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The Ising model is of prime importance in the field of statistical mechanics. Here we show that
Ising-type interactions can be realized in periodically-driven circuits of stochastic binary resistors
with memory. A key feature of our realization is the simultaneous co-existence of ferromagnetic
and antiferromagnetic interactions between two neighboring spins – an extraordinary property not
available in nature. We demonstrate that the statistics of circuit states may perfectly match the ones
found in the Ising model with ferromagnetic or antiferromagnetic interactions, and, importantly, the
corresponding Ising model parameters can be extracted from the probabilities of circuit states. Using
this finding, the Ising Hamiltonian is re-constructed in several model cases, and it is shown that
different types of interaction can be realized in circuits of stochastic memristors.

I. INTRODUCTION

The utilization of electronic circuits as an analog to
other physical systems is becoming more and more preva-
lent. It has been recently shown that certain circuits
comprised of only capacitors and inductors [1, 2] as well
as circuits combining passive resistive [3, 4] or active [5]
components with capacitors and inductors can be used
to realize the same states that are found in topological
phases in condensed matter [6–9], forming a connection
between two, otherwise, distinct systems. For instance,
in the topoelectric Su-Schrieffer–Heeger (SSH) circuit [1]
the boundary resonances in the impedance are reminis-
cent of edge states in the SSH model. Here, we introduce
a circuit of stochastic memristors exhibiting the same
statistics of states as in the Ising model.

While the concept of constructing an electric analog
to the Ising model is not novel [10–18] and gaining in-
creasing attention in the context of building Ising ma-
chines [11–18], our approach is. The basic idea is as fol-
lows. We use a resistor and stochastic memristor con-
nected in-series as a memristive spin (Fig. 1(a)), and
couple memristive spins by resistors to induce their in-
teractions (see Fig. 1(b) for the circuit considered in
this Letter). It is assumed that the stochastic mem-
ristor can be found in one of two states, RON and
ROFF (such that RON < ROFF ), and the switching
between these states occurs probabilistically and is de-
scribed by voltage-dependent switching rates (the details
of the model are given below). The circuit is subjected to
alternating polarity pulses that drive the memristive dy-
namics. The states of memristors are read each period of
the pulse sequence (say, at the end of the negative pulse)
and the probabilities of these states are determined. We
note that the circuit in Fig. 1(b) but with deterministic
memristors was introduced in Ref. [19], and a mean-field
model of memristive interactions in a similar (but not the
same) deterministic circuit was developed in [20].

Using numerical simulations, we have found that our
circuit is capable of exhibiting an analogous type of or-
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dering in memristor configurations as of those found in
magnetic materials. Meaning, there can exist a strong
bias for a specific circuit to exist in an antiferromagnetic
(AFM) memristor configuration (−RON−ROFF−RON−
ROFF−) or an ferromagnetic (FM) memristor configura-
tion (−RON−RON−RON−RON− or −ROFF−ROFF−
ROFF −ROFF−). In fact, a very important aspect of our
circuit is the simultaneous co-existence of AFM and FM
interactions between two neighboring spins. The goal of
this work is to demonstrate the possibility of the stan-
dard magnetic orderings (AFM and FM) in the memris-
tive Ising circuits.

This paper is organized as follows. In Sec. II we intro-
duce the Ising Hamiltonian, stochastic model of mem-
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FIG. 1. (a) Memristive spin sub-circuit: the high- and
low-resistance states of stochastic memristor correspond to
spin-down (0) and spin-up (1) states, respectively. (b) One-
dimensional memristive Ising circuit with a periodic boundary
condition. Here, r-s denote the resistance of coupling resis-
tors. (c) The scheme of interactions in the Ising Hamiltonian.
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risotrs, and make the connection between the statistical
properties of the circuit and ones of the Ising Hamilto-
nian. In the same section, we briefly discuss the nu-
merical approach used in our work. The results of our
simulations are presented in Sec. II with the emphasise
on the possibility of reaching FM and AFM interactions
in the circuit. The paper ends with a conclusion.

