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Early cancer detection has been playing an important role in reducing cancer mortality. Optical coherence tomography (OCT),
due to its micron-scale resolution, has the ability to detect cancerous tissues at their early stages. For internal organs, endoscopic
probes are needed as the penetration depth of OCT is about 1–3 mm. MEMS technology has the advantages of fast speed, small
size, and low cost, and it has been widely used as the scanning engine in endoscopic OCT probes. Research results have shown great
potential for OCT in endoscopic imaging by incorporating MEMS scanning mirrors. Various MEMS-OCT designs are introduced,
and their imaging results are reviewed in the paper.

1. Introduction

Cancer has been one of the deadliest diseases in America
and all around the world, killing over 7 million people
each year [1]. To detect cancer at the stage when it is still
curable has been found to be the most effective way to reduce
its death rate. The traditional method for cancer detection
is biopsy. It suffers from several drawbacks, such as long
diagnosis time, random sample selection and invasiveness.
Several noninvasive imaging methods have been employed
for clinical use, including ultrasound, CT and MRI. But the
resolutions of these modalities are on the order of 100 µm,
not enough to resolve the precancerous lesions, which are
normally 5 to 10 µm in size. Other issues involved with
these methods are low contrast, high costs, and radiation
problems.

Optical coherence tomography (OCT) is a relatively new
optical imaging modality [2]. By using the short coherence
length of a broadband light source, the resolution of OCT can
reach 1 to 15 µm depending on the light source employed.
The penetration depth of OCT is normally 1 to 3 mm, which
is sufficient to image the depth of the epithelial layer, where
most cancers are originated. In addition to that, OCT is an
optical fiber-based system, and thus it is compact, portable,
free of radiation, and affordable. Since its introduction in the
early 1990s, it has been employed extensively in dermatology
and ophthalmology [2–9]. It has also been used for imaging

internal organs such as the GI tracts, bladders, and esophagus
[10–19].

Figure 1 shows the schematic representation of a fre-
quency domain OCT system. It employs a Michelson
interferometer. The input light from a broadband frequency
sweeping light source is divided into the reference arm and
sample arm. The light beams on both arms are reflected back
and form an interference signal at one port of the beam
splitter. This interference signal is picked up by a photode-
tector and provides the depth information of the sample
through inverse Fourier transform. And depth resolution is
determined by the bandwidth of the light source. To realize
3D imaging, 2D lateral scan needs to be realized by a moving
stage or a scanning mirror. One of the main challenges of
imaging internal organs is to realize fast lateral scans in small
endoscopes that must be able to fit into narrow lumens
whose diameters typically are only a few millimeters. Several
groups have attempted to solve this problem. Rotating a
fiber-prism module at the distal end has been used to
realize side view imaging [20]. Fiber bundle [21], rotating
paired GRIN lenses [15], or swinging a fiber tip can be
used for front view imaging [16–19, 22]. Galvanometric
actuation [17], electroactive polymers [18], and piezoelectric
cantilevers [19, 22] have all been used to swing fiber tips.
When used at its resonance, a piezoelectric cantilever can
scan fast enough to realize real time imaging [19]. However,
several drawbacks are associated with these approaches. First,
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Figure 2: MEMS probe schematic representation. (a) forward-view
probe, (b) side-view probe.

manipulating light beam at the distal fiber end limits the
scan speed; second, for rotating optical components, the
gears employed hinder further miniaturization of the probes;
third, piezoelectric cantilevers have hysteresis problem, and
when used at resonance, scan uniformity and coupling
efficiency cannot be guaranteed, especially at large scan
angles. As a result, an alternative technique, which is based
on microelectromechanical systems (MEMS) technology,
becomes popular.

2. MEMS-Based OCT Endoscopic Imaging

MEMS technology is an enabling technology that makes
devices and systems at the scale of micrometers to mil-
limeters [23, 24]. MEMS sensors and actuators have been
widely used in automotives for airbag deployment and in
other consumer products, such as cell phones, projectors
and video game controllers. Recently, MEMS technology has

shown great potential in biomedical engineering especially
for endoscopic imaging. There are several reasons. First,
MEMS devices are small; therefore, miniaturization of the
probes are possible. Second, MEMS scanners can operate at
high speed for real-time imaging. Third, MEMS scanners
are easy to integrate with the rest of the imaging system.
Fourth, the cost of MEMS devices is low due to the mass
production capability. Fifth, the power consumption is low
for MEMS devices. The first MEMS-based OCT endoscope
was introduced by Pan et al. employing a one-dimensional
(1D) electrothermally actuated MEMS mirror [25]. Two-
dimensional (2D) porcine bladder cross-sectional imaging
was demonstrated. After that various forms of MEMS
mirrors have been developed as the scanning engine in
endoscopic probes for OCT systems.

