
Durham Research Online

Deposited in DRO:

10 December 2009

Version of attached �le:

Accepted Version

Peer-review status of attached �le:

Peer-reviewed

Citation for published item:

Chin, W.-N. and Nguyen, H. H. and Qin, S. and Rinard, M. C. (2005) 'Memory usage veri�cation for OO
programs.', in Static analysis : 12th International Symposium, SAS 2005, 7-9 September 2005, London, UK ;
proceedings. Berlin: Springer, pp. 70-86. Lecture notes in computer science. (3672).

Further information on publisher's website:

http://dx.doi.org/10.1007/115476627

Publisher's copyright statement:

The �nal publication is available at Springer via http://dx.doi.org/10.1007/115476627

Additional information:

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for
personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in DRO

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full DRO policy for further details.

Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom
Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971

https://dro.dur.ac.uk

https://www.dur.ac.uk
http://dx.doi.org/10.1007/11547662_7
http://dro.dur.ac.uk/6226/
https://dro.dur.ac.uk/policies/usepolicy.pdf
https://dro.dur.ac.uk

Memory Usage Verification for OO Programs⋆

Wei-Ngan Chin1,2, Huu Hai Nguyen1, Shengchao Qin3, and Martin Rinard4

1 Computer Science Programme, Singapore-MIT Alliance
2 Department of Computer Science, National University of Singapore

3 Department of Computer Science, University of Durham
4 Laboratory for Computer Science, Massachusetts Instituteof Technology

{chinwn,nguyenh2}@comp.nus.edu.sg

shengchao.qin@durham.ac.uk, rinard@lcs.mit.edu

Abstract. We present a new type system for an object-oriented (OO) language
that characterizes the sizes of data structures and the amount of heap memory
required to successfully execute methods that operate on these data structures.
Key components of this type system include type assertions that use symbolic
Presburger arithmetic expressions to capture data structure sizes, the effect of
methods on the data structures that they manipulate, and theamount of memory
that methods allocate and deallocate. For each method, we conservatively capture
the amount of memory required to execute the method as a function of the sizes
of the method’s inputs. The safety guarantee is that the method will never attempt
to use more memory than its type expressions specify. We haveimplemented a
type checker to verify memory usages of OO programs. Our experience is that
the type system can precisely and effectively capture memory bounds for a wide
range of programs.

1 Introduction

Memory management is a key concern for many applications. Over the years re-
searchers have developed a range of memory management approaches; examples in-
clude explicit allocation and deallocation, copying garbage collection, and region-based
memory allocation. However, an important aspect that has been largely ignored in past
work is the safe estimation of memory space required for program execution. Overal-
location of memory may cause inefficiency, while underallocation may cause software
failure. In this paper, we attempt to make memory usage more predictable by static
verification on the memory usage of each program.

We present a new type system, based on dependent type[21], that characterizes the
amount of memory required to execute each program component. The key components
of this type system include:

– Data Structure Sizes and Size Constraints:The type of each data structure in-
cludes index parameters to characterize its size properties, which are expressed in
terms of the sizes of data structures that it contains. In many cases the sizes of these
data structures are correlated; our approach uses size constraints expressed using
symbolic Presburger arithmetic terms to precisely capturethese correlations.

– Heap Recovery:Our type system captures the distinction between shared andun-
aliased objects and supports explicit deallocation of unaliased objects.

⋆ slightly revised from SAS’05 version

– Preconditions and Postconditions:Each method comes with a precondition that
captures both the expected sizes of the data structures on which it operates and any
correlations between these sizes. The method’s postcondition expresses the new
size and correlations of these data structures after the method executes as a function
of the original sizes when the method was invoked.

– Heap Usage Effects:Each method comes with two memory effects. These effects
use symbolic values (present in method precondition) to capture (i) memory re-
quirementwhich specify the maximum heap space that the methodmayconsume,
(ii) memory releasewhich specify the minimum heap space that the methodwill
recover. Heap effects are expressed at the granularity of classes and can capture
the net change in the number of instances of each class.

Our paper makes several new technical contributions. Firstly, we design a formal
verification system in the form of a type system, that canformallyandstaticallycapture
memory usage for the object-oriented (OO) paradigm. We believe that ours is the first
such formal type system for OO paradigm. Secondly, we advocate forexplicit heap re-
coveryto provide more timely reclamation of dead objects in support of tighter bounds
on memory usage. We show how such recovery commands may be automatically in-
serted. Thirdly, we have proven the soundness of our type checking rules. Each well-
typed program is guaranteed to meet its memory usage specification, and willnever fail
due to insufficient memorywhenever its memory precondition is met. Lastly, we have
implemented a type checker and have shown that it is fairly precise and can handle a
reasonably large class of programs. Runtimestack spaceto hold methods’ parame-
ters and local variables is another aspect of memory needed.For simplicity, we omit its
consideration in this paper.

2 Overview

Memory usage occurs primarily in the heap to hold dynamically created objects. In our
model, heap space is consumed via thenew operation for newly created objects, while
unused objects may be recovered via an explicit deallocation primitive, calleddispose.
Memory usage (based on consumption and recovery) should be calculated over the
entire computation of each program. This calculation is done in a safe manner to help
identify the high watermark on memory space needed. We achieve this through the use
of a conservative upper bound on memory consumed, and a conservative lower bound
on memory recovered for each expression (and method).

