
	
  

	
  
Journal of Engineering Science and Technology Review 8 (2) (2015) 157 - 173 

Special Issue on Synchronization and Control of Chaos: Theory, 

Methods and Applications 

	
  

Research Article 

 

Memristor: A New Concept in Synchronization of Coupled Neuromorphic Circuits 
   

 

 Ch. K. Volos
*, 1

, I. M. Kyprianidis
1
, I. N. Stouboulos

1
, E. Tlelo-Cuautle

2
 and S. Vaidyanathan

3 

 
1
Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece. 

2
Department of Electronics, INAOE, Luis Enrique Erro No. 1, 72840, Tonantzintla, Puebla, Mexico. 

3
Research and Development Centre, Vel Tech University, Avadi, Chennai-600062, Tamil Nadu, India. 

 

Received 2 September 2014; Revised 4 October 2014; Accepted 25 October 2014 

___________________________________________________________________________________________ 

 

Abstract 

 

The existence of the memristor, as a fourth fundamental circuit element, by researchers at Hewlett Packard (HP) labs in 

2008, has attracted much interest since then. This occurs because the memristor opens up new functionalities in 

electronics and it has led to the interpretation of phenomena not only in electronic devices but also in biological systems. 

Furthermore, many research teams work on projects, which use memristors in neuromorphic devices to simulate 

learning, adaptive and spontaneous behavior while other teams on systems, which attempt to simulate the behavior of 

biological synapses.  

In this paper, the latest achievements and applications of this newly development circuit element are presented. Also, the 

basic features of neuromorphic circuits, in which the memristor can be used as an electrical synapse, are studied. In this 

direction, a flux-controlled memristor model is adopted for using as a coupling element between coupled electronic 

circuits, which simulate the behavior of neuron-cells. For this reason, the circuits which are chosen realize the systems of 

differential equations that simulate the well-known Hindmarsh-Rose and FitzHugh-Nagumo neuron models. Finally, the 

simulation results of the use of a memristor as an electric synapse present the effectiveness of the proposed method and 

many interesting dynamic phenomena concerning the behavior of coupled neuron-cells. 

 
 Keywords:  Chaos, neuron, synapse, memristor, FitzHugh–Nagumo model, Hindmarsh–Rose model, complete syncronization.  

 __________________________________________________________________________________________ 

 

1. Introduction 

 

Until the beginning of 70ies the electronic circuit theory has 

been spinning around the three known, fundamental two-

terminal circuit elements, which are known as: resistor (R), 

capacitor (C) and inductor (L). These elements reflect the 

relations between pairs of the four electromagnetic quantities 

of charge (q), current (i), voltage (v) and magnetic flux (φ) 

that mathematically can be written as: 
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d ( )d

d d

d ( )d

v R i i

q C v v

φ L i i

=

=
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                         (1) 

 

In the case that the factors C, L and R have constant 

values, the corresponding circuit elements are linear. 

However, as it can be derived, a relation between the charge 

(q) and the flux (φ) is missing. 

At that time (1971), Professor Leon Chua from the 

University of California at Berkley, dubbed this missing link 

by introducing the fourth fundamental element based on the 

symmetry arguments [1]. This fourth circuit element was 

named memristor (M), an acronym for memory resistor, 

which its existence was conjectured due to the following 

missing relation between the charge (q) and the flux (φ) 

(Fig.1(a)). 

 
d ( )dφ M q q=                          (2) 

 

The multiplicative term M(•) is called the memristance 

function. 

Dividing both sides of (2) by dt one obtains 

 

( )v M q i=                          (3) 

 

If M is constant, equation (3) is nothing but the defining 

relation of a linear resistor (R), as it can be shown from (1).  
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Fig. 1. The four circuit variables connected by the fundamental circuit 

elements and (b) a typical v-i characteristic curves of a memristor driven 

by a sinusoidal voltage input. 

 
However, Chua has proved theoretically that a memristor 

is a nonlinear element because its v-i characteristic is similar 

to that of a Lissajous pattern. So, a memristor with a non-

constant M describes a resistor with a memory, more 

precisely a resistor whose resistance depends on the amount 

of charge that has passed through the device. 

A typical response of a memristor to a sinusoidal input is 

depicted in Fig.1(b). The ‘pinched hysteresis loop current-

voltage characteristic’ is an important fingerprint of a 

memristor. If any device has a current-voltage hysteresis 

curve, then it is either a memristor or a memristive device. 

Another signature of the memristor is that the ‘pinched 

hysteresis loop’ shrinks with the increase in the excitation 

frequency. The fundamentality of the memristor can also be 

deduced from this figure, as it is impossible to make a 

network of capacitors, inductors and resistors with an v-i 

behavior forming a pinched hysteresis curve [2]. So, it will 

be very easy to visualize the inevitable presence of the 

memristor, if we rewrite equations (1) & (2) as shown in the 

Table 1. 

As we can see from Table 1 the integral can be used in 

four  different  ways  to   describe   the  relationship between  

 

 

current and voltage by either using it or not using it. We note 

that the equations for resistance and memristance appear 

identical, except for the presence of the integral sign in the 

latter’s case on both sides of laws. However, this integral 

cannot be cancelled because the constant of integration need 

not be zero. And this is the constant that makes the 

memristor ‘remember’ the previous state. 

Some of the more interesting properties of memristor are 

[1]: 

• Non-linear relationship between current (i) and voltage 

(v). 

• Does not store energy. 

• Similar to classical circuit elements, a system of 

memristors can also be described as a single memristor. 

• Reduces to resistor for large frequencies as evident in 

the v-i characteristic curve. 

• Memory capacities based on different resistances 

produced by the memristor. 

• Non-volatile memory possible if the magnetic flux and 

charge through the memristor have a positive 

relationship (M > 0). 

Furthermore, a more generalized class of systems, in 

regard to the original definition of a memristor, called 

memristive systems [2], is introduced. An nth-order current-

controlled memristive one-port is represented by 

 

( , , )
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                         (4) 

 

where R
n

w∈  is the n-dimensional state variable of the 

system. 

Also, the nth-order voltage-controlled memristive one-

port is defined as: 
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                         (5) 

 

Similarly to memristor, a memristive system has the 

following properties:  

The memristive system should have a dc characteristic curve 

passing through the origin. 

• For any periodic excitation the v-i characteristic curve 

should pass through the origin. 

• As the excitation frequency increases toward infinity 

the memristive system has a linear behavior. 

• The small signal impedance of a memristive system can 

be resistive, capacitive, or inductive depending on the 

operating bias point. 

After Chua’s work in 1971, only a few works appeared 

in the literature for a long time since it was thought that the 

memristor was only a theoretical element and it could not be 

realized practically. 
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Name Law Constant  α Its name 

Resistor i = αv α = 1/R R: Resistance 

Capacitor ∫i = αv α = C C: Capacitance 

Inductor i = α∫v α = 1/L L: Inductance 

Memristor ∫i = α∫v α = 1/M M: Memristance 

  
Tab. 1. The possible relationships between current (i) and voltage (v).

 

So, until recently, the memristor had received little 

attention [3-5], even though a working device made from 

op-amps and discrete nonlinear resistors had been built and 

demonstrated in the seminal paper of Chua [1]. The 

memristor, we can say that it was the ‘Holy Grail’ of 

Electronics. However, in 2008, Hewlett-Packard scientists, 

working at its laboratories in Palo Alto-California, 

announced in Nature [6] that a physical model of memristor 

has been realized. In their scheme, a memory effect is 

achieved in solid-state thin film two-terminal device. 

