
 

E. Altman and W. Shi (Eds.): NPC 2011, LNCS 6985, pp. 277–292, 2011. 
© IFIP International Federation for Information Processing 2011 

Memory-Side Acceleration for XML Parsing 

Jie Tang1, Shaoshan Liu2, Zhimin Gu1, Chen Liu3, and Jean-Luc Gaudiot4 

1 Beijing Institute of Technology, Beijing, China 
2 Microsoft, Redmond, WA 

3 Florida International University, Miami, Florida 
4 University of California, Irvine, California 

tangjie.bit@gmail.com, shaoliu@microsoft.com, zmgu@x263.net, 

chen.liu@fiu.edu, gaudiot@uci.edu 

Abstract. As Extensible Markup Language (XML) becomes prevalent in cloud 

computing environments, it also introduces significant performance overheads. 

In this paper, we analyze the performance of XML parsing, identify that a 

significant fraction of the performance overhead is indeed incurred by memory 

data loading. To address this problem, we propose implementing memory-side 

acceleration on top of computation-side acceleration of XML parsing. To this 

end, we study the impact of memory-side acceleration on performance, and 

evaluate its implementation feasibility including bus bandwidth utilization, 

hardware cost, and energy consumption. Our results show that this technique is 

able to improve performance by up to 20% as well as produce up to 12.77% of 

energy saving when implemented in 32 nm technology.  

1   Introduction 

One of the main challenges in cloud computing environments is data exchange 

between different platforms. XML is emphasized for its language neutrality and 

application independency, and thus it has been adopted as the data exchange standard 

in cloud computing environments. When data is in XML, thousands of existing 

software packages can handle that data. Data in XML is universally approachable, 

accessible, and usable. Although XML exhibits many benefits, due to its verbosity 

and descriptive nature, XML parsing has incurred heavy performance penalties [1, 2].  

Studies have shown that servers spend a significant portion of their execution time on 

processing XML documents. A real world example would be Morgan Stanley’s 

Financial Services system, which spends 40% of its execution time on processing 

XML documents [3]. This is only going to get worse as XML data get larger and 

more complicated. Generally, in cloud computing environments, XML parsing is 

memory and computation intensive, it consumes about 30% of processing time in web 

service applications [4], and has become a main performance bottleneck in real-world 

database servers [5].  
To improve performance of XML processing, many have proposed computation-

side acceleration techniques. In this paper, we find out that memory accesses actually 
incur significant performance overheads in XML parsing.  Therefore, different from 
previous studies which focus on computation acceleration, we propose to accelerate 
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XML parsing from memory side. Unlike computation acceleration, which has a strong 
dependency on the parsing model, memory-side acceleration is generic and can be 
effective across all parsing models. We believe the combination of computation-side 
and memory-side acceleration will largely relieve the performance pressure incurred 
by XML parsing.  In our vision, cloud computing services can be hosted by one 
many-core chip, such as Intel’s SCC chip [6]. Within this many-core chip, we should 
have at least one core act as the Data Exchange Frontend (DEF), which is dedicated to 
and optimized for XML parsing; and this DEF core should incorporate special 
instructions for computation-side acceleration as well as dedicated prefetchers for 
memory-side acceleration.    

Within this context, we aim to answer three questions in this paper: first, what is 
the performance bottleneck of XML parsing?  Second, can memory-side prefetching 
techniques improve the performance of XML parsing?  Third, is it feasible to 
implement these techniques in hardware?  The rest of this paper is organized as 
follows: in section 2, we review XML parsing techniques and related research work; 
in section 3, we discuss the methodology of our study; in section 4, we study the 
performance of XML parsing under native and managed environments; in section 5, 
we aim to answer the first question by evaluating the performance of XML parsing 
and identify the performance bottleneck of XML parsing; in section 6, we aim to 
answer the second question by delving into memory-side acceleration of XML 
parsing; In section 7, we aim to answer the third question by studying the 
implementation feasibility of the memory-side acceleration.  At the end, we conclude 
and discuss our future work.  

2   Background 

In this section, we review XML parsing techniques as well as related studies on 
software and hardware acceleration of XML parsing.  

