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Nowadays, MEMS sensors are widely used in systems such as autonomous vehicles, but they still suffer from high 

stochastic errors such as Angle random walk (ARW) noise, which causes failure in real-signals and produces an error in the 

position and attitude of mobile systems. So far, many filters are developed to reduce the amount of noise in the output of the 

MEMS sensors. The computational overhead, the rate of noise reduction, and the phase-delay of the filter are the most 

important characteristics of choosing a suitable filter. In this paper, a low pass filter based on the alpha-beta filter with a 

very low computational overhead is proposed to reduce the amount of noise. In order to find the optimal filter gain, the 

improvement in the positioning is selected as a criterion, which is a tradeoff between the amount of noise reduction and the 

phase delay of the filtered signal. In this work, the KITTI database is used to evaluate the proposed filter. The results show 
that the proposed filter reduces the sensor’s noise and improves the positioning of the moving car, significantly. 
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Introduction 

In electronic industry, MEMS sensors are widely 

used due to their lightweight, small size, high 

reliability and low prices. In the fields of aviation, 

automation and aerospace, widespread use has been 

made
1,2,3

. Identifying the errors of MEMS sensors is 

one of the essential steps prior to using them. In 

general, noise at the output of inertial sensors is 

measured using frequency analysis techniques or 

time-domain analysis techniques. These techniques 

include Power Spectral Density (PSD), Auto 

Correlation (AC), and Allan Variance (AV) methods
4
. 

PSD and AV methods are widely used in analyzing 

inertial systems. One of efficient methods for 

improving navigational accuracy is to reduce the 

effect of these errors in the raw data of an inertial 

measurement unit (IMU). For example, in order to 

improve the accuracy of the integral results, the raw 

data of the accelerometer and the gyroscope can be 

filtered before the integration. Kalman filter seems to 

be a proper filter for this purpose because it provides 

a useful signal based on data from the system and the 

real world behavior
5
. Generally, the Kalman filter is 

used to estimate stochastic errors in the stationary 

state. In motion mode, due to changes in dynamic of 

system, the Kalman procedure must adapt the filter 

and make changes to R/Q matrices and switches 

between parameters
6
. In noise reduction methods, 

Adaptive moving average algorithms for detecting 

angular velocity changes are used to switch to 

appropriate filters in different rate
7
.Inaccuracy in state 

parameters and noise measurement may lead to 

undesirable results or delay in the signal
6
. Instead of 

applying a conventional and adaptive Kalman filter, 

FIR and IIR filters are more simple filtering devices 

to reduce noise, whose low-pass types are widely used 

in airborne gravity data processing
8
. The effect of any 

filter technique is to reduce noise, while not affecting 

the actual signal. Phase-lag is proportional to the 

degree of filter. So, by decreasing the filter’s degree, 

phase-lag will decrease. On the other hand, this 

causes that the passband of the filter to increase, and 

consequently, the amount of noise reduction is 

decreasing. Therefore, there is a tradeoff between the 

bandwidth of the filter and the amount of error due to 

the passage of noise from its pass band
9,10,11

. Fixed 

algorithms, such as Alpha-beta filters, usually provide 

good performance with little computational cost
12,13

.  
 

Noise analysis method 

Prior to noise reduction procedure of the gyroscope 

signal, the characteristics of the errors in the output of 

this sensor must be analyzed. Many methods have 
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been proposed to analyze the behavior of noise 

components in inertial sensors
13

. Generally, the noise 

in the output of inertial sensors can be considered as a 

stochastic process and can be analyzed by using time 

or frequency domain techniques. Using these 

techniques, one can find their properties and model 

them
4
. As mentioned before, these techniques include 

PSD, AC and AV methods. The Allan Variance (AV) 

method is the first method used to determine the 

spectrum of atomic clock frequency oscillations and is 

known for its similarity, in its statistical properties, 

with a random error of the gyroscope. The calculation 

complexity of this method is less than other similar 

methods and is relatively simple to interpret. AV 

method can be used to describe the various types of 

noise terminals in sensor data by applying a specific 

operation to the entire of data. By performing this 

analysis on the output data of the gyroscope, noise 

error sources are divided into seven categories, which 

include Angle Random Walk noise, Correlated noise, 

and sinusoidal noise. Since the correlated noise and 

sinusoidal noise have minor contributions to the net-

sum of the total noises, and in most cases, they only 

appear at long time clusters, only the first five errors 

will be analyzed on the testing results
13

. Using AV 

method, the quantitative value for each of these 

sources of noise are determined. It is worth to 

mention that one of the disadvantages of this 

methodology is its inability of the specification of the 

mentioned-errors, uniquely. However, this can be 

resolved using Modified Allan Variance, in 

conjunction with pre-whiting or pre-filtering of the 

raw data
4
. The KITTI dataset is used to evaluate the 

filter performance. This dataset includes raw data of 

accelerometer sensors, gyroscope, and GPS connected 

to a self-propelled vehicle that has been collected in 

various tests. In the following sections of this paper, 

first, we introduce noise analysis methods. In the  

next section, the relationships and formulas of the 

Alpha-beta filter and its special case, the fading 

memory filter is explained. Then, we show how to 

select the filter gain. Finally, we demonstrate the 

results of applying the proposed filter to the 

gyroscope signal, and the improvement achieved in 

the calculation of the angle and position of the car. 
 

