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Akshay Kumar Maan, Dinesh Sasi Kumar, Sherin Sugathan, and Alex Pappachen James 
 
 
 

Abstract 
 

Real-time detection of moving objects involves memorisation of features in the template image and their comparison with 

those in the test image. At high sampling rates, such techniques face the problems of high algorithmic complexity and component 

delays. We present a new resistive switching based threshold logic cell which encodes the pixels of a template image. The cell 

comprises a voltage divider circuit that programs the resistances of the memristors arranged in a single node threshold logic 

network and the output is encoded as a binary value using a CMOS inverter gate. When a test image is applied to the template-

programmed cell, a mismatch in the respective pixels is seen as a change in the output voltage of the cell. The proposed cell 

when compared with CMOS equivalent implementation shows improved performance in area, leakage power, power dissipation 

and delay. 
 

Index Terms 
 

Threshold Logic, Resistance Networks, Memristors, Object Detection 
 
 

I. INTRODUCTION 
 

In human brain, motion-detection is a low level visual activity and is the early form of visual intelligence. Inspired from the 

fact that human visual cortex is robust in object detection and tracking [1], [2], in this paper we attempt to mimic the functional 

mechanisms of the brain in a high speed programmable resistance VLSI circuits. The object feature detection and tracking is 

highly investigated problem in the last decade, taxonomy of which includes point tracking [3]–[5], kernel tracking [6], [7] and 

silhouette tracking [8], [9] and bio-inspired neuromorphic circuits based on analog computation and localized memory [10], 

[11]. Typically, in an algorithmic approach the desired object to be tracked uses a limited set of image sequences. Conventional 

visual object tracking solutions are limited by high computational complexity, inability to handle high resolution images, low 

frame sampling rates, and less flexible hardware architectures. The number of image sequences (or frames per second) that 

can be utilised for tracking varies from one algorithm to another. 
Hardware implementations of object recognition algorithms are usually limited by the frame rate or by the area on chip. The 

FPGA (Field-Programmable Gate Array) based object detection implementation such as in [12] results in a maximum processing 

speed of 15 frames per second. The complexity and on-chip area is another concern such as presented in retina inspired 

design [13], and bio-inspired multi-level architecture [14]. Neuromorphic object detection cells [15] demand a considerable 

amount of chip space. However, the complexity of implementing neural interconnections certainly limits the scalability of such 

architectures [16], [17]. Resistance based neuromorphic models [18] approach the problem of object detection as a filtering 

mechanism resembling the human eye, that in so-far is limited by 50fps speed and large on-chip area. Optical flow estimation 

techniques [19] are also widely used in motion estimation that have a considerable amount of circuit level complexity. The 

winner-takes-all neural networks [20], sensor level processing [21] and analog neural networks [22] have found application in 

object detection with limited scalability. 
In this paper, we advance towards a neuron inspired approach to moving object detection problem. We introduce a concept 

of pattern matching based on bilevel threshold logic cells formed in a network of programmable resistances. In contrast with 

existing techniques, we adopt a hardware oriented approach to object tracking problem, where in principle and practice very 

high frame rates and high resolution video images can be utilised. The proposed neuromorphic circuit can be seen as a hardware 

model for human brain in object detection and, an early stage of visual intelligence in VLSI. 
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(a) (b) 
 

Fig. 1: (a) Example of a BPRT cell that uses a 4 input pixel values. The example shows 4 input weights that are individually connected to 

separate inputs. (b) An architectural representation of the cell arrangement for a 4 × 4 pixels image; in this configuration, each cell uses 4 

analog/digital inputs, has bi-valued weights, and implements image dimensionality reduction. 
 
 

II. BILEVEL PROGRAMMABLE RESISTANCE THRESHOLD LOGIC 
 

Figure 1a shows the unit processing element in the network which we refer as a modular bilevel programmable resistance 

memristive threshold logic (BPRT) cell or in short cell. The collection of cells arranged referred to as a single layer forms 

the proposed network configuration as shown in Fig. 1b. The modular structure of network makes it easy to implement in 

hardware. 
The parameters of proposed BPRT cells in Fig. 1b are weights wi(i = 1, 2, ....., N) and a constant weight w0. The weights 

w1 through wN are configured dynamically, using the reference inputs xi. The weighted summation of inputs xi is denoted as 

xo, while the threshold logic implemented using a logistic function results in a binary output xout. The reference pixel inputs 