2.1   XML Parsing Techniques 

Based on how data is processed, there are two categories of XML parsing models: 
event-driven parser and tree-based parser. Event-driven parsers first parse the 
document, and then through callbacks, they notify client applications about any tag 
they find along the way. It transmits and parses XML infosets sequentially at runtime. 
As a result, Event-driven parsers don’t cache any information and have an enviably 
small memory footprint. However, it does not expose the structure of the XML 
documents, making them hard to manipulate. Furthermore, according to how events 
are delivered, event-driven model can be divided into two classes: pull parser and 
push parser. In pull parsing, clients pull XML data when it is needed. In push parsing, 
an XML parser pushes XML data to the client as new elements are encountered. 
Simple API for XML (SAX) [7] is the industry standard for push based event-driven 
model. As shown in upper part of Figure 1, SAX processes the XML document and 
then pushes the XML information into Application in terms of SAX Events.  

On the other hand, tree-based parsers read the entire content of an XML document 
into memory and create an in-memory tree object to represents it. Once in memory, 
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DOM trees can be navigated freely and parsed arbitrarily for the duration of the 
document processing, providing maximum flexibility for users. However this 
flexibility pays great costs of a potentially large memory footprint and significant 
processor requirements. Document Object Model (DOM) [8] is the official W3C 
standard for tree-based parser. As shown in bottom part of Figure 1, DOM parser 
processes XML data, creates an object-oriented hierarchical representation of the 
document and offer the full access to the XML data.  

 

Fig. 1. SAX and DOM Parsing Flow 

2.2   Related Research Work 

There have been several proposals on mitigating the performance overheads of XML 
processing. In software community, several researcher groups employed the concept 
of binary XML to avoid performance bottleneck of XML parsing [1, 9, 10]. 
Specifically, VTD-XML parser [10] parses XML documents and creates 64-bit binary 
format VTD records. However, the major shortcoming of this approach is that the 
parsed binary data can’t be used by other XML applications directly.  On the other 
hand, some researchers focus on parallelizing the parsing process.  Pre-scanning 
based parallel parsing model [11] builds a skeleton of the XML document to guide 
partitioning of the document for data parallel processing. Also, in [12] researchers 
exploited the parallelism by dividing XML parsing process into several phases, so that 
they can schedule working threads to execute each parsing phase in a pipeline model. 
In addition, Parabix employs the SIMD capabilities of commodity processors to 
process multiple characters at the same time [13].  

In the hardware community, based on the profiling analysis, researchers 
incorporate new instructions with special hardware support to speedup certain 
frequently-used operations of XML parsing [14]. In [15], researchers presented  
a technique to automatically map regular expressions directly onto FPGA hardware 
and implemented a simple XML parser for demonstration. Their technique could  
be not sufficient to solve all problems since XML syntax rule is not a regular 
language. XOE [16] use an Offload Engine to accelerate XML document parsing. 
Some fundamental parsing functionality like tokening is offloaded to XOE.  XPA 
[17] is another XML Parsing Accelerator implemented on FPGA capable to do XML 
well-formed checking, schema validation, and tree construction. It can reach up to1 
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Cycle-Per-Byte throughput for XML parsing. Nevertheless, their design works only 
for tree-based parsers. As we show in the following sections, memory access is one of 
the major bottlenecks of XML parsing, thus we may be able to generate extra 
performance gain from memory-side acceleration.  In addition, unlike computation-
side acceleration that targets specific parsing model, memory-side acceleration is 
generic and can be effective regardless of the parsing model.    

3   Methodology 

In this section, we discuss our methodology to study the performance of XML parsing, 
the effectiveness of memory-side acceleration, and implementation feasibility. 

3.1   XML Parsers and Benchmarks 

In order to make fair comparison, we choose XML parser implementations of both 
event-driven and tree-based model from Apache Xerces [18]. Apache Xerces provides 
SAX and DOM XML parsers, and it has implementations of these two models in both 
native (C++) and managed (Java) environments.  This allows us to perform a 
thorough study to understand the performance of SAX and DOM models in different 
execution environments.  As for inputs to the XML parsers, we have selected seven 
real world XML documents with varying sizes (from 1.4 KB to 113 MB) and 
complexities as input data and they are listed in Table 1.  Specifically, personal-

schema is a very simple document with flat structure, thus the parsing process is 
straightforward; on the other hand, standard is a long document with deep structures, 
which complicates the parsing process. 

