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Abstract—Large-capacity content addressable memory (CAM)
is a key element in a wide variety of applications. The inevitable
complexities of scaling MOS transistors introduce a major chal-
lenge in the realization of such systems. Convergence of disparate
technologies, which are compatible with CMOS processing, may
allow extension of Moore’s Law for a few more years. This
paper provides a new approach towards the design and modeling
of Memory resistor (Memristor)-based CAM (MCAM) using
a combination of memristor MOS devices to form the core of
a memory/compare logic cell that forms the building block of
the CAM architecture. The non-volatile characteristic and the
nanoscale geometry together with compatibility of the memristor
with CMOS processing technology increases the packing density,
provides for new approaches towards power management through
disabling CAM blocks without loss of stored data, reduces power
dissipation, and has scope for speed improvement as the tech-
nology matures.

Index Terms—Content addressable memory (CAM), memory,
memory resistor-based CAM (MCAM), memory resistor (mem-
ristor)-MOS hybrid architecture, modeling.

I. INTRODUCTION

T
HE QUEST for a new hardware paradigm that will attain

processing speeds in the order of an exaflop ( floating

point operations per second) and further into the zetaflop regime

( flops) is a major challenge for both circuit designers and

system architects. The evolutionary progress of networks such

as the Internet also brings about the need for realization of new

components and related circuits that are compatible with CMOS

process technology as CMOS scaling begins to slow down [1].
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As Moore’s Law becomes more difficult to fulfill, integration

of significantly different technologies such as spintronics [1],

carbon nano tube field effect transistors (CNFET) [2], optical

nanocircuits based on metamaterials [3], and more recently the

memristor [4], are gaining more focus thus creating new pos-

sibilities towards realization of innovative circuits and systems

within the system on system (SoS) domain.
In this paper we explore conceptualization, design, and mod-

eling of the memory/compare cell as part of a memristor-based
content addressable memory (MCAM) architecture using a
combination of memristor and n-type MOS devices. A typical
content addressable memory (CAM) cell forms a SRAM cell
that has two n-type and two p-type MOS transistors, which
requires both and GND connections as well as well-plugs
within each cell. Construction of a SRAM cell that exploits
memristor technology, which has a non-volatile memory
(NVM) behavior and can be fabricated as an extension to a
CMOS process technology with nanoscale geometry, addresses
the main thread of current CAM research towards reduction of
power consumption.

The design of the CAM cell is based on the fourth passive
circuit element, the memristor (M) predicted by Chua in 1971
[5] and generalized by Kang [6], [7]. Chua postulated that a
new circuit element defined by the single-valued relationship

must exist, whereby current moving through the
memristor is proportional to the flux of the magnetic field that
flows through the material. In another words, the magnetic flux
between the terminals is a function of the amount of charge, ,
that has passed through the device. This follows from Lenz’s
law whereby the single-valued relationship has the
equivalence , where and are memristor voltage
and current, respectively.

The memristor behaves as a switch, much like a transistor.
However, unlike the transistor, it is a two-terminal rather than a
three-terminal device and does not require power to retain either
of its two states. Note that a memristor changes its resistance
between two values and this is achieved via the movement of
mobile ionic charge within an oxide layer, furthermore, these
resistive states are non-volatile. This behavior is an important
property that influences the architecture of CAM systems, where
the power supply of CAM blocks can be disabled without loss
of stored data. Therefore, memristor-based CAM cells have the
potential for significant saving in power dissipation.

This paper has the following structure. Section II is an intro-

ductory section and reviews the properties of the memristor and

then explores various options available in the modeling of this

1063-8210/$26.00 © 2010 IEEE
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Fig. 1. Memristor switching behavior. (a) “ON” state, low resistance, (b) “OFF”
state, high resistance. The key feature of memristor is it can remember the resis-
tance once the voltage is disconnected. In (a) “doped” and “undoped” regions are
related to� and� , respectively. The dopant consists of mobile charges.
In (b), � and � are the thin-film thickness and doped region thickness, respec-
tively.

device. In Section III, circuit options for realization of MCAM is

investigated whereby the two disparate technologies converge to

create a new CMOS-based design platform. Section IV provides

simulation results of a basic MCAM cell to be implemented as

part of a future search engine. The details of our proposed layout

and preliminary CMOS overlay fabrication approach are also

presented in Section V. The concluding comments are provided

in Section VI.