xi from a reference sample Xr is used for setting wi, and results in a binary output value of 1V . When a test pixel xt is 

applied to the cell, the binary output value would change from 1V to 0V if dissimilar, but will remain at 1V if similar. The 

proposed cell is essentially a similarity calculator and performs a binary decision oriented pattern matching. It can be noted 

that, although in principle it may seem somewhat similar to some of the early hard-threshold neuron models, the proposed cell 

is conceptually and implementation wise different from the conventional threshold logic. In addition, the proposed logic can 

be realised as a hardware circuit with the weights translated as conductance (i.e. conductance of a memristor) for a potential 

divider and the threshold translated to an logic inverter as shown in Fig. 1a. 
The Fig. 1b shows the block wise arrangement of inputs for processing by the BRT cells. Let C be a cell in the arrangement 

with weight (conductance) values w = {w1, w2, ..., wn} and the corresponding inputs x = {x1, x2, ..., xn}. Each of the weights 

wi (1 ≤ i ≤ n) of C is set to either high wH or low wL as follows: 
 

wH if xi > xa 
i 

wL     otherwise 
 

where xa is the average of the normalized pixel values in the input frame and is calculated as xa = 
n 

P 
xi. 

 

It is not practical or general to use Eq. (1) for setting bilevel weights as in practice it is difficult to implement an ideal 

inverter logic. An alternative approach to express the same idea of setting the wi to bilevel weight values using generalised 
logistic functions. The generalised logistic function with respect to weights can be expressed as: wi = 

1+becxi 
+ wL. The 

value of c is obtained by equating this to H + wL and xi = xa. This results in c = log b and the equation for setting the 
weights becomes: w =  wH + w . The output voltage x of the weighted part in the cell with n inputs is given by: 

1+be xa 
logb 

x0 =  
i=1 xiwi 

. The threshold output of the cell can be conceptually expressed as: 
o             i=1      i 

( 
1V if x0 < ta 

out 
0V otherwise 

 

where, ta is the logistic threshold. A more realistic that calculates xout can be represented as: xout = b1e
−

−x

logb 

b     
. 

Substituting the logistic equations of xo, we obtain the xout as:                                                                                          
1

 

be−β 
P

i=1 xiwi 

out 
1 + be−β 

P
i=1 

xiwi 

 
(3) 

 

where, β = 
ta[w0+

ogb 

wi]
. The Eq (3) and its logic counterpart Eq. (2) can be viewed as a transform for local similarity 

calculation, that compares a set of reference pixels from a template sample Xr to that of the test pixels originating from a test 
 

sample Xt. The template sample pixels are memorised as conductance values wi which are set to bilevel values based on the 

x = 
N 

N 

( 

w = (1) 

1 
n 

i=1 

w H 
w −1 

2 x a 
−x i i L 0 

P n 
P n 

w + w 

x = (2) 

x o 
t a 1 

1+b e 
o 

t a log 1 

l 
P 

N 
i=1 
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intensity of reference input signals. The test sample does not set the weights, and hence the output of the Eq (3) would only 

change if the reference pixel intensities are significantly different from the test pixel intensities. Suppose in an image there are 
M block of pixels that are to be compared. This means there will be M cells, the global similarity sg between the test and 

reference sample image can be obtained by the summation of xout across the sample: sg =  1  M     
xout(j). 

a) BRT cell working: Figure 1a, shows the hardware model of a 4-input BRT cell in the network shown in Fig. 1a. In 
 

this cell the weights, w1, w2, w3 and w4, will be fixed to wH or wL as per the Eq. (1). For an illustration, consider that the 

values for wH , wL and w0 are conductance  1 μS,  1 mS and  1 mS, which can be obtained by changing the memristance 

of a memristor. The threshold for the inverter has been set as ta = 0.5V . As per the Eq. (3), if the output of the potential 

divider part (x0) is greater than ta the output of the threshold will be 0V ; otherwise the output will be 1V . 
Now, take a scenario in which an image is 4×4 pixels and the average of the pixel values of the image is 0.6V which 