Components of sensor errors 

The output of a calibrated inertial sensor can be 

expressed as follows: 

     u(t)+ e(t)+b(T)+N(a, , T, t)  … (1) 

Here, y(t) is the calibrated sensor output, u(t) is the 

real value of the kinematic sensor (real rotation),  

T is temperature, b(T) is temperature dependent bias, 

N (a, ω, T, t) is factor dependent errors of the 

environment. Moreover, e(t) is stochastic errors and 

noises, which consists of Angle Random Walk 

(AWR) noise, Flickr noise, quantization error and 

sinusoidal error. AWR noise is a high-frequency 

noise, which can lead to random walk in the value of 

angle. The spectrum of this noise is similar to the 

spectrum of the white noise in the output of 

gyroscope. In rotation rate gyroscopes, in order to 

determine the overall angular variation, we should 

integrate the output signal of the gyroscope. 

Therefore, any noise in the output is also integrated 

and leads to a random walk in angle. Since all of the 

noises described above are time-independent, so the 

total variance of the stochastic process can be 

considered as the sum of the variances of all error 

terms. In many applications, we can ignore some of 

the mentioned errors, and can only consider the effect 

of ARW noise, in conjunction with a drift of in bias, 

which results to Rate Random Walk (RRW) noise. In 

our test, we used a variety of consumer-grade MEMS 

sensors. Therefore, in order to extract the true signal 

rate from the signal corrupted by noise, we assumed 

that the gyroscope output is corrupted by additive 

white noise, which is considered as Angle Random 

Walk noise. 
 

Alpha-Beta filter 

The alpha-beta filter is one of the techniques that is 

known as a cheap filter and is commonly used to track 

moving objects in radar applications
13

. Due to the 

simplicity and low computational overhead of this 

filter, compared to similar filters such as Kalman 

filters, this filter has been used in many applications, 

such as medical devices. To design the alpha-beta 

filter, we must first specify the appropriate alpha and 

beta coefficients. Since the alpha-beta filter can be 

assumed equal to the Kalman filter in steady-state 

mode, one of the methods of determining coefficients 

is the same as that used in Kalman filters. However, 

the investigations show that using this method does 

not lead to the optimal performance
14

. Another 

method is to use the minimum variance criterion, 

which minimizes the variance of the steady state 

error
15

. Although this criterion obtains the optimal 

alpha from beta, but it does not specify an optimal 

value for beta. In another investigation, both 

smoothing the noise and tracking of an accelerated 
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target are considered. Moreover, this work has 

provided an optimal beta value based on target 

acceleration data
14

. As mentioned before, this filter is 

usually used to track moving targets in radar 

applications. The main signal used in this application 

is the position of a moving target. For estimating the 

position, the method assumes that the speed of 

moving object, during sampling time, is constant. For 

using these filters, it is required to adjust the alpha 

and beta coefficients properly. A simple way to adjust 

is presented by Zarchan which is based on 

experimental relationship between Alpha and Beta
15

. 

The filter provided by Zarchan is called a fading 

memory filter. In fact, the structure of the fading 

memory filter is very similar to the linear polynomial 

Kalman filter, and the only difference is that its gain 

is constant while in a Kalman filter the gain is 

changing as time goes on. The first order type of 

alpha beta filter has a good noise reduction capability, 

while it also has the highest truncation error value. 

Therefore, for choosing proper order of the filter, the 

designers must make a tradeoff between the amount 

of noise reduction and truncation error buildup.  

It is the first time that we have proposed alpha-beta 

filter to reduce the amount of noise in the output 

signal of a MEMS gyroscope. The equation 2 shows 

the first and equations 3 and 4 show the second order 

type alpha-beta filters, which are also called fading 

memory filters
15

. 

                        … (2) 

                    … (3) 

          
 

 
             … (4) 

                  … (5) 

Here     is the smoothed signal or the smoothed 

target position at kT. T is sampling time,     is the 

measured target position or measured signal.    is the 

predicted target position or predicted signal.     is the 

smoothed target velocity or the second derivative  

of the measured signal, and alpha and the beta are 

filter gains. 

 

Experimental Results 

In this section, we compare the results obtained 

from the implementation of the navigation algorithm 

with filtered data and raw data of a MEMS gyroscope. 