Figure 2 illustrates the concept of MEMS-based front-
view and side-view OCT probes, in which MEMS mirrors
are placed at the distal ends of the probes, and their angular
rotation directs the light and generates lateral scans on the
sample. Combined with the OCT depth scan provided by the
reference mirror scanning, 3D images can be obtained with
2D MEMS mirrors. Several features are highly desirable of
MEMS mirrors for this application. Firstly, the footprint of
the MEMS device must be small to fit into small endoscopes;
secondly, the mirror aperture must be large and flat for easy
optical alignment and high optical resolution; thirdly, the
mirror must be able to scan large angles to realize large
imaging area; fourthly, the driving voltage must be low
to ensure safe use inside human body; finally, the linear
control of the scan should be easily implemented to simplify
signal processing and image interpretation. Single-crystal-
silicon (SCS) or silicon-on-insulator (SOI) substrate can
provide large flat and robust device microstructures, and
thereby are predominantly used for making MEMS mirrors
for endoscopic applications. There are four actuation mech-
anisms employed for generating the scanning for MEMS
mirrors: electrostatic, electromagnetic, piezoelectric, and
electrothermal. The following sections review OCT systems
using MEMS mirrors driven by each of these mechanisms.

3. Various MEMS OCT

3.1. Electrostatic MEMS Mirrors. Electrostatic actuation has
been one of the most popular choices for MEMS mirrors.
Electrostatic actuation is based on electrostatic force which
exists between electrically charged particles. The first MEMS
mirror based on this principle was demonstrated by Petersen
in 1980 [26]. By employing a parallel-plate structure, the
maximum rational angle of the micromirror reached ±2◦

at resonance and 300 V driving voltage. This parallel-plate
structure has been adopted by many other researchers
and rotation angles as large as ±8◦ have been achieved
with lower driving voltages in the range of 40 V to 200 V,
but the reported mirror aperture diameters are normally
smaller than 500 µm [27–34]. What limits this structure from
realizing larger scan angle is the pull-in effect. To overcome
this problem, vertical comb drive actuation structures were
employed [35–40]. The vertical or angular displacement of
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Figure 3: Electrostatic MEMS OCT from UC-Irvine/UC-Berkeley. (a) SEMs of two MEMS mirrors, (b) Electrical connection through wire
bonding, (c) packaged MEMS probe, (d) 3D image of rabbit rectal tissue.

the comb drives is converted into mirror tilting through
a torsional beam which supports the mirror plate. Mirror
aperture size as large as 1.5 mm × 1.5 mm has been reported
based on this structure [36]. Both 1D and 2D micromirrors
have been realized using this structure, and the mechanical
deflection angle has reached ±5.5◦ at only 16 V resonance
[36] and ±6.2◦ at 55 V resonance [37]. For 2D mirrors, two
gimbals are used to support the mirror plate in orthogonal
directions. To further increase scan angles, Milanović et al.
proposed a new gimbal-less SOI-based micromirror [38], the
static optical deflection for both axes are increased to∼ ±10◦

with ∼150 V driving voltage.
A series of endoscopic OCT probes employing elec-

trostatic micromirrors have been reported by Jung and
McCormick [41, 42]. Figure 3(a) shows the SEMs of two of
the MEMS mirrors they reported. The one on the left has a
1 mm × 1 mm mirror size on a 2.8 mm × 3.3 mm footprint,
while the one on the right has a mirror aperture diameter of

800 µm. The devices employed 2D gimbal-less vertical comb
structures. The mirror plate and actuators are fabricated
separately and then bonded together. Optical scanning angles
of the mirrors can reach 20◦ at resonance when a 100 V
driving voltage is applied. Resonant frequencies as high
as 2.4 kHz and 1.9 kHz on two axes have been reported.
Electrical connection was done through wire bonding, and
injection mold was used for probe body. The diameters of
the endoscopic probes range from 3.9 mm to 5.0 mm. 3D in
vivo OCT images of healthy rabbit rectal tissue have been
obtained at 8 frames/sec. The image volume size is 1 mm ×

1 mm × 1.4 mm, and the resolution of the image is 20 µm
× 20 µm × 10 µm. Important tissue structures can be clearly
seen here.

