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Memristor Circuits: Flux—Charge Analysis Method
Fernando Corinto, Senior Member, IEEE, and Mauro Forti

Abstract—Memristor-based circuits are widely exploited to re-
alize analog and/or digital systems for a broad scope of applica-
tions (e.g., amplifiers, filters, oscillators, logic gates, and memristor
as synapses). A systematic methodology is necessary to understand
complex nonlinear phenomena emerging in memristor circuits.
The manuscript introduces a comprehensive analysis method of
memristor circuits in the flux-charge (ϕ, q)-domain. The pro-
posed method relies on Kirchhoff Flux and Charge Laws and
constitutive relations of circuit elements in terms of incremental
flux and charge. The main advantages (over the approaches in
the voltage-current (v, i)-domain) of the formulation of circuit
equations in the (ϕ, q)-domain are: a) a simplified analysis of
nonlinear dynamics and bifurcations by means of a smaller set
of ODEs; b) a clear understanding of the influence of initial con-
ditions. The straightforward application of the proposed method
provides a full portrait of the nonlinear dynamics of the simplest
memristor circuit made of one memristor connected to a capacitor.
In addition, the concept of invariant manifolds permits to clarify
how initial conditions give rise to bifurcations without parameters.

Index Terms—Bifurcations without parameters, circuit analy-
sis, circuit theory, memristor, nonlinear dynamics.

I. INTRODUCTION AND MOTIVATION

M EMRISTOR was introduced in 1971 by Prof. L. O. Chua

[1] as a theoretical two-terminal circuit element model-

ing electrical devices in terms of the integral of the current i(t)
and the integral of the voltage v(t). Namely, a charge-controlled

memristor is described by

ϕ(t) = h (q(t)) (1)

where, following the nomenclature introduced in [2], the

“voltage momentum” (aka “flux”) and “current momentum”

(aka “charge”) are:

ϕ(t) =

t
∫

−∞

v(τ)dτ (2)

q(t) =

t
∫

−∞

i(τ)dτ. (3)
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An equivalent form (see [2, Th. 1]) of (1) includes the Ohm’s

Law and an Ordinary Differential Equation (ODE)

v(t) =R(q(t))i(t)
dq(t)

dt
= i(t) (4)

where R(q) = dh(q)/dq is the memristance.

The duality principle allows one to introduce the flux-

controlled memristor

q(t) = f (ϕ(t)) (5)

that is

i(t) =G (ϕ(t)) v(t)
dϕ(t)

dt
= v(t) (6)

where G(ϕ) = df(ϕ)/dϕ is the memductance.

A complete classification of memristor devices in terms of

the pairs of electrical variables (v(t), i(t)) and (ϕ(t), q(t)) is

provided in [2]. One main result there reported is the unified

description of memristor devices (i.e., without any regard to the

technological realization), under the formalism based on volt-

age and current momenta. This approach makes easier to show

that the memristor’s pinched loop in the (v(t), i(t)) description

represents just the specific response to a given external input

(refer to [2, Figs. 2 and 4]).

In 2008 researchers at Hewlett-Packard recognized memris-

tor features in single-devices based on a Pt/T iO2/P t struc-

ture [3]. Such achievement has promoted research activities

in memristor-based circuits and systems intended for a broad

scope of applications. Recently, memristor-based circuits are

widely exploited to realize analog and/or digital systems (e.g.,

amplifiers, filters, oscillators, logic gates, and memristor as

synapses) [4]–[6]. Such applications are based on the following

chief properties of memristor devices:

a) the fine-resolution programming of the memristance,

tuned by the input amplitude, pulsewidth and frequency,

in memristor acting as a non-volatile memory;

b) the inherent nonlinear dynamic behavior in memristor

acting as a volatile memory.

For demonstration of the first feature, memristors are subject

to low voltages during their operation as analog circuit elements

and high voltages to program their memristance, i.e., mem-

ristors are exploited as pulse-programmable resistances. The

programmability of memristance is also achieved with hybrid

CMOS/memristor circuits due to the flexibility, reliability and

high functionality of CMOS subsystems. Recently, memristor-

based synapses are also realized combining a Resistive RAM

memristor with a selector device (e.g., the building block is a

crossbar array made of cells with 1-transistor/1-memristor or

1549-8328 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. The simplest memristor-based circuit. (a) M−C circuit for any t≥ t0.
(b) M − C circuit including the networks La and Lb that set independent
initial conditions vC0

and ϕM0
through the evolution of the electrical variables

vC(t) and ϕM (t) for t < t0.

2-transistor/1-memristor) [7]. In such a case the compatibility

between memristor and CMOS technologies is an issue that is

still under investigation.

Nonlinear dynamic behavior of memristors is exploited in

oscillatory [8], [9] and chaotic circuits [10], [11]. A thorough

study is necessary to understand the rich complex nonlinear

phenomena emerging in memristor circuits. Nonlinear dynam-

ics of dual coupled memristors and of a thermally-activated

locally-active memristor (based on a microstructure consisting

of a bi-layer of Nb2O5 and Nb2Ox materials) has been inves-

tigated in [12] and [13]. Stability properties of attractors, local

and global bifurcations, and the role of the initial conditions

have been extensively investigated as well [14]. A systematic

description (mainly based on the network theory technique

referred to as the tableau method) is proposed in [15], but

this leads to large systems of nonlinear Differential Algebraic

Equations (DAEs), whose solution requires efficient numerical

simulation tools.

The aim of the manuscript is to present a novel systematic

methodology for the analysis of a large class of nonlinear

circuits containing memristors. The class, which is denoted

by LM, is constituted by ideal capacitors, ideal inductors,

ideal resistors, ideal independent voltage and current sources,

and memristors that are either flux-controlled and/or charge-

controlled.1

Any practical application of a circuit in LM actually starts

at a finite time instant t0, i.e., −∞ < t0 < +∞, representing,

e.g., the instant when switches are turned on or off. Given a

circuit in the class LM, with fixed topology for t ≥ t0, our

goal is to develop a method to analyze its dynamics for t ≥ t0.

An illustrative example allows us to highlight the key issues

addressed by the proposed methodology and its advantages over

current approaches (see in particular [8], [9], [15]).

Example: Consider the simplest memristor-based circuit in

the class LM composed of just one memristor M connected to

a capacitor C [see the M − C circuit in Fig. 1(a)]. To analyze

its dynamics for t ≥ t0 we first need to set suitable initial

conditions at t0 for the state variables vC(t) and ϕM (t), i.e.,

vC(t0) = vC0
and ϕM (t0) = ϕM0

. To this end, let us consider

the circuit reported in Fig. 1(b), which is equivalent to the

M − C circuit for t ≥ t0 (i.e., S1 and S3 are open whereas S2

1The (linear) resistors, capacitors, and inductors can be either passive or active.

is closed), but includes the evolution of the electrical variables

vC(t) and ϕM (t) for t < t0 as well (i.e., S1 and S3 are closed

while S2 is open). The two-terminal circuit elements La and

Lb can be any linear networks made of resistors, capacitors,

inductors, voltage and current sources.

It is clear that we can set independent initial conditions vC0

and ϕM0
for the state variables vC(t), ϕM (t) by means of the

dynamics for t < t0 of the circuits La −M (with S1 closed),

and Lb − C (with S3 closed), respectively. We may assume

that the elements M and C are not energized at −∞, i.e.,

vC(−∞) = 0, ϕM (−∞) = 0.

Analysis by inspection of the M − C circuit permits to

derive that vC(t) and ϕM (t) obey the following Initial Value

Problem (IVP) for a second-order ODE [obtained by (6)]:

C
dvC(t)

dt
=−G (ϕM (t)) vC(t) (7)

dϕM (t)

dt
= vC(t)

vC(t0) = vC0

ϕM (t0) =ϕM0
(8)

for any t ≥ t0, where vC0
, ϕM0

are independent initial condi-

tions for the state variables vC(t) and ϕM (t) at t0.