We applied the proposed algorithm to the KITTI  

data set
16

. In order to evaluate the suggested filter, we 

added some white noise to the raw data collected from 

the output of the gyroscope. The gyro noise output 

with the main signal is shown in Figure 1(A). The 

proposed method was implemented on an AMD-Quad 

core FX-8800p CPU platform with a frequency of 

3.4GHZ and 8Gigabyte RAM. As noted before, due to 

the integral nature of the navigation algorithm, the 

presence of noise at the output of the gyroscope 

sensors causes the error to occur in the angles and the 

 
 

Fig. 1(a-b)—(a) Comparison of original gyroscope signal with its 

noisy version & (b) Comparison of original and filtered gyroscope 

signals (     ) 
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position of moving car. The error in the angles causes 

that the physical coordinate does not match to the 

local navigation coordinate. The existence of such 

errors in accelerations will result in an error in the 

position of the moving object. Figure 2(A) compares 

the effect of ARW noise on the output signal of a 

gyroscope. This comparison suggests that it is 

necessary to reduce the effects of ARW noise by a 

filter in order to increase the accuracy. 
 

Selecting the order and gain of filter 

The choice of the order of filter is a trade off 

between the amount of noise reduction, and the 

amount of truncation error. So, we first apply a 

second-order fading memory filter to the sensor 

output. So far, in order to find the optimal filter gain, 

many methods have been proposed, which some of 

them are addressed earlier. Unlike many methods that 

only have paid attention to the output signal and 

reduced the amount of variance of noise, we also 

considered the amount of improvement resulting from 

the navigation algorithm and the amount of filter gain 

according to the improvement rate. We chose 

navigation that originated from the rate of reduction 

of noise variance and the phase-lag generated in the 

output of the filtered signal. In order to achieve this, 

we changed the beta value from 0.1 to 0.9 in step size 

of 0.1, and we ran the navigation algorithm once for 

each beta value. For each beta value, we also 

examined the output of the gyroscope, before and 

after the filtering in time and frequency domain. The 

analysis of the results showed that the second order 

fading memory filter for any values of beta between 

o.1 to 0.9, produces no significant improvement in the 

results of positioning of moving car. The reason is the 

presence of the derivative operation in the second-

order filter relationship. Since the first-order filter is 

proposed to soften the signal, we applied the previous 

test with beta values from 0.1 to 0.9 with step size of 

0.1 again for the first-order filter that is expressed in 

equation 3. This filter is very similar to Kalman filter 

and its difference is in the constant gain over time. 

We examined the results obtained from applying of 

this filter. For       it observed that no significant 

improvement is achieved at the angle and position of 

the moving car. This situation is clearly shown in 

Figure 2(A). Moreover, we saw that the frequency 

spectrum of the output signal in comparison to the 

input signal is also confirms this conclusion. By 

increasing the amount of filter gain, we saw that the 

filter was able to reduce the amount of noise, more 

and more. Figures 2(A) to 2(C) compare the position 

of the moving car, before and after filtering, with the 

actual position (Ground truth), for Beta of 0.1, 0.7 and 

 
 

Fig. 2 (a-c)— (a) Comparison of ground truth with position, 

before and after filtering for      , (b) Comparison of  

ground truth with position, before and after filtering for        

& (c) Comparison of ground truth with position, before and after 

filtering for       
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0.9 receptively. As we see, the best match is obtained 

for        It is obvious that, while increasing the 

value of beta reduces noise, but it produces a phase-

lag in the output of the filter. The phase-lag is so high 

that it has encountered a large error in the position 

obtained from the implementation of the navigation 

algorithm using this filter. Therefore, selecting the 

appropriate gain is a tradeoff between the rate of 

reduction of noise variance and the latency of the 

phase added to the signal due to filtering. 
 

Choosing the best gain 

In order to obtain optimal gain, for each Beta 

value, we calculate the Yaw error and position error 

for different values of Beta. Figure 3(B) shows the 

error of Yaw as a function of Beta and Figure 3(A) 

demonstrate the position error for Beta values 

between 0.1 and 0.9. Based on these figures we can 

deduce that the lowest position-error and Yaw-error 

occur for the beta value of 0.7. Consequently, we can 

conclude that the filter is optimal for this amount of 

gain. Figure 1(B) compares the shape of the original 

signal from a moving car, without additive noise, with 

the output of the optimal filter. It is obvious that the 

phase-lag between these signals is negligible. On the 

other hand, in Figure 2(B) we have compared the 

position of the moving car, before and after filtering, 

with the actual position (Ground truth), for Beta of 

0.7. As it is clear, there is a very good match between 

the filtered signal and the true position of the car.   

Applying the filter to other data sets 

The Monte Carlo test is a method for evaluating 

stochastic algorithms. We also applied the proposed 

filter to five different datasets. The results confirmed that 

for all of them, the lowest position and Yaw errors occur 

for      . Moreover, these value of Beta delivers the 

minimum value of the phase-lag. Consequently, this 

value is optimized for these data sets. 

 

Conclusion 

In this paper, we presented a new approach to 

reducing the noise of raw-data from the MEMS 

gyroscope using a low computing filter from the 

family of alpha-beta filters. We observed that for 

some beta values, the noise level was reduced, while 

the result of the navigation delay of the output signal 

increased, so to determine the filter gain, we should 

make a tradeoff between the amount of noise 

reduction and the phase-delay added to the signal. The 

results disclosed that the beta value of 0.7 leads to the 

best performance and brings the most improvement in 

determining the position of the car. 
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