Table 1. Benchmarks 

Name Size (KB) Description 

long 65.7 sample XML SOAP file 

mystic-library 1384 Information of library books 

personal-shema 1.4 personal information data 

physics-engine 1171 configuration data for physics simulation 

resume_w_xsl 51.8 personal resume 

test-opc 1.8 xml test file for web services gateway 

Standard 113749 bank transaction records 

3.2   Prefetchers 

In this study, we evaluate how different prefetching techniques impact the 
performance of XML parsing. In order to make a comprehensive investigation, we 
have selected eight hardware prefetchers, which utilize different techniques and 
algorithms. We summarize these prefetchers in Table 2: cache hierarchy indicates the 
coverage of the prefetching, which means if the prefetching is applied at L1 cache, 
L2, cache, or both; prefetching degree suggests whether the aggressiveness of the 
prefetcher is statically or dynamically adjusted. Usually, the dynamic prefetching 
degree can adapt itself to the phase change of the application so as to produce more 
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efficient prefetching; trigger L1 and trigger L2 respectively show the trigger set for 
covered cache hierarchy respectively, in this case demand access stands for access 
requests from upper memory hierarchy regardless whether it is a miss or hit and N/A 
means no prefetching is applied. Since demand access trigger set contains more 
opportunity to invoke the prefetching, it always yields more aggressiveness. Besides, 
all selected prefetchers can filter out redundant access requests. 

Table 2. Summary of Prefetchers 

Cache Hierarchy Prefetch Degree Trigger L1 Trigger L2 

n1 L1 & L2 dynamic Miss Access 

n2 L1 Static Miss N/A 

n3 L1 & L2 dynamic Miss Miss 

n4 L1 Static N/A N/A 

n5 L2 Static N/A Miss 

n6 L1 & L2 dynamic Miss Miss 

n7 L2 Static Miss Access 

n8 L2 Static N/A Access 

 
The aggressiveness of the prefetching is the co-production of all these four metrics 

and prefetching algorithms. The first prefetcher n1 can tolerate out of order memory 

accesses by making prefetching based on the recent memory access pattern. The 
second prefetcher n2 exploits various localities in both local and global cache-miss 
streams, including global strides, local strides and scalar patterns. A multi-level 
prefetching framework is applied in n3: it uses a sequential tagged prefetcher at L1 
cache and either an adaptive prefetcher or a sequential tagged prefetcher at L2 cache.  
With the observation that memory accesses often exhibit repetitive layouts spanning 
large memory region, n4 is the optimized implementation of Spatial Memory 
Streaming (SMS) including a novel mechanism of pattern bit-vector rotation to reduce 
SMS storage requirement. Combining the storage efficiency of Reference Prediction 
Tables and high performance of Program Counter/Delta Correlation (PC/DC) 
prefetching, n5 can substantially reduce the complexity of PC/DC prefetching by 
avoiding expensive pointer chasing and re-computation of the delta buffer. The sixth 
prefetcher n6 applies a hybrid stride/sequential prefetching schema at both L1 and L2 
cache levels. Metrics such as prefetcher accuracy, lateness and memory bandwidth 
contention are fed back to adapt the aggressiveness of prefetching. By understanding 
and exploiting a variety of memory access patterns, n7 combines global history buffer 
and multiple local history buffers to improve the coverage of prefetching. Finally, n8 

is a stream-based prefetcher with several enhancement techniques including constant 
stride optimization, noise removal, early launch of repeat stream and dead stream 
removal.   
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3.3   Performance and Memory Modeling   

To study the performance of the memory-side acceleration, we utilize CMP$IM [19], 
a binary-instrumentation based cache simulator developed by Intel. CMP$IM is able 
to characterize cache performance of single-threaded, multi-threaded, and multi-
programmed workloads. The simulation framework models an out-of-order processor 
with the basic parameters as outlined in Table 3. 

