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Memristive neural network for 
on-line learning and tracking 
with brain-inspired spike timing 
dependent plasticity
G. Pedretti1, V. Milo1, S. Ambrogio1, R. Carboni1, S. Bianchi1, A. Calderoni2, N. Ramaswamy2, 

A. S. Spinelli1 & D. Ielmini  1

Brain-inspired computation can revolutionize information technology by introducing machines 

capable of recognizing patterns (images, speech, video) and interacting with the external world in a 

cognitive, humanlike way. Achieving this goal requires first to gain a detailed understanding of the 
brain operation, and second to identify a scalable microelectronic technology capable of reproducing 

some of the inherent functions of the human brain, such as the high synaptic connectivity (~104) and 

the peculiar time-dependent synaptic plasticity. Here we demonstrate unsupervised learning and 

tracking in a spiking neural network with memristive synapses, where synaptic weights are updated via 

brain-inspired spike timing dependent plasticity (STDP). The synaptic conductance is updated by the 

local time-dependent superposition of pre- and post-synaptic spikes within a hybrid one-transistor/one-

resistor (1T1R) memristive synapse. Only 2 synaptic states, namely the low resistance state (LRS) and 
the high resistance state (HRS), are sufficient to learn and recognize patterns. Unsupervised learning 
of a static pattern and tracking of a dynamic pattern of up to 4 × 4 pixels are demonstrated, paving the 
way for intelligent hardware technology with up-scaled memristive neural networks.

Arti�cial intelligence, namely the ability to reproduce brain-like reasoning in a silicon chip, has been the objec-
tive of scienti�c research for the last 60 years1. Computers able to learn by sensory excitement from the external 
world, to infer abstract concepts and to make decisions, will spur the next technology revolution reshaping all 
aspects of our life and society. Recently, neural networks empowered with deep learning algorithms have shown 
the capability of playing games2, 3, providing accurate translation of sentences4, and passing visual Turing tests5. 
�ese achievements were all demonstrated via so�ware implementations in high-performance digital comput-
ers with conventional complementary metal-oxide-semiconductor (CMOS) technology. However, upscaling of 
these so�ware approaches is frustrated by the von Neumann architecture of conventional computing machines 
where the processor and memory units are physically separate, thus resulting in large area, long time latency, and 
multichip system complexity. Also, there are fundamental power-density constraints a�ecting Moore’s law in the 
medium-long term which prevent future scaling of von Neumann computers to the complexity level required to 
emulate the brain6. Increasing research e�orts are thus being directed at developing neural-network accelerators 
with suitable parallelism, low-power consumption and non-von Neumann, computing-in-memory architecture, 
suitable for performing brain-like tasks. For instance, a CMOS-based neuromorphic multi-core processor with 
one million neurons and 256 million synapses showed a reduction of power consumption by a factor 104 with 
respect to the conventional CMOS architecture7. Low-power operation was also demonstrated in analog circuits 
with leaky integrate-and-�re (LIF) neurons and silicon synapses capable of spike-based visual pattern learning8 
and solving complex constraint-satisfaction problems9. All these neuromorphic implementations rely on silicon 
CMOS synapses which are inherently volatile, binary, and poorly scalable. In fact, a CMOS-based static random 
access memory (SRAM) occupies a relatively large area of more than 100 F2, where F is the lithographic feature 
to manufacture the technology10. �e logic state in the SRAM can be either 0 or 1, and is immediately lost upon 
turning o� the power supply. A truly bio-realistic technology for neuromorphic systems requires a change of 
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paradigm toward nonvolatile, multilevel, and scalable synapses consistent with the ultra-high density of connec-
tions (about 104 synapses per neuron on average) in the human cortex11. In addition, the arti�cial synapses should 
display brain-inspired time-dependent weight update, such as spike-timing dependent plasticity (STDP)12, 13, 
which is an essential feature of event-driven learning in biological neural networks.

