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Abstract—Memristors have been rediscovered recently and then 

gained increasing attentions. Their unique properties, such as 

high density, nonvolatility, and recording historic behavior of 

current (or voltage) profile, have inspired the creation of 

memristor-based neuromorphic computing architecture. Rather 

than the existing crossbar-based neuron network designs, we 

focus on memristor-based synapse and the corresponding 

training circuit to mimic the real biological system. In this paper, 

first, the basic synapse design is presented. On top of it, we will 

discuss the training sharing scheme and explore design 

implication on multi-synapse neuron system. Energy saving 

method such as self-training is also investigated. 

      Keywords – memristor; synapse; training 

I. INTRODUCTION 

The neuromorphic computing architecture that requires a 

large volume of memory and being adaptive to environment 

has demonstrated great potentials in developing high 

performance parallel computing systems [1]. Currently, most 

of research activities have been conducted at software or 

system level built upon the conventional Von Neumann 

computer architecture [2][3]. Developing the neuromorphic 

architecture at chip level by mimicking the biological system 

is another important direction. However, it results in high 

design complex and cost by using the traditional CMOS 

devices. 

Though the existence of memristor was predicted in 1971 

[4], the first physical realization was first reported thirty years 

later by HP Lab through a TiO2 thin-film device[5].  

Afterwards, more materials with memristive properties have 

been reported or rediscovered. The unique properties of 

memristor make it very promising to be used to mimic natural 

neuron networks [7]. First, the memristor-based memory can 

achieve an integration density as high as 10 Gbits/cm
2 
[4][5]. 

Second, the memristor device has an intrinsic and remarkable 

feature called “pinched hysteresis loop”, that is, the 

memristance relies on the total electric charge flowing 

through it [4][6]. Third, memristance remains unchanged 

when power is turned off.  

Many memristor-based circuit designs have been 

explored, such as crossbar nonvolatile memory [8] and FPGA 

[9]. Strukov et al. integrated digital memory, programmable 

Boolean logic circuit and also neuron networks within a 3D 

hybrid CMOS/memristor structure. Rajendran et al. proposed 

memristor-based programmable threshold logic array [11] 

utilized it in synapse-neuron structure [12]. However, the 

training circuit and training scheme for memristor-based 

reconfigurable architecture design have not been fully 

explored yet.  

In this paper, we proposed a single memristor-based 

synapse structure and the corresponding training circuit 

design. On top of it, we discussed the design optimization and 

its implementation in multi-synapse systems. With the aid of 

sharing training circuit and self-training mode, the 

performance and energy can be significantly improved. In the 

paper, we demonstrate the effective of the proposed synapse 

design by using TiO2 memristor, though the design 

philosophy can be generalized to other memristor materials. 

II. PRELIMINARY 

In 1971, Professor Chua predicted the existence of the 

fourth fundamental circuit element, named as memristor, that 

uniquely builds the relationship between the magnetic flux 

(φ) and the electric charge (q) passing through the device  as 

[4]:  

dφ = M · dq.                                     (1) 

Considering that magnetic flux and the electric charge are 

integrals of voltage (V) and current (I) over time, 

 
       (a)                                                    (b) 

Figure 1: TiO2 thin-film memristor. (a) Structure. (b) Equivalent circuit. 
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respectively. Eq. (1) can be expressed as 

ω, ·    
ω/ ω,  ,                             (2) 

where, M (ω, I) represents instantaneous memristance which 

varies over time and ω is a state variable.  

Figure 1(a) illustrates the conceptual view of Pt/TiO2/Pt 

structure: two metal wires (Pt) construct the top and bottom 

electrodes, and a thick titanium dioxide film is sandwiched in 

between. A perfect TiO2 structure has a natural state as an 

insulator. However, the conductivity of oxygen-deficient 

titanium dioxide (TiO2-x) is much higher. By moving the 

doping front under proper electrical excitations, the 

intermediate memristive state can be achieved. We use RH 

and RL to denote the total resistance when a TiO2 memristor 

is fully undoped and doped, respectively. The overall 

memristance can be equivalent as two serially-connected 

resistances, as shown in Figure 1(b). That is 

  M (α) = α · RL + (1-α) · RH .                      (3) 

Here, α (0 ≤ α ≤ 1) is the relative doping front position, 
which is the ratio of doping front position over the total 
thickness of a TiO2 device.  

For demonstration purpose, we built our design based on 

TiO2 thin-film memristor and adopted the device parameters 

from [5]. The memristance range is set from RL=1KΩ to 

RH=16KΩ. Note that the proposed can be applied to many 

memristor materials with different physical mechanisms.  

III. THE PRINCIPLE OF MEMRISTOR-BASED SYNAPSE  

Rather than using memristor crossbar array in neuromor-

phic reconfigurable architecture, we propose a memristor-

based synapse design to mimic the biological structure. 