Table 3. Simulation Parameters 

Frequency 1 GHz 

Issue Width 4 

Instruction Window 128 entries 

L1 Data Cache 32KB, 8-way, 1cycle 

L1 Inst. Cache 32 KB, 8-way, 1cycle 

L2 Unified Cache 512 KB, 16-way, 20 cycles 

Main Memory 256 MB, 200 cycles 

 
To understand the implementation feasibility of these memory-side accelerators, 

we also study the energy consumption of these designs. To model the energy 
consumption of these prefetchers, we utilize CACTI [20], an energy model which 
integrates cache and memory access time, area, leakage, and dynamic power. Using 
CACTI, we are able to generate energy parameters of different storage and 
interconnect structures implemented in different technologies. Note that the overall 
system energy consumption consists of two sources: static power and dynamic power. 
Static power is generated by the leakage current of the transistors, and it persists 
regardless of whether the transistors are actively switching or not.  On the other hand, 
dynamic power is incurred only when the transistors are actively switching. In this 
paper, we use CACTI to model both static and dynamic energy to evaluate the 
implementation feasibility of memory-side accelerators. 

4   Native vs. Managed Execution 

In this section, we study the performance of XML parsing in both managed and native 
environments. We executed XML parsers on a dual-core machine running at 2.2 GHz 
and used the Intel Vtune analysis tool [21] to capture the overall execution time. The 
results are shown in Figure 2, in which we take the performance of native execution 
as the baseline. The x-axis shows the seven benchmarks and the y-axis shows the 
percentage of the excess execution time incurred by the managed layer (in this case 
JVM). It is obvious that when parsing with SAX model, managed execution produces 
high performance overhead. For instance, when parsing test-opc and mystic-library, 
the managed middle layer contributes 41.67% and 38% performance overhead 
respectively. Even in the best case, long, the middle layer still incurs 20.73% 
performance overheads. The situation is even worse when using DOM parsing model. 
Even the best case has incurred 25.93% performance overheads. In the worst case, 
test-op, it incurs up to 52.08% performance degradation.  
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Fig. 2. Managed Execution vs. Native Execution 

Although managed environment is able to reduce development time, in cloud 
computing environments, XML parsers reside at the data exchange frontend and 
many other components in the system may have dependency on the outputs of the 
XML parsers.  Therefore, the performance overheads incurred by the managed layer 
would largely hinder the performance of the whole system.  This result indicates that 
managed execution of XML parsing is not suitable in cloud computing environments 
and we focus on native execution of XML parsing in the rest of this paper.  

5   Performance Analysis of XML Parsing 

In this section we aim to determine the performance bottleneck of XML parsing by 
studying the throughput of XML parsing at different parts of the system, including 
network data exchange, disk I/O, and memory accesses. Figure 3 shows the data flow 
of XML parsing: first, data is loaded from either network or local hard disk. Then, 
data flows into the memory subsystem: main memory, L2 and L1 caches. At the end, 
the processor fetches data from cache and performs the actual XML parsing 
computation.  

 

Fig. 3. Data flow of XML data parsing 

5.1   Network Data Exchange  

Some previous work has demonstrated that network data exchange would incur 
significant performance overheads [23, 27]. In this subsection, we measure the data 
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exchange throughput of different cloud data services. In Table 4, we summarize our 
measurements of two popular categories of cloud data services: Content Distribution 

Network (CDN) and Cloud Storage; and for each category, we measured the data 
exchange throughput of four service providers. Note that CDN services contain 
several copies of data in network to maximize bandwidth, whereas Cloud Storage 

services provide online storage where people can require their storage capacity for 
their data hosting needs. On average, the data exchange throughput to CDN services 
can reach 29.26 Mb/s. When employing the CDN service provided by Amazon 

CloudFront, the rate can reach 48.85 Mb/s. On the other hand, the average data 
exchange throughput to Cloud Storage services is 12.56 Mb/s and its best case, 
provided by Amazon S3 – US East, can reach 21.8 Mb/s. In our experiment, our 
machine contains a 100 MB/s Network Interface Card and network it connected to has 
a bandwidth limit of 100Mb/s, which is far greater than the throughput provided by 
cloud data services. That indicates the network I/O interface is not fully utilized, and 
thus the network interface is not likely to be the bottleneck of XML parsing 
operations.   

