
Memoryless Unbalanced Meet-in-the-Middle

Attacks: Impossible Results and Applications

Yu Sasaki

NTT Secure Platform Laboratories
3-9-11 Midori-cho, Musashino-shi, Tokyo 180-8585 Japan

sasaki.yu@lab.ntt.co.jp

Abstract. A meet-in-the-middle (MitM) attack is a popular tool for
cryptanalysis. It independently computes two functions F and G, and
finds a match of their outputs. When the cost of computing F and G
are different, the problem is called unbalanced MitM attack. It is known
that, for the balanced case, the MitM attack can be performed only
with a negligible memory size without significantly increasing the com-
putational cost by using the Floyd’s cycle-finding algorithm. It is also
widely believed that the same technique can be applied to the unbal-
anced case, while no one has shown the evidence of its possibility yet.
This paper contains two contributions. Firstly, we show an impossibility
of the memoryless unbalanced MitM attack without significantly increas-
ing the computational cost. The conversion to the memoryless attack
with the Floyd’s cycle-finding algorithm always requires additional com-
putational cost. Secondly, we find applications of the memoryless unbal-
anced MitM attack to show that it is still meaningful even with some
additional computational cost. It can be used to generate multi-collisions
of hash functions by using a dedicated collision attack algorithm. Our
method finds 3-collisions of SHA-1 with 2142 computations and negligible
memory size, while the known best attack requires 2106.6 computations
and 253.3 memory size. The memoryless unbalanced MitM attack can
also be applied to the limited-birthday distinguisher for hash functions.

Keywords: unbalanced meet-in-the-middle, memoryless attack, Floyd’s
cycle-findingalgorithm,hash function,SHA-1, 3-collision, limited-birthday
distinguisher.

1 Introduction

A meet-in-the-middle (MitM) attack is a tool for cryptanalysis on symmetric-key
primitives. It was introduced by Diffie and Hellman [1]. Then, Chaum and Evertse
applied it to the key recovery attack on reduced-round DES [2]. Since then, it has
beenapplied tomanyblock-ciphers,hash functionsandMACs forvariouspurposes.
Showing all references is hard. Several examples are [3–13]. TheMitM attack sepa-
rates the target function to be analyzed into two independent subfunctions F and
G so that the original function is represented by G ◦ F . The goal of the attack is

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 253–270, 2014.
c© Springer International Publishing Switzerland 2014



254 Y. Sasaki

finding a pair (x, y) such thatF(x) = G(y). BecauseF and G are independent, the
attack can be efficiently performed.

Let n be the size of the two functions output, let NF and NG be two values
satisfying NF × NG = 2n and let CF and CG be the computational cost to
compute F and G, respectively. The attack is processed as follows.

1. F is computed for NF distinct input values x1, x2 . . . , xNF , and (xi,F(xi))
for i = 1, 2, . . . , NF are stored in a list LF .

2. G is computed for NG distinct input values y1, y2 . . . , yNG, and (yj ,G(yj))
for j = 1, 2, . . . , NG are stored in a list LG.

3. Find a match between F(xi) and G(yj) stored in LF and LG.

If a match is found, the adversary can obtain some important information de-
pending on the attack scenario, i.e., secret-key candidates in key recovery attacks
for block-ciphers or preimage candidates in preimage attacks for hash functions.
With the simple method, the above procedure requires NF × CF + NG × CG

computations. Therefore, NF and NG are chosen so that NF ×CF and NG×CG

are balanced. The memory to store NF pairs of (xi,F(xi)) and NG pairs of
(yj ,G(yj)) is also required. Here, one of LF and LG can be omitted by check-
ing the match online as soon as each pair is obtained. The attack is called a
(balanced) MitM attack when the cost of computing F and G are the same,
i.e. CF = CG, and called an unbalanced MitM attack when CF �= CG. For
the balanced case, the computational cost is 2n/2 × CF (= 2n/2 × CG), and the
memory size is also 2n/2. For the unbalanced case, the computational cost is
NF × CF (= NG × CG), and the memory size is min{NF , NG}. Note that the
terminology of “MitM” is often used even if F and G are not subfunctions of
the original attack target, but simply two independent functions. In this paper,
we also use the terminology of “MitM” to describe a match of two independent
function outputs.

It is well-known that the balanced case can be performed only with a negligi-
ble memory size by using the Floyd’s cycle-finding algorithm [14] with keeping
almost the same computational complexity as the sufficient memory case. The
idea is computing F or G 2n/2 times in a sequential form to make a long chain
so that the output value of the previous evaluation of F or G is used as an input
value to the next evaluation of F or G. In the below, we firstly explain the MitM
attack with the Floyd’s cycle-finding algorithm with 2n/2 memory size. The idea
is also illustrated in Fig. 1.

1. Set a start value of the chain, v0, to an arbitrary value.
2. For i = 1, 2, 3, · · · do as follows.

{
vi ← F(vi−1) if a selecting bit (e.g. LSB) of vi−1 is 0,
vi ← G(vi−1) if a selecting bit (e.g. LSB) of vi−1 is 1.

Store vi in a list L.
3. If a match between vi and previously stored vi′ in L is found, check if vi and

vi′ are computed with different choices of F and G.



Memoryless Unbalanced Meet-in-the-Middle Attacks 255

F

G

F

F
F F

F

F

F
F

F

G

G G

G

G
G

G

G

v0

v1

vi

vi'
vi-1'

vi-1

Fig. 1. MitM Attack with the Floyd’s
Cycle-Finding Algorithm (#F : #G = 1 :
1). vi−1 and v′i−1 are the solution

F

G

F

F
F F

F

F

F
F

F

F

F F

G

F
F

G

F

v0

v1

vi

vi'
vi-1'

vi-1

Fig. 2. Idea for the Unbalanced MitM
Attack (#F > #G). The solution is not
obtained from this cycle.