Resistive/memristive devices, where the resistance changes in response to the application of an electrical stim-
ulus, represent an ideal solution for electronic synapses in future neuromorphic systems14, 15. At least 3 main 
categories of memristive devices have been described with reference to synaptic applications, namely resistive 
switching memory (RRAM) devices16, phase change memory (PCM) devices17, and magneto-resistive memory 
(MRAM) devices18. All types of memristive devices share the multilevel capability of changing their conductance 
to any arbitrary value within a possible range. �e conductance is dictated by a nanoscale material modi�cation, 
e.g., a structural phase distribution in PCM19, or a magnetic domain orientation in MRAM20, thus the multival-
ued conductance state can be retained even without any power supply. In addition, memristive devices show 
outstanding area e�ciency thanks to their 2-terminal structure, which allows a minimum device size in the range 
of only few square-nm21, and stacking capability thanks to 3D integration22, 23. Due to these bene�cial properties, 
memristive devices have attracted strong interest as arti�cial electronic synapses in the last decade. In particular, 
the ability to update the synaptic weight by STDP has been veri�ed in stand-alone synapses, such as RRAM24–26 
and PCM27, 28. Visual pattern training and recognition have been demonstrated by simulations of neuromorphic 
networks with memristive synapses28–31. Neuromorphic circuits with memristive synaptic arrays were experi-
mentally evaluated by using recurrent Hop�eld networks32–34 and perceptron networks, showing pattern clas-
si�cation35 and supervised weight-update via backpropagation36 or winner-take-all algorithms37. Bio-inspired 
unsupervised learning was only demonstrated in simulations31 or with a mixed set of hardware and so�ware syn-
apses38. All attempts were aimed at learning static patterns of a limited amount of pixels, although time evolution 
is an essential character of sensory information and enables object tracking in brain-inspired machine vision39, 

40. In this work, we demonstrate unsupervised learning of a static pattern and adaptation to a dynamic pattern 
within a perceptron-like network of memristive synapses where the weights are updated via local STDP26, 28, 31. 
Functional networks with up to 2 post-synaptic neurons are shown, supporting parallel neuromorphic computing 
and enabling future vision machines such as arti�cial retinas.

Results
Synaptic STDP characteristics. Figure 1a shows the individual building block at the basis of any neural 
network, namely a synapse connected to a pre-synaptic neuron (PRE) and a post-synaptic neuron (POST). �e 
synapse is responsible for the learning function in a neural network, since the synapse weight dictates the amount 
of signal that e�ectively reaches the POST upon PRE spiking. In our arti�cial neural network, the POST is repre-
sented by a LIF circuit while the synapse consists of a hybrid one-transistor/one-resistor (1T1R) structure26, 28, 31, 
as illustrated in the conceptual scheme of Fig. 1b. In this arti�cial synapse, the resistor is a RRAM device with a 
10-nm thick switching layer of HfO2 (ref. 41 and Fig. S1 of the Supplementary Information). As shown in Fig. 1c, 
the application of a positive voltage causes a transition to the low resistance state (LRS), called set process, as a 
result of the formation of a conductive �lament (CF) containing oxygen vacancies between the 2 electrodes. �e 
�eld-e�ect transistor (FET) in the 1T1R allows to limit the maximum current to a compliance current IC during 
the set transition, thus providing control of the CF conductivity and avoiding irreversible breakdown42. �e appli-
cation of a negative voltage causes the retraction of the CF and the consequent transition to the high resistance 
state (HRS), called reset process.