This element is passive while the latest realization of a 

memristor is that of an active one on a base of niobium 

oxide [7]. The memristor, which is realized by HP 

researchers, is made of a titanium dioxide layer which is 

located between two platinum electrodes. This layer is of the 

dimension of several nanometers and if an oxygen                  

dis-bonding occurs, its conductance will rise 

instantaneously. However, without doping, the layer behaves 

as an isolator. The area of oxygen dis-bonding is referred to 

as space-charge region and changes its dimension if an 

electrical field is applied. This is done by a drift of the 

charge carriers. The smaller the insulating layer, the higher 

the conductance of the memristor. Also, the tunnel effect 

plays a crucial role. Without an external influence the 

extension of the space-charge region does not change. 

 

 
Fig. 2. Structure of TiO2 memristor, in which TiO2−x and TiO2 layers are 

sandwiched between two platinum electrodes, (b) equivalent circuit and 

(c) symbol of the memristor. 

 

The internal state x is the extent of the space-charge 

region, which is restricted in the interval [0, 1] and can be 

described by the equation 

 

,    0 1,    R
w

x x x
D

= ≤ ≤ ∈                        (6) 

 

where w is the absolute extent of the space-charge region 

and D is the absolute extent of the titanium dioxide layer. 

The memristance can be described by the following 

equation: 

 

( )on off( ) 1M x R x R x= + −                        (7) 

 

where Ron is the resistance of the maximum conducting state 

and Roff represents the opposite case. So, when x = 0, 

R = Roff, and when x = 1, R = Ron. The vector containing the 

internal states of the memristor is one dimensional. For this 

reason scalar notation is used. The state equation is: 
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2

d
( )

d

ν
x R

i t
t D

µ
=                           (8) 

 

where µv is the oxygen vacancy mobility and i(t) is the 

current through the device. By using the equation (6) the 

previous equation can be rewritten as: 

 

ond
( )

d

ν
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i t
t D

µ
=                           (9) 

 

So, the dynamics of the memristor can therefore be 

modeled through the time dependence of the width w of the 

doped region. Integrating equation (9) with respect to time, 

 

on
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R
w w q t

D

µ
= +                      (10) 

 

where w0 is the initial width of the doped region at t = 0 and 

q is the amount of charges that have passed through the 

device. Substituting (6), (10) into equation (7) gives: 
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and ΔR = Roff − Ron. The term R0 refers to the net resistance 

at t = 0 that serves as the device’s memory. This term is 

associated with the memristive state, which is essentially 

established through a collective contribution, i.e. it depends 

directly on the amount of all charges that have flown 

through the device. 
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That’s why, we can say that the memristor has the feature 

to ‘remember’ whether it is on or off after its power is turned 

on and off. This announcement brought a revolution in 

various scientific fields, as many phenomena in systems, 

such as in thermistors whose internal state depends on the 

temperature [8], spintronic devices whose resistance varies 

according to their spin polarization [9] and molecules whose 

resistance changes according to their atomic configuration 

[10], could be explained now with the use of the memristor. 

Also, electronic circuits with memory circuit elements could 

simulate processes typical of biological systems, such as the 

learning and associative memory [11] and the adaptive 

behavior of unicellular organisms [12].  

Furthermore, neuromorphic computing circuits, which are 

designed by borrowing principles of operation typical of the 

human (or animal) brain, can potentially solve problems that 

are cumbersome (or outright intractable) by digital 

computation. Therefore, certain realizations of memristors 

can be very useful in such circuits because of their intrinsic 

properties which mimic to some extent the behavior of 

biological synapses. Just like a synapse, which is essentially 

a programmable wire used to connect groups of neurons 

together, the memristor changes its resistance in varying 

levels. Many research teams [13-16] found that memristors 

can simulate synapses because electrical synaptic 

connections between two neurons can seemingly strengthen 

or weaken depending on when the neurons fire. For this 

reason, many well-known circuits, in which the nonlinear 

element  has   been   replaced   by   memristors,   have   been  

proposed [17-19].  

Based on the aforementioned fact that memristors can 

mimic the behavior of biological synapses, we have studied, 

via computer simulations the dynamical behavior of two 

systems of coupled nonlinear neuromorphic circuits that 

simulates the well-known Hindmarsh-Rose and FitzHugh-

Nagumo neuron models. For this reason a flux-controlled 

memristor, as an electrical synapse, is used in each case. The 

proposed coupled systems have very interesting dynamic 

behavior as for certain values of their elements, they exhibit 

spiking/bursting and chaos phenomena, as it occurs in real 

neurons. 

According to the related explanations, the rest of the 

chapter is organized as follows: The next Section provides a 

brief description of the most interesting applications of 

memristors in various scientific fields. Section 3 presents the 

scientific field of neuromorphic circuits, which is probably 

the most exciting application of memristors, while Section 4 

presents the most well-known neuron models and the basic 

features of the synapse. In Section 5 the explanation of the 

relation between the synapse and the memristor is discussed. 

Section 6 is devoted to the results of the coupling schemes 

between the circuits that simulate the chosen neuron models 

via a memristor, which plays the role of a synapse. Finally, 

Section 6 outlines the conclusions that have been reached 

with this research study. 
 

 

2. Applications of Memristor 
 

What implications does the discovery of memristor hold for 

the future of electronics technology? If it is such an 

important circuit element, why has it taken nearly four 

decades to construct a prototype of the memristor? It is a fact 

that in history, we have several such instances of practical 

realizations lagging behind the theoretical conceptualization. 

Also, as it is mentioned, due to its dynamical behavior, the 

memristor enables a lot of new interesting applications in 

analog circuit design. Since, some realizations have been 

already presented, the development of applications with 

memristors becomes more and more challenging. Besides 

applications in neural networks and storage devices, analog 

memristive circuits also promise further applications. In this 

section, some of the more interesting and promising 

applications of the memristors are presented in detail. This 

list of applications reveals that the research on the memristor 

is a subject that will be insisted on it in the near future. 

• Digital Memory: Until now the most straightforward 

and developed application of memristive systems is the 

digital binary non-volatile memory. This occurs 

because a bit of information could be easily encoded in 

the memristive system’s state assigning, for example, 

the low resistance state to ‘1’ and the high resistance 

state to ‘0’. For that reason many research teams have 

already work on this subject [20-22]. So, the use of 

memristor could offer an enabling low cost technology 

for non-volatile memories where future computers 

would turn on instantly without the usual ‘booting 

time’, currently required in all personal computers [17]. 

• Programmable Analog Circuits: In this circuits’ family 

various memristive systems that operate under threshold 

conditions could be used as digital potentiometers, by 

applying small amplitude voltages to these systems 

when they are used as analog circuit elements [23]. In 

the case of memristive systems the state is changed only 

when the voltage applied to it exceeds a certain 

threshold. So, its resistance is constant in the analog 

mode of operation, and changes by discrete values with 

each voltage pulse. 

• Learning Circuits: An electronic circuit whose response 

at a given time adapts according to signals applied to 

this at previous moments of time, is called ‘learning 

circuit’ [12]. This actually is the reason for which 

memory circuit elements would be used because they 

could provide non-volatile information storage. Such 

electronic circuits have already been proposed and 

experimentally implemented. Pershin et al. [12] 

proposed a learning circuit which is composed of an LC 

contour and a memristive system in parallel with a 

capacitor that mimics the adaptive behavior of a slime 

mold ‘Physarum polycephalum’ from the group of 

amoebozoa. Additionally, Driscoll et al. [24] realized a 

similar learning in which the application of signals in a 

specific frequency range sharpens the quality factor of 

its resonant response, and thus the circuit learns 

according to the input waveform. 

