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Abstract: A review of various calibration techniques of MEMS inertial sensors is presented in this
paper. MEMS inertial sensors are subject to various sources of error, so it is essential to correct these
errors through calibration techniques to improve the accuracy and reliability of these sensors. In this
paper, we first briefly describe the main characteristics of MEMS inertial sensors and then discuss
some common error sources and the establishment of error models. A systematic review of calibration
methods for inertial sensors, including gyroscopes and accelerometers, is conducted. We summarize
the calibration schemes into two general categories: autonomous and nonautonomous calibration.
A comprehensive overview of the latest progress made in MEMS inertial sensor calibration tech-
nology is presented, and the current state of the art and development prospects of MEMS inertial
sensor calibration are analyzed with the aim of providing a reference for the future development of
calibration technology.

Keywords: microelectromechanical systems; inertial sensors; accelerometer; gyroscope; background
calibration; sensor fusion; error modeling and calibration

1. Introduction

As a crucial part of MEMS technology, inertial sensors have been widely used to
provide accurate position and motion measurement solutions [1] in many core areas such
as aerospace, underwater exploration, robotics, healthcare, and portable devices (such
as smartphones, computers, cameras, wearables, pedometers, etc.) [2–9]. MEMS inertial
sensors, used for measuring angular velocity and acceleration [10,11], principally consist
of micro-sensors, signal processing circuits, and microprocessors [12]. The most basic
inertial sensors include accelerometers and gyroscopes (angular velocity gauges). An
accelerometer is a sensor sensitive to linear acceleration and turned into a useable output
signal; a gyroscope is a sensor that can be sensitive to the angular velocity of the motion of
the moving body relative to the inertial space. These are the core components of inertial
systems and are the main factors affecting the performance of inertial systems.

With the rise of frontier technologies such as navigation and positioning, autonomous
driving, and personal wearable devices [13–17], the demand for inertial sensor accuracy is
gradually increasing. In contrast, high-precision inertial sensors for high-end manufactur-
ing (e.g., defense industry) are still difficult and costly to manufacture. The measurement
results of MEMS inertial sensors will directly affect the output results of the carrier attitude
in the navigation system, especially the gyroscope, whose drift affects the position error
growth of the inertial guidance system as a cubic function of time [18], so the measurement
accuracy of the sensor also directly affects the accuracy of the carrier attitude measurement
in the whole navigation system. Precision measurement has become an inevitable issue
in the development path of MEMS inertial sensors, while reducing their cost is also a
current goal to pursue. Figure 1 shows the cost price of MEMS inertial sensors with varying
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degrees of accuracy in various application scenarios. Tables 1 and 2 list the key parameters
of sensors for different application levels.
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Figure 1. The cost of MEMS inertial sensors with varying degrees of accuracy in various application
scenarios.

Table 1. Approximate range of key parameters of gyroscopes for different classes of use.

Performance
Indicators Strategic Level Navigation

Level Tactical Level Commercial
Level

Scale Factor
Stability (Ppm) <1 1~100 100~1000 >1000

Zero-Bias
Stability (°/h) <0.005 0.01~0.15 0.15~15 >15

Random Walk
(°/
√

h) <0.01 0.01~0.05 0.05~0.5 >0.5

Rate Noise
Density

(°/s/
√

Hz)
<0.001 0.001~0.005 0.005~0.01 >0.01

Range (°/s) >500 >500 >400 50~1000

Table 2. Approximate range of key accelerometer parameters for different classes of use.

Performance
Indicators Strategic Level Navigation

Level Industrial Level Consumer
Level

Noise
(mg/

√
Hz) <0.1 <0.7 <5 5

Power
Consumption

(mA)
<25 <1 <12 1

g-Range (g) ±20 ±200 ±200 ±18
Bandwidth

(kHz) 0.33 22 3.2 1

MEMS inertial sensor errors are mainly related to the following factors: the misalign-
ment and nonorthogonality of the sensitivity axes; the thermal and long-term drifts of the
output signals (affecting both the bias and the scale factor); errors related to the installation
and manufacture of sensors and aging of the silicon structure; variable bias due to thermal
effects; and some uncertain noise sources or random errors [19–22]. Given these facts, this
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paper focuses on existing calibration techniques for MEMS inertial sensors and briefly
analyses them. Calibration is the process of comparing the instrument output with known
reference information and determining the coefficient that forces the output to agree with
the reference information over a range of output values [23]. At the same time, certain
calibration and test standards must be followed [24]. Using the method of error calibration,
deterministic errors, such as offset, scale factor, nonorthogonality, misalignment and so
forth, associated with the unknown orientation of the accelerometer and gyroscope sensi-
tivity axes, thermal and long-term drifts of the output signals, installation and manufacture
of sensors, aging of the silicon structure and so on can be effectively eliminated or compen-
sated for [22]. This allows the sensor operating parameters to be accurately determined
under given operating conditions, thereby increasing the accuracy and reliability of the
sensor. For some random noise or error caused by random fluctuation of system response,
it cannot be predicted or compensated directly owing to the drift in system response with
time, which can only be characterized by a specific type of distribution and its statistical
parameters and approximated by stochastic modeling [25,26].