�e 1T1R synapse allows spike communication and STDP as detailed in Fig. 1b: when a PRE spike is applied 
to the gate terminal of the transistor, a positive current �ows into the input terminal of the POST due to a positive 
static voltage VTE at the top electrode, and is then integrated by the integrating stage of the LIF neuron. �e result 
of the current integration is stored as an internal potential Vint (Fig. S2): as Vint exceeds a certain threshold Vth, 
the neuron generates a forward spike, delivered to the next neuron, and a feedback spike, consisting of a sequence 
of positive and negative pulses, which are back-propagated to the synapse to allow for STDP43. As illustrated in 
Fig. 1d, if the POST-spike event follows the PRE-spike event, i.e., if the spike delay ∆t = tPOST − tPRE is positive, 
then the transistor is enabled by the PRE spike during the positive spike of the POST, which results in a set transi-
tion, or synaptic potentiation. On the other hand, if ∆t < 0, then the transistor is enabled during the negative spike 
of the POST, thus causing a reset transition, or synaptic depression. Synaptic potentiation and depression con-
trolled by spike timing delay ∆t result in STDP, which was experimentally demonstrated by applying independent 
voltage pulses to the transistor gate and the top electrode of the synapse of Fig. 1b with variable timing delay ∆t. 
A�er the application of voltage spikes, the resistance R of the 1T1R synapse was measured, allowing to determine 
the conductance change η de�ned as the inverse ratio between R and the initial resistance R0, namely η = R0/R. 
Figure 1e shows the measured η as a function of ∆t and of the initial RRAM state R0. Potentiation (η > 1) occurs 
for 0 < ∆t < 10 ms, except for relatively low R0 which is comparable to the target LRS resistance dictated by the 
gate voltage amplitude VG. On the other hand, depression (η < 1) takes place at −10 ms < ∆t < 0 except for rel-
atively high R0 which is comparable to the HRS resistance dictated by the top-electrode voltage VTE (ref. 31). 
When the delay time is larger than the gate pulse width, namely for |∆t| > 10 ms in this experiment, there is no 
overlap between pulses, thus the RRAM conductance is le� unchanged. �e time- and state-dependent plasticity 
in Fig. 1e is consistent with multiplicative STDP that is at the basis of self-adaptation44. �e STDP response of 
the 1T1R synapse was also simulated by a physics-based analytical model for RRAM, showing good agreement 
with the experimental characteristics of Fig. 1e (see Fig. S3) and further supporting the STDP functionality of the 
1T1R arti�cial synapse.

Pattern learning in a neural network. Learning of a visual pattern was experimentally demonstrated 
using the 2-layer perceptron network in Fig. 2a. The perceptron includes a first layer of 4 × 4 = 16 PREs, 
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representing simpli�ed retina neurons spiking in response to visual stimuli, and a single POST responsible for 
recognition and classi�cation. Each PRE is connected to the POST by an arti�cial hybrid synapse capable of 
STDP. �e neural network is operated in 2 phases: the �rst phase consists of training the network by stochastically 
submitting a visual pattern to the PREs to induce proper synaptic potentiation/depression by STDP, while the 
second phase consists of the recognition of patterns, where various patterns are submitted to the network to test 
the quality of learning. Learning is considered successful if the POST �res only in response to the same pattern 
used during training, whereas other patterns do not induce any �re, i.e., there are no false positives. Training relies 
on STDP occurring at any individual synapse in response to PRE stimulation and consequent POST �re events. 
STDP is usually disabled during recognition to avoid unwanted learning of false patterns.

�e perceptron network was physically implemented by connecting PRE/POST neurons and synapses on a 
printed circuit board (PCB, see Fig. S4). To �nd the most appropriate voltages of the POST spike to induce poten-
tiation or depression, pulses with increasing voltage and 1 ms width were applied and the resulting resistance 
change was collected. Figure 2b shows the measured R as a function of the absolute value of the pulse voltage 
|VTE|, indicating that the RRAM synapse completes the transition from high to low resistance at VTE = 1 V, and 
from low to high resistance at VTE = −1.5 V. In view of these set/reset characteristics and to take into account 
possible �uctuations of the set voltage Vset due to statistical variations of HRS45, the POST spike included a pos-
itive pulse of 2 V and a negative pulse of −1.6 V. Figure 2c shows examples of PRE and POST voltage spikes 
with a positive delay ∆t = 3 ms, causing synaptic potentiation (Fig. 2d), followed by another pair of PRE and 
POST spikes with a negative delay ∆t = −7 ms, causing synaptic depression. Figure 2e summarizes the e�ects 
of STDP by showing the correlation of resistance R(ti+1) measured a�er a spike as a function of R(ti) before the 
spike for cases of potentiation (0 < ∆t < 10 ms), depression (−10 ms < ∆t < 0), and no overlap between the PRE 
and POST spikes (|∆t| > 10 ms). �e resistance decreases [R(ti+1) < R(ti)] for potentiation events and increases 
[R(ti+1) > R(ti)] for depression events, while all other cases show no change in the synaptic resistance [R(ti+1) ≈ 
R(ti)]. Note that the resistance a�er a single STDP event is either equal to the LRS or the HRS level, thus evidenc-
ing binary set/reset operations in the STDP characteristics.