To safely predict the memory usage of each program, we propose asize-polymorphic
type systemfor object-oriented programs with support for interprocedural size analysis.
In this type system, size properties of both user-defined types and primitive types are
captured. In the case of primitive integer typeint〈v〉, the size variablev captures its in-
teger value, while for boolean typebool〈b〉, the size variableb is either0 or 1 denoting
false or true, respectively. (Note that size variables capture some integer-based prop-
erties of the data structure. For simple types, the values are directly captured.) For user-
defined class types, we usec〈n1, . . . , np〉 where φ ; φI with size variablesn1, . . . , np to
denote size properties that are defined in size relationφ, and invariant constraintφI . As

an example, consider a user-defined stack class, that is implemented with a linked list,
and a binary tree class as shown below.
class List〈n〉 where n=m+1 ; n≥0 { Object〈〉@S val; List〈m〉@U next; · · · }
class Stack〈n〉 where n=m ; n≥0 { List〈m〉@U head; · · · }
class BTree〈s, d〉 where s=1+s1+s2∧d=1+max(d1, d2) ; s≥0∧d≥0 {
Object〈〉@S val; BTree〈s1, d1〉@U left; BTree〈s2, d2〉@U right; · · · }

List〈n〉 denotes a linked-list data structure of sizen, and similarly forStack〈n〉. The
size relationsn=m+1 andn=m define some size properties of the objects in terms of
the sizes of their components, while the constraintn≥0 signifies an invariant associated
with the class type. ClassBTree〈s, d〉 represents a binary tree with size variabless and
d denoting the total number of nodes and the depth of the tree, respectively. Due to
the need to track the states of mutable objects, our type system requires the support of
alias controls of the formA=U | S | R | L. We useU andS to mark each reference that
is (definitely)unaliasedand (possibly)shared, respectively. We useR to mark read-
only fields which must never be updated after object initialization. We useL to mark
unique references that are temporarily borrowed by a parameter for the duration of
its method’s execution. Our alias annotation mechanism areadapted from [5, 8, 1] and
reported in [9]. Briefly, they allow us to track unique objects from mutable fields, as
well as shareable objects from read-only fields.

To specify memory usage, we decorate each method with the following declaration:

t mn(t1v1, . . . , tnvn) where φpr; φpo; ǫc; ǫr {e}

whereφpr andφpo denote the precondition and postcondition of the method, expressed
in terms of constraints/formulae on the size variables of the method’s parameters and
result. Preconditionφpr denotes an applicability condition of the method in terms of
the sizes of its parameters. Postconditionφpo can provide a precise size relation for the
parameters and result of the declared method. The memory effect is captured byǫc and
ǫr. Note thatǫc denotesmemory requirement, i.e., the maximum memory space that
may be consumed, while ǫr denotesnet release, i.e., the minimum memory space that
will be recoveredat the end of method invocation. Memory effects (consumption and
recovery) are expressed using a bag notation of the form{(ci, αi)}

m
i=1, whereci denotes

a class type, whileαi denotes its symbolic count.

class Stack〈n〉 where n=m ; n≥0 { List〈m〉@U head;
L || void〈〉@S push(Object〈〉@S o) where true; n′=n+1; {(List, 1)}; {}
{ List〈〉@U tmp=this.head; this.head=new List(o, tmp)}

L || void〈〉@S pop() where n>0; n′=n−1; {}; {(List, 1)}
{ List〈〉@U t1 = this.head; List〈〉@U t2 = t1.next; t1.dispose(); this.head = t2}

L || bool〈b〉@S isEmpty() where n≥0; n′=n ∧ (n=0∧b=1 ∨ n>0∧b=0); {}; {}
{ List〈〉@U t = this.head; bool〈〉@S v = isNull(t); this.head = t; v}

L || void〈〉@S emptyStack() where n≥0∧d=n; n′=0; {}; {(List, d)}
{ bool〈〉@S v = this.isEmpty(); if v then () else {this.pop(); this.emptyStack()}}

L || void〈〉@S push3pop2(Object〈〉@S o) where true; n′=n+1; {(List, 2)}; {(List, 1)}
{ this.push(o); this.push(o); this.pop(); this.push(o); this.pop()}}

Fig. 1. Methods for theStack Class

Examples of method declarations for theStack class are given in Fig 1. The nota-
tion (A ||) prior to each method captures the alias annotation of the currentthis para-
meter. Note our use of the primed notation, advocated in [13,16], to capture imperative
changes on size properties. For thepush method,n′=n+1 captures the fact that the size
of the stack object has increased by 1; similarly, the postcondition for thepop method,
n′=n−1, denotes that the size of the stack is decreased by 1 after theoperation. The
memory requirement for thepush method,ǫr={(List, 1)}, captures the fact that one
List node will be consumed. For thepop method,ǫr={(List, 1)} indicates that one
List node will be recovered.

{Mem.
Req.

Net
Release}

push push pushpop pop
time

Fig. 2.push3pop2: Heap Consumption and Recovery

For theisEmpty method,
n′=n captures the fact that
the size of the receiver ob-
ject (this) is not changed by
the method. Furthermore, its
output of typebool〈b〉@S is
related to the object’s size
through a disjunctive con-
straint n=0∧b=1∨n>0∧b=0.

Primitive types are annotated with aliasS because their values are immutable and can be
freely shared and yet remain trackable. TheemptyStack method releases allList nodes
of theStack object. Forpush3pop2 method, the memory consumed (or required) from
the heap is{(List, 2)}, while the net release is{(List, 1)}, as illustrated in Fig. 2.

Size variables and their constraints are specified at methodboundary, and need not
be specified for local variables. Hence, we may usebool〈〉@S instead ofbool〈v〉@S for
the type of a local variable.

3 Language and Annotations

We focus on a core object-oriented language, called MEMJ, with size, alias, and mem-
ory annotations in Fig 3. MEMJ is designed to be an intermediate language for Java
with either supplied or inferred annotations. A suffix notation y∗ denotes a list of zero
or more distinct syntactic terms that are suitably separated. For example,(t v)∗ denotes
(t1 v1, . . . , tn vn) wheren≥0. Local variable declarations are supported by block struc-
ture of the form:(t v = e1; e2) with e2 denoting the result. We assume a call-by-value
semantics for MEMJ, where values (primitives or references) are passed as arguments
to parameters of methods. For simplicity, we do not allow theparameters to be updated
(or re-assigned) with different values. There is no loss of generality, as we can always
copy such parameters to local variables for updating.