II. METHODS

Mathematically, we utilize an effective Ising-type
Hamiltonian to describe the probabilities observed in
the circuit simulations. For the circuit in Fig. 1(b), the
Hamiltonian has the form

H = −J
∑
i

σiσi+1 − J2

∑
i

σiσi+2 − h
∑
i

σi , (1)

where J is the interaction coefficient for adjacent spins,
J2 is the next-to-adjacent interaction, h is the magnetic
field, and periodic coupling is assumed. Schematically,
these interactions are presented in Fig. 1(c). We consider
the electronic circuit as a physical system described by
the Boltzmann distribution

pi =
1

Z
e−

Ei
kT . (2)

Here, Z =
∑
j

e−
Ej
kT is the statistical sum, and Ej-s are the

“energies” of circuit states. We argue that for the circuit
in Fig. 1 and similar circuits these “energies” correspond
to the Ising Hamiltonian (1).

To explain the co-existence of AFM and FM interac-
tions, consider a set of identical memristors in ROFF sub-
jected to a positive voltage pulse driving the OFF-to-ON
transition. Each memristor will have an equivalent prob-
ability of being the first to switch states. When one of
these memristors swaps states, it reduces the probability
to switch of its neighbors (reducing the voltage across
them). In this scenario, memristors with neighbors both
in the ROFF state will have the highest chance of switch-
ing. This leads to the tendency of antiferromagnetic or-
dering in the memristors under a positive voltage pulse.
However, under a negative voltage pulse the RON state
memristors with neighboring ROFF state memristors will
be favored to change states. Meaning, the configuration
will tend towards ferromagnetic ordering under a nega-
tive voltage pulse. The overall ordering of a memristive
circuit driven by an AC source will then be dependent
on the choice of model parameters for the memristors.
Based on the parameters, one type of ordering may be
dominant.

Next, we introduce the model of stochastic memris-
tors. According to experiments with certain electrochem-
ical metallization (ECM) cells [21, 22] and valence change
memory (VCM) cells [23], the probability of switching be-
tween resistance states of these devices can be described
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FIG. 2. Dynamics of the states in a circuit with N = 4
memristive spins. The circuit has 24 = 16 states that are
labeled from 0 to 15. The 0000 state (all memristors are in
ROFF ) is labeled by 0, 0001 by 1, and so on. This plot was
obtained using the following set of parameters: R = r =
ROFF = 1 kΩ, RON = 100 Ω, τ01 = 3 · 105 s, τ10 = 160 s,
V01 = 0.05 V, V10 = 0.5 V, Vpeak = 1 V, and T = 2 s.

by switching rates of the form

γ0→1(V ) =

{ (
τ01e

−V/V01
)−1

, V > 0
0 , otherwise

, (3)

γ1→0(V ) =

{ (
τ10e

−|V |/V10
)−1

, V < 0
0 , otherwise

, (4)

where V is the voltage across the device, and τ01(10) and
V01(10) are device-specific parameters. Here, 0 and 1 cor-
respond to the high (ROFF ) and low (RON ) resistance
states, respectively. Under a constant voltage, the prob-
ability to switch follows the distribution [21, 22]

P (t) =
∆t

τ(V )
e−t/τ(V ), (5)

where τ(V ) is the inverse of the switching rate given by
Eq. (3) or (4) (depending on the sign of V ). Previously,
we have developed a master equation approach for the
circuit of stochastic memristors [24] and designed its im-
plementation in SPICE [25].