Figure 2(a) depicts the conceptual scheme, which simply 

consists of a NMOS transistor (Q) and a memristor. When the 

input Vin is low, Q is turned off and the output Vout is 

connected to ground through the memristor. On the contrary, 

when Vin is high and turns on Q, memristance M and the 

equivalent resistance of Q (RQ) together determine Vout:  .                               (3) 

Here, Vout is weighted by the memristance, which 

behaves like a synapse. Figure 2(b) shows the simulated Vout 

when sweeping the memristance from 1KΩ to 16KΩ. Here, 

CMOS devices used TSMC 0.18µm technology.  

Note that the response of the synapse design is dependent 

on the equivalent resistance of the transistor Q (RQ), or, the 

size of Q. This can also be demonstrated in Figure 2(b) by 

sweeping the width of Q from 220nm to 4.4µm with a step of 

220nm. The simulation shows that a larger Q can result in a 

wider range of Vout with poorer linearity. However, for a large 

Q, the enhancement of Vout by further increasing its size is 

marginal. 

To improve design stability, a buffer can be added at 

output of the synapse to increase voltage swing. Furthermore, 

some circuit optimization techniques, such as asymmetry gate 

in other blocks, can be used to minimize the overall synapse-

based system, as we shall show in Section IV. 

IV. SYNAPSE TRAINING CIRCUIT  

A. Synapse Training Circuit Design 

Being self-adaptive to the environment is one of the most 

important properties of a biological synapse. To accomplish 

the similar functionality, a training block is needed in the 

memristor-based synapse that can adjust its memristance.  

1) Memristor Training Circuit 

Figure 3(a) shows the diagram of training circuit for one 

synapse design, based on logic analysis and simplification. It 

includes two major components: training controller and write 

driver. By comparing the current synapse output Vout and the 

expected output Dtrain, training controller generates the control 

              (a)                                                       (b) 

Figure 2: (a) Proposed synapse design. (b) Synapse output vs. memristance. 
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Figure 3: (a) The training circuit diagram. (b) The proposed synapse 

togteher with training circuit. 
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signals. The write driver uses these signals to control two 

pairs of NMOS and PMOS switches and supply training 

voltage pair Vtop and Vbot. The training pair is applied to the 

two terminals of the memristor in the synapse design.  

Determined by the training enable signal E, the training 

circuit can work under two modes.  

• Operating mode: When E=0, the synapse is under regular 
operating (read) mode, and the training circuit is disabled. 

• Training mode: The training circuit is enabled when E=1. 
By comparing the current synapse output Vout and the 
expected Dtrain, the training circuit generates Vtop and Vbot 
applied to the two terminals of memristor to update or 

keep its memristance. We define Vmem=Vtop−Vbot.  

The training operation conditions are summarized in 

TABLE I. 

Figure 3(b) depicts the proposed memristor-based synapse 

integrated with training circuit. An extra NMOS transistor Q2 

is inserted in synapse to isolate training operation from other 

voltage sources: when E=1, Q2 is turned off so that the two 

terminals of memristor are controlled only by the training 

circuit, not affected by Vin.  

The timing diagram of training circuit is demonstrated 

Figure 4(a). Before a training procedure starts, a sensing step 

is required to detect the current Vout to be compared with Dtrain. 

In the sensing phase, accordingly, training enable signal E is 

set to low for a very short period of time (e.g., 4.5ns) at the 

beginning of training. At the same time,  is sent to Latch, 

whose output   remains constant during one training 

period, as shown in Figure 3(a). In the training phase, E is set 

back to high for a much longer time (i.e., 51ms) to change the 

memristance if needed.  

We tested the training procedure by using the TiO2 

memristor model [5]. The training circuit was designed by 

using TSMC 0.18µm technology with VDD=1.8V. Changing 

memristance from RH to RL or verse vice takes about 51ms. 

The simulation result is shown in Figure 4(b). Here, the 

memristance is initialized as M=16KΩ. In the first 51ms, it is 

trained to 1KΩ by setting Dtrain to low. Then at t=51ms, we set 

Dtrain to high and train the memristance back to RH in the 

following 51ms.  

2) Asymmetry Gate Design 

As we mentioned in section III, the size of Q1 affects the 

range of Vout. Instead of adding buffer or having giant Q1 in 

synapse, the asymmetry gate design can be adopted to 

minimize the layout area of synapse design. More specifically, 

we tuned P/N ratio of INV1 in the training circuit (see Figure 

3(a)). TABLE II summarizes the required sizes of INV1 and Q1 

under different combinations that can make training successful. 

The result shows that the asymmetric design with P/N ratio 

=0.5 can obtain the smallest area. The last option is used in the 

following synapse analysis.  