Aguirre et al. from MIT have also reported an electro-
static MEMS mirror-based endoscopic OCT probe [43]. In
their paper, they demonstrated a gimbaled 2D MEMS mirror
design based on angular vertical comb actuators, which
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Figure 4: Electrostatic MEMS OCT from MIT. (a) SEMs of the MEMS mirror with angled vertical comb (AVC) actuators. (b) design
and packaging of the probe. SMF, single mode fiber. FC, fiber collimator. AL, aluminum. (c) 3D image of hamster cheek pouch. Reprint
permission granted by OSA.

allows larger scan angles compared to other vertical comb
drives with the same dimensions. The mirror has a circular
aperture, whose diameter is 1 mm and the device footprint is
3 × 3 mm2, as shown in Figure 4(a). Mechanical scan angles
of ±6◦ have been achieved on both axes at more than 100 V.
The reported a side-view probe with an aluminum holder
housing the MEMS mirror. The probe has a diameter of
about 5 mm. The optical components packaged inside the
probe include a fiber, a GRIN lens and a small achromatic
lens (Figure 4(b)). Incorporated in a spectral domain OCT,
the probe scans at 4 frames/sec over the range of 1.8 mm ×

1.0 mm × 1.3 mm. 3D hamster cheek pouch images have
been obtained to demonstrate the capability of the probe.

As is shown in Figure 3(b), the probe size is limited
by the footprint of the MEMS mirror. For electrostatic
mirrors, much space of the device is taken by the comb drive
actuators. This results in a small ratio of the mirror aperture
size to the device footprint size, or small fill-factor for elec-
trostatic mirrors, which may limit further miniaturization
of endoscopic probes. High resonant frequencies make them
ideal for fast scanning applications, but working at resonance
can cause nonlinear scan. High driving voltage required may
also be a concern for endoscopic applications.

3.2. Electromagnetic MEMS Mirrors. To further increase
the scanning range and lower the driving voltage, electro-
magnetic mirrors are also explored for endoscopic OCT
applications. Electromagnetic actuation is based on Lorentz
force, and larger driving force can be realized with lower
driving voltage. By controlling the current flowing direction,
both repulsive and attractive driving force can be realized

[44]. The magnetic field for electromagnetic actuation is
normally generated by permalloy [44–46] or active electric
coils [44, 47, 48]. A 1D micromirror with over 60◦ deflection
angles has been reported by Miller and Tai [44]. A 2D
micromirror with a mirror plate as large as 3.5 mm× 3.5 mm
has been demonstrated, and, with a 20 mA driving current at
its 2 kHz resonance, the mirror scan angle can reach ±1.51◦,
and the movable frame can scan ±5.71◦ [49]. Yang et al.
proposed a coilless design, in which the optical scan angle
can reach 20◦ with a 2 mm × 2 mm mirror plate when the
mirror is operated at an input power of 9 mW [50].

Kim et al. demonstrated a 2D electromagnetic MEMS
mirror based endoscopic OCT probe [51]. A 2D gimbaled
mirror design was employed. A permanent magnet was glued
to the backside of the mirror plate, and wire-wound coils
were placed inside the probe body for each scan direction.
The mirror plate was 0.6 mm × 0.8 mm and the device
footprint was 2.4 mm× 2.9 mm, as shown in Figure 5. About
±30◦ optical scan angle was obtained with ±1.2 V and ±4 V
driving voltages for the inner and outer axis, corresponding
to 50 mA and 100 mA current respectively. A probe with a
2.8 mm diameter and 12 mm length has been demonstrated
with SD-OCT. 3D images of finger tips were obtained at
18.5 frames/s. ±2.8 V and ±0.8 V voltages were applied on
the inner and outer axis, covering 1.5 mm × 1 mm lateral
scan range and consuming a 150 mW power in total.