• Quantum Computing with Memory Circuit Elements: 

Nowadays, the research topic of quantum computing 

becomes more and more interesting due to the fact that 

the usual computer technology reaches its limits. The 

superconducting qubit circuits, which are designed, 

involve usual capacitors and inductors [25, 26]. So, 

many research teams thought that the use of memory 

elements such as memcapacitive and meminductive are 

ideal for such circuits, especially for use in the field-

programmable quantum computing [27]. This would be 

done by replacing the capacitors and the inductors, 

which provide the coupling between different qubits, 

with non-dissipative memcapacitors and meminductors. 

So, by providing additional voltage sources to control 

the state of these memory elements the coupling 
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strength between qubits can be selected. This would be 

beneficial from such novel quantum hardware design 

because of the infinity interaction schemes that can be 

implemented within a single circuit architecture.  

• Digital Logic: One of the most promising applications 

of memristive systems could be their use to perform 

logic operations. There have already been demonstrated 

very promising hybrid reconfigurable logic circuits 

[28], and logic circuits with a ‘self-programming’ 

capability [29]. The state of the memristive system acts 

as both logic gate and latch capable to hold one bit of 

information. Lehtonen et al. [30] have reached to the 

interesting conclusion that two memristive systems 

suffice to compute all Boolean functions. 

• Metamaterials: In 2009 Driscoll et al. demonstrated a 

form of memory capacitance that interfaces 

metamaterials with a class of devices known 

collectively as memory devices [31]. The resonant 

elements that grant metamaterials their distinct 

properties have the fundamental limitation of restricting 

their useable frequency bandwidth. The development of 

frequency-agile metamaterials has helped to alleviate 

these bandwidth restrictions by allowing real-time 

tuning of the metamaterial frequency response. So, 

Driscoll et al. demonstrated electrically controlled 

persistent frequency tuning of a metamaterial, which 

allows the lasting modification of its response by using 

a transient stimulus.  

• Dynamic Load: Shin et al. have presented in 2010 a 

programmable gain amplifier that utilises a memristor 

as a variable resistor [32]. This implementation has the 

advantages of the increased step resolution of the 

effective resistance and the fact that this system is 

susceptible to minimal parasitics. Also, Pershin and Di 

Ventra have reported a similar approach in which they 

used memristors to develop programmable threshold 

comparators, Schmitt triggers and frequency relaxation 

oscillators [23]. 

• Image Processing: Memristive systems could be used 

for the edge detection which is an important 

computational step in early vision systems that finds 

application in various domains from computer vision to 

bio-imaging. This process is performed using either 

resource intensive software algorithms or by employing 

resistive grids, implemented with conventional CMOS 

elements. Prodromakis et al. (2010) have proposed the 

substitution of the CMOS elements with memristive 

elements serve as dynamic sensors which change in the 

total memristance value is a direct indication of the 

pixel intensity gradient between neighbouring pixels 

[33]. Since an edge is defined by a large intensity 

difference, the devices are monitored continuously and 

appropriate memristance thresholds are set to enable the 

faster or even slower detection of the edges, depending 

on the average pixel intensity contrast of the figure. 

• Cellular Neural Networks: As it is known, the Cellular 

Neural Networks (CNN) constitute a class of 

information processing systems, which are made of 

massive aggregates of regularly spaced circuit clones, 

called cells that communicate with each other only 

through their nearest neighbors. In a memristive 

implementation of a CNN processor, the intercellular 

connections are implemented by memristive crossbars 

[18]. The motivation for using memristive crossbars is 

that the area consuming intercellular communication 

network can be lifted from the CMOS layer, thus 

allowing for a larger number of cells within the same 

die area. 

• Other Applications: In the last few years new research 

results have appeared concerning the generation and 

analysis of chaotic signals using memristor elements. 

All these new techniques are based on the replacement 

of the nonlinear resistance in the circuit, like the well-

known Chua circuit [34], which is the most basic chaos 

generating circuit, by the memristor and novel features 

in chaotic behavior are observed. These attempts had as 

a motivation the use of such circuits for the purpose of 

modeling of dynamics which are shown in the nature. 

From this perspective, Itoh and Chua derived several 

oscillators from Chua's oscillators by replacing Chua's 

diodes with memristors characterized by a monotone-

increasing piecewise-linear function [35]. In the same 

way Muthuswamy and Kokate proposed other 

memristor based chaotic circuits [18]. Also, in 2010, 

Muthuswamy and Chua proposed an autonomous 

circuit that uses only three circuit elements in series: a 

linear passive inductor, a linear passive capacitor and a 

memristor [36]. Furthermore, in Refs. [19, 37-40] cubic 

memristors have replaced the nonlinear elements in 

well known circuits of Chua’s family. 

Apart from the interesting fundamental study of the 

dynamic behavior of nonlinear systems, the field of 

applications of such circuits also includes secure 

communication schemes with chaos based on memristors 

[18], the image stabilization [41] and image encryption 

technique by using memristors [42]. 

 

 

3. Neuromorphic Circuits 

However the most exciting application of memristive 

systems and possibly, the most important is in neuromorphic 

circuits. Neuromorphic are circuits which operation is meant 

to mimic that of the (human or animal) brain. In these 

circuits, memristive systems (and possibly also 

memcapacitive systems) can be used as synapses whose role 

is to provide connections between neurons and store 

information. The small size of solid-state memristive 

systems is highly beneficial for this application since the 

density of memristive systems in a chip can be of the same 

order of magnitude as the density of synapses in human 

brains (1010 synapses per square centimeter). Therefore, 

using memristive systems, the fabrication of an artificial 

neural network of a size comparable to that of a biological 

brain becomes possible.  

As it is known, a neuron, which is also known as 

‘neurone’ or ‘nerve cell’, is an electrically excitable cell that 

processes and transmits information through electrical and 

chemical signals. A signal occurs via a synapse, a 

specialized connection with other cells. So, neurons connect 

to each other to form neural networks. Neurons are the core 

components of the nervous system, which includes the brain, 

spinal cord, and peripheral ganglia. A number of specialized 

types of neurons exist, such as [43]:  

• Sensory neurons which respond to touch, sound, light 

and numerous other stimuli affecting cells of the 

sensory organs that then send signals to the spinal cord 

and brain.  

• Motor neurons which receive signals from the brain and 

spinal cord, cause muscle contractions, and affect 

glands.  
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• Interneurons which connect neurons to other neurons 

within the same region of the brain or spinal cord.  

All neurons are electrically excitable, maintaining 

voltage gradients across their membranes by means of 

metabolically driven ion pumps, which combine with ion 

channels embedded in the membrane to generate 

intracellular-versus-extracellular concentration differences 

of ions such as sodium, potassium, chloride, and calcium. 

Changes in the cross-membrane voltage can alter the 

function of voltage-dependent ion channels. If the voltage 

changes by a large enough amount, an all-or-none 

electrochemical pulse called an action potential is generated, 

which travels rapidly along the cell's axon, and activates 

synaptic connections with other cells when it arrives. 

Real neurons show a variety of dynamical behaviors, 

according to the values of biophysical parameters [44]. 

Among the most important ones, one may find:  

 

• Quiescence: The input to the neuron is below a certain 

threshold and the output reaches a stationary regime. 

• Spiking: The output is made up of a regular series of 

equally spaced spikes. 

• Irregular Spiking: The output is made up of an 

aperiodic series of spikes. 

• Bursting: The output is made up of groups of two or 

more spikes (called bursts) separated by periods of 

inactivity. 

• Irregular Bursting: The output is made up of an 

aperiodic series of bursts. 

 

The other important part in the nervous system is the 

synapse. The word ‘synapse’ was introduced in 1897 by 

English physiologist Michael Foster. Synapses are essential 

to neuronal function because they are the means by which 

the  signals  are  passed  from  one  neuron  to  another.  At a  

synapse, the plasma membrane of the signal-passing neuron 

(the presynaptic neuron) comes into close apposition with 

the membrane of the target (postsynaptic) cell. Both the 

presynaptic and postsynaptic sites contain extensive arrays 

of molecular machinery that link the two membranes 

together and carry out the signaling process.  