 

is xa of this network, that means all cells in the network will have the xa value 0.6V. In this case the network contains 4 

cells in which each cell will have four inputs as shown in Fig. 1a. Suppose for one cell, the input pixels voltage values are, 

x1 = 0.2V , x2 = 0.3V , x3 = 0.3V , and x4 = 0.1V . These voltage values are considered as the template pixel values. The 

weights w1, w2, w3 and w4 of the cell will be fixed to wL, wL,wL and wL by changing the memristance of the corresponding 

memristor as per the Eq (1). Then the voltage at node x0 = 0.15V , which is smaller than the threshold value of the inverter 

ta = 0.5V , so the output of the cell becomes 1V . For training the cell, the memristor’s weight need to be set using an 

additional circuit as given in the Fig. 2. This will avoid the unwanted resistance change in the circuit during the test phase. 
The switches S1, S2 and S3 will switch as per the control signal ttr, where ttr is high (switch connected) during training 

phase. The Opamp is designed using eight MOSFET’s [23], where its area is 31.3μm2 and 16μW power dissipation and is 
 

used as a comparator is to enable the proper control of the selection inputs. This circuit can be used in serial or parallel to set 

the memristance of the memristors in training stage. The possibility of serially training the cells based on pixel values using 

array switched connections is shown in Fig. 2b. 
 
 
 
 
 
 
 

(a) (b) 
 

Fig. 2: (a) shows the training circuit required to set memristance to high or low value during training stage taking into account the input 

voltage of the reference pixel, and (b) shows an array realisation of the circuit for network. 
 

To illustrate the change detection in cell, suppose that there is a significant change in input values (change in pixel intensity) 

when the next frame input is applied, say x1 = 0.9V , x2 = 0.9V , x3 = 0.8V , and x4 = 1V . In the test stage, the weights 

remain at the same values as that were set using template image pixels. The voltage at the node x0 will change from 0.15V to 

0.6V , which is higher than the threshold value of the inverter and hence the output of the cell will change to 0V . It is to be 

noted that the change occurred here is a change from dark pixel to light pixel and a change is detected by the cell. However, 

the change will not get registered if there are only slight variations in the inputs. For example, if the new input values are 

0.3V , 0.3V , 0.3V and 0.1V which reflects a small change from the template pixels, then the output of the potential divider 

becomes 0.16V , which is obviously insufficient for the inverter to change its output. In this sense, it can been said that the 

output of the cell will only change during significant changes in the input. It is from the test pixel changes that we observe 

that the cell will detect the changes only from black to white and not the reverse. Table I shows the four input cell properties. 
 

TABLE I: Area, power dissipation, leakage power and delay of a four input cell, where wH , wL and w0 are 
10
μS, 

100
mS and 

50
mS 

 

Area Power 

(μm2) dissi- 
pation 

(μW ) 
 

9.66 12.30 

Leakage 

Power 

(pW ) 
 
12.25 

Operational 

Speed 

(MHz) 
 
100 

 
 

Figure 3 shows the timing behaviour of the proposed 2-input cell having x1 and x2 as the input pixels and xout the output 

pixel, where the cell is trained to detect dark pixels (0V , 0V ), with both the weights set to wL =  1 mS. The pixel values 

change in 10ns and the behaviour is shown for a period of 40ns. From the waveform we can see that the cell is able to 
 

detect the change from (0V, 0V ) to (1V, 1V ), but it fails to detect the changes from (0V, 0V ) to (0V, 1V ), or (1V, 0V ). This is 

because the cell is required to detect the changes only if there is a sufficient change in the group of pixels within the image 

and inherits the ability to discard the random pixel changes from the sensor noise. 
The proposed work is compared with the benchmark neuromorphic learning chip [14] that target object detection and tracking. 

In order to do the comparison we have done simulation using similar technology scaling of learning chip [14]. The simulation 

M 
P 

j=1 

10 100 50 

1 1 1 

100 
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Fig. 3: Waveform showing the response of a 2-input cell, which has trained to (0V ,0V ) input template pixels. We can see that the cell is 

able to detect the change from (0V ,0V ) to (1V ,1V ) by changing xout to 0V from 1V . 
 
 
 
 
 
 
 
 
 

Fig. 4: Effect of change in technology length on a 4 input cell 
 
 
is performed in SPICE (Simulation Program for Integrated Circuit Emphasis) using feature size of 0.35 μm TSMC (Taiwan 

Semiconductor Manufacturing Company) process BSIM (Berkeley Short-channel IGFET Model) models and HP memristor 

model [24]. The results in Table II, show a clear advantage for the proposed method, in terms of performance when compared 

with the neuromorphic learning chip1 [14]. 
 