A�er verifying the STDP at the level of single synapse, we tested learning of prede�ned images of 4 × 4 pixels. 
�e synaptic network was �rst trained with a �rst image, namely the diagonal pattern #1 in Fig. 3a, to test the 
learning of a static image, then patterns #2 (Fig. 3b) and #3 (Fig. 3c) are subsequently submitted to demonstrate 
dynamic learning. A stochastic training approach was adopted, where PRE spikes alternatively present the image 
or a random pattern (e.g., see Fig. 3d), consisting of only 3% of the pixels on average being randomly activated31. 

Figure 1. Synaptic device and characteristics. (a) Schematic structure of biological PRE, POST and synaptic 
connection between axon terminal and dendrite. (b) Schematic structure of the hardware PRE-synapse-
POST unit: a PRE controls the FET gate of a 1T1R RRAM, while the POST receives the input current from 
the synaptic source and controls the synapse top electrode for inducing the synaptic current and stimulating 
potentiation/depression during the �re. (c) Measured I–V curve for a 1T1R RRAM synapse, showing set and 
reset transitions at positive and negative voltages, respectively, due to the bipolar operation of the HfO2 RRAM. 
(d) Schematic voltage traces of the PRE spike (top) and POST �re (bottom) signals for the case of potentiation 
(0 < ∆t < 10 ms). (e) Experimental STDP characteristics, namely the measured conductance change η = R0/R as 
a function of the time delay between the PRE and POST spikes, for various initial synapse resistance values R0. 
Data indicate depression (η < 1) for −10 ms < ∆t < 0 and potentiation (η > 1) for 0 < ∆t < 10 ms. Initial LRS 
involves only depression, while initial HRS shows only potentiation.
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Image and noise were alternatively submitted at each epoch, consisting of an individual time fragment of 10 ms 
width. �e probabilities of presenting pattern and noise were equally set to 50%. �e synaptic weights were ini-
tially prepared in a high resistance state, as indicated in Fig. 3e. �e threshold voltage was set to Vth = 0.72 V.

During the �rst 300 epochs of training with pattern #1, the image was readily learnt because of STDP causing 
potentiation of image synapses and depression of background pixels. Static learning of pattern #1 is evidenced in 
Fig. 3f, where all pattern synapses show LRS conductance, while background synapses show HRS conductance. 
As the submitted image is changed from pattern #1 to pattern #2, the learning of pattern #2 is demonstrated, as 
evidenced by the �nal synaptic weights a�er 600 epochs in Fig. 3g. �is supports ‘dynamic’ learning, or adaptation 
of synaptic weights to the presented image in real time by our neuromorphic system. Similarly, pattern #3 is learnt 
during the third training phase between epoch 600 and epoch 1000, as shown by the �nal synaptic weights in 
Fig. 3h. Figure 3i shows the PRE spikes as a function of epochs, indicating the 3 sequential training phases, while 
Fig. 3j shows the corresponding time evolution of synaptic weights 1/R for synapses stimulated by the pattern, or 
simply pattern synapses in the following (red), and synapses located outside the pattern, referred to as background 
synapses in the following (blue). A movie showing the evolution of the synaptic weights in a color plot similar to 
Fig. 3a–h is available in the Supplementary Movie 1.

Pattern and background weights show STDP-induced potentiation and depression, respectively, in each of the 
3 training stages. Selective synapse potentiation/depression can be understood as follows: as the pattern is sub-
mitted at epoch i, Vint increases signi�cantly, thus potentially inducing a �re event. �is causes STDP with ∆t > 0, 
hence potentiation (Fig. 2c–e). On the other hand, if a noise pattern is submitted at epoch i + 1 a�er �re, then 
STDP with ∆t < 0 takes place, thus causing depression of the corresponding synapses. As a result, selective poten-
tiation takes place at pattern synapses, while unselective depression takes place throughout the whole synaptic 
network. By properly adjusting the noise percentage in a range between 2% and 7% of randomly activated pixels, 
stable learning can be achieved. A larger percentage of noise would cause �re in response to the submission of 
noise, which induces potentiation of random synapses and depression of pattern synapses, thus is to be avoided. 
Static learning similar to the one in the �rst 300 epochs in Fig. 3 can be demonstrated irrespective of the initial 
con�guration of synaptic weights, which can be prepared in either HRS (Fig. 3), LRS (Fig. S5), or random states 

