the worst performance.

In addition, the performance of clustering is analysed deeply to verify that small number of
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(a) Percentage of Keeping Memory Sharing Connections in One-to-Many
Memory Sharing
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(b) Percentage of Keeping Memory Sharing Connections in Many-to-Many
Memory Sharing

Figure 4.12: Percentage of Keeping Memory Sharing Connections in Instant Processing
Framework of Memory Sharing
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existing lender PMs for memory sharing does not increase success rate. A few more experi-

ments are conducted by limiting the lender PM candidates for mean-based FFD. It is found that

mean-based FFD still has lower rate than clustering, even when the lender PM candidates are

limited to the same number as clustering.

c Distinct Lender Count
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(a) Distinct Lender Count in One-to-Many Memory Sharing
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(b) Distinct Lender Count in Many-to-Many Memory Sharing

Figure 4.13: Distinct Lender Count in Instant Processing Framework of Memory Sharing

Figure 4.13a (one-to-many memory sharing) and Figure 4.13b (many-to-many memory

sharing) illustrate the distinct lender count which represents how many node PMs have played

the role of lender PM during the experiment, where the same PM behaving as the lender PM
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multiple times is not counted repeatedly. Among cloud servers, a higher number of lender PMs

indicates higher overhead on managing memory sharing between lender PMs and borrower

PMs.

The experiment results of clustering shows that the majority of lender PM candidates are

used during experiments. 2% additional workload of one-to-many memory sharing uses 468

lender PM candidates, while all 469 are used in other experiments. It indicates that the number

of lender PM candidates is not enough for additional workloads higher than 2%. This can also

explain why the success rate of pairing the lender PM and the borrower PM is low by applying

the clustering approach.

The other two approaches, SD and mean-based FFD, use many more lender PMs than

clustering. SD occasionally uses a greater number of lender PMs than mean-based FFD in

the experiment on one-to-many memory sharing, while it uses basically a similar number of

lender PMs as mean-based FFD in the experiment of many-to-many memory sharing.

4.7 Summary of Chapter

In this chapter, an instant processing framework of memory sharing is presented for handling

memory overload occuring on multiple PMs at the same time. The memory resource is dynam-

ically and temporally shared from lender to borrower. The framework allows a lender to share

its spare memory resource for multiple borrowers (one-to-many memory sharing), and allows

multiple lenders to share their spare memory resources to multiple borrowers (many-to-many

memory sharing). A profile-guided clustering algorithm is used for finding lender candidates

and selecting the lender for the borrower. An additional selection algorithm for lender and

borrower is mean-based FFD algorithm.

Experimental studies are conducted in simulation of Alibaba’s public trace data for evalu-

ating how much improvement our instant processing of memory sharing framework can bring

to real world data centres. With a 2% increment of memory usage on each PM, our system can

handle 98.3% of memory overload situations by utilizing spare memory resource of 11.7% PMs

selected by clustering. In the experiment, only one tenth of PMs are considered as lender PM

candidates for the clustering-based approach, while the mean-based FFD approach considers

all PMs of the cluster as lender PM candidates. Experimental results show that for a typical
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3% additional workload, the clustering-based approach can handle 78.2% memory overload

situations in one-to-many memory sharing, while it handles 28.1% memory overload situations

in many-to-many memory sharing. The mean-based FFD approach in a typical 3% additional

workload can handle 97.6% of memory overload situations in one-to-many memory sharing,

while it handles 95.9% of memory overload situations in many-to-many memory sharing. In

addition, the clustering-based approach has a higher non-interrupt rate of maintaining memory

sharing connection than the mean-based FFD most the time.

This chapter has shown the benefits of using memory sharing in cloud data centres. Al-

though the clustering-based approach has less management overhead, which manages less lender

PM candidates than mean-based FFD approach, the performance has huge room for improve-

ment. This issue is investigated and tackled in Chapter 5.



Chapter 5

Block Processing of Memory Sharing

Improvement of memory utilization of a cluster by enabling instant processing of memory

sharing has been proven in the previous chapter. However, proposed approaches and benchmark

approaches are far away from maximum improvement. For clustering-based instant processing

of memory sharing, the rate of successful pairing lender PM and borrower drops under 80%

when adding extra 3% or more additional workloads in the one-to-many memory sharing model.

Such a rate is even lower in the many-to-many memory sharing model, which is always under

60% from experiments with extra 2% to 5% workloads. In contrast, in the benchmark approach,

mean-based FFD has reasonable performance. The performance results with mean-based FFD

shows that such a rate drops under 80% only on extra 4% workload and extra 5% workload, no

matter whether running on a one-to-many memory sharing model or a many-to-many model.