Watanabe et al. have recently demonstrated another
electromagnetic MEMS OCT probe [52]. The fabricated
mirror module is shown in Figure 6. The mirror plate size
is 1.8 × 1.8 mm2, and the device chip is as large as 10 ×
10 × 0.2 mm3 due to the large electrical coil required. The
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Figure 5: Electromagnetic MEMS OCT reported by Kim et al. (a) (b)SEMs of the MEMS mirror, (c) (d)design and packaging of the probe,
(e) (f) 3D image of finger tip. Reprint permission granted by OSA.

entire device was placed on a 15 mm × 15 mm × 1 mm PCB,
which is fixed on the holder with a magnet inside. The MEMS
mirror was used in a Fourier domain OCT and 3D human
finger images were obtained.

One of the drawbacks of electromagnetic mirrors for
endoscopic application is its high power consumption. The
other drawbacks lie in the fact that external magnets are
required for actuation, which not only greatly complicates
the packaging process, but also constraints the further
miniaturization of the probes. Electromagnetic interference
is also a concern.

3.3. Piezoelectric MEMS Mirrors. Piezoelectric actuation has
also attracted some attention. It takes advantage of the
piezoelectric effect and realizes bending motion by applying
electric field across a piezoelectric material such as lead
zirconate titanate (PZT). The advantages of piezoelectric
actuation include fast response, large bandwidth, and low
power consumption. Piezoelectric actuators are usually
composed of metal/PZT/metal sandwich [53–56] or double
layered PZT materials [57]. Scanning angles as large as 40◦

have been reported, using voltages up to 13 V [58].

A piezoelectric MEMS based OCT probe has also been
reported [59]. Piezoelectric MEMS mirrors with aperture
sizes of 600 µm × 840 µm and 840 µm × 1600 µm have been
fabricated. Mechanical scan angles up to ±7◦ and resonant
frequency up to 1 kHz were measured for the mirrors. A
prove-of-concept probe design is shown in Figure 7(b). The
600 µm × 840 µm mirror was used in an FD-OCT system
to demonstrate its imaging capability, and a 2D image
(Figure 7(c)) of an IR card was obtained.

However, the mirrors are only one dimensional and two
mirrors scanning at orthogonal directions are required for
3D imaging. Also, the large initial tilt angle will complicate
optical alignment and probe packaging. Furthermore, for
piezoelectric MEMS mirrors to be used for in vivo OCT
imaging applications, charge leakage problems and hysteresis
effect still need to be overcome.

3.4. Electrothermal MEMS Mirrors. Electrothermal actuation
is studied to further increase the scanning range at low driv-
ing voltage. Electrothermal actuation can be realized by using
bimorph beams. A bimorph beam is formed by two layers of
materials with different thermal expansion coefficients. The
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Figure 7: Piezoelectric MEMS OCT reported by Gilchrist et al. (a) SEM of MEMS mirror, (b) 3D MEMS probe design, (c) 2D image of IR
card. Reprint permission granted by IOP.

bending motion of the beam is induced by the expansion
difference of the two materials in response to a temperature
change. The actuation force typically is larger than that
of electrostatic or electromagnetic actuation. Electrothermal
micromirrors also have almost linear response between the
scan angle and applied voltage, simple structure design,
and easy fabrication. One of the most important features
of electrothermal mirrors is the high fill factor. For the
same mirror aperture size, the device can be smaller, which
is crucial for making smaller endoscopic probes. Different

materials have been explored for bimorph beams [60–67],
including silicon (Si), various metals, such as aluminum (Al),
polymers, and dielectrics. The most popular choice is Al
and SiO2. It was first demonstrated by Bühler et al. in 1995
[61]. Then, Jain et al. demonstrated 2D micromirrors based
on Al/SiO2 bimorph beams and polysilicon as the heating
material with rotation angle up to 40◦ on a 1× 1 mm2 mirror
plate at 15 V [68].

Electrothermal actuation was the first of the four actu-
ation mechanisms to be used in endoscopic OCT imaging
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[25, 69]. Xie et al. reported a 1D SCS MEMS mirror. The
mirror aperture size was 1 mm × 1 mm, and 17◦ rotation
angle and 165 Hz resonance frequency were measured. A
forward-looking probe was demonstrated and applied for
in vivo imaging of porcine urinary bladders. A 5 frames/s
imaging speed was achieved, while the imaging area covered
was 2.9 mm × 2.8 mm. Due to the mesh actuator design
employed, a 10◦ scan discontinuity was observed. Later
in 2003, the actuator design was improved by replacing
it with a paralleled actuator beam structure, resulting in
continuous angular scanning with the scan angle increased
to 37◦ [70]. 2D ex vivo imaging of a rabbit bladder, as
shown in Figure 8(e), was obtained to demonstrate the probe
capability.