The MEMJ language is deliberately kept simple to facilitate the formulation of static
and dynamic semantics. Typical language constructs, such as multi-declaration block,
sequence, calls with complex arguments,etc. can be automatically translated to con-
structs in MEMJ. Also, loops can be viewed as syntactic abbreviations for tail-recursive
methods, and are supported by our analysis. Several other language features, includ-
ing downcast and a field-binding construct are also supported in our implementation.
For simplicity, we omit them in this paper, as they play supporting roles and are not

P ::= def∗ meth∗

def ::= class c1〈n1..p〉 [extends c2〈n1..q〉] where φ ; φI { fd∗ (A || meth)∗ }

meth::= t mn((t v)∗) where φpr; φpo; ǫc; ǫr {e}

fd ::= t f t ::= τ 〈n∗〉@A A ::= U | L | S | R

τ ::= c | pr w ::= v | v.f pr ::= int | bool | void

e ::=(c) null | k | w | w = e | t v = e1 ; e2 | new c(v∗)
| v.mn(v∗) | mn(v∗) | if v then e1 else e2 | v.dispose()

ǫ = {(c, α)∗} (Memory Space Abstraction)

φ ∈ F (Presburger Size Constraint)

::= b | φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ | ∃n · φ | ∀n · φ

b ∈ BExp (Boolean Expression)

::= true | false | α1 =α2 | α1 <α2 | α1≤α2

α ∈ AExp (Arithmetic Expression)

::= kint | n | kint ∗ α | α1+α2 | −α | max(α1,α2) | min(α1,α2)

wherek
int ∈ Z is an integer constant; n ∈ SV is a size variable

f ∈ Fd is a field name; v ∈ Var is an object variable

Fig. 3. Syntax for the MEMJ Language

core to the main ideas proposed here. The interested reader may refer to our companion
technical report[10] for more information.

To support sized typing, our programs are augmented with size variables and con-
straints. For size constraints, we restrict to Presburger form, as decidable (and practical)
constraint solvers exist, e.g. [19]. We are primarily interested in tracking size properties
of objects. We therefore restrict the relationφ in each class declaration ofc1〈n1, .., np〉

which extendsc2〈n1, .., nq〉 to the form
Vp

i=q+1 ni=αi wherebyV(αi) ∩ {n1, .., np} = ∅.
Note thatV(αi) returns the set of size variables that appeared inαi. This restricts size
properties to depend solely on the components of their objects.

Note that each class declaration has a set of instance methods whose main purpose
is to manipulate objects of the declared class. For convenience, we also provide a set
of static methods with the same syntax as instance methods, except for its access to the
this object. One important feature of MEMJ is that memory recovery is done safely
(without creating dangling references) through av.dispose() primitive.

4 Heap Usage Specification

To allow memory usage to be precisely specified, we propose a bag abstraction of
the form{(ci, αi)}

n
i=1 whereci denotes its classification, whileαi is its cardinality. In

this paper, we shall useci ∈ CN whereCN denotes all class types. For instance,Υ1 =
{(c1, 2), (c2, 4), (c3 , x + 3)} denotes a bag withc1 occurring twice,c2 four times and
c3 x + 3 times. We provide the following two basic operations for bagabstraction to
capture both the domain and the count of its element, as follows:

dom(Υ) =df {c | (c, n) ∈ Υ} Υ (c) =df

�n, if (c, n) ∈ Υ

0, otherwise

We define union, difference, exclusion over bags as:

Υ1 ⊎ Υ2 =df {(c, Υ1(c)+Υ2(c)) | c ∈ dom(Υ1) ∪ dom(Υ2)}
Υ1 − Υ2 =df {(c, Υ1(c)−Υ2(c)) | c ∈ dom(Υ1) ∪ dom(Υ2)}
Υ \ X =df {(c, Υ (c)) | c ∈ dom(Υ) − X}

To check for adequacy of memory, we provide a bag comparator operation under a
size constraint∆, as follows:

∆ ⊢ Υ1 ⊒ Υ2 =df (∆ ⇒ (∀c ∈ Z · Υ1(c) ≥ Υ2(c))) where Z = dom(Υ1) ∪ dom(Υ2)

The bag abstraction notation for memory is quite general andcan be made more pre-
cise by refining its operations. For example, some class types are of the same size and
could replace each other to increase memory reuse. To achieve this we can use a bag
abstraction that is grouped bysize(ci) instead of class typeci.

4.1 Heap Consumption

Heap space is consumed when objects are created by thenew primitive, and also by
method calls, except that the latter is aggregated to include recovery prior to consump-
tion. Our aggregation (of recovery prior to consumption) isdesigned to identify a high
watermark of maximum memory needed for safe program execution. For each expres-
sion, we predict a conservative upper bound on the memory that the expressionmay
consume, and also a conservative lower bound on the memory that the expressionwill
release. If the expression releases some memory before consumption, we will use the
released memory to obtain a lower memory requirement. Such aggregated calculations
on both consumption and recovery can help capture both a net change in the level of
memory, as well as the high watermark of memory needed for safe execution.

For example, consider a recursive function which doesp pops from one stack
object, followed by the same number of pushes on another stack.
void〈〉@S moverec(Stack〈a〉@L s, Stack〈b〉@L t, int〈p〉@S i)

where a≥p≥0; a′=a−p∧b′=b+p; {} ; {}
{ if i<1 then ()
else {Object〈〉@S o = s.top(); s.pop(); moverec(s, t, i−1); t.push(o)} }
Due to aggregation (involving recovery before consumption), the heap space that

may be consumed is zero. For each recursive call, the space for a List node is released
by s.pop() before it is reused byt.push(o). Aggregated over the recursive calls, we will
havep number ofList nodes that have been released before the same number of nodes
are consumed. Hence, no new heap space is needed. Such aggregation is sensitive to
the order of the operations.

Consider now a different function which performsp pushes ont, followed by the
same number of pops froms.
void〈〉@S moverec2(Stack〈a〉@L s, Stack〈b〉@L t, int〈p〉@S i)

where a≥p≥0; a′=a−p∧b′=b+p; {(List, p)}; {(List, p)}
{ if i<1 then ()
else {Object〈〉@S o = s.top(); t.push(o); moverec2(s, t, i−1); s.pop()} }
Though the net change in memory usage is also zero, the memoryeffect for this

function is different as we requirep number ofList nodes to be consumed on entry,

beforethe same number ofList nodes are recovered. This new memory effect has the
potential to push up the high watermark of memory needed byp List nodes.

4.2 Heap Recovery

Explicit heap space recovery viadispose has several advantages. It facilitates the
timely recovery of dead objects, which allows memory usage to be predicted more
accurately (with tighter bounds). It also permits the use ofmore efficient custom allo-
cators[4], where desired. Moreover, we shall provide an automatic technique to insert
dispose primitives with the help of alias annotation. With such a technique, we only
need to ensure that objects that are being disposed are non-null. This non-nullness prop-
erty can be captured by a non-nullness analyser, such as [12]. This property is required
as we always recover memory space for eachdispose primitive.