4. If so, output vi−1 and vi′−1 as a solution of the MitM attack. Otherwise, go
back to step 1, and repeat the attack until a solution is found.

Because the attack needs to find a match of different functions’ outputs, the
function must be switched between F and G with probability 1/2 when the
cycle is constructed. At Step 2, a selecting bit is introduced for this purpose.
Not only the value of LSB of vi−1, but also any choice of an event that occurs
with probability 1/2 can be used, as long as the selecting rule is fixed. At Step
4, the probability that vi and vi′ are computed with different choices of F and G
is 1/2. Therefore, the cycle construction is iterated 2 times on average. Finally,
a match between vi and vi′ is found with O(2n/2) evaluations, and thus the
size of L is also O(2n/2). To perform the above procedure with a negligible
memory size, instead of all vi, only a very small fraction of vi are stored in
L. Due to the sequential computational structure, a match between vi and vi′

indicates that the chain becomes a cycle of size O(2n/2). Therefore, even if a
match between vi and all previous vi′ cannot be checked immediately, sooner
or later, the computation reaches one of the values stored in L with at most
O(2n/2) additional computational cost. If a match is found, by recomputing the
cycle from previously stored point, the match between vi−1 and vi′−1 can be
detected. The attack smartly reduces the memory size of the balanced MitM
attack only with a small (constant time) increasing computational cost.

It raises a natural question: can the unbalanced MitM attack also be performed
with a negligible memory size only with a small increased computational cost?
Although no one has discussed its possibility in details yet, it is often believed
to be possible.

Without losing the generality, throughout the paper, we suppose that CG is
much bigger than CF , and thus NG is much smaller than NF . Obviously, by
using the Floyd’s cycle-finding algorithm in Fig. 1, i.e. by computing F and
G for the same quantity, the attack can be memoryless. However, this requires
2n/2 × CG computational cost, which is much more than the standard attack
(with a sufficient memory size) of NG × CG. So far, no other attempt is known
for the memoryless unbalanced MitM attack. Consequently, the possibility of the



256 Y. Sasaki

memoryless attack with negligible additional computational cost from NG ×CG

is unknown.

Our Contributions. In this paper, we investigate the memoryless unbalanced
MitM attack. The fact that the balanced case computes F and G in the same
ratio seems to come from the fact that CF and CG are identical. Therefore, our
approach is changing the ratio of computing F and G when the cycle is con-
structed. The idea is illustrated in Fig. 2. Because CF < CG, we compute F
much more than G. This raises a new difficulty: when a match between vi and
vi′ are obtained, the probability that vi and vi′ are computed with different func-
tions becomes lower. Both are likely to be generated by F . Hence, the number
of iterations of the cycle construction will increase.

In this paper, we begin with summarizing the computational cost of the unbal-
anced MitM attack with a sufficient memory size when the cost of two functions
are given in variables CF and CG. Most of previous work analyzed the case that
CF = 1. We extend it to a two-variable case.

Then, we evaluate the computational cost of the memoryless unbalanced MitM
attack described in Fig. 2, and show that improving 2n/2×CG, which is the simple
application of the Floyd’s cycle-finding algorithm, is impossible for any values
of CF and CG, and any choice of the ratio of computing F and G.

Finally, we show an application of the memoryless unbalanced MitM attack.
That is to say, the simple application of the Floyd’s cycle-finding algorithm is
still meaningful. As the first application, we show that it can be used to gener-
ate 3-collisions of hash functions by using a dedicated collision attack algorithm.
The current best generic 3-collision attack against an n-bit hash function is the
one proposed by Joux and Lucks [17], which requires a computational cost of
O(22n/3) and a memory size of O(2n/3). Although the computational cost of this
attack matches the information theoretic lower-bound, preparing a memory of
O(2n/3) size is hard for a large n. For example, SHA-1 [18] produces 160-bit hash
digests, and the generic attack by [17] requires 2106.6 computational cost and 253.3

memory size. We point out that if a collision attack exists for a hash function,
it can be converted to a memoryless1 3-collision attack with some additional
computational cost. For SHA-1, a (memoryless) collision attack was proposed
by Wang et al. [19] which claimed 269 computational cost. Although many pa-
pers claim the improved computational cost [21–26], the current best complexity
is unclear. Because our purpose is showing a generic conversion framework, the
current exact computational cost is not a main issue. Suppose that collisions of
SHA-1 can be generated with 261 computational cost [25]. Then, our conversion
method can find 3-collisions of SHA-1 with 2142 computational cost and negli-
gible memory size. We do not claim that this is better than the generic attack
by [17]. However, we believe that the possibility of memoryless 3-collision attack
is worth noting, and if the attack is measured by a product of a computational
cost and a memory size, our result (2142 × 1 = 2142) becomes better than [17]

1 Here, we suppose that the collision attack itself is memoryless. In fact, many collision
attacks based on the ones by Wang et al. [19, 20] require few memory.



Memoryless Unbalanced Meet-in-the-Middle Attacks 257

(2106.6 × 253.3 = 2160). We also apply the memoryless 3-collision attack to hash
function HAVAL [27] by exploiting the existing collision attack presented by [28].
The comparison of the complexity is given in Table 1.