Table 4. Cloud Service Data Rate 

CDN Service Cloud Storage Service 

Provider Rate (Mb/s) Provider Rate (Mb/s) 

Akamai CDN 27.50 Amazon S3 - US East 21.80 

Amazon CloudFront 48.85 Amazon S3 - US West 10.31 

Cotendo CDN 27.72 Azure-South Central US 6.97 

Highwinds CDN 12.97 Nirvanix SDN 11.17 

AVG 29.26 AVG 12.56 

5.2   Disk Data Loading  

In order to study the disk I/O throughput, we used the XPerf Performance Analyzer 
tool [26] to capture disk I/O throughput when running the XML parsers using the 
standard benchmark, and the collected results are shown in Figure 4: the x-axis shows 
the execution timeline in seconds and the y-axis shows the amount of triggered disk 
I/O during the execution. The gray curve overlaid on top of the bar diagram shows the 
CPU usage information. The peak of the curve means the CPU is fully utilized.  
Figure 4 shows that most of the time disk I/O is in the underutilized state; that is to 
say that the I/O subsystem rarely needs to reach its full capacity. Besides, when 
looking into the overlaid CPU usage curve, it shows that most of the time the CPU is 
fully utilized, running at 100%. Once in a while, the CPU utilization drops down, 
probably due to high-latency memory accesses. It indicates that in this case most of 
the time CPU is fed with enough data from the I/O subsystem. Based on these 
observations, it can be concluded that disk I/O is also not likely to be the bottleneck of 
XML data processing.  We also ran the XML parsers with other benchmarks shown 
in Table, and the results were similar.    
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Fig. 4. Disk I/O counts and CPU Usage 

5.3   Data Loading from Memory Side 

Finally, we studied the overhead produced by memory data loading stage. Here, 
memory data loading refers to the data flow starting from main memory, going through 
each cache layer and finally fetched into CPU. Making a comparison, we measured the 
CPI (cycle per instruction) of Speed-test, which is a computation intensive CPU stress 
test application with negligible memory access; and we measured the CPI of native 
XML parser using the standard benchmark, which is the large XML document with a 
lot of memory accesses. The CPI of Speed-test is 0.80. Using the SAX parser, the CPI 
of standard is 1.27, which introduces nearly 50% overheads compared to Speed-test; 
using the DOM parser, the CPI of Standard becomes 1.42, which nearly doubles that 
of Speed-test. In addition, when using other benchmarks shown in Table 1, we 
obtained similar performance data as that of standard.  

As a further validation, we measured the miss count per kilo instructions (MPKI) 
of both L1 and L2 cache layers, which are nearly 10 and 2 respectively. That is to say 
that for every 1000 instructions there comes about ten L1 and two L2 cache misses. 
The large number of cache misses mainly contributes to the CPI increase of XML 
parsing.  Compared with the CPI of Speed-test, the extra cycles consumed by XML 
parsing may indicate that memory data loading stage incurs a significant amount of 
overhead to the execution.          

5.4   Summary 

In summary, the results from the previous three subsections show the following: first, 
network I/O throughput can easily reach over 15 MB/s, and this is far below the 100 
MB/s network bandwidth limit, showing that network I/O is far from being stressed 
and network data exchanging is not likely to be the bottleneck of XML parsing. 
Second, our experiment results show that the disk I/O subsystem is under-utilized 
most of the time, which means disk data loading of XML data parsing is within the 
coverage of disk I/O subsystem and cannot be the bottleneck of execution as well. At 
last, comparing CPI data of XML parsing workloads and a CPU stress test, we have 
found that in some case the CPI of XML parsing almost double that of the CPU stress 
test. Upon further analysis, we have found that the high cache miss rate on both L1 
and L2 caches is the main contributor to this CPI increase. These results indicate that 
the performance bottleneck of XML parsing is memory data loading stage; in other 
word, the overheads introduced from memory subsystem really hit the pain point of 
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XML data parsing. Therefore, in order to speed up the XML parsing execution, it is 
imperative to turn around the focus of acceleration and reduce the overheads incurred 
by the memory subsystem. 

6   Memory-Side Acceleration 

We have identified that memory accesses impose significant overheads in XML 
parsing workloads. Similarly, a study released by Intel verifies that memory accesses 
contribute to more than 60% execution cycles of the whole parsing process [22].  
Furthermore, another empirical study done by Longshaw et al. has shown that loading 
an XML document into memory and reading it prior to parsing may take longer than 
the actual parsing time [24]. Consequently, instead of optimizing specific 
computation of parsing model, we explore acceleration from memory side; that is to 
say, accelerate the XML data loading stage.   