Memory recovery viadispose should occur when unique references that are still
alive (not in dead-set) are being discarded. This could occur at four places1 : (i) end
of local block, (ii) end of method block, (iii) prior to assignment operation, and (iv)
at conditional expression. We would like to recover the memory space for each non-
null reference that is about to become dead. For example, consider thepop method’s
definition:

L | void〈〉@S pop() where · · · { List〈〉@U t1 = this.head; head = t1.next}

The object pointed to byhead is about to become dead prior to the operation,
head = t1.next. To recover this dead object, we insert adispose command to obtain
head = (t1.next <; head.dispose()) wheree1<;e2≡(t v = e1;e2;v). Consider the defin-
ition of thedestroy method which callsemptyStack with anL-mode parameter.

void〈〉@S destroy(Stack〈n〉@U s) where · · · {emptyStack(s)}

A uniques object is about to become dead at the end of thedestroy method. To
recover this space, we can inserts.dispose() prior to the method’s exit.

Let us formalise an automatic technique for the explicit recovery of dead objects
that are known at compile-time. Given an expressione, we utilize the alias annotation
to obtain a new expressione1 where suitable explicit heapdispose operations have been
safely inserted. This is achieved by a translation below with Γ to denote a type environ-
ment mapping program variables to their annotated types, and Θ(Θ1) to denote the set
of dead references (of the formv or v.f) before (after) the evaluation of expressione.

Γ ; Θ ⊢ e →֒H e1 :: t, Θ1

Most rules are structure-preserving (or identity) rewritings, except for four rules given
in Fig 4. A sequence of disposals can be effected throughdispose(D), with D containing
a set of variable/field references that are about to be dead atthe end of expressione.

For the assignment rule[H:ASSIGN], we addw to the disposal set if it is unique and
is not yet in dead-set usingD = {w | ann(t)=U}−Θ1. The functionisParam(w) returns
true if w is a parameter variable, otherwise it returnsfalse (for fields and local vari-
ables). The functionann extracts the alias of an annotated type,ann(τ 〈v∗〉@A) = A. A

1 Note that unique reference cannot escape throughe1 in e1; e2 as we requiree1 to be of the
void type.

[H:ASSIGN]

¬ isParam(w) Γ (w) = t

D = {w | ann(t) = U} − Θ1

Γ ; Θ ⊢ e →֒H e1 :: t1, Θ1

⊢ t1 <: t

e2 = (e1 � D=∅ � e1<; dispose(D))

Γ ; Θ ⊢ w = e →֒H

w = e2 :: void@S, Θ1\w

[H:IF]

Γ (v) = bool〈b〉@S
Γ ;Θ ⊢ ei →֒H êi :: ti, Θi i = 1, 2
t = msst(t1, t2) Θ3 = Θ1 ∪ Θ2

Di = Θ3−Θi i = 1, 2
Ei = (êi � Di=∅ � êi<; dispose(D)) i = 1, 2

Γ ; Θ ⊢ if v then e1 else e2 →֒H

if v then E1 else E2 :: t,Θ3

[H:METH]

Γ1 = Γ + {v1 :: t1, .., vp :: tp}
Γ1; ∅ ⊢ e →֒H e1 :: t, Θ

⊢ t <: t0 ann(t0) 6= L

∀i∈1..p·(ann(ti) =L)⇒(∀f ·vi.f 6∈Θ)
D = {w | (w :: t) ∈ Γ1, ann(t)=U}−Θ

e2 = (e1 � D=∅ � e1<; dispose(D))

Γ ⊢meth t0 mn((ti vi)i:1..p){e}
→֒H t0 mn((ti vi)i:1..p) {e2}

[H:LOCAL]

Γ ; Θ ⊢ e1 →֒H e3 :: t1, Θ1

⊢ t1 <: t

ann(t) 6∈ {L, R}
Γ+{v :: t}; Θ1 ⊢ e2 →֒H e4 :: t2, Θ2

D = {v | ann(t) = U} − Θ2

e5 = (e4 � D=∅ � e4<; dispose(D))

Γ ;Θ ⊢ (t v = e1 ; e2) →֒H

(t v = e3 ; e5) :: t2, Θ2\v

Fig. 4.Automatic Insertion ofdispose operation

conditional is expressed asξ1 � b � ξ2 =df

� ξ1, if b;
ξ2, otherwise.

Furthermore, we have:

Θ\v =df Θ − {v, v.f
∗} Θ\v.f =df Θ − {v.f}

For the method declaration rule[H:METH], we add to the disposal set those parameters
which are unique but not yet dead using{w | (w :: t) ∈ Γ1, ann(t) = U} − Θ. For the local
declaration rule[H:LOCAL], we addv to the disposal set if it is unique but not yet dead
using{v | ann(t) = U} − Θ2. For the[H:IF] rule, the uniqueness that are consumed in one
branch may have their heap spaces recovered in the other branch. This is captured by
Di = Θ3−Θi , i = 1, 2. Notice thatmsst(t1, t2) returns the minimal supertype of botht1
andt2, as follows:

τ1 <: τ τ2 <: τ ∀τ3 · (τ1, τ2 <: τ3⇒τ <: τ3)

A1≤aA A2≤aA ∀A3 · (A1, A2≤aA3⇒A≤aA3)

msst(τ1@A1, τ2@A2) =df τ@A

Note thatτ1 <: τ2 denotes the subtype relation for underlying types (withoutanno-
tations). Alias subtyping rules (shown below) allow uniquereferences to be passed to
shared and lent-once locations (in addition to other uniquelocations), but not vice-versa.

A≤a A U ≤a L U≤a S

In the rest of this paper, we shall present a new static type system for verifying
memory heap usage, followed by a set of safety theorems on thetype rules.