II. CHARACTERIZATION AND MODELING BEHAVIOR OF

MEMRISTOR

Strukov et al. [4] presented a physical model whereby the

memristor is characterized by an equivalent time-dependent re-

sistor whose value at a time is linearly proportional to the

quantity of charge that has passed through it. They realized

a proof-of-concept memristor, which consists of a thin nano

layer (2 nm) of and a second oxygen deficient nano layer

of (8 nm) sandwiched between two Pt nanowires

50 nm , shown in Fig. 1 [4]. Oxygen vacancies are

mobile carriers and are positively charged. A change in dis-

tribution of within the nano layer changes the re-

sistance. By applying a positive voltage, to the top platinum

nanowire, oxygen vacancies drift from the layer to the

undoped layer, thus changing the boundary between the

and layers. As a consequence, the overall resis-

tance of the layer is reduced corresponding to an “ON” state.

When enough charge passes through the memristor that ions can

no longer move, the device enters a hysteresis region and keeps

at an upper bound with fixed memristance, (memristor re-

sistance). By reversing the process, the oxygen defects diffuse

back into the nano layer. The resistance returns to its

original state, which corresponds to an “OFF” state. The signif-

icant aspect to be noted here is that only ionic charges, namely

oxygen vacancies through the cell, change memristance.

The resistance change is non-volatile hence the cell acts as a

memory element that remembers past history of ionic charge

flow through the cell.

A. Simplified Memristor Model

The memristor can be modeled in terms of two resistors in se-

ries, namely the doped region and undoped region each having

vertical width of and , respectively, as shown in Fig. 1,

where is the film thickness [4]. The voltage-current re-

lationship defined as , can be modeled as [5]

(1)

where is the resistance for completely doped memristor,

while is the resistance for the undoped region. The width

of the doped region is given by

(2)

where represents the average dopant mobility

cm s V. Taking a normalized variable,

, instead of assists in tracking memris-

tance, , or memductance, . The

new normalized relation is

(3)

where has the dimensions of magnetic flux . Fol-

lowing the calculation steps from Kavehei et al. [8], a simple

memristance model can be defined as

(4)

where , and is a ratio of and

is the resistance modulation index. Here,

can now be rewritten as

(5)

which highlights that the term (where ) must

be made sufficiently large to maintain between the

range 0 and 1. The simplified linear ionic drift model facilitates

the understanding of the operational characteristics of the mem-

ristor. However, for a highly nonlinear [9] relationship between

electric field and drift velocity that exists at the boundaries, the

ratio cannot be maintained. Thus this function is unable to model

large nonlinearities close to the boundaries of the memristor

characteristics. At the boundaries, i.e., when approaches 0 or

1, there is a nonlinearity associated with the memristor behavior

that is discussed in Section II-B.

B. Modelling the Nonlinear Behavior of Memristor

The electrical behavior of the memristor as a switch/memory

element is determined by the boundary between the two regions

in response to an applied voltage. To model this nonlinearity,

the memristor state (3) is augmented with a window function,

[4], [10]–[12], where and are the memristor’s state

variable and current, respectively.

Thus, (3) can be rewritten as

(6)
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TABLE I
COMPARISON BETWEEN DIFFERENT MEMRISTOR MODELS. FOR A-II, B-I, AND B-II � � ���

Fig. 2. Nonlinear behavior of the memristor. (a) Window function: � ��� �
� � �� � �������� , where ������ gives the sign of the input signal � . (b)
The hysteresis characteristics using the nonlinear drift assumption. This hys-
teresis shows a highly nonlinear relationship between current and voltage at the
boundaries.

where is its control parameter. The nonlinearity at the bound-

aries can now be controlled with parameter . The influence of

a window function described by (6) is illustrated in Fig. 2(a) for

.

Joglekar and Wolf [13] proposed a modified window func-

tion to approximately address linear ionic drift and the non-

linear behaviour at the boundaries when . For the

window function , is a positive in-

teger and . This model considers a simple boundary

condition, , when , the state vari-

able equation is an approximation of the linear drift assumption,

. This model is denoted by B-I in Table I.