The purpose of this paper is to systematically review different MEMS inertial sensor
calibration schemes and their optimization methods, and to limit the discussion to IMU
(accelerometer and gyroscope) calibration schemes in order to guide users in selecting the
most suitable MEMS inertial sensor calibration method to improve sensor accuracy. The
rest of the paper is organized as follows: In Section 2, we first discuss the error sources and
error models of MEMS inertial sensors. Section 3 presents different calibration schemes for
gyroscopes and accelerometers, and discusses them in two main categories. In Section 4,
we discuss the current status of calibration techniques and the latest trends and present
some observations on the current research. Finally, in Section 5, we propose the direction
for the development of calibration techniques for MEMS inertial sensors.

2. Error Source and Error Model

As with any physical sensor, accelerometers and gyroscopes are subject to measure-
ment errors. However, for these sensors, the error sources are multifaceted and coupled,
which makes sensor calibration an important task [27]. The errors in accelerometers and
gyroscopes can be roughly divided into deterministic and random errors [28]. Random er-
rors include turn-on errors, random noise, and drift due to long-term operation, etc. [29,30],
which are difficult to compensate for. Deterministic errors are caused by inaccurate fac-
tory calibration (or incorrect conversion parameters in the accelerometer datasheet) and
include scale factor errors, bias, nonorthogonality errors, temperature-dependent data drift
errors and so on. [29,30]. Among the deterministic errors that affect system performance,
the most crucial ones are bias, scale factor, nonorthogonal and misalignment errors. As
researchers continue to study mathematical models and algorithms in depth, errors caused
by random noise have been greatly reduced. Due to the small size of MEMS, its accuracy
is much less than some bulkier sensors. Therefore, deterministic errors have a greater
impact on MEMS inertial sensors that are inherently less accurate. From the perspective of
hardware structure, the micromechanical structure of inertial sensors is mostly made of
silicon. Silicon is a temperature-sensitive material, and its physical properties vary greatly
with temperature, which is also an important factor causing the thermal drift of offset and
the scale factor, among which the thermal drift of offset is much more dominant [20,31].
This can be handled through the application of a temperature sensor and using the average
thermal characteristics (or look-up table) of a specific accelerometer model [31]. Compared
with thermal drift, the long-term drift and aging effect of a silicon structure are more
difficult to compensate for, and some manufacturers choose to implement models to deal
with the aging effect [19]. For long-term drift, you can try to repeat the calibration for a
reasonable solution. It should be pointed out that the scale factor errors mentioned above
are often also related to aging [32]. In addition, some errors caused by external environment
changes (such as altitude and local and temporal changes of gravity acceleration) can also
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be compensated for by recalibration of the sensor. Figure 2 lists some important errors and
noise of MEMS inertial sensor.
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Figure 2. Some momentous errors and noise classification of inertial sensors.

In order to more intuitively describe the error characteristics of inertial sensors by
mathematical modeling, this paper assumes that in the three-dimensional motion space,
in the carrier coordinate system, the actual measured physical vector of the three-axis
accelerometer and gyroscope is expressed as u =

(
ux, uy, uz

)T , and its actual output is

expressed as v =
(
vx, vy, vz

)T , where subscript x, y and z represent triaxial components. In
addition, it should be added that the remaining error items will not be considered when
discussing and analyzing the following errors separately in this section.

2.1. Deterministic Error
2.1.1. Zero-Bias Error

A zero-bias error, also known as zero-position error, can be subdivided into asymmetry
error, warm-up zero-bias instability and operational zero-bias instability, and the measured
values output from accelerometers and gyroscopes when the measured physical quantity
is zero are usually called zero bias. As mentioned earlier, when the measured physical
quantity is zero in the ideal situation, the output measurement data should also be zero.
However, in the actual situation, the output is often not zero; there is a measurement error,
and this error is called zero-bias error [33]. Figure 3 shows the schematic of zero-bias errors.