Most of the results presented here are obtained through
numerical simulations of the circuit in Fig. 1(b) contain-
ing N memristive spins. The set of parameters defining
the circuit and the simulations such as the model con-
stants, voltage period, duration, resistances, etc. are first
set. The memristors are then initialized to their starting
states (typically all OFF). The voltages across each mem-
ristor are calculated for the current time-step through
Kirchhoff’s laws. The switching time is then generated
for each memristor randomly with Eq. (5) distribution.
The fastest switching time is extracted and compared to
the remaining time in the current voltage pulse. If there
is sufficient time remaining in the pulse, that memristor
switches states and the the time remaining in the period
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FIG. 3. Comparison of the probabilities and energies found through a N = 4 memristor circuit to the values found through
the memristor-Ising model for the cases of (a,b) a weaker coupling (r = 10 kΩ) and (c, d) stronger coupling (r = 1 kΩ).
Other simulation parameters are the same as in Fig. 2. For (a), the weaker coupling, coefficient values of J/kT = −0.0839944,
h/kT = 0.930417, and J2/kT = −0.0015665 were found and used. For (b,d), the stronger coupling, coefficient values of
J/kT = −0.195313, h/kT = 1.35807, and J2/kT = −0.024651 were found and used.

is decreased. The switching times are generated again. If
not, the circuit remains in the same state and the interval
of the opposite voltage polarity starts. The simultaneous
memristor switchings are not considered as their proba-
bility is negligible.

After a sufficient period of time for the circuit to reach
a dynamical steady-state has passed, the memristor con-
figuration will be tracked for each period of the applied
voltage. Once the simulation has completed, probabil-
ities for every possible memristor configuration will be
found using the distribution of configurations from the
simulation. These probabilities can then be utilized to
calculate “energies” corresponding to the circuit dynam-
ics using Eq. (2).

III. RESULTS

A. FM and AFM couplings

Fig. 2 presents an example of state dynamics in the
circuit with 4 memristive spins. One can notice that

(on average) the states with antiferromagnetic spin ar-
rangements (such as 5=0101b, 10=1010b, where b de-
notes base 2 notation) are more occupied compared to
the ferromagnetic states (e.g., 6=0110b, 3=0011b, etc.).
Consequently, the probability for the antiferromagnetic
states is higher and thus one can make the qualitative
conclusion that this specific circuit (including the param-
eters of driving sequence) is described by AFM model
(J < 0).

The Ising model parameters, J , J2, and h, were found
by minimizing the squared difference between the Ising
model energies and circuit energies. The latter were ob-
tained based on Eq. (2) that was transformed to Ei =
E0 − kT ln(pi/p0). In the Supplemental Material (SI) we
provide explicit relations that were used in the calcula-
tion of the constants in the Ising Hamiltonian (Eq. 1).
Fig. 3 shows the comparison between the probabilities
energies of the circuit states (found numerically) and
ones calculated based on the Ising model. We observed
an excellent agreement in the case of a weaker coupling
(r = 10 kΩ), and very good agreement in the stronger
coupling case (r = 1 kΩ).
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FIG. 4. Comparison of Ising coefficients using two different
sets of model parameters as the coupling resistance r is var-
ied showing (a) FM and (b) AFM interactions of memristive
spins. The common parameters are N = 10, R = 1 kΩ,
RON = 500 Ω, ROFF = 2000 Ω, Vpeak = 1 V, and T = 2 s.
In (a) we used τ01 = 160 s, τ10 = 6 · 104 s, V01 = 0.5 V,
V10 = 0.05 V. In (b) we used τ01 = 107 s, τ10 = 100 s,
V01 = 0.05 V, V10 = 0.5 V.

The main result of this paper can be seen in Fig. 4.
The figures show how J , J2, and h vary in relation to the
size of the coupling resistance between memristive spins.
Clear ferromagnetic and antiferromagnetic ordering can
be seen depending on the choice of circuit parameters.
These results can be easily extended to circuits with
distinct resistances and memristor parameters. For in-
stance, in Fig. 5 we present Ising model parameters found
for a circuit with distinct coupling resistances r. Since a
memristive spin has a stronger influence on its neighbors
when the coupling resistance is smaller, smaller coupling
resistances result in larger Ising coefficient Ji (in Fig. 5,
ri and Ji are shifted by 0.5 to the right to emphasize
their role in the spin-spin interaction).