Although the clustering-based approach has a higher rate of avoiding memory overload of the

lender PM during memory sharing than mean-based FFD most of the time, while keeping a low

overhead on management, there is still a large room for performance improvement. Therefore,

another memory sharing framework is demanded for achieving such improvement.

The block processing framework of memory sharing with an optimization algorithm is

introduced in this chapter. Instead of processing each memory sharing request one-by-one like

instant processing of memory sharing, the block processing framework processes multiple of

memory sharing requests at a time. A high rate of success in pairing the lender PM and the

borrower PM under medium and high extra workloads PM is expected for block processing of

memory sharing. Moreover, the rate of non-interrupt in maintaining memory sharing between

lender PM and borrower PM is expected to be fair.

97
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In the block processing of memory sharing, it demands minimizing memory usage of lender

PM candidates which need to share out memory with known sizes while not exceeding the

capacity of each lender PM candidate. This problem is known as NP-hard; hence numerous

heuristic procedures for its resolution have been suggested. In this chapter, the optimization

algorithm used for block processing of memory sharing is an evolutionary algorithm, genetic

algorithm (GA). Genetic algorithms are randomized research algorithms which have been devel-

oped with the aim of mimicking the mechanics of natural selection and natural genetics. Genetic

algorithms function on string structures, which evolve over time, according to the survival rule

of the most capable using a random but structured information exchange.

Overall, this chapter makes the following main contributions:

1) A memory sharing framework is designed for block processing of sharing memory re-

sources between many borrower PMs and one lender PM (one-to-many);

2) A variant of the block processing framework of memory sharing, which supports sharing

memory resources between many borrower PMs and many lender PMs (many-to-many);

3) A genetic-algorithm based control algorithm for planning multiple lender PMs and mul-

tiple borrower PMs as a whole;

4) The block processing framework of memory sharing is experimentally evaluated in terms

of its simulated improvement on resource utilization of the cloud data centre.

The rest of the chapter is organized as follows: Section 5.2 illustrates the architecture of

the block processing framework of memory sharing, where the global controller is the most

important component in the architecture. The algorithm of the global controller is detailed

in Section 5.3. Section 5.4 shows the design of the lender PM planning algorithm which is

GA-based. The experiments are evaluated and discussed in Section 5.5. Finally, Section 5.6

concludes the chapter.

5.1 Problem Formulation

The optimization goal of the proposed memory sharing framework is to raise the rate of suc-

cessful pairing of the lender PM and the borrower PM, while keeping a high rate of successfully
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maintaining memory sharing. It means that memory usage of each PM in the cluster is expected

to be as low as possible with memory sharing enabled. This section formulates a memory usage

model to calculate used memory of a PM during memory sharing and formulates an evaluation

model for block processing. The evaluation model indicates overall memory usage of the cluster

and is used to evaluate results of the optimization problem.

5.1.1 Memory Usage Model in Memory Sharing

Memory information is retrieved via a low-level system call to kernel/proc/meminfo, which

provides the total amount of usable memory Mt, the amount of memory unused by the system

Mf , the amount of cache memory Mc, and the amount of memory used for file buffers Mb.

Thus, the amount of used memory Mu is calculated by the following equation:

Mu = Mt −Mf −Mc −Mb (5.1)

In the proposed memory sharing framework, the memory resource of a PM can be shared

out in order to be used by a remote PM. Thus, Equation (5.1) is extended for memory usage

calculation in the memory sharing framework. The amount of used memory for a memory

sharing enabled PM M
(mshr)
u is used to check if a PM has sufficient memory resource for

fulfilling the memory sharing request by sharing out its spare memory resource. It is calculated

by following equation:

M (mshr)
u = Mu +Mshared +Mreq (5.2)

In Equation (5.2), Mu represents size of memory the PM itself used, which is calculated

by Equation (5.1). Mshared represents size of memory which has already been shared out. It

can be zero value if the PM has not shared out its spare memory resource. Mreq represents the

size of the memory resource that will be shared out in this process of memory sharing. If a PM

has shared out a large amount of its memory resource (Mshared) and has a request to share out

further memory resource (Mreq), the M
(mshr)
u may be larger than Mt. It means further memory

sharing on this PM is not feasible.
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5.1.2 Quantification Model for Impact of Memory Sharing

An impact quantification model is designed to evaluate the fitness of the block processing

result. In the block processing of memory sharing, multiple memory borrowing requests are

processed at a time. Thus, there is a list of M (mshr)
u to represent memory usages for all lender

PM candidates.