These errors are generally caused by a manufacturing error in the device. In addition,
a zero-bias error is also one of the most important inertial sensor device errors, and for
some devices, the zero-bias error is not fixed. In order to facilitate analysis, the zero-bias
error can be divided into two parts, static and dynamic components, where the dynamic
component is mainly affected by the change factors of the surrounding environment, such
as temperature affecting the structure of tiny devices, etc. [34,35]. However, the percentage
of dynamic component is tiny, about 10% of the static component, so generally at room
temperature, the dynamic component is negligible. In addition, for the gyroscope, the
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g-dependent zero-bias error is also included in the zero-bias error of the gyroscope because
the gravitational acceleration g also has some influence on it. Among the various types of
inertial sensor devices, the zero-bias error exhibited by different devices is also different,
and the zero-bias error of MEMS sensors is more pronounced [36]. Note that the zero bias
of the triaxial accelerometer and gyroscope is b =

[
bx, by, bz

]T . The zero-bias errors of both
can be expressed as Equation (1). vx

vy
vz

 =

 ux
uy
uz

+

 bx
by
bz

 = u + b (1)

Output

Output = Input (ideal)

Sensor Actual Output

InputO

Figure 3. Zero-bias error schematic.

2.1.2. Scale Factor Error

The proportionality factor error is also called the scale factor error or sensitivity error.
From a mathematical point of view, the scale factor generally refers to the ratio between the
change in the output quantity and the change in the input quantity [37]. Then, for inertial
sensor devices, the proportionality factor means that when the actual physical quantity
measured by each axis changes, the output quantity that each axis is sensitive to will also
change, and the ratio between the two is called the scale factor and has one dimension.
Ideally, the scale factors of each axis should be the same (the dimension conversion ratio
of the measurement result is not considered at this time); that is, the input change is the
same as the output change. However, in practice, the scale factor is not only not one but
also different; there is a measurement error, which is called the scale factor error. Figure 4
shows the schematic of the scale factor error.

Inertial sensors in the measurement process of each axis are measured separately, and
each axis has a signal amplification circuit and a signal conversion calculation circuit for
the measurement output. Due to manufacturing errors in the device, the characteristics of
the circuit on each axis are not identical, resulting in a different sensitivity for each axis,
which is the main reason for the proportionality factor error of inertial sensors. In addition,
the scale factor error for a particular device is not definite because the structure of each
measurement axis and the related circuit characteristics are susceptible to temperature,
vibration, and other external environmental factors, so the corresponding scale factor error
will also change accordingly. Under the general operating conditions at room temperature,
the scale factor that can be considered to have an error is a constant. Note that the scale
factor of the triaxial accelerometer and gyroscope are s =

(
sx, sy, sz

)T , and the scale factor
errors of the two can be described by the diagonal matrices S, as shown in Equation (2). In
the case that the scale factor error is 0, the scale factors both take the value of one.
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 vx
vy
vz

 =

 sx 0 0
0 sy 0
0 0 sz

 ux
uy
uz

 = Su (2)

In addition, MEMS inertial sensors exhibit asymmetric and nonlinear properties in
terms of scale factor error due to their lower cost and measurement accuracy. Asymmetry
refers to the difference in scale factor error when the sensor measures the same physical
quantity along the sensitive axis in the forward and reverse directions. Figure 5 shows a
diagram of the asymmetry error of the scale factor. Nonlinearity refers to the variation of
the scale factor with the magnitude of the sensor input [38]. Figure 6 shows a diagram
of the nonlinear error of the scale factor. In general, a higher-order polynomial is used to
represent the proportionality factor nonlinearity error.

Output

Output = Input (ideal)

Sensor Actual Output

InputO

Figure 4. Scale factor error schematic.

Output = Input (ideal)

Sensor Actual Output

Input

Output

O

Figure 5. Scale factor asymmetry error schematic.
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Output

Output = Input (ideal)

Sensor Actual Output

InputO

Figure 6. Scale factor nonlinear error schematic.

2.1.3. Cross-Axis Sensitivity

The cross-axis effect is related to nonorthogonality and the crosstalk effect between
different channels caused by the sensor electronics [39,40]. Among them, nonorthogo-
nality error is the error that results from the procedure of imperfectly assembling indi-
vidual sensors on an IMU chip or the inherent nonorthogonality caused by the fact that
the sensitive axis in the sensor cannot be assembled perfectly due to the actual techni-
cal limitations in manufacturing [41,42]. This phenomenon can be explained by using
Figure 7; the real axes of sensor is represented by using the nonorthogonal frame XrYrZr,
while the sensor frame O− XYZ is defined as an ideal orthogonal coordinate frame, and
its X-axis is coincident with the axis Xr. The small angular errors θyx, θzx, θzy have to
be estimated so that the nonorthogonal triaxial measurements can correctly project the
orthogonal output readings with respect to the sensor frame [43]. Figure 7 shows the
nonorthogonality schematic.