5 Rules for Memory Checking

We present type judgements forexpressions, method declarations, class declarations
andprogramsto check for adequacy of memory, using relations of the form:

Γ ; ∆; Υ ⊢ e :: t, ∆1, Υ1 Γ ⊢meth meth ⊢class def ⊢ P

Note thatΓ is the type environment as explained earlier;∆(∆1) denotes the size
constraint, which holds for the size variables associated with Γ (Γ andt) for expression
e before (after) its evaluation;t is an annotated type. Also,Υ (Υ1) is used to denote the
available memory space in terms of bag abstraction before (after) the evaluation.

We present a few key syntax-directed type rules in Fig 5, withthe rest of the rules in
the technical report. Before that, let us describe some notations used by the type rules.

[ASSIGN]

Γ ;∆; Υ ⊢ e :: t1, ∆1, Υ1 Γ ⊢ w :: t, φ, Y

⊢ t1<:t, ρ X=V(t1)∪V(t) ∆2=∃X·(∆1◦Yρφ)

Γ ;∆; Υ ⊢ w = e :: void〈〉@S, ∆2, Υ1

[DISPOSE]
Γ (v) = c〈n∗〉@U Υ1 = Υ ⊎ {(c, 1)}

Γ ;∆; Υ ⊢ v.dispose() :: void〈〉@S, ∆, Υ1

[NEW]

fdList(c〈n∗〉) = ([(t̂i fi)]
p
i=1, φ′)

r∗ = fresh() ti = prime(Γ (vi))
⊢ ti <: [R 7→ S]t̂i, ρi i∈1..p

ρ = [n∗ 7→ r∗]∪
Sp

i=1ρi

∆ ⊢ Υ ⊒ {(c, 1)} X =
Sp

i=1 V(t̂i)
∆1 = ∆∧(∃X·ρφ′) Υ1 = Υ−{(c, 1)}

Γ ;∆; Υ ⊢ new c(v1..p) :: c〈r∗〉@U, ∆1, Υ1

[IF]
Γ (v) = bool〈b〉@S

Γ ; ∆ ∧ b′ = 1; Υ ⊢ e1 :: t1, ∆1, Υ1

Γ ; ∆ ∧ b′ = 0; Υ ⊢ e2 :: t2, ∆2, Υ2

(t, Υ3, ∆3) = unify(t1, t2, Υ1, Υ2, ∆1, ∆2)

Γ ; ∆; Υ ⊢ if v then e1 else e2 :: t, ∆3, Υ3

[OVERRIDE]
methk = t mn((ti vi)i:1..p) where

φprk; φpok
; ǫkm; ǫkn {· · · }, k = 1, 2

φpr1⇒φpr2 φpo2⇒φpo1

φpr1 ⊢ ǫ1m⊒ǫ2m φpr1 ⊢ ǫ2n⊒ǫ1n

⊢ OverridesOK(meth1, meth2)

[IMI]
⊢ (A || t̂ mn((t̂i v̂i)i:1..p) whereφpr; φpo; ǫc; ǫr{e})∈c〈n∗〉

t = fresh(t̂) t0 = c〈n∗〉@A Γ (vi) = ti i∈0..p ⊢ ti <: t̂i, ρi i∈1..p

ρp =
Sp

i=1 ρi ∆1 ⊢ Υ⊒ǫc ρ=rename(t̂, t)∪ρp∪prime(ρp)
∆≈>V(Γ) ∃V(ǫc)∪V(ǫr)·ρ φpr ∆1 = ∆ ◦L ∃Y · ρ(φpr∧φpo)

Υ1 = Υ−ǫc⊎ǫr X =
Sp

i=1 V(t̂i) Y = X ∪ prime(X) L =
Sp

i=0 V(ti)

Γ ; ∆; Υ ⊢ v0.mn(v1..p) :: t,∆1, Υ1

[METH]

Γ1 = Γ ∪ {v1 :: t̂1, .., vp :: t̂p} ∆ = noX (Γ1)∧φpr∧inv(Γ1) ∆ ⊢ǫc⊒∅

Γ1; ∆; ǫc ⊢ e :: t,∆1, Υ1 φpr∧∆1 ⊢Υ1 ⊒ ǫr ∆ ⊢ǫr⊒∅ ⊢ t <: t̂, ρ

(, , Ni) = Vfield(t̂i), i∈1..p Y =
Sp

i=1 Ni (∃ prime(Y)·∆1)⇒ρ(φpo)

Γ ⊢meth t̂ mn((t̂i vi)i:1..p) where φpr; φpo; ǫc; ǫr {e}

Fig. 5.Some Type Rules for Memory Checking

5.1 Notations

We use functionV to return size variables of a formula, e.g.V(x′=z+1∧y=2)={x′, y, z}.
We extend it to annotated type, type environment, and memoryspecification, e.g.,

V(τ 〈n∗〉@A)={n∗}, V({(c, 4×d+8)})={d}. The functionprime takes a set of size vari-
ables and returns their primed version, e.g.prime({s1, . . . , sn})={s′1, . . . , s′n}. Note that
prime operation is idempotent, namely(v′)′=v′. We extend this to (annotated) type, type
environment, and even substitution. For example,prime(τ 〈n1, . . . , nk〉) = τ 〈n′

1, . . . , n
′
k〉,

andprime([x 7→a, y 7→b]) = [x′ 7→a′, y′ 7→b′]. Often, we need to express a no-change con-
dition on a set of size variables. We define anoX operation as follows which returns a
formula for which the original and primed variables are madeequal.

noX ({}) =df true noX ({x}∪X) =df (x′=x)∧noX (X)

We extend this function to annotated types (and type environments), as follows:noX (t)

=df noX (V(t)). Also, we usen∗ = fresh() to generate new size variablesn∗. We extend it
to annotated type, so thatt̂ = fresh(t) will return a new typêt with the same underlying
type ast but with fresh size variables instead. Functionrename(t1, t2) returns an
equality substitution, e.g.rename(Int〈r〉, Int〈s′〉)=[r 7→s′]. The operator∪ combines two
domain disjoint substitutions into one.

The functionfdList is used to retrieve a full list of fields for a given class, together
with its size relation. The functioninv is used to retrieve the size invariant that is asso-
ciated with each type. This function shall also be extended to type environment and list
of types. The functionVfield classifies size variables from each field into three groups :
(i) immutable, (ii) mutable but unique, (iii) otherwise (non-trackable).