Figure 2. Synaptic network and operation. (a) Schematic illustration of the perceptron-like synaptic network 
including 16 PREs (�rst layer) and 1 POST (second layer), connected one to each other by 16 synapses. (b) Set/
reset characteristics, namely synaptic R measured a�er the application of a 1 ms-long pulse, as a function of 
the pulse voltage. Set and reset characteristics were collected a�er preparing the synapse in the HRS and LRS, 
respectively. (c) Measured gate voltage VG and top electrode voltage VTE, indicating the PRE spike and the POST 
backward spike, respectively, and (d) measured R before and a�er each pair of pulses, indicating potentiation 
for 0 < ∆t < 10 ms and depression for −10 ms < ∆t < 0. (e) Correlation plot showing the resistance R(ti+1) 
measured a�er the �re event as a function of R(ti) measured before the �re event. Potentiation, depression and 
no change are evidenced for 0 < ∆t < 10 ms, −10 ms < ∆t < 0, and |∆t| > 10 ms, respectively.
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(Fig. S6). �e independence on the initial con�guration of weights is due to the STDP inducing selective potentia-
tion and unselective depression of synapses, and is essential for the dynamic learning in Fig. 3, where a new image 
must overwrite the previous one by potentiating weak synapses and depressing strong synapses where needed.

While neuromorphic systems are generally expected to operate in the same timescale (10 to 100 ms) as the 
biological counterparts, e.g., to enable gesture and speech recognition, our RRAM devices are also capable of 
much faster learning and recognition via STDP. High-speed learning can be achieved by using the same hardware 
operated with 100 times shorter pulses, i.e., PRE spikes of 100 µs width and POST positive/negative pulses of 10 
µs width (Fig. S7). A higher feedback voltage VTE+  = 3.3 V was used to enable set transition in the 10 µs timescale. 
Given the proportionality between energy and time, accelerated STDP can also be used to reduce energy con-
sumption during learning28. Time �exibility of RRAM devices thus allows to match various time/energy require-
ments depending on the speci�c application scenario.

STDP in our approach is implemented as a deterministic binary plasticity rule, i.e., positive delay results in 
full set transition to the LRS, while negative spike delay causes full reset transition to the HRS. �is is also dic-
tated by the binary switching characteristics of our device in Fig. 1c, where both set and reset transitions appear 

Figure 3. Static and dynamic learning within a 1-POST network. (a,b,c,d) Illustration of the pattern #1, pattern 
#2, pattern #3 and a typical random noise image that were submitted to the PREs during learning. (e) Initial 
con�guration of synaptic weights, where all RRAM devices were prepared in HRS. (f) Con�guration of synaptic 
weights a�er 300 epochs (3 s), indicating adherence to pattern #1 that was stochastically submitted during the 
�rst 300 epochs. (g) Con�guration of synaptic weights a�er 600 epochs (6 s), indicating adherence to pattern #2 
that was stochastically submitted during the previous 300 epochs. (h) Con�guration of synaptic weights a�er 
1000 epochs (10 s), indicating adherence to pattern #3 that was stochastically submitted during the previous 
400 epochs. (i) Address of the PRE stimulation as a function of time, indicating the submission of the 3 patterns 
alternated with random noise. (j) Measured synaptic weights 1/R as a function of time: pattern weights (red) 
and background weights (blue) tend to high and low conductance, respectively, thus demonstrating pattern 
learning.
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quite abruptly as the voltage exceeds the set or reset threshold. However, for certain applications, analog weight 
variation may be useful, e.g., vision does not only imply recognition of object shapes, but also textures and colors, 
which can be represented by analog weights. Analog STDP with inherently digital RRAM devices was previ-
ously obtained by probabilistic potentiation/depression, where application of a voltage close to the threshold 
results in set/reset only in a random subset of cases46. Here, we adopted a di�erent approach to achieve analog 
weight potentiation. To demonstrate learning of gray-scale images, we represented di�erent gray tones through 
variable PRE spike voltage amplitudes (Fig. S8 and Supplementary Movie 2). An increasing value of VG results 
in an increasing transistor current IC during the set operation, which controls the LRS resistance25, 26. As a result, 
synapses stimulated by a light gray intensity (high VG) are potentiated to a high conductance, while a dark gray 
intensity yields low conductance. Similarly, color-scale images can be represented by multiple synapses per pixel 
where each synapse represents the intensity of a color component, e.g., adopting a RGB representation43.