Table 1. Comparison of 3-collision Attacks

Target Attack Method Computational Cost Memory Size Reference

SHA-1 Generic Attack 2106.6 2106.6 [29]
Improved Generic Attack 2106.6 253.3 [17]
Memoryless Attack 2142 negl. Sect. 4.3

4-pass HAVAL Generic Attack 2170.6 2170.6 [29]
Improved Generic Attack 2170.6 285.3 [17]
Memoryless Attack 2165 negl. Sect. 4.3

5-pass HAVAL Generic Attack 2170.6 2170.6 [29]
Improved Generic Attack 2170.6 285.3 [17]
Memoryless Attack 2252 negl. Sect. 4.3

As the second application, we show that the memoryless unbalanced MitM
can be applied to the limited-birthday distinguisher on a hash function which
has been recently proposed by Iwamoto et al. [30].

Paper Outline. The organization of this paper is as follows. In Sect. 2, we
generalize the cost of the unbalanced MitM attack in which the computational
cost of F and G are given in variables. In Sect. 3, we show the impossibility of
improving the simple application of the Floyd’s cycle-finding algorithm for the
memoryless unbalanced MitM attack. In Sect. 4, we show the application of the
memoryless unbalanced MitM attack. Finally, we conclude this paper in Sect. 5.

2 Generalizing the Computational Cost of Unbalanced
MitM Attacks

In this section, we evaluate the cost of the unbalanced MitM attack when a
sufficient memory size is given. The goal of the attack is finding a match between
two functions of n-bit output F and G, where one execution of F and G require
CF and CG computational cost, respectively. To make the discussion easy, we
discuss the cost in exponential forms. Hence, we suppose that CF = 2α and
CG = 2β. Without losing the generality, we suppose that α < β.

2.1 Previous Work for CF = 1

There are several previous work, e.g. [3, 31], which performs the unbalanced
MitM attack when the cost for the cheaper function is 1, i.e. CF = 1 and
CG = 2β. The attack procedure for this case is described as follows.



258 Y. Sasaki

F

CF = 2α per 
execution

n
G

CG = 2β per 
execution

n

match
xi yj

inputs

(2n pairs)

Entire cost: 

inputs

Fig. 3. Sketch of the Unbalanced MitM Attack with Sufficient Memory

1. Set NG ← 2(n−β)/2. For j = 1, 2, · · · , NG, choose a value of yj , compute
G(yj), and store the result in a list L where the data is indexed by G(yj).

2. Set NF ← 2(n+β)/2. For i = 1, 2, · · · , NF , choose a value of xi, compute
F(xi), and search for a match with G(yj) in the list L.

Because NF ×NG = 2n, one match is expected on average. The memory size for
Step 1 is NG, which is 2(n−β)/2.NF andNG are chosen so that the computational
cost for Step 1 and Step 2 are balanced. The computational cost for Step 1 is
2(n−β)/2 × 2β = 2(n+β)/2. The computational cost for Step 2 is 2(n+β)/2 × 1 =
2(n+β)/2. In the end, the attack is performed with 2((n+β)/2)+1 computational
cost and 2(n−β)/2 memory size.

2.2 Generalization for CF = 2α

We generalize the attack in Sect. 2.1 so that the cost of computing F is given by
2α. The only difference from Sect. 2.1 is the choice of NF and NG. The attack
procedure is as follows, which is also depicted in Fig. 3.

1. Set NG ← 2(n+(α−β))/2. For j = 1, 2, · · · , NG, choose a value of yj , compute
G(yj), and store the result in a list L where the data is indexed by G(yj).

2. Set NF ← 2(n−(α−β))/2. For i = 1, 2, · · · , NF , choose a value of xi, compute
F(xi), and search for a match with G(yj) in the list L.

Because NF × NG = 2n, one match is expected on average. The memory size
for Step 1 is NG, which is 2(n+(α−β))/2. The computational cost for Step 1
is NG × 2β = 2(n+α+β)/2. The computational cost for Step 2 is NF × 2α =
2(n+α+β)/2. In summary, the unbalanced MitM attack can be performed with
2((n+α+β)/2)+1 computational cost and 2(n+(α−β))/2 memory size.

Note that by setting CF = 1, i.e. α = 0, the complexity becomes 2((n+β)/2)+1

computational cost and 2(n−β)/2 memory size, which matches in Sect. 2.1.
The generalization in this section is quite straight-forward. We showed the

generalization as a tool for the future usage. Indeed, the discussion from the
next section uses this result.



Memoryless Unbalanced Meet-in-the-Middle Attacks 259

3 Impossibility of Efficient Memoryless Unbalanced
MitM Attacks

In this section, we aim to convert the unbalanced MitM attack in Sect. 2 to
the memoryless attack by using the Floyd’s cycle-finding algorithm. Firstly, we
explain the simple application of the Floyd’s cycle-finding algorithm in Sect. 3.1.
We then explain that it is impossible to improve the computational cost by
changing the ratio of computing F and G in Sect. 3.2. We give some remarks in
Sect. 3.3.

3.1 Simple Application of the Floyd’s Cycle-Finding Algorithm

In this section, we simply apply the memoryless attack on the balanced case even
though the cost of two functions F and G are unbalanced. We again suppose that
CF = 2α, CG = 2β and α < β. Because F and G are computed in the same
ratio, we choose an event of probability 1/2 as a selection rule of the choice of
F and G. Here, we simply use the LSB of previous chaining value.