There are two fundamentally different types of synapses 

[45]: 

 

• Chemical synapses: In this type of synapses, the 

electrical activity in the presynaptic neuron is converted 

(via the activation of voltage-gated calcium channels) 

into the release of a chemical called a neurotransmitter 

that binds to receptors located in the postsynaptic cell, 

usually embedded in the plasma membrane. The 

neurotransmitter may initiate an electrical response or a 

secondary messenger pathway that may either excite or 

inhibit the postsynaptic neuron. Because of the 

complexity of receptor signal transduction, chemical 

synapses can have complex effects on the postsynaptic 

cell. 

• Electrical synapses: In this type of synapses, the 

presynaptic and postsynaptic cell membranes are 

connected by special channels called gap junctions that 

are capable of passing electric current, causing voltage 

changes in the presynaptic cell to induce voltage 

changes in the postsynaptic cell. The main advantage of 

an electrical synapse is the rapid transfer of signals 

from one neuron to the next. 

 

4. Neuron Models 
 

Neurons are a core component of the nervous system. 

Organized internally similar to other cells, they are 

specialized for intercellular communication by way of their 

membrane potential. Biological experiments and numerical 

analysis of models for the oscillations of isolated neurons, 

have led the researchers to construct low dimensional analog  

electronic neurons whose properties are designed to emulate 

the membrane voltage characteristics of the individual 

neurons. So, in the case of modeling a biological neuron, 

physical analogues are used in place of abstractions such as 

‘weight’ and ‘transfer function’. The input to a neuron is 

often described by an ion current through the cell membrane 

that occurs when neurotransmitters cause an activation of 

ion channels in the cell. We describe this by a physical time-

dependent current I(t). The cell itself is bound by an 

insulating cell membrane with a concentration of charged 

ions on either side that determines a capacitance Cm. Finally, 

a neuron responds to such a signal with a change in voltage, 

or an electrical potential energy difference between the cell 

and its surroundings, which is observed to sometimes result 

in a voltage spike called an action potential. This quantity, 

then, is the quantity of interest and is given by Vm. Until 

now, many models of biological neurons have been reported 

in the literature. Next, the most important models, which 

will be used in the next Section, are presented in detail. 

 

 
4.1. Hodgkin-Huxley model 

 

 It is the most successful and widely-used model of neuron, 

which has been based on the Markov kinetic model 

developed from Hodgkin and Huxley's 1952 work based on 

data from the squid giant axon [46]. This model tries to 

replicate the electrophysiological process of biological 

neurons.  

In more details, the semi-permeable cell membrane 

separates the interior of the cell from the extracellular liquid 

and acts as a capacitor (Fig.3). If an input current I(t) is 

injected into the cell, it may add further charge on the 

capacitor, or leak through the channels in the cell membrane. 

Because of active ion transport through the cell membrane, 

the ion concentration inside the cell is different from that in 

the extra-cellular liquid. The ‘Nernst’ potential generated by 

the difference in ion concentration is represented by a 

battery. The conservation of electric charge on a piece of 

membrane implies that the applied current I(t) may be split 

in a capacitive current IC which charges the capacitor C and 

further components Ik which pass through the ion channels. 

Thus 

                             

( ) ( ) ( )
C k

k

Ι t I t I t= +∑                     (13) 

 

where the sum runs over all ion channels. In the standard 

Hodgkin-Huxley model there are only three types of 

channel: a sodium channel with index Na, a potassium 

channel with index K and an unspecific leakage channel with 

resistance R (Fig.3). 

From the definition of capacity C = Q/u where Q is a 

charge and u the voltage across the capacitor, we find the 

charging current IC = C du/dt. Hence from (13): 
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d
( ) - ( )

d
k

k

u
C Ι t I t
t
= ∑     (14) 

 

In biological terms, u is the voltage across the membrane 

and ( )
k

k

I t∑  is the sum of the ionic currents which pass 

through the cell membrane. 
 

 
Fig. 3. Schematic diagram for the Hodgkin-Huxley model. 

 

As mentioned above, the Hodgkin-Huxley model 

describes three types of channel. All channels may be 

characterized  by  their  resistance  or,  equivalently,  by their  

conductance. The leakage channel is described by a voltage-

independent conductance gL = 1/R; the conductance of the 

other ion channels is voltage and time dependent. If all 

channels are open, they transmit currents with a maximum 

conductance gNa or gK, respectively. Normally, however, 

some of the channels are blocked. The probability that a 

channel is open is described by additional variables m, n and 

h. The combined action of m and h controls the Na
+
 

channels. The K
+
 gates are controlled by n. Specifically, 

Hodgkin and Huxley formulated the three current 

components as: 

 
3 4( ) ( ) ( )k Na Na K K L L

k

I g m h u E g n u E g u E= − + − + −∑       (15) 

 

where the parameters ENa, EK, and EL are the reversal 

potentials.  

The three variables m, n, and h are called gating 

variables. They evolve according to the differential 

equations 

                                                                               

d
( )(1 ) ( )

d

d
( )(1 ) ( )

d

d
( )(1 ) ( )

d

m m

n n

h h

m
α u m β u m

t

n
α u n β u n

t

h
α u h β u h

t

⎧
= − −⎪

⎪
⎪

= − −⎨
⎪
⎪

= − −⎪
⎩

   (16) 

 

where α and β are empirical functions of u that have been 

adjusted by Hodgkin and Huxley to fit the data of the giant 

axon of the squid. 

 

4.2. FitzHugh-Nagumo model 

 

Sweeping simplifications to Hodgkin-Huxley were 

introduced by FitzHugh and Nagumo [47]. Seeking to 

describe ‘regenerative self-excitation’ by a nonlinear 

positive-feedback membrane voltage and recovery by a 

linear negative-feedback gate voltage, they developed the 

model described by 

 

 

( )

3d 1

d 3

d 1

d

x
γ x x y z

t

y
x α βy

t γ

⎧ ⎛ ⎞
= − + +⎜ ⎟⎪⎪ ⎝ ⎠

⎨
⎪ = − − +
⎪⎩

             (17) 

 

where the variable x describes the potential difference across 

the neural membrane and y can be considered as a 

combination of the different ion channel conductivities, 

present in the Hodgkin-Huxley model. The control 

parameter z of the FitzHugh system describes the intensity of 

the stimulating current. 

 

 

4.3. Hindmarsh-Rose model  

 

The Hindmarsh-Rose (HR) model is based on the global 

behavior of the neuron and its underlying operation is 

removed from the actual biological process. For this reason, 

is one of the most interesting neuron models which is used 

for studying the neuronal activity and more specifically the 

spiking-bursting behavior of the membrane potential 

observed in experiments made with a single neuron. This 

phenomenological neuron model, which has been proposed 

by Hindmarsh and Rose [48], may be seen either as a 

generalization of the Fitzhugh equations or as a 

simplification of the physiologically realistic model 

proposed by Hodgkin and Huxley. It has been proven to be a 

single-compartment model providing a good compromise 

between two seemingly mutually exclusive requirements: 

The model for a single neuron must be both computationally 

simple, and capable of mimicking almost all the behaviors 

exhibited by real biological neurons, in particular the rich 

firing patterns [49]. 