In general, circuits can be set to prefer a specific or-
dering through the selection of the model parameters V01

and V10. These parameters, in a sense, set how suscep-
tible a memristor is to the states of its neighbours. As
memristors switch between resistance states, they induce
changes in not only the voltage across themselves, but
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FIG. 5. Ising model parameters forN = 4 circuit with distinct
coupling resistances ri: (a) r1 = r3 = 1 kΩ, r2 = r4 = 5 kΩ;
(b) r1 = r2 = 1 kΩ, r3 = r4 = 5 kΩ; (c) r1 = r2 = r4 = 1 kΩ,
r3 = 5 kΩ. All other simulation parameters are the same as
in Fig. 2.

the voltages across (in principle) all memristors in the
chain in accordance with Kirchoff’s circuit laws. The
strength of the induced change, or the interaction, weak-
ens as the distance increases from the switching memris-
tor. Through the interplay of the induced changes in the
voltages and the chosen set of model parameters, there
will be a bias towards a specific type of ordering.

Fig. 6(a) shows the dependency of the Ising coefficients
on the amount of memristive spins included within a cir-
cuit. Here we can see that at 5 units any major depen-
dency on the amount of units within a circuit disappears.
In order to demonstrate the importance of the J2 interac-
tion in the memristor-Ising Hamiltonian, Fig. 6(b) shows
a comparison of approximations with and without J2.
It is clear that J2 improves the description only in the
stronger coupling case (smaller r-s).

B. Comparison with other methods

As a means of verifying the results seen through nu-
merical simulations, a couple of different methods were
employed. For specific cases, meaning specific circuit
configurations (generally simplistic), exact solutions can
be found for the state probabilities in the master equa-
tion [24]. These results were then compared to the output
of the Monte-Carlo simulations to check for agreement.
The first method used was exactly solving the master
equation analytically through Mathematica. The model



5

(a)

2 4 6 8 1 0

- 0 . 4
- 0 . 2
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8

r  = 1  k Ω :    J ,    J 2 ,    h
r  = 5  k Ω :    J ,    J 2 ,    h   

J, h
 (in

 un
its 

of 
kT)

N (b)

0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0 0 0 0 5 0 0 0 0
0 . 0 0
0 . 0 2
0 . 0 4
0 . 0 6
0 . 0 8
0 . 1 0
0 . 1 2

�

r  ( Ω)

 J 2 = 0
 J 2  i s  i n c l u d e d

FIG. 6. (a) Change in the Ising coefficients, J , J2 and h, as the amount of memristive spins in the circuit is varied from N = 2
to N = 10. The simulation parameters are the same as in Fig. 2. (b) Comparison of the accuracy of the memristor-Ising
Hamiltonian with and without J2 using the dot product of the circuit and Ising model probabilities. Performed for the case of
AFM calculations in Fig. 4 with N = 5.

parameters were set, the amount of memristors were de-
fined, and all possible memristor voltages for any possi-
ble configuration were listed. The switching rates then
were constructed for any potential circuit configuration
or transition. Using these rates, the master equation was
solved exactly for the steady-state [26] and the probabili-
ties for each type of memristor configuration were found.
The second method used was implementing the master
equation in SPICE and using the SPICE environment to
find the probabilities for each type of memristor config-
uration. We have obtained an excellent agreement be-
tween the results obtained with different methods (see SI
for details).