Note that the r.h.s. of (7) can be written as

−G(ϕM (t))vC(t)=−df(ϕM )

dϕM

dϕM (t)

dt
=− d

dt
f(ϕM (t)) (9)

and, as a consequence, by integrating (7) over (t0, t), where

t ≥ t0, we obtain

C (vC(t)− vC(t0)) =−(f(ϕM (t))− f (ϕM (t0))

=−(qM (t)− qM (t0)) . (10)

The chief result drawn by (10) is twofold.

First, the nonlinear dynamical behavior for t ≥ t0 of the

M − C circuit is described by the following IVP for a first-

order ODE [derived from (10) and (8)]:

dϕM (t)

dt
=− f (ϕM (t))

C
+

f(ϕM0
)

C
+ vC0

ϕM (t0) =ϕM0
(11)

where the state variable is ϕM (t) and the initial conditions vC0

and ϕM0
appear as constant inputs in the r.h.s.

It turns out that the IVP (7), (8) for a second-order ODE in

the voltage-current (v, i)-domain can be reduced to an IVP (11)

for a first-order ODE in the flux-charge (ϕ, q)-domain where

the r.h.s. depends on the initial conditions vC0
and ϕM0

at

t0 for the state variables in the (v, i)-domain.2 This reduction

is crucial in analyzing nonlinear dynamics and bifurcations

in the M − C circuit. The key electrical variable in (11) is

just the flux ϕM (t).3 This confirms the results in [2] that

the (ϕM (t), qM (t)) are the sole electrical variables useful to

characterize memristors and memristor circuits as well.

2It is worth to observe that two initial conditions have to be specified in order
to completely determine the evolution of electrical variables in the M − C
circuit, i.e., the order of complexity of the M − C circuit is two (see Theorem 5
in [1]).

3Similar considerations hold in circuits composed of one memristor con-
nected to an inductor. In such a case the key variable is the charge qM (t) in the
ideal charge-controlled memristor.
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Second, (10)—which yields (11)—is derived from the in-

tegration of the Kirchhoff Current Law (KCL) over (t0, t),
thus it can be formulated as “the sum of the capacitor incre-

mental charge qC(t)− qC(t0) = C(vC(t)− vC(t0)) and the

memristor incremental charge qM (t)− qM (t0) = f(ϕM (t))−
f(ϕM (t0)) is zero.”

It turns out that the fundamental step in reducing by one

the number of ODEs in the IVP (7), (8) is the integral of the

KCL in (t0, t), referred to as KqL. The KqL states that “the

algebraic sum of the incremental charge in a closed surface

is zero” (Charge Conservation Law). With reference to the

M − C circuit in Fig. 1(a), we can rewrite (10) as follows:

qC(t; t0) + qM (t; t0) = 0 (12)

where qC(t; t0) = qC(t)− qC(t0) and qM (t; t0) = qM (t)−
qM (t0) are the capacitor and memristor incremental charges,

respectively.

By duality we can also introduce the integral of the Kirchhoff

Voltage Law (KVL) in (t0, t), referred to as KϕL, in terms of

the incremental fluxes (Flux Conservation Law).

In conclusion, the illustrative example makes clear that the

pillars of the new analysis method are:

• the use of KqL and KϕL in terms of the incremental flux

and charge

ϕk(t; t0) =̇ϕk(t)− ϕk(t0) =

t
∫

t0

vk(τ)dτ (13)

qk(t; t0) =̇ qk(t)− qk(t0) =

t
∫

t0

ik(τ)dτ (14)

for any t≥ t0, where vk(t) is the voltage across and ik(t)
is current through any two-terminal element in LM,

respectively;

• the use of Constitutive Relations (CRs) expressed ac-

cording to the same electrical variables, that is, CRs of

resistors, capacitors, inductors, and memristors specified

in terms of incremental charges and fluxes.

The main advantage of the proposed method is that it enables

to describe memristor-based circuits in the class LM by means

of IVPs for a reduced number of ODEs compared to current ap-

proaches available in literature (e.g., [8] and [15]). This permits

to simplify the investigation of nonlinear dynamic behavior and

bifurcation phenomena in memristor circuits and to make clear

the influence of initial conditions. Section IV will present the

application of the proposed flux-charge analysis method for a

comprehensive study of nonlinear dynamics and bifurcations in

the M − C circuit of Fig. 1(a).

The key idea that allows us to develop the method is the

conceptual difference between charge and flux defined in (2)

and (3) and incremental charge and flux given in (13) and (14).

The following property makes clear such concept.

Property 1: The incremental charge and flux in (13) and (14)

reduce to the charge and flux in (2) and (3) if and only if t0 →
−∞, i.e., the circuit topology is invariant for any t∈(−∞,+∞).

Property 1 follows directly from the definition of ϕk(t, t0)
and qk(t, t0). On the other hand, the past dynamics over

(−∞, t0) has to be considered in order to set independent initial

conditions of a circuit switching its topology at the finite instant

Fig. 2. Two-port network where the charge generator q(t0) and the flux
generator ϕ(t0) take into account the initial conditions at a finite instant t0.

t0. The two-port network in Fig. 2 provides a symbolic circuit

representation of (13) and (14) including a charge generator

q(t0) and a flux generator ϕ(t0) to take into account initial

conditions for charge and flux at t0.

The following notation is used henceforth to denote electrical

variables and parameters of any circuit in LM. We assume the

circuit has fixed topology for t ≥ t0 and is made of:

• nC capacitors Cj (j=1, . . . , nC). The capacitor voltages

vCj
(t) and currents iCj

(t) are organized in the vectors

vC(t) =
(

vC1
(t), . . . , vCnC

(t)
)

iC(t) =
(

iC1
(t), . . . , iCnC

(t)
)

.

The corresponding incremental flux and charge vectors

for t ≥ t0 are obtained by means of (13) and (14), that is,

ϕC(t; t0) = ϕC(t)−ϕC(t0) and qC(t; t0) = qC(t)−
qC(t0), where

ϕC(t) =
(

ϕC1
(t), . . . , ϕCnC

(t)
)

qC(t) =
(

qC1
(t), . . . , qCnC

(t)
)

.

• nL inductorsLm (m = 1, . . . , nL). The inductor voltages

vLm
(t) and current iLm

(t) are organized in the vectors

vL(t) =
(

vL1
(t), . . . , vLnL

(t)
)

iL =
(

iL1
(t), . . . , iLnL

(t)
)

.

The corresponding incremental flux and charge vec-

tors for t ≥ t0 are ϕL(t; t0) = ϕL(t)−ϕL(t0) and

qL(t; t0) = qL(t)− qL(t0), where

ϕL(t) =
(

ϕL1
(t), . . . , ϕLnL

(t)
)

qL(t) =
(

qL1
(t), . . . , qLnL

(t)
)

.

• nR ideal resistors Rs (s = 1, . . . , nR). The resistor volt-

ages vRs
(t) and current iRs

(t) are organized as

vR(t) =
(

vR1
(t), . . . , vRnR

(t)
)

iR =
(

iR1
(t), . . . , iRnR

(t)
)

.

The corresponding incremental flux and charge vectors for

t ≥ t0 are ϕR(t; t0) = ϕR(t)−ϕR(t0) and qR(t; t0) =
qR(t)− qR(t0), where

ϕR(t) =
(

ϕR1
(t), . . . , ϕRnR

(t)
)

qR(t) =
(

qR1
(t), . . . , qRnR

(t)
)

.
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• nM memristors Mp (p = 1, . . . , nM ). The memristor

voltages vMp
(t) and currents iMp

(t) are organized as

vM (t) =
(

vM1
(t), . . . , vMnM

(t)
)

iM =
(

iM1
(t), . . . , iMnM

(t)
)

.