Image recognition. �e second key function of a perceptron network is the pattern recognition, that is 
the capability to discriminate between patterns that were previously submitted during the learning phase. In the 
recognition phase, an image is presented to the network while monitoring the response of the POST. �e POST 
should �re in response to an image which is similar (or perfectly equivalent) to the one submitted during training, 
i.e., the training pattern. In addition, recognition should result in no false positives, namely, the POST should 
not �re in response to patterns which are signi�cantly di�erent from the training pattern. To test the recognition 
capability, we statically trained our network with the training pattern of Fig. 4a, resulting in the �nal synaptic 
weights of Fig. 4b a�er 300 epochs. �en we submitted a sequence of all 1820 test patterns (see, e.g., Fig. 4c) with 
4 activated pixels out of 16, i.e., the same number of activated pixels as in the training pattern. A�er submitting 
any test pattern, we checked for a possible POST �re event and discharged the internal potential Vint for a new 
test. Figure 4d shows the cumulative distribution of the 1820 calculated values of Vint, obtained a�er integrating 
the total current Ipost given by:

∑=

=

−I V R
(1)

post TE
n

n
1

16
1

where Rn is the resistance of the n-th synapse. Note that the latter consists of a 1T1R structure, thus Rn includes 
both contributions from the transistor, which is conductive only for the activated pixels of the test pattern, and 
the memristor, which is conductive (LRS) only within the pattern which was submitted in the training phase. �e 
distribution shows �ve sub-distributions, corresponding to patterns sharing no pixels with the training pattern 
(Vint ≈ 0), and patterns sharing 1, 2, 3 or 4 pixels with the training pattern, showing increasing values of Vint. In 
this recognition experiments, the threshold voltage Vrec for �re was set to 1.7 V, which led to a �re event only in 

Figure 4. Pattern recognition. (a,b,c) �e pattern that was submitted during the training phase, the 
corresponding synaptic weights a�er 300 training epochs, and one of the possible 1820 test patterns that were 
submitted during the recognition phase. (d) Cumulative distribution of the internal potential values measured 
a�er the presentation of the recognition patterns. Each sub-distribution corresponds to a given number of 
pixels shared with the training pattern. By adopting a threshold voltage Vrec = 1.7 V during recognition, only one 
pattern, i.e., the training pattern, could trigger �re in the POST, thus preventing any false positive.
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correspondence of the presentation of the training pattern, i.e., no false positives were recorded. �ese results 
support the pattern recognition capability of our synaptic network.

Multiple pattern learning and tracking. Unsupervised learning in the brain usually proceeds by simul-
taneous specialization of distinct neurons in response to sensory stimuli47. To enable multiple image learning, 
we extended our network to include one additional POST as shown in Fig. 5a. POST1 and POST2 are both fully 
connected by separate synapses to the �rst layer of PRE31. �e operation of the 2-neuron network is the same as 
the 1-neuron network of Figs 1–4, except for the presence of lateral inhibitory synapses between the 2 POSTs. 
When POST1 �res, a spike is sent through the inhibitory synapse to POST2 to reduce its internal potential Vint,2 
by a �xed amount (40% in our experiment). Similarly, when POST2 �res, a spike through the inhibitory synapse 
to POST1 forces Vint,1 to decrease by the same amount. �is winner-take-all approach prevents the 2 neurons to 
specialize to the same image, thus allowing the maximization of the network learning and recognition function-
alities48. Complex neuron networks with inhibitory synapses have also been shown to enable parallel computing 
tasks, including tackling NP-hard to a certain level, Sudoku games and similar constraint satisfaction problems49.