Table 5 summarizes the reduction of cache misses as a result of applying the 
prefetchers (please refer to section 3.2 for the details of the prefetchers). Note that 
different prefetchers may target different cache levels; in this table, we show the cache 
miss reduction of the lowest level cache that the prefetcher is applied to.  For example, 
n1 is applied to both L1 and L2 caches, we show the cache miss reduction of L2 cache; 
n2 is applied to only L1, so we show the cache miss reduction of L1 cache. The results 
indicate that prefetching techniques are very effective on XML parsing workloads, as 
most prefetchers are able to reduce cache miss by more than 50%.  In the best case, n3 
is able to reduce L2 cache miss by 82% in SAX and 85% in DOM. 

In Figure 5, we show how the cache miss reduction translates into performance 
improvement on SAX parsing: it shows the performance of the eight prefetchers (n1-
n8) as well as the average performance. The X-axis lists the seven benchmarks we 
used and the Y-axis shows the percentage of performance improvement (in terms of 
execution time reduction).  The results indicate that prefetching techniques are able 
to improve SAX parsing performance by up to 10%. For instance, on average, the 
parsing time of personal-schema has been reduced by 7.24%. Even in the worst case, 
standard, prefetchers are still able to reduce execution time by 3%. Looking into each 
prefetching technique, we observe that n3 shows greatest power in improving the 
performance by 2.58% to 9.72% across different benchmarks. This is because n3 is 
the most aggressive prefetcher and covers both L1 and L2 cache level, thus resulting 
in the best average performance.  

Similarly, Figure 6 summarizes the performance impact of prefetching on DOM 
parsing.  The results indicate that prefetching techniques are able to improve DOM 
parsing performance by up to 20%. For instance, when averaging the results, 
memory-side acceleration produces 13.74% execution cycle reduction for mystic-

library. It is obvious that the most effective prefetcher is still n3：even in the worst 
case, n3 can still reduce execution time by 6%.  Note that different from SAX 
parsing, DOM must construct inner data structure in memory for all elements. The 
bigger the document is the more space it would consume, and the more cache miss it 
would induce. As a result, large sized benchmarks such as mystic-library, physics-

engine and standard can get a higher performance gain from memory side 
acceleration from 7.65% up to 13.75%.  These results confirm that memory-side 
acceleration can be effective regardless of the parsing models.  
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Table 5. Cache Miss Reduction  

n1 n2 n3 n4 n5 n6 n7 n8 

SAX 0.69 0.43 0.82 0.82 0.51 0.4 0.73 0.77 

DOM 0.77 0.52 0.85 0.85 0.61 0.52 0.77 0.84 

Cache Level L2 L1 L2 L1 L2 L2 L2 L2 

 

Fig. 5. Performance improvement for SAX parsing 

 

Fig. 6. Performance improvement for DOM parsing 

7   Implementation Feasibility 

By now we have shown that memory-side acceleration can significantly improve 
XML parsing performance. However, the conventional wisdom is that prefetching 
requires extra hardware resource, competes for limited bus bandwidth, and consumes 
more energy. Thus, many would argue that it is not worthwhile to implement 
memory-side accelerators for XML parsing.  In this section, we address these doubts 
by validating the feasibility of memory side acceleration in terms of bandwidth 
utilization, hardware cost and energy consumption.  
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7.1   Bandwidth Utilization 

Contention for limited bus bandwidth often leads to serious performance degradation. 
Prefetching techniques result in extra bus traffic and thus require extra bus bandwidth.  
If the application itself has used up all the bus bandwidth, then the contention brought 
in by memory-side acceleration might hinder rather than improve performance. 
Hence, we study the bandwidth utilization of XML parsing workloads and the results 
are summarized in Table 6. The results show that bus bandwidth utilization without 
prefetching is far away from exhaustion.  On average, bus utilization for SAX and 
DOM parsing are only 3.72% and 5.51% respectively.  This indicates the 
performance of XML parsing is hurt by the latency but not the throughput of memory 
subsystem, and thus confirming that prefetching would be effective.   