The corresponding incremental flux and charge vec-

tors for t ≥ t0 are ϕM (t; t0) = ϕM (t)−ϕM (t0) and

qM (t; t0) = qM (t)− qM (t0), where

ϕM (t) =
(

ϕM1
(t), . . . , ϕMnM

(t)
)

qM (t) =
(

qM1
(t), . . . , qMnM

(t)
)

.

• nE ideal independent voltage sources ew(t) (w = 1, . . . ,
nE). The voltages ew(t) are organized in a vector e(t) =
(e1(t), . . . , enE

(t)). The corresponding incremental flux

vector for t ≥ t0 is

ϕe(t; t0) =
(

ϕe1(t; t0), . . . , ϕenE
(t; t0)

)

.

• nA ideal independent current sources az(t) (z = 1, . . . ,
nA). The currents az(t) are organized in a vector

a(t) = (a1(t), . . . , anA
(t)). The corresponding incre-

mental charge vector for t ≥ t0 is

qa(t; t0) =
(

qa1
(t; t0), . . . , qanA

(t; t0)
)

.

• ℓ = nC + nL + nR + nM + nE + nA is the number of

two-terminal elements (k = 1, . . . , ℓ) composing any

circuit in LM. It follows that we can arrange v =
(v1, . . . , vℓ)

′, i = (i1, . . . , iℓ)
′, ϕ = (ϕ1, . . . , ϕℓ)

′ and

q = (q1, . . . , qℓ)
′ as follows:

v(t) = (vC(t),vL(t),vR(t),vM (t),vE(t),vA(t))
′

i(t) = (iC(t), iL(t), iR(t), iM (t), iE(t), iA(t))
′

ϕ(t) = (ϕC(t),ϕL(t),ϕR(t),ϕM (t),ϕE(t),ϕA(t))
′

q(t) = (qC(t),qL(t),qR(t),qM (t),qE(t),qA(t))
′

where (·)′ denotes the transpose vector.

• n is the number of nodes in any circuit in LM.

II. ANALYSIS METHOD IN THE (ϕ, q)-DOMAIN

We consider in what follows a circuit in the class LM of

nonlinear memristor circuits defined in the previous section and

suppose it has a fixed topology for t ≥ t0, where −∞ < t0 <
+∞. Our goal is to show that we can develop a method enabling

to analyze the circuit dynamics for t ≥ t0 in the (ϕ, q)-domain,

i.e., we can obtain circuit equations describing the dynamics no

longer using the current and voltage variables. To this end we

will address the following main issues:

• how to write Kirchhoff laws using the incremental charge

and flux;

• how to write the CR of each element in the class LM and

IVP for a system of ODEs in the (ϕ, q)-domain.

A. Incremental Kirchhoff Laws

Since ℓ is the number of two-terminal elements in LM, andn
is the number of nodes, we can write n− 1 fundamental cutset

equations in the form Ai(t) = 0 (A ∈ R(n−1)×ℓ is the reduced

incidence matrix) and ℓ − n+ 1 fundamental loop equations

Bv(t) = 0 (B ∈ R(ℓ−n+1)×ℓ is the reduced loop matrix). By

integrating between t0 and t ≥ t0 we obtain

Aq(t) =Aq(t0) (15)

Bϕ(t) =Bϕ(t0). (16)

These equations are expressed in the (ϕ, q)-domain and

involve all the initial conditions q(t0),ϕ(t0). It is important

to stress the following key points. Among q(t0),ϕ(t0), the ini-

tial conditions qCk
(t0) = CkvCk

(t0) and ϕLk
(t0) = LkiLk

(t0)
can be obtained for any circuit in LM by the measurement

at the instant t0 of voltages vCk
(t0) across capacitors and

currents iLk
(t0) through inductors by means of a voltmeter or

an ammeter. Instead, qLk
(t0) =

∫ t0
−∞ iLk

(t)dt and ϕCk
(t0) =

∫ t0
−∞ vCk

(t)dt cannot be obtained via measurements at t0 (see

also footnote 11 in [16]). Rather, to evaluate qLk
(t0) and

ϕCk
(t0) we would require the specific knowledge of the past

circuit history for t < t0 [see for example Fig. 1(b)], an in-

formation that is usually unavailable or difficult to obtain in

practice. In addition, it may happen that qa(t0) (ϕe(t0)) are

not finite for some current (voltage) ideal generators.4

The Kirchhoff Laws can be made independent of initial

conditions by means of the incremental fluxes and charges

defined in (13) and (14). Indeed, using the incremental charge

q(t, t0), the Kirchhoff Charge Law (KqL) takes the simpler

form

Aq(t; t0) = 0 (17)

which no longer involves the initial charges q(t0), but just

expresses the constraints on the incremental charges due to the

topology.

Similarly, the Kirchhoff Flux Law (KϕL) using the incre-

mental flux ϕ(t, t0) can be written as

Bϕ(t; t0) = 0. (18)

It is known that these equations give in overall ℓ indepen-

dent topological constraints on q(t; t0),ϕ(t; t0) in the (ϕ, q)-
domain.

The necessity to introduce Kirchhoff Laws independent of

initial conditions in turn implies that all circuit elements have

to be described by means of incremental fluxes and charges at

their terminals. The CRs of circuits elements in terms of the

incremental flux and charge at their terminals are given in the

next section.

Remark 1: The common assumption made in the literature to

ensure that Kirchhoff Laws result to be independent of initial

conditions is that q(t0) = 0 and ϕ(t0) = 0. This assumption is

not true in general as shown in the circuit of Fig. 1(b).

4It is readily derived that if a(t) = A (e(t) = E) for all t ∈ (−∞, t0], with

A ∈ R (E ∈ R) constant, then qa(t0) =
∫
t0

−∞
Adτ (ϕe(t0) =

∫
t0

−∞
Edτ)

tends to infinity.
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Fig. 3. Equivalent circuit for an ideal capacitor in terms of the incremental
charge qC(t; t0) and flux ϕC(t; t0).

B. Constitutive Relations

The discussion in Section II-A shows that it is convenient to

write the KϕL and KqL equations in the (ϕ, q)-domain by using

the incremental charge qk(t; t0) and incremental flux ϕk(t; t0)
of each two-terminal element in LM. Then, we are led in

what follows to describe each two-terminal element by using

its incremental charge qk(t; t0) and incremental flux ϕk(t; t0)
as port variables, i.e., to express the CR in terms of qk(t; t0) and

ϕk(t; t0), once appropriate reference directions are assumed at

its terminals.

Next we describe in detail how to obtain CRs and equivalent

circuits in the (ϕ, q)-domain for any two-terminal element in

the class LM (we drop the index k to simplify the notation).

1) Ideal Capacitor: Let us consider an ideal capacitor C
described by

qC(t) = CvC(t) = C
dϕC(t)

dt
.

Let qC(t0) = qC0
= CvC(t0) be the initial charge at t0. We

obtain for t ≥ t0

qC(t; t0) = qC(t)− qC(t0) = C
dϕC(t)

dt
− CvC(t0)

that is

qC(t; t0) = C
dϕC(t)

dt
− qC0

. (19)

By noting that

C
dϕC(t)

dt
= C

dϕC(t; t0)

dt

an explicit expression of the CR of the ideal capacitor C in

terms of the incremental variables qC(t; t0) and ϕC(t; t0) can

be expressed as

qC(t; t0) = C
dϕC(t; t0)

dt
− qC0

. (20)

Note that this relation does not involve the electric variables

(vC , iC). In the (ϕ, q)-domain the ideal capacitor C described

by (20) admits of the equivalent circuit representation given

in Fig. 3.5

2) Ideal Inductor: Let us consider an ideal inductor L de-

scribed by

ϕL(t) = LiL(t) = L
dqL(t)

dt
.