TABLE II: PERFORMANCE COMPARISON BETWEEN A BRT NETWORK OF 32 NEURON CELL WITH THE LEARNING CHIP IN [14] 
 

Parameters 

Area (μm2) 
Power dissipation (W ) 

BRT network 

309 
396μ 

Learning Chip [14] 

1936 
60m 

 
 

Throughout this paper, we use the non-ideal resistive switching model of memristor reported in [24] for our study with an 

area of 10nm×10nm and resistances in the range of [106, 1012]Ω, while CMOS circuits use 0.25μm TSMC technology to 

reflect the practical standard silicon technologies. The estimation of the area is done at the device level only. The reported 

area of a network were estimated based on the area of a macro model used. Figure 4 shows the effect of change in technology 

length on the output of a 4-input cell. From the figure we can see that a ± 50nm change in the technology length does not 

introduce any effective change in the cell response both in case of logic high (1) and logic low (0). Since the physical design 

of the memristor is not available to simulate, practically we will not be able to check the scalability issues and the response 

plotted in the Fig. 4 is the simulated results using non-ideal memristor models in SPICE, and realistic CMOS process models. 
 

b) Fast Object Detection: In object detection, a template image frame is chosen from the video input and subsequent 

test image frames are compared with the template frame. We require two parallel BPRT networks in order to detect both light 

to dark and dark to light pixel intensity changes in the object. This method is shown in the Fig. 5a where each BRT network 

is shown as a separate modules. Module 1 of the BPRT network is meant for the detection of dark to light pixel intensity 

changes and module 2 for the light to dark intensity change detection. The resistor weights in the module 1 will be set using 

the template image pixel and that of module 2 with the inverted template image pixels during the training phase of the network. 

Each cell in the modules contains 4-inputs, to which 4 input pixel voltages from input images are applied as shown in the 

Fig. 5a. The resistor values (weights) of each cell is fixed based on the input pixel values, such that each cell in the module 

is trained to detect any sufficient changes occurring in the input set of pixels. The output of the modules is of size equal to 

the number of cells as shown in Fig. 5a. These outputs have a value of 1V when the template pixels are applied as the inputs. 

The output of two modules will be combined pixel-wise using AND gates in order to merge similarity detection results of 

both dark to white and white to dark changes. 
The processing speed of few megahertz would mean that more than 106 images can be processed in 1 second. Even when 

delay of the training elements are taken into account this would still be more than sufficient to deal with high frame rates of a 

camera. In practical terms, as the frame rates of the camera are still limited to a few tens to hundreds of frames per second, the 

proposed object detection would not have issues with continuous update of the memristors. However, in future when extremely 
 

1The results compared are specific to the cell level. The board level performance is not compared as they would be different in application and need. 
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Fig. 5: (a) Training of a BRT network for object detection with an input image of size 4 x 4 pixels. Module 1 has been trained with original 

input image and Module 2 has been trained with the inverted input image. (b) A new image is passed through the trained network resulting 

in change detection at the output. 
 
 
higher frame rates are required, the improvement in operating speeds would be required, that is largely dependent on the 

operation speed of the operational amplifiers and CMOS invertors in the circuit. 
When the test frames are applied, if there is any sufficient change in the set of pixel values, the output of that particular cell 

will change from 1V to 0V . This behaviour of the cell is shown in the Fig. 5b. Here the image is different from the trained 

template image. It has both dark to white and white to dark changes and both this changes are detected by the corresponding 

modules. In addition, it can be seen that the values of the output in the detection of moving object has been recorded by 

changing the corresponding cell output to 0V. When combining the module output values, we are able to detect the total 

changes in the image. This is shown in the output image as two dark pixels. The unchanged values are the static background 

and the changes detected are the objects. From, Fig. 5a and Fig. 5b it is clear that since the size of cell is 2 × 2, the size of 

the output image will be reduced to 
2 

× 
2 

, where N × N is the input image size. 
 

TABLE III: COMPARISON OF PERFORMANCE PARAMETERS FOR TWO DIFFERENT BRT NETWORKS. 
 
 

Performance parameter 
 

Area 
 

Power dissipation 

Leakage power 

Operational speed 
 
 
 
 
 
 
 
 
 
 

(a) 

Value (4×4 pix-

els) 
193μm2 

103μW 
245pW 

100MHz 
 
 
 
 
 
 
 
 
 
 

(b) 

Value (352×288 

pixels) 
1.22mm2 

0.65W 
1.55μW 
100MHz 

 
Fig. 6: The illustration showing (a) the template image pixels and (b) the test image with object pixels detected. 