Based on this model, when a memristor is at the terminal

states, no external stimulus can change its state. Biolek et

al. [11] addressed this problem with a new window function,

, where is the memristor current,

when , and when . When

current is positive, the doped region length, , is expanding.

This model is denoted by B-II in Table I and is adopted for the

simulations that follow.

The hysteresis characteristic using the nonlinear drift as-

sumption is illustrated in Fig. 2(b). This hysteresis shows a

highly nonlinear relationship between current and voltage at

the boundaries as is derived using similar parameters reported

by Strukov et al. [4]

To conclude this section Table I shows a brief comparison

between different behavioral memristor models. It is also im-

portant to emphasis that the modeling approach in this paper

is based on the behavioral characteristics of the solid-state thin

film memristor device [4]. Shin et al. [14] recently proposed

compact macromodels for the solid-state thin film memristor de-

vice. Even though the assumption is still based on the linear drift

model, their approach provides a solution for bypassing current

flow at the two boundary resistances.

C. Emerging Memory Devices and Technologies

Memory processing has been considered as the pace-setter

for scaling a technology. A number of performance parameters

including capacity (that relate to area utilization), cost, speed

(both access time and bandwidth), retention time, and persis-

tence, read/write endurance, active power dissipation, standby

power, robustness such as reliability and temperature related is-

sues characterize memories. Recent and emerging technologies

such as phase-change random access memory (PCRAM), mag-

netic RAM (MRAM), ferroelectric RAM (FeRAM), resistive

RAM (RRAM), and memristor, have shown promise and some

are already being considered for implementation into emerging

products. Table II summarizes a range of performance parame-

ters and salient features of each of the technologies that charac-

terize memories [15], [16]. A projected plan for 2020 for mem-

ories highlight a capacity greater than 1 TB, read/write access

times of less than 100 ns and endurance in the order of or

more write cycles.

Flash memories suffer from both a slow write/erase times and

low endurance cycles. FeRAMs and MRAMs are poorly scal-

able. MRAMs and PCRAMs require large programming cur-

rents during write cycle, hence an increase in dissipation per

bit. Furthermore, voltage scaling becomes more difficult. Mem-

ristors, however, have demonstrated promising results in terms

of the write operation voltage scaling [10], [17].

Memristor crossbar-based architecture is highly scalable [18]

and shows promise for ultra-high density memories [19]. For

example, a memristor with minimum feature sizes of 10 and 3

nm yield 250 Gb/cm and 2.5 Tb/cm , respectively.

In spite of the high density, zero standby power dissipation,

and long life time that have been pointed out for the emerging

memory technologies, their long write latency has a large neg-

ative source of impact on memory bandwidth, power consump-

tion, and the general performance of a memory system.

III. CONVENTIONAL CAM AND THE PROPOSED

MCAM STRUCTURES

A content addressable memory illustrated in Fig. 3 takes a

search word and returns the matching memory location. Such

an approach can be considered as a mapping of the large space
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TABLE II
TRADITIONAL AND EMERGING MEMORY TECHNOLOGIES

Fig. 3. Generic content addressable memory architecture for ��� NAND-type
CAM cells. In this structure each data (D) and search (S) bits share one common
bus line (D/S) to reduce the interconnection complexity. The architecture is
based on the MCAM cell of Fig. 6(d) and the match lines (MLs) composed
of nMOS pass transistors.

of input search word to that of the smaller space of output match

location in a single clock cycle [20]. There are numerous ap-

plications including translation lookaside buffers (TLB), image

coding [21], classifiers to forward Internet protocol (IP) packets

in network routers [22], etc. Inclusion of memristors in the ar-

chitecture ensures that data is retained if the power source is

removed enabling new possibilities in system design including

the all important issue of power management.

A. Conventional CAM

To better appreciate some of the benefits of our proposed

structure we provide a brief overview of the conventional CAM

cell using static random access memory (SRAM) as shown in

Fig. 4(a). The two inverters that form the latch use four transis-

tors including two p-type transistors that normally require more

silicon area. Problems such as relatively high leakage current

particularly for nanoscaled CMOS technology [23] and the need

for inclusion of both and ground lines in each cell bring

further challenges for CAM designers in order to increase the

packing density and still maintain sensible power dissipation.