More recently, Xu et al. also reported an electrothermal
actuation-based MEMS OCT probe [71–74]. They have
demonstrated a series of MEMS mirrors with both straight
and curled shaped electrothermal bimorph actuators formed
by Aluminum and Silicon. The largest mechanical deflection
reported was 17◦ at an operation voltage of ∼1.3 V [71]. The
device has a 500 µm diameter mirror aperture on top of a
1.5 mm × 1.5 mm chip. The mirror showed good linearity
between driving voltage and scan angle after the initial

critical voltage, and the 3 dB cutoff frequency was 46 Hz. The
probe assembly was based on silicon optical bench (SiOB)
methodology for self-alignment of the optical components,
and the electrical connection from the MEMS mirror to the
copper wires on the substrate was made through solder balls.
The probe was then inserted into a transparent housing. The
diameter of the probe was less than 4 mm, and the rigid
length was about 25 mm. The probe was used in a swept
source OCT system at a frame rate of 21.5 frames/sec for 3D
imaging, and the imaging results of an IR card were shown
in Figure 9(c).

The authors have also reported a series of electrothermal
MEMS mirror-based 3D endoscopic OCT probe [75–77]. In
these MEMS mirrors, Al/SiO2 bimorph beams are employed
with platinum as the heating material. The actuators are
designed in a folded fashion and symmetrically placed on
four sides of the mirror plate to reduce the actuator space
and realize lateral shift free scan motion. In one design, as
shown in Figure 10(a) the mirror plate is 1 mm × 1 mm
and the device footprint is 2 mm × 2 mm, resulting in a
25% fill factor. The scanning angle of the mirror reaches
±30◦ at only 5.5 V. Electrical connection was made through
wire bonding. By using rigid or flexible PCB, two probe
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designs with respective outer diameters of 5 mm (Figures
10(b) and 10(c)) and 2.7 mm (Figures 10(d) and 10(e)) have
been demonstrated. 3D imaging was demonstrated with a
time-domain OCT system at 2.5 frames/s. The image shown
in Figure 10(f) is of a mouse ear obtained using the 5 mm
probe, and the image volume is 2.3 × 2.3 × 1.6 mm3.

A newer MEMS mirror design has been developed to
improve the probe assembling. As shown in Figure 11(a), the
mirror device has through-silicon vias (TSVs) for electrical
connections [77]. Four metal pads are located next to the
TSVs. As shown in Figure 11(b), copper wires carrying
control signals come from the backside of the probe, pass
through the TSVs, and then are connected to the pads using
silver epoxy. This wire-bonding free design simplifies the

assembly process, and enables a larger fill factor. The size
of the mirror plate is 0.8 mm × 0.8 mm and the device
footprint is 1.5 mm × 1.5 mm, giving a fill factor of 28.4%.
A 16◦ optical scan angle was measured at only 3.6 V DC.
The packaged probe size is 2.6 mm. 2D and 3D imaging of
microspheres embedded in PDMS was obtained, as shown in
Figure 11(c).

4. Summary

Of the four actuation mechanisms, electrostatic actuation
has fast response and lowest power consumption, but it
requires large driving voltage which may not be safe for
imaging human internal organs. Electromagnetic actuation
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can realize large scan angle, at low driving voltage, but the
permanent magnet required poses difficulties for further
probe miniaturization. Piezoelectric MEMS mirrors can also
be fast and consume low power, but it must overcome
the large initial tilting issues, the hysteresis effect and
charge leakage problem for OCT imaging applications.
Electrothermal actuation can scan large angles at low driving
voltages, and it also has the largest fill factor compared to
all three other kinds of MEMS mirrors. Thermal response is
relatively slow, but it is capable to realize real-time imaging.
Overall, electrothermal MEMS mirrors are the better choice
for endoscopic OCT scanners. In the future, for endoscopic
imaging applications, the fill factor of MEMS mirrors still
need to be increased and better packaging schemes must be
designed. Combining MEMS technology with OCT to realize
real time in vivo endoscopic 3D imaging has shown great
potential. The clinical application of this technology for early
cancer detection of internal organs will benefit millions of
people worldwide.
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