To find a match, both F and G are computed about 2n/2 times, which requires
the computational cost of 2α+(n/2) and 2β+(n/2), respectively. If a match between
vi and v′i is found, we check if they are generated from different choices of F
and G. Because F and G are switched with probability 1/2, they are generated
from different functions with probability 1/2. Therefore, we need to iterate the
attack 2 times on average, which requires the computational cost of 2α+(n/2)+1+
2β+(n/2)+1. Considering that α < β, the entire computational cost is

2β+(n/2)+1. (1)

The evaluation is summarized in Table 2.

Table 2. Complexity for the simple application of the Floyd’s cycle-finding algorithm

Functions #computed times Computational #iterations of Dominant
per match cost per match cycle constructions computational cost

F 2n/2 2α+(n/2)

2 2β+(n/2)+1

G 2n/2 2β+(n/2)

Note that the computational costwith a sufficientmemory size is 2((n+α+β)/2)+1

as shown in Sect. 2.2. Compared to it, the simple application of the Floyd’s cycle-
finding algorithm increases the computational cost by a factor of 2(β−α)/2.

3.2 Unbalanced Selecting Bits: Changing the Ratio of F to G
To make the computational cost of computing F and G balanced, we use an event
with probability 2−(β−α) as a selection rule of the choice of F and G. Therefore,



260 Y. Sasaki

if the (β − α) LSBs of vi−1 are all 0, we compute vi ← G(vi−1). Otherwise, we
compute vi ← F(vi−1). Then, the ratio of F to G becomes 2β−α to 1. To be
more precise, the chain is computed as follows.

{
vi ← F(vi−1) if (β − α) LSBs of vi−1 are all 0,
vi ← G(vi−1) otherwise.

The number of computations ofF and G become 2n/2+(β−α)/2 and 2n/2−(β−α)/2

respectively. The corresponding computational cost is obtained by multiplying 2α

and 2β respectively, which result in 2(n+α+β)/2 for both. Because F and G is com-
puted in the ratio 2β−α to 1, the probability that amatch is obtained fromdifferent
choice ofF and G is about 2−(β−α). Therefore, the cycle constructionmust be iter-
ated2β−α times onaverage.The entire computational costbecomes 2(n+3β−α)/2+1.
The evaluation is summarized in Table 3.

Table 3. Complexity using the unbalanced ratio of F to G

Functions #computed times Computational #iterations of Dominant
per match cost per match cycle constructions computational cost

F 2n/2+(β−α)/2 2(n+α+β)/2

2β−α 2(n+α+β)/2+1 × 2β−α

G 2n/2−(β−α)/2 2(n+α+β)/2 = 2(n+3β−α)/2+1

Let us compare the computational cost of this case with the one in Sect. 3.1.
The condition that the computational cost of this attack can be smaller than
the one in Sect. 3.1 is

2β+(n/2)+1 > 2(n+3β−α)/2+1,

which is converted into

α > β.

This clearly contradicts to the assumption of α < β, thus regardless of the values
of α and β, the attack in Sect. 3.1 is better.

Results do not change even if we consider the other ratio. Let us set the
ratio of the number of F and G to 2z to 1. The evaluation is similar. F is
computed 2n/2+z/2 times in a cycle, and its computational cost is 2n/2+z/2+α. G
is computed 2n/2−z/2 times in a cycle, and its computational cost is 2n/2−z/2+β .
The probability that a match is obtained from different choices of F and G is
about 2−z. Therefore, the cycle construction will be iterated 2z times on average.
Hence, the total computational cost is 2n/2+z/2+α +2n/2+z/2+β . The results are
summarized in Table 4.



Memoryless Unbalanced Meet-in-the-Middle Attacks 261

Table 4. Complexity evaluation by setting the ratio of F to G as a variable

Func. #computed times Computational #iterations of Dominant
per match cost per match cycle constructions computational cost

F 2n/2+z/2 2n/2+z/2+α

2z 2n/2+3z/2+α + 2n/2+z/2+β

G 2n/2−z/2 2n/2−z/2+β

Compared to 2β+(n/2)+1 for the simple application in Sect. 3.1, the second
term of the dominant computational cost in Table 4, which is 2n/2+z/2+β , is
always higher by a factor of 2z/2−1.

3.3 Summary and Remarks

We showed that as long as the Floyd’s cycle-finding algorithm is used, the simple
application that computes F and G in the same ratio is the best, and the attack
increases the computational cost by a factor of 2(β−α)/2 compared to the one
with a sufficient memory size.

We like to note that without using the Floyd’s cycle-finding algorithm, the
trivial time-memory tradeoff exists for both balanced and unbalanced MitM
attacks. In the MitM attack, NG outputs are stored for G, and NF outputs are
generated online for F , where NG ×NF = 2n. Usually, NG and NF are chosen
so that the computational cost NG × CG and NF × CF are balanced. In order
to reduce the memory size, instead of storing NG outputs for G, we only store
G/w results. When NF are computed later, we generate w ×NF results so that
a match is still expected. This reduces a memory size by a factor of w and
increases the computational cost by a factor of w. This is a tradeoff such that
Time × Memory = constant. If the memory size needs to be reduced only by
a small factor, using this trivial time-memory tradeoff may be more convenient
than using the fully memoryless cycle-finding algorithm which always increases
the computational cost by a factor of 2(β−α)/2.

4 Applications of the Memoryless Unbalanced MitM
Attacks

In the previous section, we showed a negative result, i.e. the computational cost
of the memoryless unbalanced MitM attack cannot be faster than the simple
application in Sect. 3.1. In this section, we show that the memoryless unbalanced
MitM attack in Sect. 3.1 is still meaningful. Firstly in Sect. 4.1, we explain the
generic condition that the memoryless unbalanced MitM attack can be applied.
Secondly in Sect. 4.2, we explain that several claims of the previous memoryless
MitM preimage attacks, e.g. [15], is incorrect. Thirdly in Sect. 4.3, as a concrete
example, we show that it can be used to generate 3-collisions for hash functions
by exploiting a dedicated collision attack algorithm. Finally in Sect. 4.4, as
another example, we show the applications to the limited-birthday distinguisher
recently proposed by Iwamoto et al. [30].