Thus, to satisfy the combination of ultra dense designs, low-

Fig. 4. Conventional CAM cell structure and the design of a SRAM cell for
ultra low-power applications. In (a) a conventional 10-T NOR-type CAM cir-
cuit is demonstrated. Usually, conventional NOR- or NAND-type CAM cells have
more than 9 transistors [26]. In (a) and (b), RS, Rbit, WS, ML, bit, and -bit lines
are read select, read bit-line, word select, match line, data, and complementary
data signals. (a) Conventional 10-T NOR-type CAM Cell. (b) 8-T subthreshold
SRAM Cell [23].

power (low-leakage), and high-performance, the SRAM cell is

the focus of architectural design considerations.
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For instance, one of the known problems of the conventional

6-T SRAM for ultra low-power applications is its static noise

margin (SNM) [23]. Fundamentally, the main technique used to

design an ultra low-power memory is voltage scaling that brings

CMOS operation down to the subthreshold regime. Verma and

Chandrakasan [23] demonstrated that at very low supply volt-

ages the static noise margin for SRAM will disappear due to

process variation. To address the low SNM for subthreshold

supply voltage Verma and Chandrakasan [23] proposed 8-T

SRAM cell shown in Fig. 4(b). This means, there is a need for

significant increase in silicon area to have reduced failure when

the supply voltage has been scaled down.

Failure is a major issue in designing ultra dense (high ca-

pacity) memories. Therefore, a range of fault tolerance tech-

niques are usually applied [24]. As long as the defect or failure

results from the SRAM structure, a traditional approach such as

replication of memory cells can be implemented. Obviously it

causes a large overhead in silicon area which, exacerbates the

issue of power consumption.

Some of the specific CAM cells, for example, ternary con-

tent addressable memory (TCAM) normally used for the design

of high-speed lookup-intensive applications in network routers,

such as packet forwarding and classification two SRAM cells,

are required. Thus, the dissipation brought about as the result

of leakage becomes a major design challenge in TCAMs [25].

It should be noted that the focus in this paper is to address the

design of the store/compare core cell only, leaving out details of

CAM’s peripherals such as read/write drivers, encoder, match-

line sensing selective precharge, pipelining, matchline segmen-

tation, current saving technique, etc., that characterize a CAM

architecture [26].

B. Generic Memristor-nMOS Circuit

Fig. 5 shows the basic structure for a memristor-nMOS

storage cell. For writing a logic “1,” the memristor receives a

positive bias to maintain an “ON” state. This corresponds to

the memristor being programmed as a logic “1.” To program a

“0” a reverse bias is applied to the memristor, which makes the

memristor resistance high. This corresponds to logic “0” being

programmed.

C. MCAM Cell

In this subsection, variations of MCAM cells as well as a

brief architectural perspective are introduced. The details of

read/write operations and their timing issues are also discussed

in Section IV. A CAM cell serves two basic functions: “bit

storage” and “bit comparison.” There are a variety of ap-

proaches in the design of basic cell such as NOR-based match

line, NAND based match line, etc. This part of the paper reviews

the properties of conventional SRAM-based CAM and pro-

vides a possible approach for the design of content addressable

memory based on the memristor.

1) MCAM Cell Properties: Fig. 6 illustrates several varia-

tions of the MCAM core whereby bit-storage is implemented

by memristors ME1 and ME2. Bit comparison is performed

by either NOR or alternatively NAND-based logic as part of the

match-line circuitry. The matching operation is equivalent

Fig. 5. Basic memristor-nMOS storage cell and the timing diagram. (a) shows
write mode part of the �th cell in a row. (b) Basic cell circuit without the match-
line transistor. (c) “Low” resistance,� , programing. Equivalent to logic “1.”
(d) “High” resistance,� , programing. Equivalent to logic “0.” (a) Structure
of write mode. (b) Basic cell. (c) Program “Low” resistance “1.” (d) Program
“High” resistance “0.”

to logical XORing of the search bit (SB) and stored bit (D). The

match-line transistors (ML) in the NOR-type cells can be consid-

ered as part of a pull-down path of a precharged NOR gate con-

nected at the end of each individual row. The NAND-type

CAM functions in a similar manner forming the pull-down of

a precharged NAND gate. Although each of the selected cells in

Fig. 6 have their relative merits, the approach in Fig. 6(c) where

Data bits and Search bits share a common bus is selected for

detailed analysis. The structure of the 7-T NAND-type, shown

in Fig. 6(d), and the NOR-type are identical except for the posi-

tion of the ML transistor. In the NOR-type, ML makes a connec-

tion between shared ML and ground while in the NAND-type, the

ML transistors act as a series of switches between the and

.