So, the three-variable HR model of action potential was 

proposed as a mathematical representation of the firing 

behavior of neurons, and it was originally introduced to give 

a bursting type with long InterSpike Intervals (ISIs) of real 

neurons. It can be used to simulate spiking/bursting and 

chaos phenomena in real neurons. The equations of the HR 

model are given as follows: 
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d

d

d

d
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d
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Y a X b X Z I

τ

Y
c d X Y

τ

Z
r s X χ Z

τ

⎧
= − ⋅ + ⋅ − +⎪

⎪
⎪

= − ⋅ −⎨
⎪
⎪

= ⋅ ⋅ + −⎪
⎩

   (18) 

 

where, X represents the membrane action potential, Y is a 

recovery variable and Z is a slow adaptation current;              

I mimics the membrane input current for the biological 

neurons; a, b allows one to switch between bursting and 

spiking behaviors and to control the spiking frequency;                

r controls the speed of variation of the slow variable Z in 

(18), (i.e., the efficiency of the slow channels in exchanging 

ions) and in the presence of spiking behaviors, it governs the 

spiking frequency, whereas in the case of bursting, it affects 

the number of spikes per burst; s governs adaptation:                   

a unitary value of s determines spiking behavior without 

accommodation and sub-threshold adaptation, whereas 

values around s = 4 give strong accommodation and                 

sub-threshold overshoot, or even oscillations; χ sets the 

resting potential of the system.  

In the following numerical simulations, let a = 1.00,                    

b = 2.82, c = 1.00, d = 5.00, r = 0.02, s = 4.00, χ = –1.60 

and I = 3.50. As it can be shown in Figure 4(a), the HR 

model shows the typical bursting neuronal behavior, in 

which spikes are separated by periods of inactivity, while in 

Figure 4(b) the chaotic behavior of the model for the 

selected parameter’s values is confirmed. Each semi-circle 

originates from an individual spike from the overall output 

burst.  

Next, the FitzHugh-Nagumo and Hindmarsh-Rose 

neuron models will be the subject of study by using coupling 

schemes in which a memristor has been used as an artificial 

synapse. 
 

 

5. The Use of Memristor as a Synapse 
 

Communication and coordination between neurons is made 

possible by synapses. When a synapse connects two neurons 

together the ‘postsynaptic’ neuron receives the ionic current 

while the ‘presynaptic’ neuron is the source. Also, in living 

nervous systems one finds three general types of synaptic 

connections among neurons [50]: ohmic electrical 

connections (also called gap junctions), which is usually 

found in the nervous system of all animals, and two types of 

chemical connections, excitatory and inhibitory, which are 

the more common. So, a synapse is essentially a 

programmable wire used to connect together groups of 

neurons.  

Neuromorphic computers which aim at mimicking 

biological computation, and have numbers of neurons and 

synapses approaching biological scale, can be modeled with 

supercomputers or neural hardware accelerators. However, 

in order for such neural computing devices to achieve a 

biologically plausible synaptic density, it is imperative to 

minimize synaptic size. 

This feat is challenging because the synaptic weight of 

each synapse must be stored. Since digital synapse 

implementations require that several bits of data per synapse 

are memorized, analog synapses may be a superior choice. 

Analog synapses based on floating-gate transistors store the 

weight as charge that is trapped between insulating layers. 

The charge can be manipulated by injecting and tunnelling 

electrons to and from the floating node. Such transistors rely 

on proven technology and allow a relatively high density, 

rendering them worthwhile synaptic candidates. However, 

the memristors, this new class of devices, is the next leap 

forward to high density synapse fabrication. Memristive 

devices will allow the fabrication of single device synapses 

as crossbar arrays on top of Complimentary Metal-Oxide-

Semiconductor (CMOS) circuits. As the synapses would be 

in the memristive layer on top of the CMOS, the entire 

silicon area would be left for neurons. 
 

 
Fig. 4. Simulation of Hindmarsh–Rose neuron showing (a) a typical 

chaotic bursting neuronal behavior for the membrane potential (X) and 

(b) a chaotic phase portrait of Y vs. X. 

 

Some of the characteristics of a memristor synapse in 

comparison with various other CMOS designs, like low 

power consumption (because of nonvolatile capacitor-like 

weight memory and less transistor counts), linear behavior 

of the network (because of linear multiplier), more speed in 

the operation phase (because of using very fast memristor 

multiplier instead of slow Gilbert multipliers) and smaller 

size (because of the replacement of many transistors and a 

big capacitor with a nanometer memristor), make the 

memristors suitable for use in artificial neural networks.  

Until now, various memristors and techniques are used 

for studying their behavior as an artificial synapse. Afifi et 

al. (2009) have proposed and analyzed Spike-Timing-

Dependent-Plasticity (STDP) rule for memristor crossbar 

based spiking neuromorphic networks [51]. Sharifi et al. 

(2010) by using the characteristics, structures and relations 

for the invented HP's memristor, designed two general 

SPICE models for the charge-controlled and flux-controlled 
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memristors, which are used as synapses in an artificial 

neural network [52]. A pulse-based programmable 

memristor circuit for implementing synaptic weights for 

artificial neural networks is proposed by Kim et al. [53]. 

Also, in 2012, Sah et al. have implemented a memristor 

bridge neural circuit, by using memristor emulator circuits, 

which is able to perform signed synaptic weighting [54]. 

In 2010, piecewise linear φ-q characteristics of a flux 

controlled memristor [17], or characteristics with other 

forms of smooth continuous nonlinearities [55], have been 

proposed for using in nonlinear circuits design. Also, other 

researchers have proposed memristors having cubic 

nonlinearities [18, 19, 35, 56] of the form q(φ) = αφ + βφ
3
, 

with α < 0 and β > 0. Snider (2008) and Linares-Barranco 

(2009) have proposed memristors with sinh-like 

characteristic curves, which have been used to explain spike-

time-dependent-plasticity in neural synapses [16, 57].  

In this direction as an approximation of the 

aforementioned sinh-like characteristic curves, for studying 

the interconnections among coupled analog electronic 

neurons a flux-controlled memristor is used, to emulate the 

excitatory and inhibitory synaptic connection as well as the 

ohmic electrical connections. The proposed memristor is 

described by the function w(φ), where q(φ) is a smooth 

continuous cubic function of the form: 

                                                                                                         
3

1 3( ) k kq φ φϕ = +      (21) 

 

with k1, k3 > 0. As a result the memductance w(φ) is 

provided by the following expression: 

                                                                                            

2

1 3

d ( )
( ) = k 3k

d

q
w φ φ

ϕ

ϕ
= +     (22) 

 

So, it will be shown that the proposed memristor acts as an 

artificial synapse between coupled neuron-cells. 

 

 

6. Coupled Neuromorphic Circuits 

 

In this Section two different circuits, which realized the 

Hindmarsh-Rose and the FitzHugh-Nagumo neuron models, 

are coupled via the previously mentioned memristor that is 

used as an artificial synapse. The proposed systems are 

solved numerically by applying the fourth-order Runge-

Kutta algorithm and various tools of nonlinear dynamics 

such as the bifurcation diagram and the phase portraits have 

been used. As it will be presented in detail, the coupled 

neuronal systems show interesting dynamical behavior, such 

as chaos, periodic behavior and synchronization.  

Systems of chaotic oscillators, which are coupled, are 

frequently found not only in the simulation environment or 

the laboratory but also in the natural world. For this reason, 

many techniques for coupling two or more nonlinear chaotic 

systems have been proposed in the literature. All these 

techniques can be mainly divided into two classes: 

‘unidirectional coupling’ and ‘bidirectional or mutual 

coupling’. In the unidirectional coupling, one system drives 

another one, while on the contrary in mutual coupling both 

the circuits are connected and each circuit’s behavior 

influences the dynamics of the other. The case of mutual 

coupling between two coupled chaotic oscillators is 

described by the following set of differential equations: 

                                                                                             

   

!x
1
= F(x

1
)−C ⋅ x

1
− x

2( )
!x

2
= G(x

2
)+C ⋅ x

1
− x

2( )

⎧
⎨
⎪

⎩⎪
    (23) 

 

while in the case of unidirectional coupling the system of 

differential equation is written as: 

                                                                                             

   

!x
1
= F(x

1
)

!x
2
= G(x

2
)+C ⋅ x

1
− x

2( )

⎧
⎨
⎪

⎩⎪
    (24) 

 

where F(x), G(x) are vector fields in the phase space of 

dimension n, i.e. R
n

x∈ , and C is a symmetric matrix of 

constants which describes the nature and strength of the 

coupling between the oscillators. 