262 Y. Sasaki

4.1 Conditions to Apply Memoryless Unbalanced MitM Attack

From eq. (1), the computational cost of the memoryless unbalanced MitM is
given by 2β+(n/2)+1, where 2β is the cost to execute the heavier function G.
In order to be faster than 2n computational cost, we obtain the condition
2β+(n/2)+1 < 2n, which is converted to

CG = 2β < 2(n/2)−1. (2)

Therefore, to be converted to the memoryless attack, the computational cost of
G must be smaller than the birthday attack complexity.

4.2 Incorrectness of Previous Memoryless MitM Preimage Attack

Recently, various preimage attacks based on the MitM attack have been pro-
posed against narrow-pipe Merkle-Damg̊ard hash functions [7, 11, 13, 15, 16].
In those hash functions, the hash digest is computed by iteratively computing
the compression function Hi ← CF(Hi−1,Mi−1), where Mi is the message value
and H0 is an initial value defined in the hash function specification.

Those attacks, for a given hash digest, aim to generate a preimage consisting of
two message blocks. The attack is depicted in Fig. 4. It firstly generates pseudo-
preimages, which are a pair of (H1,M1) such thatH1 �= IV and the corresponding
compression function output, H2, is a given digest. In many cases, the cost of
the pseudo-preimage generation is much higher than 2n/2. After that, generated
pseudo-preimages are converted into a preimage by applying the unbalanced
MitM attack for the first message block. In details, the pseudo-preimage attack
is regarded as function G and the randommessage generation for the first message
block is regarded as function F whose computational cost is 1 per execution.

Several (but not all) previous work claim that the unbalanced MitM part
can be performed with negligible memory size by using the Floyd’s cycle-finding
algorithm, e.g. [15, Section 4.5].

However, the conversion from pseudo-preimages to preimages is an exam-
ple that the unbalanced MitM attack part cannot be memoryless by using the
Floyd’s cycle-finding algorithm. If the conversion is applied, the computational
cost of the memoryless preimage attack becomes more than 2n, which is worse
than the generic attack. This result immediately indicates the incorrectness of
the claim in previous work about the memoryless preimage attack. We would
like to stress that, with a sufficient amount of memory, the previous attack can
work correctly.

4.3 Application to 3-Collisions

The first application of the memoryless unbalanced MitM attack is a 3-collision
attack on hash functions. A 3-collision on a hash functionH is a triplet of distinct
input values (I1, I2, I3) such that H(I1) = H(I2) = H(I3).

In general, it is known that a t-collision can be generated with a computa-
tional cost of O(2(t−1)n/t) and O(2(t−1)n/t) memory size [29]. For n = 3, the



Memoryless Unbalanced Meet-in-the-Middle Attacks 263

CF
n n

CF
n n

H0

M0 M1

H1 H2
(IV) (digest)

F: random generation
CF = 1

G: pseudo-preimage attack
CG > 2n/2

match

Fig. 4. Previous preimage attacks using unbalanced MitM attack

computational cost is O(22n/3) and the memory size is O(22n/3). At Asiacrypt
2009, Joux and Lucks showed a generic 3-collision attack on an n-bit narrow-
pipe Merkle-Damg̊ard hash function [17], which requires a computational cost
of O(22n/3) and a memory size of O(2n/3). One drawback of this attack is a
memory size of O(2n/3). For a relatively large n, preparing a memory of size
O(2n/3) is infeasible.

We point out that a memoryless 3-collision attack on H can be achieved from
a (memoryless) collision attack on H. In short, the strategy is as follows, which
is also illustrated in Fig. 5. A collision attack produces a pair of input messages
(I1, I2) such that H(I1) = H(I2) with a computational cost of CG = 2β , where
β < n/2. This operation is regarded as function G, namely, G produces an n-
bit value H(I1) = H(I2) at a computational cost of CG = 2β. To find the
third colliding input message I3, we simply test randomly generated messages.
Therefore, F produces an n-bit value H(I3) at a computational cost of CF = 1.
A 3-collision is generated by observing a match of the output values between F
and G. This is exactly the unbalanced MitM attack. Hence the 3-collision attack

n
H0

H1

(IV) (digest)

F: random generation
CF = 1

G: collision attack
CG = 2 < 2n/2

match

n
H0

H1

(IV) (digest)

Fig. 5. Memoryless 3-collision Attack with Memoryless Unbalanced MitM Attack



264 Y. Sasaki

can be memoryless by following the strategy in Sect. 3.1, which results in the
computational cost of 2β+(n/2)+1 and a negligible memory size.

For example, SHA-1 [18] is a 160-bit narrow-pipe hash function. On one
hand, the generic attack by [17] requires 2106.6 computational cost and 253.3

memory size to find a 3-collision. On the other hand, [25] showed that colli-
sions of SHA-1 can be generated with 261 computational cost and negligible
memory size. Then, the conversion in Sect. 3.1 can find 3-collisions of SHA-
1 with 2142(= 261+(160+/2)+1) computational cost and negligible memory size.
Other two examples are 4-pass HAVAL and 5-pass HAVAL [27], each is a 256-
bit narrow-pipe hash function. A collision attack was proposed by Yu et al.,
which finds collisions of 4-pass HAVAL with 236 computational cost and neg-
ligible memory and collisions of 5-pass HAVAL with 2123 computational cost
and negligible memory [28]. The generic 3-collision attack by [17] requires 2170.6

computational cost and 285.3 memory size for both of 4-pass and 5-pass HAVAL.
Preparing a memory of size 285.3 seems almost infeasible. The conversion in
Sect. 3.1 can find 3-collisions of 4-pass HAVAL with 2165(= 236+(256/2)+1) com-
putational cost and negligible memory size and 3-collisions of 5-pass HAVAL
with 2252(= 2123+(256/2)+1) computational cost and negligible memory size.