IV. SIMULATION RESULTS ANALYSIS AND COMPARISON

Generally, there are the “write” and “read” operations that

require consideration. In this section the “write” and “read”

operations of the basic MCAM cell for 7-T NOR-type are re-

ported. Simulations of the circuits are based on the following

parameters [27]: 100 , 100 k , ,

3 nm, and m s/V. Both the conven-

tional CAM and MCAM circuits have been implemented using

Dongbu HiTech 0.18- m technology where 1.8 V is the nom-

inal operating voltage for the CAM. The MCAM cell is imple-

mented using nMOS devices and memristors without the need

for voltage source. Using the above memristor parameters,

together with the behavioral model B-II of Table I, satisfactory

operation of the MCAM cell is achieved at 3.0 Volts. We have re-

ferred to this voltage as the nominal voltage for the MCAM cell.

Furthermore, the initial state of the memristors (“ON,” “OFF,” or

in between) is determined by initial resistance, .

A. Write Operation

At the write phase, the memristor ME1 is programmed based

on the data bit on the D line. The complementary data is also

stored in ME2. During the write operation, the select line is zero
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Fig. 6. Cell configurations of possible MCAM structures. (a) 5-T NOR-type. (b)
6-T NOR-type. (c) 7-T NOR-type. (d) 7-T NAND-type.

and an appropriate write voltage is applied on VL. The magni-

tude of this voltage is half of supply voltage, that corresponds

Fig. 7. Write operation timing diagram. The highlighted area in (b) shows
the minimum time for writing, which is the maximum for both memris-
tors, around 220 ns. In (b) � and � are dimensionless parameters
and both are varying between 0 and 1. The rational for showing VL and
� and � together is that VL acts as a trigger for the state variables.
�� � 1.5 V�� ��� for write operation. (a) Data (D) and Word Select
(WS) signals. WS pulse width is 1.2 ��. (b) Write enable, VL, and memristors
state, � and � , signals.

to . The pulse width is determined by the time required

for the memristor to change its state from logic “1” to

logic “0” or vice versa. Waveforms in Fig. 7 illustrate

the write operation. In this case 40 k and the initial

state is around 0.6. The diagrams show two write operations, for

both when D is “1” and when it is “0.” By applying to

VL line, there will be a potential across the memristor

ME2 and across the memristor ME1.

The highlighted area in Fig. 7(b) shows the difference in the

write operation between ME1 and ME2. When and

, there is a threshold voltage drop at the node.

Thus, the potential across the memristor would be

. At the same time, is the voltage across the

ME1, so the change in state in ME1 occurs faster than memristor

ME2. The time for a state change is approximately 75 ns for

ME1 and 220 ns for ME2. Therefore, 145 ns delay is imposed

because of the voltage drop across the ME2. Fig. 7(b) illustrates

simulation results carried out using a behavioral SPICE macro-

model.

B. Read Operation

Let us assume that ME1 and ME2 were programmed as a

logic “1” and logic “0,” respectively. Therefore, ME1 and ME2

are in the “ON” and “OFF” states and 200 and

99 k . In this case, the search line, S, is activated

first. At the same time search select signal, SS, is activated to

turn on the two select transistors, M5 and M6. The word select

(WS) is disabled during the read operation. Fig. 8 shows the

waveforms for a complete read cycle. Read operation requires

higher voltage for a short period of time. The VL pulse width

(PW) for read operation is 12 ns as illustrated in Fig. 8(b) which

is the “minimum” pulse width necessary to retain memristor’s

state.

For a matching “1” (when ), the sequence of opera-

tions are as follows: 1) match line, ML, is pre-charged; 2) SS is
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Fig. 8. Read operation timing diagram: (a) Search signal (S). For matching “1” � � � and for matching “0” � � �. (b) Search select (SS) and read enable
(VL) signals. �� � 3.0 V�� �. (c) Bit-match, read, and match-line (ML) signals. ��	
 � ��. (d) ME1 and ME2 state variable signals. In (b) and (c),
R1, R2, P1, and P2 represent two read and match-line pre-charge phases, respectively. The final (stable) values for � and � after two read operations are
around 0.7 and 0.09. The difference between � and � , in terms of time is also shown in (d).