In the quantification model for the impact of memory sharing, the results of block processing

are evaluated based on distance between used memory M
(mshr)
u and the lower threshold Tlower.

The distance is calculated by following equation:

Md =
M

(mshr)
u

Mt

− Tlower (5.3)

Md is calculated by using normalized used memory after memory sharing minus the lower

threshold because M
(mshr)
u represents the amount of memory while threshold represents a

percentage. A constraint of this model is that Md should not be positive. Memory overload

will likely occur after sharing out the memory resource, if Md is positive. Therefore, a distance

factor k is introduced for adding penalty to calculation. Calculation of k is shown in Algorithm

10.

The total distance for evaluating the result of block processing is formulated as follows:

F =

Nl∑
n=1

Mnd × k (5.4)

In Equation (5.4), Nl refers to the number of lender PM candidates, and k is the distance

factor. The equation sums up Md for all lender PM candidates, where Mnd refers to the Md for

the nth lender PM candidate. The distance factor is used to avoid producing the same result

because a quite high Mnd and a quite low Mnd counteract each other in the sum result.

Algorithm 10 is used to produce the value of distance factor k. k is set at a higher value than

default value 1 if the normalized size of used memory is higher than the lower threshold (line

1). Otherwise, k remains on default value 1 (line 4).
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Algorithm 10: Distance Factor Calculation for Fitness Function
Input : Mnd

Output : k
1 if Mnd is positive then
2 Set k ←Mnd + 1;
3 else
4 Set k ← 1;

5 Return k;

5.1.3 Constrained Optimization

In the block processing of memory sharing, the lender PM planning is responsible for selecting

a lender PM for each memory borrowing request in order to let the borrower PM know where to

borrow memory resource. It aims to minimize the impact on lender PMs of sharing out memory

resource. The impact is quantified by calculating the distance between the used memory and

the threshold with a penalty of over-threshold. Therefore, the lender PM planning is formulated

as the following constrained optimization problem with respect to the set of memory borrowing

requests R =
⋃Nb

n=1Rn:


min
R

F =

Nl∑
n=1

(
M

(mshr)
nu

Mt

− Tlower)× k

s.t. 0 ≤M (mshr)
nu ≤Mt

0 ≤ Nl ≤ Nm

(5.5)

where M
(mshr)
nu represents the amount of used memory for nth of lender PM candidates

after planned memory sharing activation. A constraint is that a lender PM should not become

memory overloaded, which is represented as an amount of the lender PM’s used memory during

memory sharing cannot be higher than its memory capacity. Another constraint is that lender

PM candidates are part of or all PMs in the cloud data centre, which can be represented as that

the number of lender PM candidates should be smaller than or equal to the number of all PMs.

5.2 Architecture of Block Processing Framework

The framework architecture of block processing of memory sharing has similar design as the

instant processing of memory sharing framework described in Chapter 4. A global controller,
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which performs as the controller, runs on a dedicated PM or the same PM with a cluster manager

or hypervisor. Local controller is run on each node PM, which performs as the agent role of the

controller-agent model.

Figure 5.1: Architecture of Block Processing Framework of Memory Sharing

The detailed framework architecture of block processing of memory sharing is illustrated in

Figure 5.1. The local controller is identical in both instant processing and block processing of

memory sharing framework, while the global controller has several differences.

Memory Usage Data Pool stores only the most recent memory usage data of each PM

because the lender planner does not require historic memory usage trace data for lender PM

selection. It means that every time a new memory usage data is updated from the memory usage

monitor of each local controller, the memory usage trace data pool overwrites the existing data.

Lender Planner allows the global controller to find the lender PM for the borrower PM with

consideration of the optimization on resource provisioning of the whole cluster. The genetic

algorithm, an evolutionary algorithm, is applied in the lender planner for making the optimized

lender selection. In addition, the lender planner selects lender PMs for borrower PMs all at

once, while the lender selector in instant processing of memory sharing (Figure 4.5) chooses

one lender PM for one borrower PM at a time.
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5.3 Global Controller Algorithm

This section describes algorithms for two types of global controller: one-to-many memory

sharing controller and many-to-many memory sharing controller.

5.3.1 One-to-many Memory Sharing Controller

In a one-to-many controller of the block processing framework of memory sharing, memory

borrowing requests are handled together by the lender PM planning algorithm. Depending on

the number of borrowing requests to be handled, block processing of memory sharing may be

efficient for handling large numbers of borrowing requests at once, while increased overhead

may result from handling just a few borrowing requests at a time.