Strictly speaking, we need to be more careful about the details of collision
finding algorithm G to generate a Floyd’s cycle. The collision attack on SHA-
1 [19, 25], to achieve the claimed computational cost, involves various analytic
techniques such as message modification technique and early aborting technique.
To make the cycle, G must be solely dependent on the value of vi−1. Besides, for
the same vi−1 received in different timings, G must reproduce the same output
value vi. In short, this can be achieved by fixing the search rule i.e. in which
order the freedom degrees are used and the conditions to apply the techniques.
We show the detailed analysis specific to the SHA-1 collision search in Appendix.

4.4 Application to Limited-Birthday Distinguisher

The limited-birthday distinguisher was firstly mentioned by Gilbert and Peyrin
at FSE 2010 [32] to distinguish a target function H from an ideal one. In this
framework, the distinguisher is firstly given a pair of an input (truncated) dif-
ference ΔIN and an output (truncated) difference ΔOUT . The goal of the dis-
tinguisher is finding a value x satisfying both the input and output differences,
i.e., H(x)⊕H(x⊕ΔIN ) = ΔOUT . If such a value can be found for H faster than
for an ideal function, H is said to be non-ideal.

Then, Iwamoto et al. showed that, for a narrow-pipe hash function, the
limited-birthday distinguisher for the entire construction can be constructed
from a semi-free-start collision attack on the compression function [30]. Here, a
semi-free-start collision attack is a kind of collision attack on the compression
function CF, which finds a triplet of a previous chaining variableHi−1, a message
x, and a message difference δIN such that CF(Hi−1, x) = CF(Hi−1, x ⊕ δIN).
Iwamoto et al. point out that in many of previous semi-free-start collision at-
tacks, δIN can be fixed before x is searched. Then, their framework of the



Memoryless Unbalanced Meet-in-the-Middle Attacks 265

conversion to the limited-birthday distinguisher on H is as follows, which is
also illustrated in Fig. 6.

CF
n n

CF
n n

M0 M1

(IV)

F: random generation

CF = 1

G: semi-free-start 
collision

CG = 2 < 2n/2

match

CF
n n

padding

(digest)

Δ = 0 Δ = 0Δ = 0 Δ = 0

Δ = 0 Δ = δIN Δ = 0

appended by a 
padding rule

H0 H1 H2 H3

Fig. 6. Framework of the Limited-birthday Distinguisher on H from a Semi-free-start
Collision Attack on CF. An input difference is fixed to (0‖δIN ), and an output difference
is fixed to 0.

1. Find a semi-free-start-collision attack on CF, which can work for a pre-
specified message difference δIN . Set an input difference for H to (0‖δIN)
and set an output difference of H to 0.

2. For the second message block, perform the semi-free-start-collision attack to
find many triplets of (H1,M1,M1 ⊕ δIN). The results are stored in a list L.

3. For the first message block, compute H1 ← (H0,M0) for many randomly
generated messages M0, and find a match with one of the H1 in L.

4. For a matched M0‖M1 and M0‖M1⊕δIN , a padding block is often appended
inside the computation of H. Because all input information for the third
message block has no difference, the output difference is ensured to be 0.

The match between the first message block and the second message block is
an unbalanced MitM attack. Suppose that the cost of semi-free-start collision
attack is 2β, and β < n/2. It generates 2(n−β)/2 semi-free-start collisions with a
computational cost of 2(n−β)/2 × 2β = 2(n+β)/2 and the results are stored in a
list L with 2(n−β)/2 memory size. It also tests 2(n+β)/2 random messages in the
first message block. In the end, the total computational cost is 2((n+β)/2)+1.

As discussed in Sect. 3.1, the attack can be memoryless, which results in the
computational cost of 2β+(n/2)+1 and negligible memory size.

5 Concluding Remarks

In this paper, we studied the memoryless unbalanced MitM attack with the
Floyd’s cycle-finding algorithm. On the contrary to the previous belief, the un-
balanced MitM attack cannot be memoryless without significantly increasing
the computational cost compared to the sufficient-memory case. We showed



266 Y. Sasaki

that among any ratio of the numbers of computing F and G, 1 to 1 leads to
the best computational cost. We then searched for the applications in which the
memoryless unbalanced MitM attack with the Floyd’s cycle-finding algorithm is
still useful. The condition to apply the Floyd’s cycle-finding algorithm is that
the computational cost for the heavier function G must be below 2(n/2)−1. We
showed that the application to the MitM preimage attack is impossible. We also
showed that a 3-collision attack and a limited-birthday distinguisher on a hash
function are good examples of applications.

Our research is the first-step to discuss the unbalanced memoryless MitM
attack. A possible future research direction is finding alternatives of the Floyd’s
cycle-finding algorithm to reduce the memory size. In particular, it is interesting
to investigate the memoryless attack when the computational cost of the heavier
function G is bigger than the birthday attack cost.

Acknowledgments. The author would like to appreciate Takanori Isobe for
insightful discussions.