To effect a changeφ to an existing poststate∆, we provide an operator,◦Y , with
Y = {s∗} to denote the set of size variables that is to be updated, as follows:

∆ ◦Y φ =df ∃ r1 · · · rn · ρ2(∆) ∧ ρ1(φ)
whereY = {s1, . . . , sn} ; {r1, . . . , rn} = fresh() ; ρ1 = [si 7→ ri]

n
i=1 ; ρ2 = [s′i 7→ ri]

n
i=1

5.2 Assignment

The [ASSIGN] rule captures imperative updates (to object fields and variables) by mod-
ifying the current size constraint to a new updated state with changes to the imperative
size variables from the LHS. From the rule, note thatΓ ⊢ w :: t, φ, Y is to identifyY as a
set of imperative size variables and also to gather a constraint φ for this set. The subtype
relation⊢ t1 <: t, ρ will return a substitution that maps the size variables of supertype
to that of the subtype. This mapping ignores all non-trackable size variables that may
be globally aliased, but immutable and unique mutable size variables are captured.

5.3 Memory Operations

The heap space is directly changed by thenew and dispose primitives. Their corre-
sponding type rules, [NEW] and [DISPOSE], would ensure that sufficient memory is
available for consumption bynew and will credit back space relinquished bydispose.
The memory effect is accumulated according to the flow of computation. Consider:

∆⊢Υ⊒{(List, 1)} ∆1=∆◦{x}x
′=x+1

Γ ;∆; Υ ⊢ x = new List(o, x) :: void〈〉@S, ∆1, Υ−{(List, 1)}
Υ1=(Υ−{(List, 1)})⊎{(List, 1)}

Γ ;∆1; Υ−{(List, 1)} ⊢ y.dispose() :: void〈〉@S, ∆1, Υ1

Γ ;∆; Υ ⊢ x = new List(o, x); y.dispose() :: void〈〉@S, ∆1, Υ

The new operation consumes aList node, while thedispose operation releases
back aList node. The net effect is that available memoryΥ is unchanged. However,
due to the order of the two operations, we require∆⊢Υ⊒{(List, 1)} which affects the
maximum memory required.

Another rule which has a direct effect on memory is the methodinvocation rule
[IMI]. Sufficient memory must be available for consumption priorto each call (as spec-
ified by ∆1 ⊢ Υ⊒ǫc), with the net memory release added back in the end (as specified
by Υ1 = Υ−ǫc⊎ǫr). Each method precondition must be met by the pre-state of its caller.
This is checked by∆≈>V(Γ) ∃V(ǫc)∪V(ǫr)·ρ φpr which uses a relation≈>X , defined as:

∆ ≈>X φ =df (∆ ⇒ ρφ), whereρ = [s1 7→ s′1, .., sn 7→ s′n] ∧ Vu(φ) ∩ X = {s1, .., sn}.

Note thatVu returns size variables in unprimed form, e.g.Vu(x′=z+1∧y=2) = {x, y, z}.

5.4 Conditional

Our type rule for conditional [IF] is able to track both the size-constraints and memory
usages in a path-sensitive manner. Path-sensitivity is encoded by addingb′=1 andb′=0

to the pre-states of the two branches, respectively. We achieve path-sensitivity for mem-
ory usage specification by integrating it with relational size constraints derived. Take
note that theunify operation merges the post-state constraints and memory usages from
the two branches via a disjunction, a formal definition and anexample can be found in
our report [10]. Path-sensitivity makes our analysis more accurate and is critical for
analysing the memory requirement of recursive methods.

5.5 Method Declaration

Each method declaration is checked to see if its definition isconsistent with the mem-
ory usage specification given in its declaration header by the [METH] rule. The initial
memory is ǫc. The final available memory of the method bodye is Υ1 which must not
be less than the declared net memory release (as specified byφpr∧∆1 ⊢ Υ1 ⊒ ǫr).

Function subtyping for the OO paradigm is used to support method overriding. This
is captured by the [OVERRIDE] rule in Fig 5. Each method which overrides another
is expected to becontravarianton its precondition (and memory consumption) and
covarianton its postcondition (and memory releases)

6 Soundness of Type System

We have proposed a small-step operational semantics (denoted by→֒ transitions) instru-
mented with alias and size notations[10], and have also formalised two safety theorems
for our type rules. The first theorem states that each well-typed expression preserves
its type under reduction with a runtime environmentΠ and a store̟ that are consistent
with the compile-time counterparts,Γ (type environment) andΣ (store typing). Also,
final size constraint is consistent with the value obtained on termination.

Theorem 1 (Preservation).

(a) (Expression) If Γ ; Σ; ∆; Θ; Υ ⊢ e :: t, ∆1, Θ1, Υ1 Γ ;Σ; ∆; Θ; Υ |= 〈Π, ̟, σ〉

〈Π, ̟, σ〉 [e] →֒ 〈Π1, ̟1, σ1〉 [e1]

then there existΣα ⊇ Σ, Γα, ∆α, Θα, andΥα, such that

Γ − diff(e, e1) = Γα − diff(e1, e) Γα; Σα; ∆α; Θα; Υα ⊢ e1 :: t, ∆1, Θ1, Υ1

Γα; Σα; ∆α; Θα; Υα |= 〈Π1, ̟1, σ1〉 .

(b) (Value) If Γ ; Σ; ∆; Θ; Υ ⊢ (A, δ) :: t, ∆1, Θ1; Υ1 Γ ;Σ; ∆; Θ; Υ |= 〈Π,̟, σ〉

then the following hold:

Θ = Θ1 Γ + {x :: t}; Σ; ∆2; Θ1; Υ1 |= 〈Π + {x 7→ (A, δ)}, ̟, σ 〉

wherex = fresh() , ∆2 = [v 7→ v′]v∈V(t)∆1.

Proof: By induction over the depth of type derivation for expression e. Details are given
in the technical report [10]. 2

The second safety theorem on progress captures the fact thatwell-typed programs
cannot go wrong. Specifically, this theorem guarantees thatno memory adequacy errors
are ever encountered for well-typed MEMJ programs, as follows:

Theorem 2 (Progress).If Γ ; Σ; ∆; Θ; Υ⊢e :: t, ∆1, Θ1, Υ1 and Γ ; Σ; ∆; Θ; Υ |= 〈Π, ̟, σ〉,
then eithere is a value, or〈Π, ̟, σ〉 [e] →֒ Err-Null , or there existΠ1, ̟1, σ1, e1 such
that 〈Π,̟, σ〉 [e] →֒ 〈Π1, ̟1, σ1〉 [e1].