Figure 5.2: Process of One-to-Many Memory Sharing Controller in Block Processing

Figure 5.2 illustrates the process of the one-to-many memory sharing controller. Each mem-

ory borrowing request sent by the borrower PM is not handled as soon as it arrives the global

controller. Instead, the global controller waits a tiny moment and queues the memory borrowing

requests and handles them together. Hence, a request queue is maintained to temporarily hold

borrowing requests. In Figure 5.2, borrowing requests sent from the borrower PM M 760 and

M 380 are waiting until a request from borrower PM M 320 arrives. They are then passed to

the lender planner.
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During the lender PM planning process, the number of selected lender PM candidates may

not be equal to the number of memory borrowing requests. The same lender PM may be selected

for various memory borrowing requests when it is feasible. This benefits from block processing

of the lender PM planning. In Figure 5.2’s example, lender PM M 721 lends its spare memory

resource for both borrower PM M 760 and M 380.

Algorithm 11: One-to-Many Control Algorithm for Lender Planning
Input : Memory usage trace data.
Output : Selected Lender PM Plan

1 Run the GA to get the calculated lender PM plan;
2 for each PM in lender PM plan of GA result do
3 Calculate Ms by Equation (4.1);
4 if Ms is positive then
5 Add this PM to selected lender PM plan;

6 Update borrower-lender relationship entry to Relationship State Keeper;
7 Return selected lender PM Plan;

The control algorithm for one-to-many lender planning is shown in Algorithm 11. It starts

running the GA computation to obtain an optimized result (line 1). However, the result of the

GA computation does not guarantee each lender PM has sufficient spare memory resource to

share with the borrower PM, according to the computation goal of the GA. It is necessary to

walk through all selected lender PMs to examine them against the threshold described in the

previous chapter, and as shown in lines 2-5. The feasible lender PMs are added to the selected

lender PM plan (line 5).

5.3.2 Many-to-many Memory Sharing Controller

Many-to-many memory sharing of block processing model has two steps more than the block

processing of the one-to-many memory sharing controller: the borrowing request split and result

grouping.

The borrowing request is split into multiple sub-requests as tasks, ahead of arriving at the

wait queue. The memory size of each task could affect the performance of memory sharing.

The tiny memory size of each task means there can be a lot of tasks for one borrowing request,

which, in the worst case, can result in many lender PMs being selected for memory sharing. In

the process demonstration in Figure 5.3, the borrower PM M 320 requests 3% normalized size
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Figure 5.3: Process of Many-to-Many Memory Sharing Controller in Block Processing

of the remote memory resource. Such a request is split into three tasks in the split procedure,

where each task involves 1% normalized size of the remote memory resource.

Result grouping concludes the result of the GA computation to form a single response for

the borrower PM because the result of the GA computation only records selected lender PMs for

each task instead of each borrower PM. If there is no result grouping, the global controller may

respond to a borrower PM multiple times. There will be no problem if the lender PM is distinct

in these responses. However, multiple responses may indicate the same lender PM as the worst

case, which results in avoidable overhead. An example in Figure 5.3 is borrower PM M 760,

which is indicated by the global controller borrowing 3% of memory resource from lender PM

M 721, although the maximum number of lender PMs in case of borrower PM M 760 is three.

There is another reason for doing result grouping, which is to verify that the request of

borrower PM is fulfilled. According to the fitness function of the GA computation, it is not

guaranteed that every selected lender PM has satisfied the memory sharing requirement. The

selected lender PM may become memory overloaded after sharing the memory resource to the

borrower PM. Such a case can be found during result grouping by examining the memory usage

of the post-sharing lender PM against the threshold. The borrower PM will be notified that the

request cannot be satisfied if one or more its selected lender PMs has memory overloading risk.

Algorithm 12 shows the procedures of lender planning on the controller of many-to-many
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Algorithm 12: Many-to-Many Control Algorithm for Lender Selection
Input : Memory usage trace data.
Output : Selected Lender PM Plan

1 Split Mreq to multiple lender selection tasks;
2 Run the GA to get the calculated lender PM plan;
3 for each PM in lender PM plan of GA result do
4 Calculate Ms by Equation (4.1);
5 if Ms is positive then
6 Add this PM to available lender PM plan;

7 for each request in original memory borrowing requests do
8 if this borrowing request is fulfilled in available lender PM plan then
9 Add lender PMs for this task to selected lender PM plan;

10 Update borrower-lender relationship entry to Relationship State Keeper;
11 Return selected lender PM Plan;

memory sharing. It starts from the borrowing request split (line 1) and GA computation (line

2). The result of the GA computation is stored as the calculated lender PM plan. Then, the

feasible lender PM is picked from calculated lender PM plan to the available lender PM plan

(lines 3-6). Finally, every memory borrowing request is verified with the available lender PM

plan (lines 7-9). Lender PMs fulfilling memory borrowing requests are added to the lender PM

plan as the response of the lender planner.