References

1. Diffie, W., Hellman, M.E.: Exhaustive Cryptanalysis of the NBS Data Encryption
Standard. Computer Issue 6(10) (1977)

2. Chaum, D., Evertse, J.-H.: Crytanalysis of DES with a Reduced Number of
Rounds: Sequences of Linear Factors in Block Ciphers. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 192–211. Springer, Heidelberg (1986)

3. Aoki, K., Sasaki, Y.: Preimage Attacks on One-Block MD4, 63-Step MD5 and
More. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381,
pp. 103–119. Springer, Heidelberg (2009)

4. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique Cryptanalysis of the
Full AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 344–371. Springer, Heidelberg (2011)

5. Bogdanov, A., Rechberger, C.: A 3-Subset Meet-in-the-Middle Attack: Cryptanal-
ysis of the Lightweight Block Cipher KTANTAN. In: Biryukov, A., Gong, G.,
Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 229–240. Springer, Heidel-
berg (2011)

6. Canteaut, A., Naya-Plasencia, M., Vayssière, B.: Sieve-in-the-Middle: Improved
MITM Attacks. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS,
vol. 8042, pp. 222–240. Springer, Heidelberg (2013)

7. Guo, J., Ling, S., Rechberger, C., Wang, H.: Advanced Meet-in-the-Middle Preim-
age Attacks: First Results on Full Tiger, and Improved Results on MD4 and SHA-
2. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 56–75. Springer,
Heidelberg (2010)

8. Isobe, T.: A Single-Key Attack on the Full GOST Block Cipher. In: Joux, A. (ed.)
FSE 2011. LNCS, vol. 6733, pp. 290–305. Springer, Heidelberg (2011)

9. Isobe, T., Shibutani, K.: All Subkeys Recovery Attack on Block Ciphers: Extending
Meet-in-the-Middle Approach. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS,
vol. 7707, pp. 202–221. Springer, Heidelberg (2013)



Memoryless Unbalanced Meet-in-the-Middle Attacks 267

10. Isobe, T., Shibutani, K.: Generic Key Recovery Attack on Feistel Scheme. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 464–485.
Springer, Heidelberg (2013)

11. Knellwolf, S., Khovratovich, D.: New Preimage Attacks against Reduced SHA-
1. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 367–383. Springer, Heidelberg (2012)

12. Khovratovich,D., Nikolić, I.,Weinmann, R.P.: Meet-in-the-Middle Attacks on SHA-
3 Candidates. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 228–245.
Springer, Heidelberg (2009)

13. Sasaki, Y., Aoki, K.: Finding Preimages in Full MD5 Faster Than Exhaustive
Search. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 134–152.
Springer, Heidelberg (2009)

14. Floyd, R.W.: Nondeterministic Algorithms. Journal of the ACM 14(4), 636–644
(1967)

15. Aoki, K., Sasaki, Y.: Meet-in-the-Middle Preimage Attacks Against Reduced SHA-
0 and SHA-1. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 70–89.
Springer, Heidelberg (2009)

16. Sasaki, Y., Wang, L., Wu, S., Wu, W.: Investigating Fundamental Security Re-
quirements on Whirlpool: Improved Preimage and Collision Attacks. In: Wang,
X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 562–579. Springer,
Heidelberg (2012)

17. Joux, A., Lucks, S.: Improved Generic Algorithms for 3-Collisions. In: Matsui,
M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 347–363. Springer, Heidelberg
(2009)

18. U.S. Department of Commerce, National Institute of Standards and Technology:
Secure Hash Standard (SHS) (Federal Information Processing Standards Publica-
tion 180-3) (2008),
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf

19. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

20. Wang, X., Yu, H., Yin, Y.L.: Efficient Collision Search Attacks on SHA-0. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 1–16. Springer, Heidelberg
(2005)

21. Chen, R.: New Techniques for Cryptanalysis of Cryptographic Hash Functions.
Ph.D. thesis, Technion (2011)

22. Cochran, M.: Notes on the Wang et al. 263 SHA-1 Differential Path. Cryptology
ePrint Archive, Report 2007/474 (2007)

23. Joux, A., Peyrin, T.: Hash Functions and the (Amplified) Boomerang Attack.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 244–263. Springer,
Heidelberg (2007)

24. Rijmen, V., Oswald, E.: Update on SHA-1. In: Menezes, A. (ed.) CT-RSA 2005.
LNCS, vol. 3376, pp. 58–71. Springer, Heidelberg (2005)

25. Stevens, M.: New Collision Attacks on SHA-1 Based on Optimal Joint Local-
Collision Analysis. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 245–261. Springer, Heidelberg (2013)

26. Wang, X.: Cryptanalysis of SHA-1 Hash Function. Keynote Speech at
The First Cryptographic Hash Workshop conducted by NIST (2005),
http://csrc.nist.gov/groups/ST/hash/first_workshop.html

http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://csrc.nist.gov/groups/ST/hash/first_workshop.html


268 Y. Sasaki

27. Zheng, Y., Pieprzyk, J., Seberry, J.: HAVAL — One-Way Hashing Algorithm
with Variable Length of Output. In Seberry, J., Zheng, Y., eds.: AUSCRYPT’92.
In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 83–104.
Springer, Heidelberg (1993)

28. Yu, H., Wang, X., Yun, A., Park, S.: Cryptanalysis of the Full HAVAL with 4 and
5 Passes. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 89–110. Springer,
Heidelberg (2006)

29. Suzuki, K., Tonien, D., Kurosawa, K., Toyota, K.: Birthday Paradox for Multi-
Collisions. IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences E91-A(1), 39–45 (2008)