Electrical synapses are usually bidirectional but in some 

cases can operate heavier in one direction than the other, or 

only in one direction [50]. They are created when the 

presynaptic and postsynaptic membranes meet and gap 

junction channels of each align. Ions flow through gap 

junctions proportionally to the potential differential across 

them. So, electrical synapses are quick message carriers. 

On the other hand, chemical synapses are more 

commonly found in biology. Unlike the electrical synapse, 

there is no direct connection between the presynaptic and 

postsynaptic neurons. No ionic current flows between 

neurons, but neurotransmitters secreted by the presynaptic 

neuron open receptors for special molecules [58]. These 

molecules which are allowed to flow through the receptors 

have a postsynaptic potential response which either increases 

(excitatory coupling) or decreases (inhibitory coupling) the 

membrane potential. 

The basic tool of the study of the dynamic behavior of 

the coupled neuron models is the well-known ‘bifurcation 

diagram’, which is a very common perspective in nonlinear 

dynamics. Also, in order to study how a system depends on 

the initial values of the state variables, two different 

bifurcation diagrams are produced numerically. In the first 

approach, the bifurcation diagram is produced by increasing 

the coupling factor ξ, from ξ = 0 (uncoupled system) to ξmax 

with step Δξ, while initial conditions in each iteration have 

different values. This occurs because the last values of the 

state variables in the previous iteration become the initial 

values for the next iteration. In the second approach, the 

bifurcation diagram is produced by using the same initial 

conditions in each iteration. This means that the system 

begins, in each iteration, for the same basin of attraction. 

Finally, the most interesting phenomenon and one of the 

objectives of this work is the study of the synchronization of 

the coupled neuron-cells. Synchronization is a phenomenon 

characteristic of many processes in natural systems and 

especially in non-linear science [59]. It has remained an 

objective of intensive research and today it is considered as 

one of the basic nonlinear phenomena studied in 

mathematics, physics, engineering or life science [60]. 

Synchronization of nonlinear oscillators is also widely 

studied in biological systems [61, 62] for understanding how 

large and small neural assemblies  efficiently and sensitively  

achieve desired functional goals [63]. 

In general, synchronization of chaos is a process, where 

two or more chaotic systems adjust a given property of their 

motion to a common behavior, such as equal trajectories or 

phase locking, due to coupling or forcing.  
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So, in the case of ‘full or complete chaotic 

synchronization’, which is the most studied type of 

synchronization [64-67], two or more chaotic systems follow 

the same trajectory, i.e., 

                                                                                                                      

1 2( ) ( )  as  x t x t t= →∞    (25) 

 

 

6.1. Coupled Hindmarsh-Rose Circuits 

 

The schematic of the circuit which makes the analog 

simulation of a Hindmarsh-Rose neuron model of equation 

(18) is shown in Fig.5(a). It consists of three integrators {1}-

{3}, two inverters {4}, {5} and two multipliers {6}, {7}. 

The integrators and inverters can be implemented by using 

the operational amplifiers TL082 while the multipliers by 

using the AD633, which has high impedance differential 

inputs and a 10V scaled output. The voltages of the positive 

and negative power supplies were set  ±15V. 

The circuit of Fig.5(a) is described by the following set 

of differential equations. 
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By introducing the new variables and parameters, 
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the  normalized system of Hindmarsh-Rose neuron model of 

Eq.(18), for a = 1.0 and c = 1.0, is obtained. In Table 2 the 

values of circuit’s elements in order to have the specific 

values of system’s parameters, b = 2.82, d = 5.0, r = 0.02,       

s = 4.0, χ = 1.6 and I = 3.5, are listed. 
 

R  =    10.00 kΩ 

R1 = 354.60 Ω 

R2 = 100.00 Ω 

R3 = 200.00 Ω 

R4 =     0.25 ΜΩ 

R5 =     0.50 ΜΩ 

C  =   10.00 nF 

V0 =     1.00 V 

V1 =     3.50 V 

V2 =     1.00 V 
 

Tab. 2. The values of circuit’s elements. 

 

 
Fig. 5. (a) Schematic diagram of the Hindmarsh-Rose circuit; (b) Circuit 

realization for producing the difference signal DIF = (x1 – x2) and –DIF, 

which are used in the coupling scheme via the memristor.   

 

 

Next, a system of two HR neuron model’s circuits 

coupled via the proposed memristor, which acts as an 

artificial synapse, is studied. For this reason, the two 

different approaches of coupling (mutual and unidirectional) 

are used in order to study system’s behavior. 

In the first case, the network of two HR neuron model’s 

circuits, electrically coupled via the proposed memristor is 

denoted as N1 ↔ N2, in which N1 and N2 represent the two 

mutually coupled neurons, and the arrow denotes the 

electrical synaptic transfer direction. Also, as a stimulation a 

AC signal (V1 = VAcos(2πft) is used in the first neuron. 

For implementing the mutual type of coupling, between 

the HR circuits, a differential amplifier with op-amp {8}, 

which realize the signal DIF = (x1 – x2) is used (Fig.5(b)). 

Also, the inverter {9} is used for inverting the signal DIF in 

the case of the second coupled circuit. So, the first circuit 

models a HR neuron which is stimulated, while the second is 

a neuron which is coupled with the first one via the 

memristor that plays the role of an artificial synapse. 

By applying the first Kirchhoff law, we obtain: 

 

2 31

M

1 2

1 1 1 1 d

10 100 d

V x
y z+ x x i C

R R R R R t
+ − − + = −             (27) 
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where, 

                                                                                                                                  

( )
M M
i w ϕ υ=      (28) 

 
and w(φ) the memductance is provided by the equation (22). 

So, by using the previously introduced normalized variables 

and the normalized variable of the memristor,                           

U = φ/(V0RC), the coupled system can be described by the 

following normalized system of differential equations (29). 
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      (29) 

 
where, ξ1 = Rk1 and ξ3 = R

3
V0

2
C

2
k3. 

The first three equations of system (29) represent the 

first HR stimulated neuron, the next three represent the 

second HR neuron and the last one is the proposed 

memristor’s equation. For studying the effect of the 

proposed memristor to coupled system’s behavior the 

normalized amplitude is I0 = VA/V0 = 3.5 and the normalized 

frequency is chosen to be fN = RCf = 0.16, while the rest of 

the parameters remain the same. 

In Fig.6(a) the bifurcation diagram (first approach) of 

system’s (38) behavior, by plotting the signal difference              

(Y2 – Y1), with respect to the bifurcation parameter, is shown. 

At the beginning, the ξ1 is chosen as a bifurcation parameter, 

while the other parameter of the memristor, the ξ3 remains 

equal to zero. In this case, the two neuron-cells are linearly 

coupled, so the memristor simulates as a gap junction 

between them.  

For extremely low values of the coupling factor ξ1 the 

first neuron-cell shows the typical chaotic bursting neuronal 

behavior of Fig.4, under the influence of the stimulation, 

while the second neuron-cell is inactive. For greater values 

of ξ1 (i.e., ξ1 = 0.02) the coupled system is also in a chaotic 

state, as it is clearly shown from the phase portrait of Y2 

versus Y1 (Fig.6(b)). However, for these values the second 

neuron-cell begins to oscillate chaotically as it is shown for 

the phase portrait of Y2 versus X2 in Fig.6(c). The range of 

this chaotic region is gradually narrowed as the coupling 

factor increases and ultimately results in a periodic state for 

ξ1 > 0.0226. Fig.6(d) displays the system’s period-1 attractor 

in the Y2 versus Y1 phase portrait. 