5.3.3 Capability and Feasibility of Global Controller

The prerequisite for the proposed global controller is the existence of one or more solutions.

The solution always exists if the cluster runs normally where memory usage of the cluster is

below its capacity. However, there will be no solution for the global controller if workloads

demand more memory resources than the cluster’s capacity. We assume this case would never

happen because one or more additional PMs are booted up automatically for overcoming such

issues, according to resource provisioning policy of the cluster supervisor system.

The global controller may find a wrong solution, although there is always a solution. The

global controller may choose a lender PM for memory sharing. However, it is possible that

memory sharing connections are rejected by the selected lender PMs, because of insufficient

spare memory resources. The reason is the global controller initializes by randomly picking a

candidate lender PM for each memory borrowing request. It then optimizes the initial memory
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sharing plan with the object of minimizing memory usage of each PM in the cluster, without any

verification of the feasibility of each selected lender PM. Thus, how to guarantee the proposed

global controller can always find a correct solution becomes a future work.

5.4 GA-based Lender PM Planning Algorithm

This section describes a block processing method for the plan lender PM, where the planning

algorithm uses the GA to gain optimized provisioning.

Figure 5.4: Process of Many-to-Many Memory Sharing Controller

The data structure of the GA is shown in Figure 5.4. The GA receives a list of memory

borrowing request/sub-requests and list of lender PM candidates as parameters. The list of

memory borrowing request/sub-requests comes in fixed order, which should not be changed

during the computation. For each individual of the population, a gene representing a lender PM
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ID comes from the given lender PM candidates, which is also one-to-one matched with an item

in the list of memory borrowing request/sub-requests. During crossover and mutation of the

GA, the order of genes and content of genes in individuals may change.

There are two variants of GA computation: brute-force based GA and clustering based

GA. Brute-force based runs without knowledge of the historic trace data of memory usage.

It considers all node PMs as lender PM candidates. Clustering based GA runs on top of the

clustering method introduced in Section 4.5.2, which only considers clustering results as lender

PM candidates.

Algorithm 13: GA Fitness Function Computation in Lender Selection of Memory
Sharing

Input : A borrower-lender PM matching plan, memory usage of each PM, size of
shared memory for Each Lender PM

Output : The plan’s fitness value
1 for PM in the given plan do
2 Add the size of shared memory to the memory usage of this PM; and add the size of

memory, which will be shared in the given plan, to the memory usage of this PM;
– Equation (5.2)

3 Calculate the distance between threshold and memory usage of this PM; – Equation
(5.3)

4 Calculate distance factor k by Algorithm 10;
5 Add the distance multiply by k to this plan’s fitness value;

6 Return This plan’s fitness value F;

The optimization goal of the GA is to minimize memory usage of all the lender PM can-

didates. The fitness function is shown in Algorithm 13. The fitness value represents the total

distance between the selected lender PMs and the higher threshold. To calculate such a distance

for each lender PM, the size of memory which has been shared to borrower PMs and the size

of memory resource which is planned for sharing are added to the current memory usage of the

lender PM (line 2). Then, the distance between the lender PM and the threshold is calculated

and added to the fitness value (lines 3-5).

5.5 Experimental Studies and Evaluation

This section describes the experiments to investigate improvement of performance of memory

sharing, by comparing the block processing framework of memory sharing and instant process-

ing of memory sharing framework introduced in Chapter 4.
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5.5.1 Experimental Setup

Both one-to-many and many-to-many block processing of memory sharing are conducted in the

experiments. There are four types of experiments, which consist of four extra workloads: 2%,

3%, 4%, and 5%. Extra workload is added to the memory usage of each node PM of the cluster.