Proof: By induction over the depth of type derivation for expression e. Details are given
in the technical report [10]. 2

7 Implementation

We have constructed a type checker for MEMJ, and have also built a preprocessor to
allow a more expressive language to be accepted. The entire prototype was built using
a Haskell compiler[18] where we have added a library (based on [19]) for Presburger
arithmetic constraint-solving.

The main objective of our initial experiments is to show thatour memory usage
specification mechanism is expressive and that such an advanced form of type checking
is viable. We converted to MEMJ a set of programs from the Java version of the Olden
benchmark suite [7] and another set of smaller programs fromthe RegJava bench-
mark[11], before subjecting them to memory adequacy checking. Our initial experi-
mental results are encouraging; however this is a proof-of-concept implementation and
there is scope for optimization and more exhaustive experimentation.

Programs Size (lines) Checking (in sec.)Verified
SourceAnn. Alias Memory Methods

bisort 340 7 0.01 2.56 6/6
em3d 462 19 0.05 1.14 20/20
health 562 22 0.05 6.37 15/15
mst 473 31 0.02 1.26 22/22

power 765 24 0.06 4.28 19/19
treeadd 195 6 0.02 0.32 4/4

tsp 545 10 0.02 3.54 9/9
perimeter 745 12 0.02 21.81 8/8
n-body 1128 31 0.60 1.25 22/22
Voronoi 1000 45 0.03 3.51 39/40

stack 122 12 0.01 0.08 10/10
sieve 88 7 0.01 0.09 6/6

m-sort 183 13 0.01 0.36 12/12
life 164 9 0.02 2.95 7/7

Mandelbrot 194 11 0.01 1.72 10/10
Reynolds3 98 6 0.01 0.18 4/4

Fig. 6. Type Checking Experimental Results

Figure 6 summarises the sta-
tistics obtained for each program
that we have verified via our type
checker. Column 3 illustrates the
size and memory annotation over-
heads which must be made in
the header declarations of each
class and method. Columns 4 and
5 highlight the CPU times used
(in seconds) for alias and mem-
ory checking, respectively. Our ex-
periments were done under Red-
hat Linux 9.0 platform on Pen-
tium 2.4 GHz with 768MB main
memory. Except for theperimeter
program (which has more condi-
tionals from using a quadtree data
structure), all programs take under
10 seconds to verify, despite them
being medium-sized programs and

the high complexity of Presburger solving. We attribute this to the fact that memory dec-
larations are verified in a summary-based fashion for each method definition. The last
column highlights the number of methods that have been successfully verified as using
memory spaces that are bounded by symbolic Presburger formulae. All methods’ heap
usage could be statically bounded, except2 for a method inVoronoi that has an allocation
inside a loop, with a complex termination condition. Apart from the memory check-
ing system described above, we have also conducted some preliminary investigation on
memory inference which is described in [17].

8 Related Work

Past research on memory models for object-oriented paradigm have focused largely on
efficiency and safety. We are unaware of any prior type-basedwork on analysing heap
memory usage by OO programs for the purpose of checking for memory adequacy. The
closest related work on memory adequacy are based on first-order functional paradigm,
where data structures are mostly immutable and thus easier to handle.

Hughes and Pareto [15] proposed a type and effect system on space usage estimation
for a first-order functional language, extended with regionlanguage constructs of Tofte
and Talpin’s[20]. The use of region model facilitates recovery of heap space. However,
as each region is only deleted when all its objects become dead, more memory than
necessary may be used, as reported by [4].

Hofmann and Jost [14] proposed a solution to obtain linear bounds on the heap
space usage of first-order functional programs. A key feature of their solution is the use

2 For Olden programs which built tree-like data structure, wemake a minor change to take total
nodes rather than heights as parameters. This avoids exponential formulae.

of linear typing which allows the space of each last-use dataconstructor (or record) to
be directly recycled by a matching allocation. With this approach, memory recovery can
be supported within each function, butnot across functionsin general. Moreover, their
model does not track the symbolic sizes of data structures. Nevertheless, one significant
advance of their work is an inference mechanism through linear programming (LP)
technique. The main advantage of LP technique is that no fix-point analysis is required,
but it restricts the memory effects to a linear form without disjunction.

Apart from the above memory analysis work on high level languages, Aspinall and
Compagnoni [3] presented a first-order linearly typed assembly language to allow safe
reuse of heap space. Their system is a target for the compilation of a functional pro-
gramming language with a similar type systems (e.g. Hofmann’s LFPL) . More recently,
Cachera et. al. [6] proposed a constraint-based memory analysis for Java Bytecode-like
languages. For a given program their loop-detecting algorithm can detect methods and
instructions that execute an unbounded number of times, thus can be used to check
whether the memory usage is bounded or not. However, their analysis cannot check
whether a given amount of memory is adequate or not, while oursystem does.

9 Concluding Remarks

We have proposed a memory usage type system for a non-trivialobject-oriented core
language. We have designed a flexible specification mechanism to allow memory needs
of user programs to be declared abstractly, and then verifiesif memory adequacy prop-
erty holds for the given definitions. Our approach requires heap space to be explicitly
deallocated, which can be handled automatically. We have also built a prototype type
checker to confirm the viability and practicality of our approach. We envision our frame-
work to be useful for embedded system, where memory is considered to be a critical
resource. We also envision the synergy of predicable memorybounds with region-based
memory management systems. In particular, bounded memory regions can result in bet-
ter performance. Synergistically, region-based system can provide timely recovery for
shared objects that are dead, providing us with tighter memory bounds.
AcknowledgementThe authors would like to acknowledge the invaluable help ofFlorin
Craciun with the evaluation of a set of the benchmark programs.

References

1. J. Aldrich, V. Kostadinov, and C. Chambers. Alias Annotation for Program Understanding.
In ACM OOPSLA, Seattle, Washington, November 2002.