5The circuit in Fig. 3 represents, in the (ϕ, q)-domain, the dual of the initial
capacitor voltage transformation circuit reported in[17] (see Fig. 2.1 on p. 307).

Fig. 4. Equivalent circuit for an ideal inductor in terms of the incremental
charge qL(t; t0) and flux ϕL(t; t0).

Fig. 5. Equivalent circuit for an ideal resistor in terms of the incremental charge
qR(t; t0) and flux ϕR(t; t0).

Following the same approach used for the ideal capacitor,

we can introduce the initial flux at t0, i.e., ϕL(t0) = ϕL0
=

LiL(t0), so that:

ϕL(t; t0) = ϕL(t)− ϕL(t0) = L
dqL(t)

dt
− LiL(t0)

that is

ϕL(t; t0) = −ϕL0
+ L

dqL(t)

dt
. (21)

By observing that

L
dqL(t)

dt
= L

dqL(t; t0)

dt

the CR of the ideal inductor L in terms of the incremental

variables qL(t; t0) and ϕL(t; t0) can be expressed as

ϕL(t; t0) = −ϕL0
+ L

dqL(t; t0)

dt
(22)

that corresponds to the equivalent circuit shown in Fig. 4.6

3) Ideal Resistor: Let us consider an ideal resistor R de-

scribed by

vR(t) = RiR(t).

By integrating between t0 and t ≥ t0, the CR in the (ϕ, q)-
domain results to be

ϕR(t; t0) = RqR(t; t0) (23)

and the corresponding equivalent circuit is reported in Fig. 5. It

turns out that the CR of R in the (ϕ, q)-domain is similar to the

usual Ohm’s Law because the resistor is a memoryless element.

4) Ideal Independent Voltage Source: Let us consider an

ideal independent voltage source

v(t) = e(t) ∀ i(t)

6The circuit in Fig. 4 represents, in the (ϕ, q)-domain, the dual of the initial
inductor current transformation circuit reported in [17] (see Fig. 2.1 on p. 307).
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Fig. 6. Equivalent circuit for an ideal independent voltage source in terms of
the incremental charge qe(t; t0) and flux ϕe(t; t0).

Fig. 7. Equivalent circuit for an ideal independent current source in terms of
the incremental charge qa(t; t0) and flux ϕa(t; t0).

where e(t) is a given function of time. By integrating between

t0 and t ≥ t0, the CR of the ideal independent voltage source in

the (ϕ, q)-domain can be written as

ϕ(t; t0) = ϕe(t; t0) =̇

t
∫

t0

e(τ)dτ ∀ qe(t; t0)

i.e., the incremental flux ϕe(t) is a given function of time that

is independent of the incremental charge at the generator termi-

nals. The corresponding equivalent circuit is shown in Fig. 6.

5) Ideal Independent Current Source: Let us consider an

ideal independent current source

i(t) = a(t) ∀ v(t)

where a(t) is a given function of time. By integrating between

t0 and t ≥ t0, the CR of the ideal independent current source in

the (ϕ, q)-domain can be written as

q(t; t0) = qa(t; t0) =̇

t
∫

t0

a(τ)dτ ∀ϕa(t; t0)

i.e., the incremental charge qa(t; t0) is a given function of time

that is independent of the incremental voltage at the genera-

tor terminals. The corresponding equivalent circuit is shown

in Fig. 7.

6) Ideal Flux-Controlled Memristor: Let us consider an

ideal flux-controlled memristor

qM (t) = f (ϕM (t))

where f(·) :R→R satisfies f(0)=0, and let ϕM (t0)=ϕM0
be

the initial flux of the memristor at t0. It follows that the initial

charge is qM (t0)=qM0
=f(ϕM0

). By using the incremental

charge and flux, the CR of the memristor M can be rewritten

for t≥ t0 as

qM (t; t0) = qM (t)− qM (t0)

= f (ϕM (t)) − f (ϕM (t0))

= f (ϕM (t; t0) + ϕM (t0))− f (ϕM (t0)) .

Fig. 8. Equivalent circuit for an ideal flux-controlled memristor in terms of
the incremental charge qM (t; t0) and flux ϕM (t; t0). The two charge and flux
generators depend only on the initial flux ϕM (t0) = ϕM0

.

Fig. 9. Equivalent circuit for an ideal charge-controlled memristor in terms of
the incremental charge qM (t; t0) and flux ϕM (t; t0). The two charge and flux
generators depend only on the initial charge qM (t0) = qM0

.

As a consequence, the CR of the ideal memristor M in terms

of the incremental variables qM (t; t0) and ϕM (t; t0) is

qM (t; t0) = f (ϕM (t; t0) + ϕM0
)− qM0

. (24)

Note that the memristor acts as a nonlinear memoryless

element in the (ϕ, q)-domain and its equivalent circuit is shown

in Fig. 8. The equivalent circuit includes a two-port network

similar to that shown in Fig. 2.

7) Ideal Charge-Controlled Memristor: Let us consider an

ideal charge-controlled memristor

ϕM (t) = h (qM (t))

where h(·) : R → R satisfies h(0) = 0, and let qM (t0) = qM0

be the initial charge of the memristor at t0. It follows that

the initial flux is ϕM (t0) = ϕM0
= h(qM0

). By duality with

respect to the flux-controlled memristor, the CR of the ideal

charge-controlled memristor M in terms of the incremental

variables qL(t; t0) and ϕL(t; t0) is

ϕM (t; t0) = h(qM (t; t0) + qM0
)− ϕM0

(25)

and the corresponding equivalent circuit is in Fig. 9. The

equivalent circuit includes a two-port network similar to that

shown in Fig. 2.

Remark 2: Equation (25) can be obtained from (24) under the

assumption that function f(·) is invertible, i.e., a memristor is

both flux- and charge-controlled. It is also worth to observe that

the class of ideal memristors includes all memristor siblings

defined in [2, Th. 2] (see also [18]).

Without losing any generality, only flux-controlled memris-

tors are considered hereinafter. All the results in the manuscript

can be easily extended to circuits including either just charge-

controlled memristors or flux- and charge-controlled memristors.
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Remark 3: In the (ϕ, q)-domain memristors play the same

role as nonlinear resistors in the (v, i)-domain. However, a

memristor holds memory of the past history of its voltage and

current through the constant generators associated to its initial

condition (see Figs. 8 and 9).

Remark 4: If nonlinear resistors, capacitors and inductors are

also included in the class of circuits LM, then their piecewise-

linear approximation allows us to exploit the proposed flux-

charge analysis method in each interval of linearity.

Remark 5: Once each circuit element is described in the

(ϕ, q)-domain by incremental flux and charge at its terminals,

any circuit in LM is obtained by connecting circuit elements

using such terminals. As a consequence, KϕL and KqL result

to be independent of initial conditions and provide the “usual”

circuit topology constraints.

III. FORMULATION OF THE CIRCUIT EQUATIONS

In this section the equations describing circuits in LM are

derived by exploiting: a) the Kirchhoff laws in terms of the

incremental charges and fluxes; b) the CR of each element in

the class LM. As a result, the IVP for a system of ODEs in the

(ϕ, q)-domain is written in the form of Differential Algebraic

Equations (DAEs) and State Equations (SEs).