The queue period is one second, which means memory borrowing requests are added into the

queue and are handled every second by the block processing of memory sharing. In addition,

similar to the previous chapter, Alibaba’s trace data is used for the experiments. The simulation

is implemented in Go programming language.

a Lender PM Candidate

Table 5.1: Number of lender PM candidates.
Additional Workload Clustering Mean-based FFD GA-Clustering GA

2% 469 4023 469 4023
3% 469 4023 469 4023
4% 469 4023 469 4023
5% 469 4023 469 4023

Table 5.1 shows the number of lender PM candidates set for proposed methods and bench-

mark methods. The clustering-based method (Clustering) has 469 lender PM candidates scat-

tered in 7 groups. The proposed GA based on top of clustering (GA-Clustering) has 469 lender

PM candidates, which is the same as clustering-based methods. However, these 469 lender PM

candidates are not sorted because it is unnecessary for GA computation. Others consider all

4023 PMs as lender PM candidates.

b GA Setting

There are three settings for GA: crossover function, mutation function, and condition of termi-

nation. The crossover function used in experiments is Generalized N-point Crossover (GNX)

proposed by Radcliffe and Surry [1995]. The mutation function permutes two genes at random

2 times. GA is terminated if one of the following conditions is met: the best fitness value is

unchanged over 200 times; or computation takes more than 10 seconds.
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5.5.2 Experimental Evaluation

Both one-to-many memory sharing and many-to-many memory sharing are performed and eval-

uated in the experiments. Several numbers are recorded for analysis: numbers about memory

sharing requested by the borrower PM, numbers about maintaining memory sharing connections

between the borrower PM and the lender PM, and the number of distinct lender PMs used in

the experiment. All experiments are repeated ten times, and recorded numbers are the average

value of ten records.

a Success Rate on Pairing Lender PM to Borrower PM

The success rate on pairing lender PM with borrower PM in many-to-many memory sharing

is shown in Figure 5.5. It is calculated by dividing the count of successfully pairing by the

total count of memory borrowing requested by borrower PM. Failure of pairing lender PM

with borrower PM represents the global controller responds infeasible lender PMs to memory

borrowing requests. Figure 5.5a shows the success rate for one-to-many memory sharing, while

many-to-many is shown in Figure 5.5b. Both sub-figures are composed by the results on four

levels of additional workloads, 2%, 3%, 4%, and 5%, with four different control algorithms to

select the lender PM. Two of the control algorithms are from the instant processing of memory

sharing framework introduced in the previous chapter, while the other two are GA based.

Both GA-based approaches have a similar performance. They also have a similar perfor-

mance as mean-based FFD in 2% and 3% additional workloads for both one-to-many and many-

to-many memory sharing. However, their success rates are maintained in 4% and 5% additional

workloads, which is different from the performance of mean-based FFD and clustering. The

reason is GA is able to find an optimized solution while FFD cannot.

Comparison between two GA based approaches shows that, GA-clustering has a slightly

higher success rate than GA in one-to-many memory sharing, while GA has a better perfor-

mance than GA-clustering in many-to-many memory sharing. This indicates two conclusions:

1) the small number of lender PM candidate, 469 out of 4023, does affect the success rate

of pairing lender PMs with borrower PMs, no matter whether the clustering approach or GA-

clustering approach. 2) GA-clustering proves the quality of clustering results. FFD may be

inappropriate for the clustering approach, which has a low success rate.
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Figure 5.5: Percentage of Successful Pairing Lender PM With Borrower PM in Block
Processing of Memory Sharing
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b Success Rate for Maintaining Memory Sharing Connection
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Figure 5.6: Percentage of Keeping Memory Sharing Connection in Block Processing
Framework of Memory Sharing

Figure 5.6 demonstrates the success rate of keeping the memory sharing connection in one-

to-many and many-to-many memory sharing. The rate is calculated on percentage of duration

with which the lender PM can keep fulfilling the memory sharing requirement. Such duration

is interrupted if the lender PM becomes memory overloaded during the connection of memory

sharing with the borrower PM. In this experiment, all approaches have results over 99.2%,

which may be considered as acceptable performance.
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GA-clustering has a higher success rate than GA except for the 5% additional workload

in many-to-many memory sharing. It has a lower success rate than mean-based FFD most of

the time in one-to-many memory sharing. However, in the 4% additional workload of one-to-

many memory sharing, its success rate reaches 99.90%. On the other hand, GA-clustering has

a higher success rate than mean-based FFD in many-to-many memory sharing, except for the

2% additional workload.

Since the computation of the GA approach does not use historic knowledge nor prediction,

it is possible that GA selects an inappropriate PM as the lender PM. An inappropriate PM can

be the PM which has high standard deviation in time-series memory usage data. Memory usage

of such a PM changes rapidly, which could cause numerous memory overloads for the lender

PM.

c Distinct Lender Count

Figure 5.7 illustrates the number of lender PMs used in the experiment. If a PM behaves as a

lender PM multiple times, it is counted only once. The experimental result of clustering shows

that both GA-clustering and GA has used all lender PM candidates during the experiment.