In order to show agreement, one of the specific config-
urations considered and directly solved through various
means was the circuit in (Fig. 1(b)) containing specifi-
cally four memristor-resistor units. This circuit was nu-
merically solved and the master equation was utilized
through two applications in order to verify the results
obtained by numerical means. In general, the master
equation is written as

dpΘ(t)

dt
=

N∑
m=1

(
γmΘm

pΘm(t) − γmΘ pΘ(t)
)
, (6)

where p is the probability to be in a specific configuration
and γ is the transition rate between configurations. For
the specific case of a circuit with 4 memristor-resistor
units the master equations becomes a set of 6 differential
equations with forms of (for a fully detailed application
of the master equation see [24])

dp0000(t)

dt
= −4γ1

0000p0000 + 4γ1
0001p0001 . (7)

These differential equations, in conjunction with specific

memristor voltages for each possible configuration, can
be fully solved in Mathematica and the resulting proba-
bilities for each configuration can be found. A secondary
approach is constructing these differential equations in
SPICE using a current-controlled voltage source and ca-
pacitor pair for each probability along with the full circuit
constructed for each memristor configuration [25]. Table
S1 shows the probability results for this circuit configu-
ration utilizing the same parameters for all three types
on analysis.

CONCLUSION

In conclusion, research into electronic systems that can
replicate the statistics of the Ising model or other statisti-
cal systems is of increasing interest. In this work, we have
demonstrated that circuits constructed with memristor-
resistors units are capable of serving as an analog for the
switching behavior exhibited by the Ising model. Our re-
sults show an almost perfect match for the energies and
probabilities one would expect from the Ising Hamilto-
nian compared to the numerical simulations performed
here. We show the small to negligible gain in accuracy for
including interaction terms beyond first neighbor. The
results from these simulations were further verified by
other forms of analysis. Finally, it is shown that both
types of orderings, ferromagnetic and antiferromagnetic,
can be realized in these circuits under the appropriate set
of model parameters. Experimental implementations of
the circuits studied would be useful, but they are beyond
the scope of this current manuscript. This work further
adds to the class of electronic circuits that are capable of
realizing the behavior of other physical systems.
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Appendix A: Supplementary Material: Memristive
Ising Circuits

1. Numerical simulations

The algorithm used in our simulations can be summa-
rized in the following steps:

1. Set circuit parameters and initialize memristors.

2. Calculate memristor voltages.

3. Calculate memristor switching times.

4. Compare fastest switching time to the remaining
voltage period.

5. Memristor switches if sufficient time is remaining.

6. If not, the applied voltage changes and next half-
period starts.

7. Track memristor configurations once the circuit
reaches equilibrium.

8. Use distribution of configurations to calculate prob-
abilities and then calculate energies.

2. Ising model coefficients

In the Ising model, the energy of a specific lattice con-
figuration can be found from an Ising Hamiltonian, such

as Eq. (1). This Hamiltonian formulation can also be ap-
plied to specific stochastic memristor circuits that have
units that can be interpreted as spin sites. The connec-
tion between the Ising model and dynamics of the chain
of memristive spins is explained in the main text.

A general form for these three coefficients can be found
through minimizing a cost function defined as

F =

2N−1∑
k=0

(Ek − EIk)2 (S.1)

where Ek is the energy derived from the probability of
memristor configuration k and EIk is the energy calcu-
lated from the Ising Hamiltonian for the same configura-
tion. The cost function can be minimized with respect
to each individual coefficient by

∂F

∂J
=
∂F

∂h
=
∂F

∂J2
= 0 (S.2)

As an example, the form for the coefficient h can be found
by the following method

∂F

∂h
=

∂

∂h

2N−1∑
k=0

(Ek − EIk)2 =

2N−1∑
k=0

∂

∂h

(
E2
k − 2EkE

I
k + (EIk)2

)
=

2N−1∑
k=0

0 + 2Ek

N∑
i=1

σi + J

N∑
i=1

σiσi(modN)+1

N∑
j=1

σj + J2

N∑
i=1

σiσi(modN)+2

N∑
j=1

σj + 2h

N∑
i=1

σi

N∑
j=1

σj

 (S.3)

where modN is used to account for the peri-
odic boundary conditions in the circuit (memris-
tor i = N has neighbors i = N − 1 and i =