A. Differential Algebraic Equations in the (ϕ, q)-Domain

Following the classical circuit analysis approach, the set of

ℓ algebraic equations due to the topological constraints can be

obtained by putting together the (n− 1) KqL-equations in (17)

and the (ℓ− n+ 1) KϕL-equations in (18), that is
{

Aq(t; t0) = 0

Bϕ(t; t0) = 0.
(26)

The collection of all CRs, one for each of the ℓ two-terminal

elements constituting a circuit in LM, provides a set of alge-

braic and differential equations that can be written in terms of

the incremental charge and flux as follows:
⎧

⎪

⎨

⎪

⎩

ϕRs
(t; t0)=RsqRs

(t; t0), (s=1, . . . , nR)

ϕw(t; t0)=ϕew (t; t0) ∀ qw(t; t0), (w=1, . . . , nE)

qz(t; t0)=qaz
(t; t0) ∀ϕz(t; t0), (z=1, . . . , nA)

(27)

{

Cj

dϕCj
(t;t0)

dt
=qCj

(t; t0)+qCj0
, (j=1, . . . , nC)

Lm
dqLm (t;t0)

dt
=ϕLm

(t; t0)+ϕLm0
, (m=1, . . . , nL)

(28)

qMp
(t; t0)=f

(

ϕMp
(t; t0)+ϕMp0

)

−f(ϕMp0
), (p=1, . . . , nM).

(29)

Equations (26)–(29) provide a system of 2ℓ DAEs involving

only the incremental variables q(t; t0), ϕ(t; t0). The solution

of DAEs (26)–(29), with q(t0; t0) = 0 and ϕ(t0; t0) = 0, gives

the evolution of q(t; t0) and ϕ(t; t0) for any t ≥ t0.

Remark 6: Although the DAEs (26)–(29) exploit the incre-

mental variables in the (ϕ, q)-domain, their solution depends

on qCk0
, ϕLk0

and ϕMk0
,7 that is the initial conditions at t0 for

the state variables in the (v, i)-domain. Indeed, in the obtained

7The DAEs (26)–(29) depend also on qMk0
if charge-controlled memristors

are included in the class LM.

Fig. 10. Circuit representation to derive the SEs in terms of the incremental
flux ϕC(t; t0) and charge qL(t; t0) in the (ϕ, q)-domain.

formulation, such initial conditions appear as constant inputs

in the r.h.s. of (28) and (29).

B. State Equations in the (ϕ, q)-Domain

Circuit analysis methods based on DAEs are fundamental in

numerical simulation (using, e.g., PSpice software) of linear

and nonlinear circuits [15]. On the other hand, qualitative non-

linear aspects (e.g., the existence of no-finite-forward-escape-

time solutions, eventual uniform-boundedness of solutions,

local and global asymptotic stability properties, bifurcation

phenomena, etc.) are more effectively analyzed by means of

the SE formulation.

The formal derivation of two-common formulations and the

rigorous conditions on the existence of a global SE representa-

tion for nonlinear RLC circuits are provided in [19]. Following

the same approach as in [19], in this section the SEs in the

(ϕ, q)-domain for any circuit in LM are derived. It is worth

to observe that the formulation here proposed is based on

(ϕC ,qL) and is alternative to the two-common representations

based on (vC , iL) or (qC ,ϕL) given in [19].

Any circuit in LM can be represented as shown in Fig. 10,

where all capacitors and inductors are connected to an ady-

namic8 nonlinear (nC + nL)-port including ideal resistors,

memristors and ideal independent voltage and current sources.9

Each external capacitor and inductor is represented by the

equivalent circuit shown in Figs. 3 and 4, respectively. The

CRs (28) describing the nC capacitors and nL inductors can

be written in matrix form as follows:
{

C d
dt
(ϕC(t; t0)) = qC(t; t0) + qC0

L d
dt
(qL(t; t0)) = ϕL(t; t0) +ϕL0

(30)

8The term algebraic is also used in [19].
9The nonlinear (nC + nL)-port is adynamic because, as pointed out in

Remark 3, the memristor is described by an algebraic CR in the (ϕ, q)-domain.
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whereC = diag[C1, . . . , CnC
] andL = diag[L1, . . . , LnL

] are

diagonal matrices. The vectors of incremental capacitor charges

qC(t; t0) and inductors fluxes ϕL(t; t0) can be derived consid-

ering the adynamic nonlinear (nC + nL)-port. Under suitable

assumptions, (26), (27), and (29) allow us to write (see also

[19, eq. (3.9), p. 1069])

{

−qC(t; t0)=ha(ϕC(t; t0),qL(t; t0),u(t; t0),ϕM0
)

−ϕL(t; t0)=hb(ϕC(t; t0),qL(t; t0),u(t; t0),ϕM0
)

(31)

where u(t) = (ϕE(t),qA(t)) is the vector of fluxes and

charges of the ideal independent sources. It turns out that

ha(·) and hb(·) depend on the port-variables (ϕC ,qL), the

independent sources ϕE , qA, and ϕM0
, where the last term

is due to initial flux of memristors10 within the adynamic

(nC + nL)-port.

By substituting (31) in (30), the following SE formulation for

t ≥ t0 in the (ϕ, q)-domain for a circuit in LM is obtained:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

C d
dt
(ϕC(t; t0)) = qC0

−ha

(

ϕC(t; t0),qL(t; t0),u(t; t0),ϕM0

)

L d
dt

(qL(t; t0)) = ϕL0

−hb

(

ϕC(t; t0),qL(t; t0),u(t; t0),ϕM0

)

ϕC(t0; t0) = 0

qL(t0; t0) = 0.

(32)

Remark 7: Criteria to prove the existence of the SEs (32) and

the hybrid representation (31) of the adynamic (nC + nL)-port

can be derived according to the rigorous approach presented in

Section III of [19] (see in particular Theorem 3 in that paper).

In this manuscript the formal derivation is not reported in order

to focus the readers’ attention on the circuit analysis method

and its applicability. We shall present the graph- and circuit-

theoretic aspects in a further work.

The structure of the SEs (32) suggests the following

observations:

• the state variables of the SE representation in the (ϕ, q)-
domain are the incremental variables ϕC(t; t0) and

qL(t; t0);
• the evolution of the incremental variables ϕC(t; t0) and

qL(t; t0) is influenced by the initial conditions qC0
and

ϕL0
used in the two-common vC − iL and qC −ϕL

formulations (see point (2) in Section 3.1. of [19]) and

the memristors’ initial conditions ϕM0
as well. The initial

conditions qC0
, ϕL0

and ϕM0
indeed appear as constant

inputs in the r.h.s. of (32). On the other hand, the IVP

for the SEs (32) has, by definition, zero initial conditions

for the incremental variables ϕC(t; t0) and qL(t; t0);
• the order of complexity11 of a circuit in LM is (nC +
nL + nM ) if there are no constraints due to topological

structures (see [1, Th. 5]).

10Functions ha(·) and hb(·) depend also on qM0
if charge-controlled

memristors are included in LM.
11As reported in [1] “The number m is called the “order of complexity”

of the network and is equal to the maximum number of independent initial
conditions that can be arbitrarily specified.”

C. Differential Algebraic Equations and State Equations in

the (v, i)-Domain

Given a circuit in the class LM, the common formulation

of circuit equations in the (v, i)-domain can be readily derived

either by differentiating the DAEs (or SEs) in the (ϕ, q)-
domain, or otherwise by using the KCLs, the KVLs and the

CRs in terms of current and voltage. The former approach is

briefly discussed in this section, whereas the latter is widely

reported in the literature (see, for instance, [8]). It turns out that

both methods provide the same circuit equations.

Since

dq(t; t0)

dt
=

dq(t)

dt
= i(t)

dϕ(t; t0)

dt
=

dϕ(t)

dt
= v(t)

by differentiating (26)–(28), the “usual” KCLs and KVLs

{

Ai(t) = 0

Bv(t) = 0
(33)

are obtained. Moreover, the CRs result to be

⎧

⎪

⎨

⎪

⎩

vRs
(t) = RsiRs

(t), (s = 1, . . . , nR)

vw(t) = ew(t) ∀ iw(t), (w = 1, . . . , nE)

iz(t) = az(t) ∀ vz(t), (z = 1, . . . , nA)

(34)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Cj
dvCj

(t)

dt
= iCj

(t), (j = 1, . . . , nC)

Lm
diLm (t)

dt
= vLm

(t), (m = 1, . . . , nL)

qCj
(t0) = qCj0

⇒ vCj
(t0) = vCj0

ϕLm
(t0) = ϕLm0

⇒ iLm
(t0) = iLm0

.