TABLE III
COMPARISON BETWEEN THE PROPOSED CAM CELLS IN FIG. 6

activated; and 3) VL is enabled as is shown in Fig. 8(a)–(c). A

logic “1” is transferred to the bit-match node, which discharges

the match line, , through transistor ML. At this point

commences to decrease its state from 1 to 0.84 and in-

creases its state from 0 to 0.05. Thus, there is a match between

stored Data and Search Data. The following read operation for

follows a similar pattern as shown in Fig. 8(c). The

simulation results confirm the functionality of proposed MCAM

circuitry.

C. Simulation Results Analysis

Table III provides a comparison between the various MCAM

cells that are proposed in Fig. 6. It is worth noting that simula-

tions are based on a single cell. Therefore there are no differ-

ences in characteristics between 7-T NAND and 7-T NOR cells.

The difference in minimum VL pulse width for read operation

, between different MCAM cells, is relatively

significant and is brought about as the result of pass-transistors

in the path from search line to the bit-match node. One important

issue in the design of MCAM cells is endurance. For instance,

DRAM cells must be refreshed at least every 16 ms, which cor-

responds to at least write cycles in their life cycle [28].

Analysing a write operation followed by two serial read oper-

ations shows that 5-T, 6-T, and 7-T NOR/NAND cells deliver a

promising result. After two serial read operations the memristor

state values for and are, 0.74 and 0.06, and 0.71

and 0.09, for 5-T, 6-T, and 7-T NOR/NAND cell, respectively.

The overall conclusion from the simulation results shows that

in terms of speed, the 6-T NOR-type MCAM cell has improved

performance, but it uses separate Data and Search lines. The 7-T
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Fig. 9. 2� 2 MCAM structure. (a) 2� 2 architecture. (b)�� signal. (c)��
signal. The search data (“10”) is matched with the first row stored information
so the �� � � shows the search data is matched with ��� and �� � �
shows the data is not matched with the stored information in the second row
	��� 
. (a) 2� 2 architecture, search data (“10”), and matching information.
(b) �� signal behavior once VL triggers matching operation. (c) �� signal
behavior once VL triggers matching operation.

NOR/NAND cell shares the same line for Data and Search inputs.

However, it is slightly slower 12 ns, while the

swing on the match-line is reduced by threshold voltage

drop.

1) Power Analysis: A behavioral model was used to esti-

mate peak, average, and RMS power dissipation of an MCAM

cell compared to the conventional SRAM-based cell. The power

consumption is the total value for the static and dynamic power

dissipation. A reduction of some 96% in average power con-

sumption with an MCAM cell was noted. The maximum power

dissipation reduction is over 74% for the memristor-based struc-

ture. The root mean square (RMS) value of current, which is

sunk from the supply rail for the MCAM, is around 47 A

less than the conventional SRAM-based circuitry, which shows

over 95% reduction. To the best of our knowledge this is the

first power consumption analysis of a memristor-based struc-

ture using a behavioral modeling approach. As the technology

matures it is conjectured that a similar power source could be

used for the hybrid scaled CMOS/Memristor cell.

D. A 2 2 Structure Verification

Fig. 9 illustrates implementation of a 2 2 structure whereby

the 7-T NAND-type [see Fig. 6(d)] is used. As is stated before,

in the NOR-type, ML makes a connection between shared ML

and ground while in the NAND-type, the ML transistors act

as a series of switches between the and ground. The

and match signals, illustrated in Fig. 9(a), are these

Fig. 10. Layout implementation (a) conventional SRAM-based and (b) pro-
posed MCAM cells. In (a) � line is required. In (b), highlighted regions show
the two memristors in the upper layer. (a) Conventional 10-T NOR-type CAM
cell. (b) 7-/T, 2-M NOR-type MCAM cell.

signals. The cells are initially programmed to be “0”

or “1” and the search bit vector is “10.” The first row cells are

programmed “10.” As the consequence, is discharged

since there is a match between the stored and search bit vectors.