By considering the experiment results discussed above, it is believed that GA-clustering has

a better performance than GA because it uses around one tenth of GA’s lender PM candidates;

469 out of 4023. Moreover, it is assumed that a smaller number of lender PMs indicates a lower

overhead of managing memory sharing, including establishing and disconnecting memory shar-

ing connections between lender PMs and borrower PMs. The previous discussion also confirms

that more distinct lender PMs can increase the possibility of interrupt on maintaining memory

sharing connection.

5.6 Summary of Chapter

In this chapter, a block processing framework of memory sharing is presented for handling

memory overload occurring on multiple PMs at the same time. The framework allows a lender

to share its spare memory resource for multiple borrowers (one-to-many memory sharing), and

allows multiple lenders to share their spare memory resource to multiple borrowers (many-to-

many memory sharing). A genetic-algorithm based control algorithm is presented for planning
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multiple lender PMs and multiple borrower PMs together, for both one-to-many and many-to-

many memory sharing. In addition, the genetic-algorithm based control algorithm works for

both full lender PM candidates 4023 PMs, and 469 PMs selected by the clustering method

described in the previous chapter.

Experimental studies are conducted in simulation using Alibaba’s public trace data for

evaluating how much improvement our clustering-based memory sharing framework can bring

to real world data centres. With a 5% increment of memory usage on each PM, our system

can handle 99.1% of memory overload situations by utilizing spare memory resource of 11.7%

PMs selected by clustering. The difference between the proposed GA approach and the GA-

clustering approach is that only one tenth of PMs are considered as lender PM candidates for

the GA-clustering approach, while the GA approach considers all PMs of the cluster as lender

PM candidates in the experiment. Experimental results show that for a typical 3% additional

workload, the GA-clustering approach can handle 98.7% memory overload situations in one-

to-many memory sharing, and 98.3% memory overload situations in many-to-many memory

sharing. The GA approach in typical 3% additional workload can handle 98.2% memory

overload situations in one-to-many memory sharing, and 99.1% memory overload situations in

many-to-many memory sharing. In addition, comparing to other levels of additional workloads,

both GA-clustering and GA approaches show the similar performance. Usually, GA-clustering

has a higher non-interrupt rate of maintaining memory sharing connection than GA, but it is

still lower than the clustering-based approach presented in the previous chapter.

The next chapter concludes this thesis by summarizing the proposed memory sharing system

and frameworks for one-to-many and many-to-many memory sharing. Suggestions for future

research direction are also presented in the next chapter.



Chapter 6

Conclusions and Recommendations

This chapter summarizes the research development of a memory sharing framework for han-

dling memory overload of PMs in cloud data centres. It outlines the main contributions and

findings, discusses research limitations and highlights future research directions.

6.1 Summary of the Research

While the early emphasis of cloud data centre is on elastically providing computing resources

to end users and computation tasks, cloud vendors are now more and more interested in over-

committing their computing resources to maximize the resource utilization and minimize op-

erating costs. In principle, the risks of over-committing computing resources can be hedged

if each of the VMs on PMs consumes only a small portion of requested computing resources

instead of continually taking full allocated computing resources. PMs can run out of computing

resource capacity if such a hedge fails, and results in CPU or memory overload. To handle

this problem on PMs, cloud vendors must live migrate VMs from CPU or memory overloaded

PMs to underutilized PMs. However, in the worst case, live VM migration can cause cascading

overloads in over-committed cloud data centres.

This research has proposed a systematic memory sharing framework for handling memory

overload of PMs in over-committed cloud data centres. Memory sharing becomes possible since

RDMA can provide superfast data transmission with low latency. Feasibility studies and three

progressive levels of memory sharing have been presented in this thesis.

Firstly, feasibility on three levels of memory sharing has been examined. The three levels

116
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are: one-to-one memory sharing which has one lender PM and one borrower PM, one-to-

many memory sharing which has one lender PM, and many borrower PMs, and many-to-many

memory sharing which has many lender PMs and many borrower PMs. Feasibility studies

indicate memory sharing can be implemented by utilizing RDMA to swap unused memory

pages to memory space in a remote PM, which forms a swap-based and remote block device-

based memory sharing approach. Based on that, three levels of memory sharing have been also

confirmed as feasible.

A one-to-one memory sharing system has been designed and physically implemented, ac-

cording to the feasibility studies. It integrates a mechanism of threshold-based memory overload

detection, and a unified control algorithm for sharing memory automatically. In this memory

sharing system, a PM relies on the threshold-based memory overload detection to switch its

role between memory lender PM and memory borrower PM on the fly. When a PM becomes a

memory borrower PM, it can automatically negotiate and establish a memory sharing connec-

tion from a lender PM in order to borrow memory resource. When memory overload disappears

and memory underutilization occurs, a PM can switch to a memory lender PM. A lender PM

accepts a memory sharing request from a borrower PM only if it is feasible, when it has enough

spare memory resource for lending.