(35)

In addition, the following CRs of memristors in the (v, i)-
domain [see also (6)] are derived by differentiating (29)

⎧

⎪

⎨

⎪

⎩

iMp
(t) = G

(

ϕMp
(t)

)

vMp
(t), (p = 1, . . . , nM )

dϕMp(t)

dt
= vMp

(t)

ϕMp
(t0) = ϕMp0

.

(36)

Once the initial conditions vC(t0), iL(t0) and ϕM (t0) for

the state variables in the (v, i)-domain are specified, (33)–(36)

provide a system of 2ℓ DAEs governing the evolution for t ≥ t0
of the current i(t) and voltage v(t) variables.

Noting that

d2

dt2
(ϕC(t; t0)) =

dvC(t)

dt
d2

dt2
(qL(t; t0)) =

diL(t)

dt

the SE formulation in the (v, i)-domain can be easily obtained

by differentiating (30), that is

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

C
dvC(t)

dt
= iC(t)

L
diL(t)
dt

= vL(t)

vC(t0) = vC0

iL(t0) = iL0

(37)
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where iC(t) and vL(t) can be derived by using (33), (34) and

(36). In particular (36) can be written as

⎧

⎪

⎨

⎪

⎩

iM (t) = G(ϕM (t))vM (t)
dϕM (t)

dt
= vM (t)

ϕM (t0) = ϕM0

(38)

where vM (t) can be expressed in terms of vC(t), iL(t), e(t),
and a(t), i.e.,

vM (t) = Hc (vC(t), iL(t), e(t), a(t)) . (39)

It follows that:

iM (t) = G (ϕM (t))Hc (vC(t), iL(t), e(t), a(t))

and, as a consequence, iC(t) and vL(t) can be rewritten in the

following general form12 using (33) and (34):
{

−iC(t) = Ha (vC(t), iL(t),ϕM (t), e(t), a(t))

−vL(t) = Hb (vC(t), iL(t),ϕM (t), e(t), a(t)) .
(40)

Finally, the IVP for the SE formulation in the (v, i)-domain

is derived from (37)–(40), i.e.,

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

C
dvC(t)

dt
= −Ha(vC(t), iL(t),ϕM (t), e(t), a(t))

L
diL(t)

dt
= −Hb(vC(t), iL(t),ϕM (t), e(t), a(t))

dϕM (t)
dt

= Hc(vC(t), iL(t), e(t), a(t))

vC(t0) = vC0

iL(t0) = iL0

ϕM (t0) = ϕM0
.

(41)

It is worth to note that:

• the IVP (41) in the (v, i)-domain has nM ODEs more than

the IVP (32) in the (ϕ, q)-domain, i.e., the SE formulation

in the (ϕ, q)-domain allows us to investigate the nonlinear

dynamics by means of an IVP for a smaller set of ODEs;

• there is a one-to-one correspondence between the solution

of (32)

Φϕ,q(t,ϕC0
,qL0

,ϕM0
) = (ϕC(t; t0),qL(t; t0))

and the solution of (41)

Φv,i(t,vC0
, iL0

,ϕM0
) = (vC(t), iL(t),ϕM (t))

expressed by the following relations:

d

dt
(ϕC(t; t0))=vC(t)

d

dt
(qL(t; t0))= iL(t)

ϕM(t)=ϕM0
+

t
∫

t0

Hc(vC(τ), iL(τ), e(τ), a(τ))dτ.

12The explicit matrix representation of functions Ha(·), Hb(·), and Hc(·)
is not essential for the presentation of the proposed circuit analysis method. By
the way, we note that the examples reported in the Section IV provide a basic
description of such functions.

Fig. 11. Equivalent circuit in the (ϕ, q)-domain of the M − C circuit in
Fig. 1(a) for t ≥ t0.

IV. NONLINEAR DYNAMICS OF MEMRISTOR

CIRCUITS IN THE (ϕ, q)-DOMAIN

This section aims at investigating the nonlinear dynamics

of memristor circuits in the class LM by means of the SE

formulation (32) in the (ϕ, q)-domain. Straightforward use of

the equivalent circuits introduced in Section II permits to derive

by inspection the circuit equations in terms of the incremental

variables ϕC(t; t0) and qL(t; t0). Furthermore, the concept of

invariant manifolds is introduced to describe regions of the

phase-space on which the evolution of the circuit variables takes

place. The geometric structure of manifolds is crucial to unfold

the bifurcation phenomena due to initial conditions (referred to

as bifurcations without parameters [20]–[23]).

Due to lack of space, this section deals with only nonlinear

dynamics and bifurcations of the M − C circuit in Fig. 1(a).

Memristor circuits with richer nonlinear dynamics includ-

ing Hopf bifurcations (originating persistent oscillations) and

period-doubling cascades (leading to chaotic behavior) shall be

considered in a companion paper entitled “Memristor Circuits:

Bifurcations without Parameters.”

A. The Memristor-Capacitor Circuit

Let us reconsider the M − C circuit in Fig. 1(a) for t ≥ t0.

1) Formulation of the Circuit Equations: The corresponding

circuit in the (ϕ, q)-domain (see Fig. 11) is obtained by replac-

ing the capacitor and the memristor with the equivalent circuits

in Figs. 3 and 8, respectively. Analysis by inspection permits

the direct writing of the following equations:

qC(t; t0) + qM (t; t0) = 0

ϕC(t; t0)− ϕM (t; t0) = 0

qM (t; t0) = f(ϕM (t; t0) + ϕM0
)− qM0

C
dϕC(t; t0)

dt
= qC(t; t0) + qC0

ϕC(t0; t0) = 0 (42)

where qC0
= qC(t0), ϕM0

= ϕM (t0), and qM0
= f(ϕM0

).
These correspond to the 2ℓ (ℓ = 2) DAEs in (26)–(29).

The SEs in the (ϕ, q)-domain can be readily obtained from

(42) by considering that ϕC(t; t0) = ϕM (t; t0) and qC(t; t0) =
−qM (t; t0) = −f(ϕC(t; t0) + ϕM0

) + qM0
, that is

{

C dϕC(t;t0)
dt

=−f (ϕC(t; t0)+ϕM0
)+f(ϕM0

)+qC0

ϕC(t0; t0)=0
(43)

where the initial conditionsϕM0
and qC0

act as constant inputs.
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Remark 8: The SE (43) can be put into the equivalent form

reported in (11) by observing that ϕC(t; t0) = ϕM (t; t0). It

follows that ϕC(t; t0) + ϕM0
= ϕM (t; t0) + ϕM0

=̇ϕM (t) and

ϕC(t0; t0) = ϕM (t0)− ϕM0
= 0. Hence, the SE (43) becomes

C
dϕM (t; t0)

dt
=C

dϕM (t)

dt
= −f (ϕM (t)) + f(ϕM0

) + qC0

ϕM (t0) =ϕM0
(44)

that is exactly (11) with qC0
= CvC0

.

The common formulation of circuit equations in the (v, i)-
domain can be readily derived by differentiating (42), that is

iC(t) + iM (t) = 0

vC(t)− vM (t) = 0

iM (t) =G (ϕM (t)) vM (t)

dϕM (t)

dt
= vM (t)

C
dvc(t)

dt
= iC(t) (45)

where vC0
=vC(t0) (being qC0

=qC(t0)) and ϕM0
=ϕM (t0).

These correspond to the DAEs in the (i, v)-domain in (33)–(36).