We �rst tested static training in the 2-neuron network by submitting the 2 images of 3 × 3 size in Fig. 5b. Static 
training was continued for 1000 epochs using the usual stochastic approach with alternated patterns (Fig. 5b) 

Figure 5. Static and dynamic learning within a 2-POST network. (a) Schematic illustration of a perceptron 
network with a 3 × 3 PRE layer and 2 POSTs, with 18 synapses between the PRE and POST layers. Inhibitory 
synapses connect the 2 POSTs to reduce the internal potential of one POST when the other POST �res. (b) 
Patterns submitted during the �rst phase (top and bottom bars for static learning) and sequence of 4 pattern 
shi�s for the dynamic learning phase. (c,d) Synaptic weights for POST1 and POST2 at the end of each sequence 
of learning indicated in (b). (e,f) Time evolution of the synaptic weights 1/R for POST1 and POST2 during the 
5 phases of the dynamic learning. Pattern weights (red) and background weights (blue) tend to LRS and HRS, 
respectively.
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and random noise. A�er the initial training, the 2 images were shi�ed counter-clockwise along the perimeter 
of the 3 × 3 square as indicated by arrows in Fig. 5b. Images were moved by a total of 4 steps, and a�er each step 
the image was submitted for 1000 epochs to verify the ability of our network to track the moving image. Results 
are shown in Fig. 5c for POST1 and Fig. 5d for POST2, reporting the �nal synaptic weights at the end of each 
training phase. Not only the static learning of patterns in Fig. 5b is demonstrated by the 2 neurons a�er 1000 
epochs, but  also each modi�ed pattern is correctly learnt at the end of each phase of the dynamic learning. Note 
that each neuron remains locked to one speci�c image during its movement, since this minimizes the number of 
synapses (2 for each POST) that must change their weights. �e synaptic weights 1/R are shown as a function of 
time in Fig. 5e for POST1 and Fig. 5f for POST2, while the Supplementary Movie 3 shows an overview of the time 
evolution of synaptic weights during learning and tracking of the moving image. �e results con�rm that synaptic 
weights can track dynamic patterns as a result of on- line unsupervised learning.

Discussion
Our results support object learning, recognition and adaptation in synaptic networks by unsupervised Hebbian 
learning, which is believed to be a fundamental synaptic plasticity principle within the human brain. Hebb’s 
rule generally describes a reward scheme where neurons �ring in a causal sequence are awarded with incre-
mented synaptic connection, while neurons �ring with apparently uncorrelated timing are penalized with a dec-
remented synaptic connection50. In machine learning, unsupervised techniques �nd application in data clustering 
and anomaly detection, which is the standard methodology to monitor intrusion hazards, bank frauds, medi-
cal errors, and similar threats51. In biological systems, reward schemes have been evidenced in several sensory 
functions such as vision52, olfactory system53, and sensory-motor system54, 55. Even the ability to recognize and 
anticipate the direction of moving objects, which is fundamental for the control of autonomous robots and vehi-
cles, has been modeled by burst-mode STDP in the visual cortex56. �e ubiquitous character of STDP suggests 
that physical hardware capable of STDP might have a key role in the development of humanoid robots and other 
arti�cial systems aiming at mimicking human perception and cognition. �anks to the bio-mimetic nature of 
STDP, unsupervised synaptic networks might enable neuro-prosthetics technologies, where implanted hardware 
interconnected with biological neurons can supply and complement various brain functionalities to correct disa-
bilities and heal injuries. Similarly, hardware systems based on STDP or other bio-realistic plasticity rules might 
be designed to replicate, or at least imitate, certain areas of the human brain in silico, thus helping to understand 
human cognition and perception.