In the second type of coupling (unidirectional coupling), 

the network of two HR neuron model’s circuits are coupled 

again via the proposed memristor, but in this case only the 

second cell N2 is influenced by the first one N1, which is 

stimulated by the external AC signal (N1 → N2). The 

coupled system, in the case of unidirectional coupling, can 

be described by the following normalized system of 

differential equations (30). 
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So, in Figs.6(e) & 6(f) the bifurcation diagrams in the 

two aforementioned approaches, with the same and different 

initial conditions in each step, are shown respectively. In 

general, these two diagrams has the same structure as the 

system begins in each case from the chaotic state (ξ1 = 0.02) 

and finally result in a periodic state (period-1), for ξ1 > 7.31. 

However, there is a great difference between them. In the 

first bifurcation diagram of Fig.6(e) the system passes 

through an intermediate chaotic region, while in the second 

one (Fig.6(f)) the system has a periodic behavior in the 

respective region, in which the period of the system is 

gradually decreased and finally results to a period-1. This 

difference is due to the well-known phenomenon of 

‘multistability’ [68] in which the state of the coupled system, 

for a specific value of the coupling factor, may be different 

for the same set of system’s parameters but for different 

initial conditions. Also, the coupling factor, for which the 

system results in a period-1 state, is much greater than in the 

bidirectional coupling of Fig.6(a). This occurrs because in 

the bidirectional coupling the coupled neurons interact and 

the system goes to its final state for small values of ξ1. In 

contrary, in the unidirectional coupling only the first neuron-

cell affects the dynamic behavior of the second neuron-cell, 

so greater values of the coupling factor is needed for 

achieving the final state. 

Next, for studying the influence of the second term ξ3 of 

the memristor, the parameter ξ1 is chosen to be equal to 0.02, 

so as the system is in chaotic mode according to the previous 

analysis, while ξ3 varies. In the bidirectional coupling of 

neuron-cells, the memristor leads the system from the 

chaotic desynchronization for ξ3 = 0 to an approximate 

synchronization mode. Also, a sudden transition from the 

irregular chaotic bursting behavior of each neuron, for           

ξ3 = 0, to the periodic spiking behavior, for greater values of 

ξ3 = 0, is observed. This is due to the way of coupling 

(mutually), which allows the interaction between the 

coupled cells by leading the system to a totally different 

dynamic behavior. 

The synchronization of the mutually coupled neuron-

cells is quantified by calculating the difference ΔY = Y1 – Y2 

and studying the normalized standard deviation σΝ = ΔY/Y1. 

For this reason a diagram of σN versus the parameter ξ3 has 

been made (Fig.6(g)). As it is shown, the deviation in the 

case of bidirectional coupling (black line) has decreased 
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with the increasing of ξ3 and finally for ξ3 > 0.0925 the 

normalized standard deviation is smaller than 2%. This 

means that the synchronization of the coupled neuron-cells 

is almost complete, as it shown in Fig.6(h). So, the 

memristor contributes to the synchronization of the coupled 

neuron-cells. 

In the case of the unidirectionally coupled neuron-cells 

the use of the proposed memristor has the same effect as in 

the previous case. The coupled system is driven again from 

the chaotic desynchronization to the synchronization as the 

parameter is increased. But in this approach each one of the 

coupled neuron-cells is in a chaotic mode. So, a transition 

from the independent chaotic behavior to the synchronized 

chaotic bursting is observed. Also, the normalized standard 

deviation σΝ (gray line in Fig.6(g)) is decreased with the 

increasing of the parameter ξ3 but with smaller rate due to 

the coupling way. So, the system is driven again to a 

synchronization mode with a small deviation. 
 

 

6.2. Coupled FitzHugh-Nagumo Circuits 
 

As introduced by Fitzhugh (1961), the Bonhoeffer – van der 

Pol (BvP) model, for a spiking neuron, is a two dimensional 

reduction of the Hodgkin-Huxley equations [46].                  

A qualitative description of the single neuron activity is 

given, according to FitzHugh, by the system of coupled 

nonlinear differential equations (17). In 1962, Nagumo et al. 

[69] proposed an electronic simulator of the BvP model of 

FitzHugh using a tunnel diode as the nonlinear element 

(Fig.7(a)). 

In this chapter a different approach for the analog 

simulation of the BvP model of differential equations (17), 

by using a nonlinear resistor with a smooth cubic i-v 

characteristic, is adopted (Fig.7(b)). The smooth cubic i-v 

characteristic of the nonlinear resistor of this circuit is given 

by the following equation: 

 
3

2

0

1 1
( )

3

υ
i g υ υ

ρ V
Ν

⎛ ⎞
= = − −⎜ ⎟

⎝ ⎠
               (31) 

 

where ρ and V0 are normalization parameters.  

From Kirchhoff’s laws, the following equations are 

obtained: 
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   (32) 

 

By  introducing  new,  normalized  variables,  
t

τ

LC
= ,  

0

υ
x
V

= , 

0

L
ρi

y
V

=  and 

0

S
ρi

z
V

= , system (32) is reduced to 

differential equations of system (17), where, 

0

E
α
V

= , 

 
R

β
ρ

= and 
1 L

γ
ρ C

= . 

However, Rajasekar and Lakshmanan proposed a 

slightly different form of BvP oscillator [70, 71] given by 

the following state equations: 

( )

3d 1

d 3

d

d

x
x x y z

τ

y
c x a by

τ

⎧
= − − +⎪⎪

⎨
⎪ = + −
⎪⎩

    (33) 

 

The study of system (33) revealed the existence of 

chaotic behavior, following the period doubling route to 

chaos, and devil’s staircases. The nonlinear differential 

equations (33) can be also simulated by a nonlinear electric 

circuit, using a nonlinear resistor with the same smooth 

cubic  i-v  characteristic  as  before  (Fig.7(c)).   By  applying  

again the two Kirchhoff’s laws we obtain the following 

equations. 

                                                                                                                               

C L N S
i i i i+ + =      (34) 

 

and 

 

d
+ +

d

L

L

i
υ E Ri L

t
= −      (35) 

 

By introducing the new, normalized variables, 
t

τ
ρC

= , 

0

υ
x
V

= , 

0

L
ρi

y
V

=  and 

0

S
ρi

z
V

= , equations (34) and (35) are 

reduced to equations (33), where, 

0

E
α
V

= , 
R

β  

ρ
=  and 

2
ρ C

c
L

= . 

In the aforementioned circuits of Figs.7(b) & 7(c), the 

driving source is a current source iS. However, in most cases, 

circuits are driven by voltage sources. In this section, the 

circuit of Fig.7(c) driven by a voltage source, as it is shown 

in Fig.7(d), is proposed. The smooth cubic i-v characteristic 

of the nonlinear resistor of the circuit of Fig.7(d) remains the 

same as in equation (31). 