Finally, the SEs in the (v, i)-domain can be obtained by

observing that vC(t) = vM (t) implies

−iC(t) = iM (t) = G (ϕM (t)) vC(t)

dϕM (t)

dt
= vC(t) (46)

that is, functions Hc(·) and Ha(·) in (39) and (40) are

Ha (vc(t), ϕM (t)) =G (ϕM (t)) vC(t)

Hc (vc(t), ϕM (t)) = vC(t). (47)

Note that Hb(·) = 0 because there are no inductors and the

dependency on e(t) and a(t) is not included because the circuit

is autonomous.

Hence, the SE in the (v, i)-domain for the memristor-

capacitor circuit results to be

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

C dvC(t)
dt

= −G (ϕM (t)) vC(t)
dϕM(t)

dt
= vC(t)

vC(t0) = vC0

ϕM (t0) = ϕM0
.

(48)

The IVP for the SE reported in (48) corresponds to (41) and

coincides with the IVP for a second order ODE (7), (8) in the

state variables vC(t) and ϕM (t).
To summarize, the M − C circuit equations have been writ-

ten as SEs both in the (ϕ, q)-domain [see (43)] and in the (v, i)-
domain [see (48)]. The two formulations are equivalent, but

(43) presents a reduced number of ODEs with respect to (48).

The equivalence can be easily shown under the assumption that

both (43) and (48) enjoy the property of uniqueness of solutions

for t ≥ t0. Hereinafter, we provide an explicit example in

which such assumption is guaranteed. Taking into account that

ϕM (t; t0) = ϕC(t; t0), the following relationships hold true

between the solutions of (43) and (48):

• if ϕC(t; t0) is the solution of the IVP (43) for t ≥ t0, then

the solution of the IVP (48) can be obtained as follows:

vC(t) =
d

dt
(ϕC(t; t0))

ϕM (t) =̇ϕM (t; t0) + ϕM0
= ϕC(t; t0) + ϕM0

• if (vC(t), ϕM (t)) is the solution of the IVP (48) for t≥ t0,

then the solution of the IVP (43) can be obtained as

follows:

ϕC(t; t0) = ϕM (t)− ϕM0

or else

ϕC(t; t0) =̇

t
∫

t0

vC(τ)dτ.

2) Invariant Manifolds: The SE (43) in the (ϕ, q)-domain

describes the evolution of the incremental flux ϕC(t; t0) for

t ≥ t0 when ϕC(t0; t0) = 0. It is important to observe that

such evolution depends on the initial conditions qC0
and ϕM0

that define the constant input Q0 = f(ϕM0
) + qC0

in the r.h.s.

of (43). The physical meaning of Q0 is evident (by recalling

f(ϕM0
) = qM0

): it represents the total charge in the M − C
circuit at the initial instant t0. Let us rewrite Q0 as follows:

Q0 = f (ϕM (t0)) + CvC(t0) (49)

and let us introduce the total charge Q(t) for t ≥ t0

Q(t) = f (ϕM (t)) + CvC(t). (50)

Note that Q(t) is given in terms of the state variables vC(t)
and ϕM (t) of the SE (48) in the (v, i)-domain. By definition,

Q(t0) = Q0. The following property holds for the M − C
circuit in Fig. 11.

Property 2: The total charge Q(t) = Q0 for all t ≥ t0.

The proof of the Property 2 is readily obtained by evaluating

the time-derivative of Q(t), that is

dQ(t)

dt
= G (ϕM (t))

dϕM (t)

dt
+ C

dvC(t)

dt
= 0 (51)

due to the ODEs of the IVP (48) in the (v, i)-domain. It follows

that Q(t) is constant in time. Hence, Q(t) keeps the initial value

Q(t0) = Q0 for all t ≥ t0. �

Property 2 states the physical law of conservation of charge,

i.e., the state variables vC(t) and ϕM (t) evolve according to

(48), but the total charge Q(t) remains constant to the initial

value Q0 set by vC0
and ϕM0

. It turns out that the conservation

of charge in the M − C circuit follows from the KqL as well.

Indeed, the first equation in (42) can be rewritten as:

qC(t; t0) + qM (t; t0) = qC(t)− qC0
+ qM (t)− qM0

=(CvC(t) + f (ϕM (t)))+

− (CvC0
+ f(ϕM0

))

=Q(t)−Q(t0) = Q(t; t0) = 0 (52)

where Q(t, t0) is the total incremental charge for t ≥ t0.
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Property 2 permits to define an invariant manifold M(Q0)
as the region of the phase-space (vC , ϕM ) ∈ R

2 of the SE (48)

in the (v, i)-domain where Q0 ∈ R takes a fixed value, that is

M(Q0) =
{

(vC , ϕM )∈R
2 : Q(t) = Q0 ∀ t ≥ t0

}

. (53)

The following observations make clear some salient features

of M(Q0) for the M − C circuit in Fig. 11:

• Property 3: M(Q0) is the collection of points (vC(t),
ϕM (t))∈R

2 for t≥ t0 such that f(ϕM (t))+CvC(t)=Q0,

i.e., it defines a one-dimensional manifold in the phase-

space R2 of the SE (48) in the (v, i)-domain.

• Property 4: The uniqueness of the solution of (48) im-

plies that there are ∞1 one-dimensional non-intersecting

manifolds M(Q0), spanning the whole phase-space R
2

of the SE (48) in the (v, i)-domain, obtained by varying

Q0 in R.

• Property 5: Since Q(t) is constant for any t ≥ t0, it

follows that for any given Q0 the manifold M(Q0) is

(positively) invariant for the evolution of (vC(t), ϕM (t)),
i.e., if (vC0

, ϕM0
) ∈ M(Q0) then the solution of (48)

with such initial conditions belongs to M(Q0) for any

t ≥ t0. The initial charge Q0 can be varied according to

the instant t0 in which the M − C circuit changes its

topology.13

• Property 6: The one-to-one correspondence between the

solution of (48) and (43) implies that the dynamics on a

manifold M(Q0) can be also described by the SE (43) in

the (ϕ, q)-domain. In other words, there exists a foliation

of the SEs (48) in first-order dynamics on each of the ∞1

manifolds M(Q0).

3) Nonlinear Dynamics and Bifurcations: This section

presents the application of the invariant manifolds concept to

investigate nonlinear dynamics and bifurcations in the M − C
circuit of Fig. 11. Let us rewrite the SE (43) as

{

C dϕC(t;t0)
dt

= −f (ϕC(t; t0) + ϕM0
) +Q0

ϕC(t0; t0) = 0
(54)

where Q0 is defined in (49). Let us assume that the CR of

the memristor14 in the M − C circuit is defined by a smooth

function f(·) that guarantees the existence and uniqueness of

the solution of (54), that is

qM = f(ϕM ) = −aϕM + bϕ3
M (55)

where a, b > 0.

Property 3 implies that the invariant manifold can be written

as (for all t ≥ t0)

M(Q0)=

{

(vC , ϕM )∈R
2 : vC(t)=

1

C
(−f (ϕM (t))+Q0)

}

.

(56)

13If there exist multiple instants at which the M − C circuit in Fig. 1(b)
switches its topology then the solution of (48) jumps across multiple manifolds.

14Memristors defined by the CR in (55) can be realized by a passive flux-
controlled memristor (i.e., bϕ3

M
) in parallel with an active resistor (i.e., a

negative conductance −a).

Fig. 12. Invariant manifold M(Q0) and equilibrium points of (54).