1). The terms
2N−1∑
k=0

N∑
i=1

σiσi(modN)+1

N∑
j=1

σj and

2N−1∑
k=0

N∑
i=1

σiσi(modN)+2

N∑
j=1

σj both equal out to 0. Note

that in such expressions the sum over i is performed for
the configuration k of memristive spins. Leaving us with
the expression

h =

−
2N−1∑
k=0

Ek
N∑
i=1

σi

N2N
. (S.4)

A similar analysis can be performed for the J coefficient
yielding the expression

J =

−
2N−1∑
k=0

Ek
N∑
i=1

σiσi(modN)+1

N2N
(S.5)

This construction of the memristor-Ising Hamiltonian
now allows us to utilize the energies found from numer-
ical simulations to generate Ising coefficients and ulti-
mately derive energies directly from the Hamiltonian. As
in most models, the accuracy of results can be improved
by adding additional terms at the cost of increased com-
plexity. In more complicated applications of the Ising
model, second neighbor interaction terms and possibly
even higher can be included in the Hamiltonian [27]. The
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TABLE S1. Example of probabilities calculated by various
means for N = 4 memristive Ising using the same circuit
parameters as in Fig. 2.

State Mathematica SPICE Numeric

0000 0.00584291 0.005943266 0.0069041615
0001 0.05274275 0.053329550 0.0543352990
0010 0.05274275 0.053329550 0.0542786650
0011 0.06166575 0.061659225 0.0615103240
0100 0.05274275 0.053329550 0.0543787880
0101 0.17635500 0.176309550 0.1753005600
0110 0.06166575 0.061659225 0.0615064750
0111 0.04380950 0.043278525 0.0428149660
1000 0.05274275 0.053329550 0.0543502950
1001 0.06166575 0.061659225 0.0614562240
1010 0.17635500 0.176309550 0.1749813700
1011 0.04380950 0.043278525 0.0427653890
1100 0.06166575 0.061659225 0.0615269140
1101 0.04380950 0.043278525 0.0428074910
1110 0.04380950 0.043278525 0.0428327070
1111 0.00857507 0.009560732 0.0083684580

same can be done in this memristor-Ising construction.
In the circuit, the effect of a memristor changing states is
not felt merely by itself and its neighbors, but it perme-
ates throughout the entire circuit. An additional term,
J2, can be added to account for the interaction between
a memristor unit and its second closest neighboring unit.
This additional term will have the form

J2 =

−
2N−1∑
k=0

Ek
N∑
i=1

σiσi(modN)+2

N2N
. (S.6)

Fig. 6(b) shows a comparison of the model fitting using

the Hamiltonian with and without J2. For this purpose,
we consider the occupation probabilities as vectors in 2N -
dimensional space and calculate the angle between these
vectors using their dot product. It is clear that the in-
clusion of J2 improves the accuracy of the model by an
almost negligible amount specifically at higher coupling
resistances which suggests implementing even higher or-
der interaction terms is not necessary compared to the
added complexity.

a. Non-uniform chains

We have also generalized the above results to the case
of non-uniform chains. The final expressions are

Ji =

−
2N−1∑
k=0

Ekσiσi(modN)+1

2N
(S.7)

hi =

−
2N−1∑
k=0

Ekσi

2N
(S.8)

J2,i =

−
2N−1∑
k=0

Ekσiσi(modN)+2

2N
. (S.9)

The comparison with Eqs. (S.4)-(S.6) shows that
Eqs. (S.4)-(S.6) can be considered as Eqs. (S.7)-(S.9) av-
eraged over all units along the chain. Note that Eq. (S.7)
is valid for N > 2 and Eq. (S.9) is valid for N > 4. For
N = 2, 2N should be replaced by 2N+1 in the denomi-
nator in Eq. (S.7). For N = 4, 2N should be replaced
by 2N+1 in the denominator in Eq. (S.9). Eqs. (S.7) and
(S.8) were used to obtain Fig. 5.
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