By applying the two Kirchhoff laws, the system of 

differential equations (36) is obtained: 
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where, 
t
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The driving voltage source has the following form: 
 

( )0
cos 2 Nz U f τ= π     (37) 

 

where the normalized frequency is fN = ρCf.  
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Fig. 6. (a) Bifurcation diagram of (Y2 – Y1) vs. ξ1, in the case of mutually coupled neuron-cells, for ξ3 = 0,  (b) Phase portraits of Y2 vs. Y1, for ξ3 = 0 

and ξ1 = 0.02, (c) Phase portraits of Y2 vs. X2, for  ξ3 = 0 and ξ1 = 0.02 and (d) Phase portraits of Y2 vs. Y1, for ξ3 = 0 and ξ1 = 0.05;                                     

(e) & (f) Bifurcation diagrams of (Y2 – Y1) vs. ξ1, with the two different approaches,  in the case of unidirectionally coupled neuron-cells, for ξ3 = 0;  

(g) Diagram of the normalized standard deviation σΝ  vs. the parameter ξ3, in the cases of bidirectionally (black line) and unidirectionally (gray line) 

coupling, for ξ1 = 0.02; (h) Phase portrait of Y2 vs. Y1, for (ξ1, ξ3) = (0.02, 0.3). In all cases the following parameters have been used. b = 2.82, d = 5.0, 

r = 0.02, s = 4.0, χ = 1.6 and fN = 0.16, and initial conditions (X1, Y1, Z1, X2, Y2, Z2, U) = (0.200, 0.001, 0.002, 0.100, 0.003, 0.004, 0.500). 

 

 

For studying the way in which a stimulation signal 

affects the dynamic behavior of coupled, via a synapse, 

neuron’s models of this type, a system of two 

unidirectionally coupled, via the aforementioned memristor, 

circuits of Figs.7(c) & 7(d), which have identical circuit 

elements, L, R, C, E and NR, is proposed. 

The first circuit models a neuron which is stimulated 

while the second is a neuron which receives, via the synapse, 

the transmitted signal. In this way of coupling only the 

second circuit is influenced by the first one. By applying the 

first Kirchhoff law to the second circuit, we obtain: 
                                                                                                                     

2 2 2C L N M
i i i i+ + =      (38) 

 

where, 

                                                                                                                                   

( )
M M
i w ϕ υ=      (39) 
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and w(φ) the memductance provided by the equation (22). 

So, by using the previously introduced normalized variables  

and  the  normalized  variable  of  the memristor, 

0

u
V ρC

ϕ
= ,  

the system of Fig.7(e) can be described by the following 

normalized system of differential equations (40).  
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                     (40) 

 

where, ξ1 = ρk1 and ξ3 = ρ
3
V0

2
C

2
k3. 

Kyprianidis et al. [72, 73] showed that the first sub-

circuit of the proposed coupled system (Fig.7(e)) can operate 

in a chaotic mode for specific values of system’s parameters 

and initial conditions. Figs.8(a) & 8(b) display the phase 

portrait of y1 versus x1 and the time-series of signal x1, which 

confirm the expected chaotic behavior of the first uncoupled 

cell, for a = 0.70, b = 0.80, c = 0.10,  fN = 0.16, ε = 0.16 and 

U0 = 0.9.  

At the beginning, for studying the effect, of the coupling 

on system’s behavior, the parameter ξ3 remains equal to 

zero, while ξ1 takes various values, in the interval [0, 10]. In 

this case, the two cells are linearly coupled, so the memristor 

simulates a gap junction between the two neuron-cells. The 

bifurcation diagram of the signal difference (y1 – y2), with 

respect to the bifurcation parameter ξ1 (Figure 8(c)) is used, 

for studying analytically the dynamic behavior of the 

system. As it is shown, for low values of ξ1 the system is in a 

chaotic state (Fig.8(d)), the range of which is gradually 

narrowed and ultimately results in a complete chaotic 

synchronization mode (Fig.8(e)). 

So, the gap junction controls the flow of energy between 

the two neuron-cells and as the coupling coefficient ξ1 

increases, it suppresses the chaotic state of the system. 

Next, in order to study the effect of the second term of 

the memductance and consequently of the specific type of 

memristor to system’s behavior, the parameter ξ3 is changed. 

From the bifurcation diagram of (y2 – y1) versus the 

memristor’s parameter ξ3 (Fig.8(f)), one could see that the 

system is driven from the desynchronization to complete 

synchronization almost immediately for extremely low 

values of ξ3. In more detail, as it is displayed in Figs.8(g) & 

8(h) the two coupled neuronal cells remain in a 

desynchronization state for low values of ξ3 (ξ3 = 0.0001), 

while for greater values of ξ3  (ξ3 = 0.1) the coupled neuronal 

cells are synchronized and remain in this steady state as the 

ξ3 is further increased. So, the proposed memristor 

contributes to the chaotic synchronization of the coupled 

system of neuron-cells. Therefore, in this case the memristor 

controls again the flow of energy between the two neuron-

cells and provides greater suppress to the chaotic state of the 

system, leading it to the complete synchronization state.

 

 

 
Fig. 7. (a) The electronic simulator of the BvP model proposed by Nagumo et al.; (b) The electronic simulator of the BvP model of FitzHugh model, 

proposed in the present work; (c) The nonlinear electric circuit simulating system (33); (d) The equivalent circuit of BvP oscillator’s state equations 

by Rajasekar and Lakshmanan driven by a voltage source; (e) The coupled system via the proposed memristor. 
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Fig. 8. (a) & (b) Phase portrait of y1 vs. x1 and the time-series of signal x1, which confirm the expected chaotic behavior of the first neuron-cell;              

(c) Bifurcation diagram of (y1 – y2) vs. ξ1, in the case of coupled neuron-cells, for ξ3 = 0; (d) & (e) Phase portraits of y2 vs. y1, for ξ3 = 0 and ξ1 = 1,      

ξ1 = 10;  (f) Bifurcation diagram of (y1 – y2) vs. ξ3, in the case of coupled neuron-cells, for ξ1 = 1; (g) & (h) Phase portraits of y2 vs. y1, for                          

(ξ1, ξ3) = (1, 0.001) and (ξ1, ξ3) = (1, 0.1). In all cases the following parameters and initial conditions have been used. a = 0.70, b = 0.80, c = 0.10,            

fN = 0.16, ε = 0.16, U0 = 0.9, (x1, y1, x2, y2, u) = (0.5, 0.1, 0.8, 0.4, 0.5). 

 

 
7. Conclusion 

 

This paper was based on the latest developments in the very 

interesting field of memristors and their potential 

applications. In this sense, a series of promising applications 

in analog and digital circuits design or in other scientific 

fields was presented. However, probably the most interesting 

application of memristor, due to its nature, is in 

neuromorphic circuits.  

As it was referred within the paper, the last five years, 

many research teams have presented various types of 

memristor and techniques which were used for studying the 

case-study of using this element as an artificial synapse. 

Among the recorded in the literature different approaches on  

this subject, a flux-controlled memristor of cubic φ-q 

function, for emulating the excitatory and inhibitory synaptic 

connection as well as the ohmic connections was adopted.     

Therefore, for the purposes of this work, two of the most 

well-known neuron models, the Hindmarsh- Rose and Fitz-

Hugh-Nagumo, which were coupled via the proposed 

memristor, were chosen. In this direction, electronic circuits 

which simulate the dynamic behavior of the aforementioned 

neuron models were designed.  

The    intensively    study    of   the    coupling    schemes  



Ch. K. Volos, I. M. Kyprianidis, I. N. Stouboulos, and S. Vaidyanathan / 

Journal of Engineering Science and Technology Review 8 (2) (2015) 157 - 173 

	
  

 

	
  

172 

(bidirectional and unidirectional), by using tools of nonlinear 

dynamics, such as the bifurcation diagram and the phase 

portrait, revealed the rich dynamic behavior of the coupled 

systems. Interesting phenomena, depending on the 

memristor’s parameters values, were revealed. Chaotic 

behavior for extremely small values of the parameters,  

periodic states and synchronization mode of the coupled 

neuron-cells,  were  studied.   Nevertheless,  synchronization 

was the most interesting phenomenon because it was shown 

that the proposed memristor could be used as an artificial 

synapse for transmitting information between interconnected 

neuron-cells.   

 

______________________________ 
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