By recalling that ϕM (t) = ϕC(t; t0) + ϕM0
, it turns out that

M(Q0) is also the dynamic route of IVP (54), whose equi-

librium points correspond to the intersection of M(Q0) with

vC = 0 (see Fig. 12), i.e.,

−bϕ3
M + aϕM +Q0 = 0. (57)

The analytical solution of (57) provides the following three

equilibrium points for (54):

ϕ̄α
M =− (1 +

√
3ı)a

3
√
12σ

− (1−
√
3ı)σ

2 3
√
18b

(58)

ϕ̄β
M =− (1 −

√
3ı)a

3
√
12σ

− (1 +
√
3ı)σ

2 3
√
18b

(59)

ϕ̄γ
M =

3

√

2
3a

σ
+

σ
3
√
18b

(60)

where σ = 3

√

√

3(27b4Q2
0 − 4a3b3) + 9b2Q0. The dynamic

route (see Fig. 12) permits to figure out the stability properties

of equilibrium points, that is ϕ̄α
M and ϕ̄γ

M are stable, whereas

ϕ̄β
M is unstable. In addition, Property 6 implies that the equilib-

rium points of (48) in the (v, i)-domain are the pairs (ϕ̄α
M , 0),

(ϕ̄β
M , 0) and (ϕ̄γ

M , 0). Hence, in the (ϕM , vC) phase-space

any trajectory leaving from (ϕM0
, vC0

) lies on the manifold

M(Q0) (see Property 5) and converges toward one of the stable

equilibrium points, i.e., toward either (ϕ̄α
M , 0) or (ϕ̄γ

M , 0) (the

latter situation is shown in Fig. 12).

On the other hand, the dynamics in terms of the incremental

flux ϕC(t; t0) is readily obtained by means of the relation

ϕM (t) = ϕC(t; t0) + ϕM0
. It follows that the equilibria of (54)

are ϕ̄α
M , ϕ̄β

M and ϕ̄γ
M shifted by ϕM0

, i.e.,

ϕ̄α
C = ϕ̄α

M − ϕM0
(61)

ϕ̄β
C = ϕ̄β

M − ϕM0
(62)

ϕ̄γ
C = ϕ̄γ

M − ϕM0
(63)

and any trajectory in the one-dimensional phase-space leaving

from ϕC(t0; t0) = 0 [see (54)] ends up in ϕ̄α
C or ϕ̄γ

C (the latter

situation is also shown in Fig. 12).
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Fig. 13. Numerical simulations of the SE (48) in the (v, i)-domain with a = 1,
b = 1/3 and C = 1. The left (resp., right) part shows the M − C circuit oper-
ating in bistable mode when Q0 = 0 (resp., mono-stable mode when Q0 =

0.7 > Q
(sn)
0 = 2/3). Initial conditions are: P1 = (0.1,−f(0.1)), P2 =

(−0.1,−f(−0.1)) (i.e., Q0 = 0 in P1 and P2), P3 = (0.1,−f(0.1) + 0.7),
P4 = (−0.1,−f(−0.1) + 0.7) and P5 = (−2,−f(−2) + 0.7) (i.e., Q0 =
0.7 in P3, P4, and P5). The markers × correspond to stable equilibria.

The invariant manifold M(Q0) permits to investigate not

only equilibrium points and stability properties of (54), but

bifurcation phenomena as well. It is worth to observe that, once

the memristor parameters a and b are fixed, the equilibrium

points (58)–(60) can move along the ϕM axis if and only if

Q0 varies. It follows that no bifurcations due to the initial

conditions15 (ϕM0
, vC0

) occur if Q0 is a fixed constant Q̄0, that

is (ϕM0
, vC0

) are such that vC0
= (1/C)(−f(ϕM0

) + Q̄0).
This situation is referred to as fixed invariant manifold and

the qualitative analysis of nonlinear dynamics coincides with

that reported above and in Fig. 12. On the contrary, if the

initial charge Q0 is altered by the change of the topology

[refer to Fig. 1(b)], then bifurcations due to initial conditions

can take place. Such situation is referred to as bifurcations

without parameters for the reason that circuit parameters are

kept constant.

As regards the M − C circuit described by (54), a saddle-

node bifurcation without parameters occurs if Q0 is such that

ϕ̄β
M and ϕ̄α

M (or else ϕ̄β
M and ϕ̄γ

M ) collide and annihilate each

other. The conditions ϕ̄β
M = ϕ̄α

M and ϕ̄β
M = ϕ̄γ

M provide

Q
(sn)
0 = ±2

3

3
√
a2√
3b

. (64)

It follows that (54) has two stable equilibrium points (M − C

circuit in bistable mode) for all Q0 ∈ (−|Q(sn)
0 |,+|Q(sn)

0 |).
Otherwise it has just one equilibrium point (M − C circuit in

mono-stable mode). Such analytical results are also confirmed

by numerical simulations (see Fig. 13) of the SE (48) in the

(v, i)-domain with (dimensionless) circuit parameters: a = 1
and b = 1/3 in (55); C = 1.

In summary, the concept of invariant manifolds M(Q0) is

a powerful tool for analyzing nonlinear dynamics and bifur-

cations of the IVP for the SE (43) in the (ϕ, q)-domain. The

15It turns out that bifurcations can be also induced by varying the circuit
parameters a, b and C.

reduced number of ODEs of the IVP in the (ϕ, q)-domain facil-

itates the analysis and permits to obtain analytical results that

cannot be easily derived from the IVP (48) in the (v, i)-domain.

V. CONCLUSION

The manuscript has introduced a comprehensive analysis

method of memristor circuits in the (ϕ, q)-domain. The pro-

posed method relies on Kirchhoff Flux and Charge Laws that

are independent of initial conditions and constitutive relations

of circuit elements in terms of incremental flux ϕ(t; t0) and

charge q(t; t0). Once each circuit element is described in the

(ϕ, q)-domain by incremental flux and charge at its terminals,

any circuit in LM is obtained by connecting circuit elements

using such terminals. The equivalent circuits in the (ϕ, q)-
domain of resistors, capacitors, inductors, voltage and cur-

rent independent source, flux-controlled and charge-controlled

memristor are also provided.

The formulation of circuit equations in the (ϕ, q)-domain has

advantages over the approach in the (v, i)-domain as it permits:

• to investigate nonlinear dynamics and bifurcations by

means of an IVP for a smaller set of ODEs;

• to introduce the concept of invariant manifolds;

• to make clear the role of initial conditions in relation to

bifurcations without parameters.

Remark 9: The typical approaches available in the literature

to study nonlinear dynamics and bifurcations in memristor

circuits make use of classical circuit analysis techniques in the

(v, i)-domain. In particular, in [22] and [24] a method based on

DAEs derived from the tableau analysis in the (v, i)-domain

has been developed for a wide class of memristor circuits.

Such method is mainly devoted to study bifurcations, and in

particular bifurcations without parameters, in the specific cases

where a state-variable representation in the (v, i)-domain is not

available. Analytic and topological conditions for the existence

of bifurcations are obtained, but the role of initial conditions in

bifurcation phenomena is overlooked. Periodic oscillations and

bifurcations are also investigated in a specific third-order mem-

ristor circuit by exploiting a standard state-variable description

in the (v, i)-domain [20], [21]. Via geometric arguments, it is

shown that there exist invariant subsets of the state space and,

for fixed parameter sets, a numerical study of the bifurcations

induced by varying initial conditions is conducted. Numerical

studies in the (v, i)-domain on the influence of initial conditions

on the dynamics and bifurcations have been carried out in

[25]–[27] as well.

The straightforward application of the proposed method has

enabled to thoroughly analyze the nonlinear dynamics of the

simplest memristor circuit, i.e., the M − C circuit introduced

in Fig. 1(a). The concept of invariant manifolds, i.e., regions

of the phase-space in the (v, i)-domain on which the evolution

of electrical variables take place, has clarified how initial con-

ditions give rise to bifurcations without parameters. To the best

of authors’ knowledge, this represents the first result that relates

bifurcations without parameters with physical variables (i.e.,

initial conditions of dynamic circuit elements). Bifurcations

without parameters in more complex circuits of the class LM
will be reported in a companion paper entitled “Memristor

Circuits: Bifurcations without parameters.”
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