30. Iwamoto, M., Peyrin, T., Sasaki, Y.: Limited-birthday Distinguishers for Hash
Functions: Collisions Beyond the Birthday Bound can be Meaningful. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 504–523.
Springer, Heidelberg (2013)

31. Leurent, G.: MD4 is Not One-Way. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086,
pp. 412–428. Springer, Heidelberg (2008)

32. Gilbert, H., Peyrin, T.: Super-Sbox Cryptanalysis: Improved Attacks for AES-Like
Permutations. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 365–383.
Springer, Heidelberg (2010)

33. De Cannière, C., Mendel, F., Rechberger, C.: Collisions for 70-Step SHA-1: On
the Full Cost of Collision Search. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC
2007. LNCS, vol. 4876, pp. 56–73. Springer, Heidelberg (2007)

34. Grechnikov, E.A.: Collisions for 72-step and 73-step SHA-1: Improvements in the
Method of Characteristics. Cryptology ePrint Archive, Report 2010/413 (2010)

35. Grechnikov, E., Adinetz, A.: Collision for 75-step SHA-1: Intensive Parallelization
with GPU. Cryptology ePrint Archive, Report 2011/641 (2011)

A Cycle Construction with SHA-1 Collision Attack

The core idea of the Floyd’s cycle-finding algorithm is that, for a previous chain
value vi−1, a function G (and F) must reproduce an identical value vi as the next
chain value. Because the collision attack requires a complicated attack procedure,
the detailed operations in G must be carefully determined. In this section, we
explain the following three points that require special attention.

– How to ensure sufficient freedom degrees to find a collision of SHA-1.

– How to reproduce the same colliding value for the same input vi−1 received
in different timings.

– How to apply advanced collision-search techniques by ensuring the repro-
duction of the same colliding value.

Ensuring Sufficient Freedom Degrees. Collision attack on SHA-1 [19] gener-
ates a collision of 2-blocks long. From several experimental researches on reduced
rounds [33–35], we can see that the available freedom degrees for the collision
search within the first message block may not be sufficient. This is because most



Memoryless Unbalanced Meet-in-the-Middle Attacks 269

of the message bits must be fixed to control the differential propagation. There-
fore, embedding a previous 160-bit chain value vi−1 inside the first message block
gives a critically bad impact.

In our method, G generates a collision consisting of four message blocks, where
the size of each message block is 512 bits. The overview is given in Fig. 7. We

CFCF
160

M0 M1

IV CF

padding

(digest)

Δ = 0 Δ m1 Δ = 0

appended by a 
padding rule

CF
160

M2

Δ m2

Δ h2

512

2-block 
collision

Generating sufficient 
freedom degrees

Collision 
occurs here.

vi

(vi-1 is embedded in M0) 

Fig. 7. Construction of G with SHA-1 Collision Attack

add another message block M0 before the 2-block collision. The size of M0 is 512
bits. We set 160 bits of M0 to vi−1. The other 352 bits can be fixed to any value
as long as the rule is uniquely fixed for the reproduction. The simplest way is
fixing the other 352 bits to 0. This reproduces the same output value of the first
message blocks for the same vi−1. Then, the 2-block collision is located in the
second and third message blocks. Note that the third message blocks are also
heavily fixed to control the differential propagation. Hence, we cannot embed
the padding string inside the third message block. This is the reason why we
need the fourth message block.

Because no limitation exists for the second and third message blocks, sufficient
freedom degrees can be ensured for generating a 2-block collision.

Reproducing the Same Colliding Value. Collision search algorithm is usu-
ally a random algorithm. Messages to be tested are generated randomly from
uniformly distributed space. However, this way cannot be used in our case due
to the problem of reproduction.

The problem can be simply avoided by stopping using the random algorithm
but choose messages to be tested in a specific rule. An example is pre-determining
the message-bit positions to be modified during the collision search. If 2β mes-
sages need to be tested, we can choose particular β-bit position. Whenever we
change the message, we take the message by modifying the chosen β-bit posi-
tion. In addition, we set the rule of the order of the modification. For example,
we modify the message from the least significant bit. The rule enables us to
reproduce the same message when the same situation occurs. Note that not only
inside M1 but also the 352 bits of M0 can be modified as long as the modification
rule is uniquely fixed.



270 Y. Sasaki

Application of Advanced Collision-Search Techniques. Complicated
collision-search techniques such as the message modification technique and the
early aborting technique can also be applied with ensuring the reproductivity by
pre-determining the application rule. The important thing is that the collision-
search algorithm must behave in the same way when the same situation occurs.
Therefore, by setting the condition to apply the message modification or early
aborting technique, reproducing the same result is possible.


	Memoryless Unbalanced Meet-in-the-Middle Attacks: Impossible Results and Applications 
	1 Introduction
	2 Generalizing the Computational Cost of Unbalanced MitM Attacks
	2.1 Previous Work for CF = 1
	2.2 Generalization for CF = 2α

	3 Impossibility of Efficient Memoryless Unbalanced MitM Attacks
	3.1 Simple Application of the Floyd’s Cycle-Finding Algorithm
	3.2 Unbalanced Selecting Bits: Changing the Ratio of F to G
	3.3 Summary and Remarks

	4 Applications of the Memoryless Unbalanced MitM Attacks
	4.1 Conditions to Apply Memoryless Unbalanced MitM Attack
	4.2 Incorrectness of Previous Memoryless MitM Preimage Attack
	4.3 Application to 3-Collisions
	4.4 Application to Limited-Birthday Distinguisher

	5 Concluding Remarks
	References