3) Multi-synapse Training Scheme 

Most of the neuron systems are constructed by multiple 

synapses. In this section, we discuss the corresponding 

training scheme by taking a 2-synapse neuron in Figure 5 as 

the example. Here, A1 and A2 are two synapse inputs received 

from other neurons. M1 and M2 are memristor-based weights 

for two synapses S1 and S2. N is denoted for neuron with 

output Vout. The value of Vout depends on the functionality of N 
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Figure 4: (a) The timing diagram of training circuit.  (b) The simulation 

result of memristor training. 
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TABLE I.   TRAINING CIRCUIT OPERATION CONDITIONS.

E Vout Dtrain Vtop Vbot Vmem Status 

0 X X Floating 0 X Operating 

1 1/0 1/0 0 0 0V No training

1 1 0 1 0 1.8V RH to RL 

1 0 1 0 1 -1.8V RL to RH 

* ‘0’− logic low; ‘1’− logic high, and ‘X’ − unknown or don’t care. 

TABLE II.   SIZING OF INV1AND Q1 

P/N Ratio PMOS/NMOS in INV1 Q1 

2 
720nm/360nm  18 × 220nm 

440nm/220nm 16 × 220nm 

1 
360nm/360nm 12 × 220nm 

220nm/220nm 11 × 220nm 

0.5 
360nm/360nm 9 × 220nm 

220nm/440nm 9 × 220nm 



as well as Vout1 and Vout2 from the two synapses. With the 

different combinations of M1 and M2, the two-input neuron 

could obtain different functionality.  

To save design cost, memristances of the 2-synapse can be 

trained separately and share one training circuit. Figure 6 

shows a training sharing distribution circuit, which generates 

training signals to control M1 and M2. The training sharing 

circuit operations under different conditions are shown in 

TABLE III.  

The two synapse inputs A1 and A2 can be used to determine 

which memristor, M1 or M2, is in training. TABLE IV lists the 

required A1 and A2, when the logic functionality of N is one of 

the following: OR/NOR, XOR/XNOR, AND/NAND. 

Compared to the separated training circuit for each 

memristor, the shared scheme can reduce 26% of training 

circuit transistor count. More saving in cost and area can be 

obtained when utilizing this training sharing distribution 

scheme to multi-synapse structure with more inputs. 

4) Self-Training Mode 

To improve training time and reduce power consumption, 

we introduce the concept of self-training in our design: rather 

than using a fixed long training period (i.e., 51ms), the self-

training mode automatically stop programming memristor 

whenever Vout and Dtrain become same.   

The proposed training circuit supports self-training mode 

by dividing a long training period into multiple shorter 

periods and detecting Vout in between. The programming 

period needs to be carefully selected: if it is too short, the 

delay and energy overheads induced by Vout detection may 

overwhelm the benefit of self-training. On the contrary, a 

long programming period cannot show enough benefit.  

The simulation result in Figure 7 shows the memristance 

changing when sweeping programming period from 5.1ms to 

51ms in 10 steps. Obviously, the self-training mode could 

significantly reduce training time. In theory, the proposed 

training circuit can train the memristance to any value between 

RH and RL. The real training time is determined by the specific 

application and neuron functionality.  

5) Power Analysis 

Reading and training simulation are conducted and power 

consumption data is collected in Table V. Energy is obtained 

when setting read time and write time as 4.5ns and 51ms, 

respectively.  

V. CONCLUSION 

Memristor has been proven as a promising device in 

neuromorphic architecture for its high-density, nonvolatility, 

and unique memristive characteristic. In this paper, we 

proposed a memristor-based synapse that can be used in 

neuromorphic computing architecture. The corresponding 

training operations including multi-synapse schemes and self-

training have also been explored and discussed. The proposed 

synapse design can be generalized to other memristor 

materials for more applications. Next, we plan to further 

 

Figure 7: Self-training simulation. 

TABLE V.   SYNAPSE POWER CONSUMPTION ANALYSIS 

Operation Power Energy 

Read 
RL 1.04 mW 4.68 pJ 

RH 113.4 uW 0.51 pJ 

Training 
From RH to RL 216.7 uW 11.1 uJ 

From RL  to RH 234 uW 11.9 uJ 
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TABLE III.   TRAINING SHARING CIRCUIT OPERATION

Status Vtop1 Vbot1 Vtop2 Vbot2 

Training M1 Vtop Vbot Floating 0 

Training M2 Floating 0 Vtop Vbot 

TABLE IV.   SYNAPSE INPUT PAIRS FOR DIFFERENT LOGICS 

Functionality of N Training M1 Training M2 

OR/NOR A1=1, A2=0 A1=0, A2=1 

XOR/XNOR A1=1, A2=0 A1=0, A2=1 

AND/NAND A1=1, A2=1 A1=1, A2=1 

 

Figure 5: Two-input neuron structure. 

 

Figure 6:Training sharing distribution circuit. 



explore and utilize the analog properties of the proposed 

synapse and develop the memristor synapse based neuron 

network.  
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