One-to-many and many-to-many memory sharing have been jointly solved because they

have very many similarities. An instant processing and a block processing for memory sharing

have been proposed for both one-to-many and many-to-many memory sharing. The instant

processing of memory sharing refers to immediately select the lender PM for the borrower PM.

The block processing of memory sharing refers to a block of memory borrowing requests are

being processed at a time.

The instant processing of memory sharing has been designed for high non-interrupt rate on

maintaining the memory sharing connection, while minimizing the number of distinct lender

PMs used. A high non-interrupt rate means high QoS of memory sharing and low risk of

cascading overloads on the memory resource. Minimizing the number of distinct lender PMs

used can reduce the overhead of managing memory sharing connection, where the overhead

is produced by the memory sharing system detailed in Chapter 4. Two lender PM selection

algorithms have been proposed, where one is clustering-based, and the other is mean-based

FFD algorithm. A profile-guided clustering algorithm with tolerance of missing values has
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been designed for filtering unwanted lender PM candidates while increasing the non-interrupt

rate. Mean-based FFD is designed as the standard solution for instant lender selection since

FFD is quick and efficient enough for such scenario.

The block processing of memory sharing, on the other hand, is not required to select the

lender PM for borrower PM immediately. Instead, it waits to form a memory borrowing request

queue which contains memory sharing requirements from multiple borrower PMs. It then

processes these requests together as a whole in one algorithm. This design enables optimization

for maximizing the rate of successful pairing of the lender PM and the borrower PM. The block

processing of memory sharing has been designed with GA and proposed fitness function for the

memory sharing issue. It has been designed with two different approaches: one is applying GA

on all PMs of the cluster as lender PM candidates, while the other is applying GA on top of

clustering results. Experimental studies have shown that GA on top of clustering achieves all

goals. It not only maintains an acceptable high non-interrupt rate, but also has a high success

rate of pairing lender PMs and borrower PMs for memory sharing, while it only requires one

tenth of the cluster as lender PM candidates.

6.2 Limitations and Future Recommendations

The main limitation of this research is that the proposed approach requires more comprehensive

practical testing. Firstly, the one-to-many and many-to-many memory sharing framework was

not physically implemented and evaluated in real clusters nor data centres. Moreover, the

latency to set up the memory sharing connection is instant in one-to-one memory sharing,

while it is not clear on its impact to real running clusters and data centres. Secondly, only the

Alibaba’s cluster trace data was used in the simulation because other mainstream cloud vendors,

such as AWS and GCP, had not yet disclosed memory usage information of PMs in their data

centres. In future research, trace data from other clusters will be collected and used for a more

comprehensive simulation-based evaluation and the proposed one-to-many and many-to-many

memory sharing frameworks will be implemented and evaluated in real-world clusters.

Another limitation is that the memory size for sharing between the lender PM and borrower

PM is fixed in one-to-many and many-to-many memory sharing. It means all borrower PM

requests the same size of remote memory resource in the simulation. The size of remote
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memory resource is equal to the additional workload. However, it is not necessary to borrow

that size of remote memory because actual required memory resource can be less than the

additional workload. In future research, one-to-many and many-to-many memory sharing will

be improved to allow each borrower PM to request remote memory resources which is only

sufficient for handling memory overload.

One of future works is about improved GA for memory sharing. In the proposed solution,

GA may respond infeasible lender PMs for memory sharing because of its optimization strategy

and the nature of GA. Thus, an improvement on GA is required in future work to allow the

proposed method can be guaranteed to find a correct solution. In addition, it is needed to

investigate the maximum latency can be accepted by block processing of memory sharing.

Such latency includes queuing time, GA computation time, and time cost on memory sharing

connection.

A future recommendation for memory sharing is to distribute inactive memory pages to

main memory space of other PMs which have spare memory resource, instead of preparing an

in-memory virtual block device and remotely sharing it as swap space to the memory overloaded

PM. This may further increase utilization of the memory resource of the cluster, although

the overhead of managing memory sharing can be higher than with the block device-based

approach. Another future recommendation is to investigate how memory sharing and live VM

migration work together to comprehensively handle the resource overloading problem in cloud.

Regarding network security, this research has not yet investigated any safety issue may be

involved in memory sharing. For example, data has the chance to be leaked since memory pages

are swapped and stored on remote PMs during memory sharing. This deserves to be researched

in the future.
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