N N 
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TABLE IV: THE PERFORMANCE RESULTS OF THE PROPOSED TECHNIQUE 
 

Database 

object label 
Sensitivity Specificity False 

(%) (%) positive 
(%) 

False neg-

ative (%) 
Youden’s 

Index 
Precision 

(%) 
Positive 

likeli-

hood 

Negative 

likeli-

hood 

F-measure 

(%) 
Accuracy 

(%) 
 

ViSOR 92.3 96.8 3.2 7.7 

PETS 2000 100 100 0 0 

CDVP 89.8 92.4 7.6 10.2 

SPEVI 98.3 100 0 1.7 

0.8906 99 

1 100 
0.8218 92.2 
0.9833 100 

28.6               0.1                 95.5                  93.3 

∞                0                    100                   100 

11.8               0.1                 91                     91.1 

∞                0                    99.2                  99.2 
 
 

Figure 6 shows the illustrative result of moving object detection using the proposed cells. The simulation shown in Fig. 6 

has been done using an array of 4-input cells and with an input frame size of 352 × 288 pixels. The values of the performance 

parameters (for the input frame size of 352 × 288 pixels) are given in Table III. The network gives an output at a reduced 

dimension of 176 × 144 pixels. We used the macro-model cells in Fig. 1 to simulate the object detection in 352 × 288 pixels. 

The pixels were processed within SPICE simulation environment through reading image frames from the benchmark object 

detection databases (ViSOR, PETS 2000, CDVP, and SPEVI databases). The binary changes detected in the output are then 

plotted back on the original image for display purposes. The template image at time t0 (Fig. 6a) is the first frame in the video 

and does not have any moving objects, while at in a subsequent frame at t1 objects (Fig. 6b) enter the scene and are detected 

as shown by the red colored pixels. The results are reported using ViSOR, PETS 2000, CDVP, and SPEVI databases. The 

performance values on object tracking tests across the databases result in an average F-score of 96.4%, accuracy of 95.9%, 

Youden’s index of 0.924, sensitivity of 95.6%, and specificity of 97.3%. Table IV shows the breakup of these results for the 

databases. Figure 7 shows the receiver operator characteristic of the object detection on the four databases using our proposed 

cell. The plot has been generated based on the amount of object blobs that have been correctly classified. Although objects 

are detected in all the frames, those that are difficult to recognise due to overlap with other objects in the same frame are 

considered to be not detected to make it realisable in practical object tracking tasks. 
 
 
 
 
 
 
 
 
 

(a) (b) (c) (d) 
 

Fig. 7: A graphical illustration of performance of the proposed method in realistic object detection situations: (a), (b), (c), and (d) show 

the receiver operator characteristics, along with a sample image frame with obtained detections for ViSOR, PETS 2000, CDVP and SPEVI 

databases. The boundaries shown are for illustration purpose. 
 
 

There exists low-power programmable circuits mimicking neural behaviour [25], [26] that can be used for object detection 

applications. However, any objective comparison between the proposed cell and those of the like in neuron-synapse in [25] is 

difficult with different technologies without reporting the power and area specific at the cell level. The classification part in 

similar works assumes the knowledge of gallery that can be understood as a offline matching method. In contrast, the proposed 

method produces templates on the fly (online processing) and the detection of objects are done on the incoming images without 

storing the templates, rather is encoded in the network of the cells. 
 

III. CONCLUSION 
 

A programmable memristive threshold logic circuit for moving object detection was presented in this paper. An important 

advantage of the method discussed is that it can support an implementation targeted at high speed imaging. The hardware 

nature of the cell architecture makes it an alternative to algorithmic approaches and highly attractive to the practical utilisation 

of high frame rates that could lead to near-continuous real-time object tracking, and even surpass human object tracking ability. 

The presented logic provides a framework to implement brain like logic in a memory and learning driven detection of multiple 

objects. In terms of hardware implementation, this needs memristor like devices that can do large number of cycles, smaller 

area and long data retention time which may be made possible with emerging memory technologies. A truly reconfigurable 

and dynamic cell for multiple object detection, tracking and recognition in high resolution and high speed videos is a topic 

for further research, that may have a significant impact on the way object detection in real-time is implemented in hardware. 
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