Table 6. Bandwidth consumption without prefetching 

 SAX DOM 

long 4.09% 5.55% 

mystic-library 4.38% 7.46% 

personal-shema 4.94% 6.31% 

physics-engine 4.07% 6.08% 

resume_w_xsl 0.97% 1.03% 

test-opc 1.01% 5.25% 

Standard 6.58% 6.89% 

7.2   Hardware Cost and Energy Consumption 

We summarize the hardware cost of the eight prefetchers in Table 7. On average, 
these prefetchers require about 28000 bits of memory space. For instance, n6 consists 
of a 14080 bits L1 prefetcher, a 4096 bits L2 prefetcher and eight 20 bits counters 
producing 32416 bits hardware cost. All of their hardware cost is below 4KB, which 
is not a significant amount of hardware resource in modern high-performance 
processor design. 

Table 7. Hardware cost of prefetcher 

n1 32036 bits n2 20329 bits n3 20787 bits n4 30592 bits 

n5 25480 bits n6 32416 bits n7 30720 bits n8 32768 bits 

 

Next we study how these memory-side accelerators impact system energy 
consumption. Using our simulation framework consisting of CMP$IM and CACTI, 
we can generate energy parameters of different storage and interconnect structure 
implemented in different technologies. Here, we focus on the implementation with 32 
nm technologies and the results are summarized in Figures 7 and 8. In these Figures, 
we select energy consumption with no prefetching as our baseline, thus a positive 
number indicates that the prefetcher consumes extra energy, and a negative number 
indicates otherwise. Note that in 32 nm technology, static energy is comparable to 
dynamic energy [25].  The prefetchers generate extra memory requests and bus 
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transactions, thus adding dynamic energy consumption.  On the other hand, 
prefetchers accelerate XML parsing execution, resulting in reduction of static energy 
consumption.  If the static energy reduction surpasses the dynamic energy addition, 
then the prefetcher results in overall system energy reduction.    

As shown in Figure 7, in SAX parsing, most prefetchers lead to more energy 
consumption: It is due to the increase of dynamic energy dissipation coming from 
excess memory accesses incurred by prefetching. Nevertheless, looking into details, 
n5 always leads to energy efficiency, resulting in 1% to 4.5% energy saving across 
the benchmarks. Similarly, n1 results in energy saving in about half of the cases. This 
is because n1 and n5 are relatively conservative prefetching techniques: they either 
prefetch at only one cache level or prefetch a small amount data each time.  

In Figure 8, we summarize how acceleration impacts energy consumption in DOM 
parsing. Identical with Figure 7, n5 is still the most energy efficient prefetcher which 
archives 12.77% energy saving in mystic-library. Even when running its worst case, 
resume_w_xsl, n5 can still reduce overall energy by almost 3%. Different from the 
results in SAX parsing, most prefetchers become energy-efficient in many cases due 
to their ability to further reduce execution time in DOM parsing. Note that static 
energy is the product of static power and time, since static power is constant, by 
reducing execution time, we can reduce static energy as well.  

 

Fig. 7. Energy consumption of SAX parsing 

 

Fig. 8. Energy consumption of DOM parsing 
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8   Conclusions 

XML has been adopted in cloud computing environments to address the data 

exchange problem.  While XML has brought many benefits, XML parsing also 

imposes heavy performance penalties. As XML processing often resides at the data 

exchange frontend, different parts of the system would have dependency on the 

outputs of XML parsing, making it critical to system performance. While previous 

research work has focused on computation acceleration of XML parsing, we have 

identified memory access as one of the performance bottlenecks. Motivated by this 

finding, in this paper, we have done a study on the effectiveness and feasibility of 

memory-side acceleration of XML parsing. The results are encouraging, we have 

demonstrated that memory-side acceleration is effective regardless of the parsing 

model and is able to reduce cache miss by up to 80%, which translates into up to 20% 

of performance improvement. 

On implementation feasibility, we have identified that XML parsing performance 

is hurt by the latency but not by the throughput of the memory subsystem, thus 

verifying that memory-side acceleration is not likely result in resource contention.  In 

addition, we have shown that the memory-accelerators require an insignificant 

amount of extra hardware resources, and more importantly, in many cases they are 

indeed able to reduce the overall system energy consumption.  These results confirm 

that memory-side acceleration of XML parsing is not only effective but also feasible.  

In our vision, cloud computing services can be hosted by one many-core chip, and 

within this many-core chip, one or more cores act as the Data Exchange Frontend 

(DEF). Our next step is to incorporate memory-side and computation-side 

accelerations into the DEF cores and evaluate its performance in many-core 

environments.    
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