Fig. 9(b) and (c) demonstrate the and outputs,

respectively. Basically, using the ML transistors as an array of

pass-transistors in a NAND-type structure imposes a significant

delay, but in this case, the timing information shows the delay

of matching process is around 12 ns.

A large scale cosimulation of crossbar memories can be car-

ried out each junction assumed to be either a diode or a 1D-1R (a

parallel structure of one diode and one resistor) or even a linear

resistor [29]. However, the modeling approach should be care-

fully revisited since large resistor nonlinearity is associated with

crosspoint devices [19]. A cosimulation of crossbar memories,

considering the highly nonlinear crosspoint junctions, underpins

our longer term research objective.
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Fig. 11. Cross sectional view of the memristor-MOS implementation and TEM
microphotograph of ��� deposition. (a) Cross section of memristor-MOS
layout. (b) TEM microphotograph.

V. PHYSICAL LAYOUT AND FABRICATION

A. Physical Layout

Layout of conventional 10-T NOR-type CAM and 7-T NOR-

type MCAM cells are shown in Fig. 10. The MCAM cell has

a dimensions of 4.8 4.36 m while the dimensions for the

conventional SRAM-based cell is 6.0 6.5 m . Thus, the re-

duction in silicon area is in the order of 46%. The 2 2 struc-

ture also shows over a 46% area reduction. The two memristors,

shown in highlighted regions of Fig. 10(b) are implemented be-

tween metal-3 and metal-4 layers as part of CMOS post pro-

cessing.

B. Fabrication and Layer Definitions

Fig. 11(a) illustrates a cross-section of Pt, , and

layers over silicon substrate. The layer thickness must

be restricted below two nanometers, to prevent separate con-

duction through the individual layers. The n-type MOS devices

are patterned onto a silicon wafer using normal CMOS pro-

cessing techniques, which subsequently is covered with a pro-

tective oxide layer. The Pt memristor wires are patterned and

connections made to the n-type MOS devices. The upper Pt

nanowire is patterned and, electrical connections made by pho-

tolithography (to spatially locate the vias) and aluminum metal

deposition [4].

Fig. 11(b) demonstrates a TEM microphotograph of a

overlay on a silicon substrate in order to explore the

controllability of oxygen ions. The device consists of a top

gate Pt, layer and back gate Pt on layer of

silicon. thin film with a thickness of 9.4 nm was de-

posited on a silicon wafer using sputtering technique. Table IV

is deposition result with sputtering technique. Samples show

that 1.85% oxygen (O) vacancy can be achieved keeping within

the 2% tolerance.

TABLE IV
DEPOSITION RESULTS USING SPUTTERING TECHNIQUE

VI. CONCLUSION

The idea of a circuit element, which relates the charge and

the magnetic flux realizable only at the nanoscale with the

ability to remember the past history of charge flow, creates inter-

esting approaches in future CAM-based architectures as we ap-

proach the domain of multi-technology hyperintegration where

optimization of disparate technologies becomes the new chal-

lenge. The scaling of CMOS technology is challenging below

10 nm and thus nanoscale features of the memristor can be sig-

nificantly exploited. The memristor is thus a strong candidate

for tera-bit memory/compare logic.

The non-volatile characteristic and nanoscale geometry of the

memristor together with its compatibility with CMOS process

technology increases the memory cell packing density, reduces

power dissipation and provides for new approaches towards

power reduction and management through disabling blocks of

MCAM cells without loss of stored data. Our simulation results

show that the MCAM approach provides a 45% reduction in

silicon area when compared with the SRAM equivalent cell.

The Read operation of the MCAM ranges between 5 to 12 ns,

for various implementations, and is comparable with current

SRAM and DRAM approaches. However the Write operation

is significantly longer.

Simulation results indicate a reduction of some 96% in av-

erage power dissipation with the MCAM cell. The maximum

power reduction is over 74% for the memristor-based struc-

ture. The RMS value of current sunk from the supply rail for

the MCAM is also approximately 47 A, which correspond to

over a 95% reduction when compared to SRAM-based circuitry.

To the best of our knowledge this is the first power consump-

tion analysis of a memristor-based structure that has been pre-

sented using a behavioral modeling approach. As the technology

is better understood and matures further improvements in per-

formance can be expected
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