2. B. Alpern, D. Attanasio, J. J. Barton, A. Cocchi, S. F. Hummel, D. Lieber, M. Mergen,
T. Ngo, J. Shepherd, and S. Smith. Implementing Jalapeño in Java. InACM OOPSLA,
Denver, Colorado, November 1999.

3. D. Aspinall and A. Compagnoni. Heap bounded assembly language.Journal of Automated
Reasoning, 31:261–302, 2003.

4. E. D. Berger, B. G. Zorn, and K. S. Mckinley. ReconsideringCustom Memory Allocation.
In ACM OOPSLA, November 2002.

5. J. Boyland, J. Noble, and W. Retert. Capabilities for Sharing: A Generalization of Unique-
ness and Read-Only. InECOOP, Budapest, Hungary, June 2001.

6. D. Cachera, T. Jensen, D. Pichardie, and G. Schneider. Certified Memory Usage Analysis.
In 13th International Symposium of Formal Methods Europe (FM’05), July 2005.

7. M. C. Carlisle and A. Rogers. Software caching and computation migration in Olden. In4th
Principles and Practice of Parallel Programming, Santa Barbara, California, May 1993.

8. E. C. Chan, J. Boyland, and W. L. Scherlis. Promises: Limited Specifications for Analysis
and Manipulation. InProceedings of the International Conference on Software Engineering,
pages 167–176, Kyoto, Japan, April 1998.

9. W.N. Chin, S.C. Khoo, S.C. Qin, C. Popeea, and H.H. Nguyen.Verifying Safety Policies
with Size Properties and Alias Controls. In27th International Conference on Software En-
gineering (ICSE05), St. Louis, Missouri, May 2005.

10. W.N. Chin, H.H. Nguyen, S.C. Qin, and M. Rinard. Predictable Memory Usage for Object-
Oriented Programs. Technical report, SoC, Natl Univ. of Singapore, November 2004. avail.
at http://www.dur.ac.uk/shengchao.qin/papers/memj.ps.gz.

11. M. V. Christiansen and P. Velschow. Region-Based MemoryManagement in Java. Master’s
Thesis, Department of Computer Science (DIKU), Universityof Copenhagen, 1998.

12. M. Fahndrich and R. Leino. Declaring and checking non-null types in an object-oriented
language. InACM OOPSLA, Anaheim, CA, October 2003.

13. C. A. R. Hoare and J. He.Unifying Theories of Programming. Prentice-Hall, 1998.
14. M. Hofmann and S. Jost. Static prediction of heap space usage for first order functional

programs. InACM POPL, New Orleans, Louisiana, January 2003.
15. J. Hughes and L. Pareto. Recursion and Dynamic Data-Structures in Bounded Space: To-

wards Embedded ML Programming. InProceedings of the International Conference on
Functional Programming (ICFP ’99), September 1999.

16. L. Lamport. The temporal logic of actions.ACM Trans. on Programming Languages and
Systems, 16(3):872–923, May 1994.

17. H. H. Nguyen. Memory Usage Inference for Object-Oriented Programs. Technical report,
CS Programme, Singapore-MIT Alliance, July 2004. (Term Paper).

18. S Peyton-Jones and et al. Glasgow Haskell Compiler. http://www.haskell.org/ghc.
19. W. Pugh. The Omega Test: A fast practical integer programming algorithm for dependence

analysis.Communications of the ACM, 8:102–114, 1992.
20. M. Tofte and J. Talpin. Region-based memory management.Information and Computation,

132(2), 1997.
21. H. Xi and F. Pfenning. Eliminating array bound checking through dependent types. InACM

PLDI. ACM Press, June 1998.

A Alias Checking

We introduce four alias control mechanismsU | S | R | L adopted from [5, 8, 1]. These
alias mechanisms shall be used to support precise size tracking in the presence of mu-
table objects, and also for the automatic recovery of dead unique objects. For size-
tracking, we introduceR-mode fields to allow size-immutable properties to be accu-
rately tracked for all objects. For example, an alternativeclass declaration for the list
data type is given below, where itsnext field is marked as read-only (or immutable).
Note that theval field remains mutable.

class RList〈n〉 where n=m+1 ; n≥0 { Object〈〉@S val; RList〈m〉@R next; · · · }

The size property of such anRList type can be analysed at compile-time, while
allowing its objects to be freely shared. However, this comes at the cost of losing both
mutability and uniqueness.

We make use ofL-mode parameters, with thelimited unique(or lent-once) property
[8], to capture unique references that are temporarily lentout to method calls. They
allow the preservation of uniqueness together with precisesize-tracking across methods.
Consider the following method with twoList parameters.

void〈〉@S join(List〈m〉@L x, List〈n〉@U y) where n > 0; m′=n+m; · · ·
{ if isNull(x.next) then x.next = y else join(x.next, y) }

The first parameter is annotated aslent-onceand can thus be tracked for size proper-
ties without loss of uniqueness. However, the second parameter is markeduniqueas its
reference escapes the method body (into the tail of theList from the first parameter). In
other words, the parametery can have its uniqueness consumed but notx, as reflected
in the body of the above method declaration. Given two uniquelists, a andb, the call
join(a, b) would consume the uniqueness ofb but not that ofa. Our lent-once policy is
more restrictive than normal lending [1] as we require each lent-once parameter to be
unaliased within the scope of its method. For example,join(a, a) is allowed by the type
rules of [1], but disallowed by our lent-once’s policy.

In our alias type system, uniqueness may be transferred fromone location (variable,
field or parameter) to another location. Consider a type environment{x::Object〈〉@U,
y::Object〈〉@U, z::Object〈〉@S} where variablesx andy are unique, whilez is shared. In
the following code,{x = y; z = x}, the uniqueness ofy is first transferred to locationx,
followed by the consumption of uniqueness ofx that is lost to the shared variablez. In
our type judgement, we track variables/fields that have become dead using:

Γ ; Θ ⊢ e :: t, Θ1

Here, each dead-setΘ(Θ1) captures the set of references with consumed uniqueness
before(after) the evaluation of expressione. Γ is a type enviroment which maps vari-
ables to their annotated types. Other type judgements for methods, classes and programs
have the following forms.

Γ ⊢meth meth ⊢def def ⊢P defi:1..p methi:1..q

The full set of alias checking rules are given in our technical report [10]).