A key limitation to meet these challenges is the di�culty to understand and recreate the architecture of bio-
logical neural networks. For instance, the visual cortex is organized into 8–10 functional layers, with various 
types of neurons and complex arrangement of synaptic connections within the axon arbor39, 57. Replication and 
unsupervised training of such deep networks with STDP and other spike time-dependent rules is not yet under-
stood and achieved in hardware. In addition, the response in the neural network can be extremely complicated, 
including short-term and long-term plasticity, excitatory and inhibitory synaptic response, and various types of 
network-level behaviors, such as feedforward or recurrent spike propagation. Various forms of plasticity rules 
have been proposed, including not only STDP but also rate-based and triplet-based learning58. Recreating the 
deep architecture and complex phenomenology within hardware requires a detailed understanding of the struc-
ture and operation of the brain. In this scenario, our STDP synaptic memristive network o�ers a �exible building 
block to build up-scaled spiking networks to mimic learning and processing in the human brain.

In summary, we presented a neural network with memristive synapses capable of STDP. Stochastic learning 
relies on the alternated presentation of pattern images and random noise, to enable potentiation and depression, 
respectively. As a result, unsupervised learning of static and dynamic images, and recognition of the same pat-
terns were demonstrated. �e demonstrated concept might provide a fundamental building block for scalable, 
low-power, brain-inspired computing hardware based on memristive devices.

Methods
RRAM synapses. �e RRAM devices used in this study consist of a 10-nm thick switching layer of HfO2 
which was deposited by atomic layer deposition (ALD) on top of a lithographically-con�ned bottom electrode 
made of TiN. A cross-section TEM photograph of the device is shown in Fig. S1. �e HfO2 layer was doped with 
silicon and deposited in the amorphous phase, as con�rmed by di�raction studies41. A reactive Ti top electrode 
was deposited on top of the HfO2 dielectric layer, to act as oxygen scavenger, leading to oxygen exchange layer 
(OEL) of TiOx between Ti and HfO2. �e OEL was instrumental in increasing the concentration of oxygen vacan-
cies in HfO2, thus enhancing the leakage current in the pristine state and reducing the forming voltage. Forming 
was operated by the application of 100 ms-long pulses of 3 V amplitude, to initiate the CF creation and the related 
resistive switching process by a controlled so�-breakdown of the dielectric layer. �e RRAM was connected to 
a FET, which was integrated in the front-end of the same silicon chip by conventional complementary-met-
al-oxide-semiconductor (CMOS) process. �e resulting 1T1R structure was controlled during forming, set, and 
reset by connecting its 3 terminals, namely the FET gate, the FET source and the top electrode of the RRAM. 
�e dc conduction and bipolar switching characteristic of the RRAM (Fig. 1c) were collected by an HP4155B 
Semiconductor Parameter Analyzer connected to the experimental device within a conventional probe station 
for electrical characterization.

Synaptic network. �e 1T1R synapses were connected to an Arduino Due microcontroller (µC) on a PCB 
for experiments on the neural network. �e PCB hosted up to 18 RRAM chips, each containing a 1T1R synapse, 
and all of them connected with their 3 terminals according to the schematic of Fig. S4. In the network, each PRE 
represented an axon terminal, controlled by the µC and connected to a synapse gate. All synaptic top electrodes 
were driven by the µC and normally biased to Vbias = −0.2 V to induce a small current through the 1T1R synapses 
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under a PRE spike. All source terminals were connected to the POST input, consisting of a transimpedance 
ampli�er (TIA), enabling current-to-voltage conversion. �e output voltage of the TIA was fed into an input 
terminal of the µC’s ADC for digital integration to describe the �rst stage of the POST. �e internal threshold 
potential was tuned to enable �ring in correspondence of 2 PRE spikes activating full-LRS synapses. At the �re 
event, the voltage controlling the synaptic top electrodes was switched from Vbias to the VTE+ and VTE− according 
to the pulse trace in Fig. 2c, to induce time-dependent potentiation or depression. To operate the network, the 
PRE spike sequence was �rst stored in the internal memory of the µC, then the sequence was launched while 
monitoring the synaptic weights 1/R and the internal potential Vint at each epoch. �e spike and �re voltages 
and the input currents were also monitored by a Lecroy Waverunner oscilloscope with 600 MHz bandwidth and 
maximum 4 GSample/s sampling rate.
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