Yr

X

Y

Z

O

90° − 𝜃𝑧𝑥

90° − 𝜃𝑧y

90° − 𝜃𝑦𝑥

Zr

Xr

Figure 7. Nonorthogonality schematic.

The cross-axis sensitivity of the triaxial accelerometer and gyroscope can be described
by the third-order matrix C, as shown in Equation (3).
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 vx
vy
vz

 =

 1 cxy cxz
cyx 1 cyz
czx czy 1

 ux
uy
uz

 = Cu (3)

Here, it should be added that the element c in the matrix C is called the cross-axis
factors, and there is no specific form for this matrix.

2.1.4. Misalignment Error

When the inertial sensor is installed on the carrier in the way of Jetlink, in theory, the
three orthogonal sensitive axes of the sensor should be aligned with the three orthogonal
axes of the carrier coordinate system of its carrier; i.e., the two axes should be aligned with
each other. However, in practice, this is also due to the device processing and installation
process errors, resulting in the installation of the sensor not being able to guarantee that the
sensitive axis of the sensor and the carrier coordinate system of the coordinate axis coincide
with the alignment fully, and so there is a mounting error angle between the two, which
leads to measurement errors in the sensor, called misalignment errors [44]. Figure 8 shows
the misalignment schematic.

Yb

X

Y

Z

O

Zb

Xb

Figure 8. Misalignment schematic.

The misalignment error of the triaxial accelerometer and gyroscope can be described
by the third-order matrix M, as shown in Equation (4). vx

vy
vz

 =

 mxx mxy mxz
myx myy myz
mzx mzy mzz

 ux
uy
uz

 = Mu (4)

Here, it needs to be added that, with the same generality of the form of the matrix C,
the matrix M is also a general form for the description of misalignment errors, and this
matrix also has no specific form. In fact, when only the misalignment error is considered,
if the installation error angle of the sensor is determined, the specific forms of the matrix
M can be obtained according to the coordinate transformation matrix formula; after in-
verse transformation of this, the misalignment errors can be calibrated. In addition, the
elements in the matrices describing nonorthogonal and misaligned errors have no units and
one dimension.
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2.2. Random Error

Random errors are the errors that occur due to random variations of bias or scale factor
drift over time and random sensor noise [34]. Stochastic variations in bias and scale factor
are the low-frequency components of the random errors. The sensor noise is also a high-
frequency component of the random errors [45]. The most important feature of random
errors is that there may not be any direct relationship between input and output [46].
Allan variance tests and autocorrelation analysis are performed to determine the stochastic
characterization of inertial sensors [47]. In addition to this, several stochastic processes
exist for modeling random errors [45]. In this paper, the random errors are only briefly
described, and the main stochastic processes associated with MEMS inertial sensor random
error and noise are listed: [48]:

• Quantization noise (QN): When encoding an analog signal in digital form, a small
amount of error may be introduced into the analog signal, which can be described as
quantization noise [49];

• White noise (WN): This is defined as random unwanted values added to the real
signal and differentiated by a long-term zero average [50]. Generally, the components
of the noise spectrum of accelerometers and gyroscopes with frequencies below 1Hz
are approximately regarded as white noise. In addition, white noise can neither be
calibrated nor compensated for;

• Bias instability (BI): BI is one of the most important performance indicators of MEMS
gyroscopes and is also considered as bias stability in some areas. BI is mainly calculated
from the average standard deviation of the gyroscope output over a specific time frame,
and it shows how the deviation changes with time at a constant temperature [51];

• Random walk (RW): RW includes angle random walk (ARW) and rate random walk
(RRW). The angular random walk is caused by the random noise integration of the
angular rate, which will eventually lead to random walk errors in the measured
pose [52]. The rate random walk is caused by the random noise integral of the
acceleration, which can cause random walk errors in the inertial navigation velocity
calculation. The errors caused by both have the characteristics of random walk.

2.3. Error Model

Before establishing the error model of MEMS inertial sensors, we first make the
following assumptions based on the analysis of each error characteristic of the sensors,
together with some experimental conditions:

1. The influence of the external temperature and magnetic field environment on the
sensor error is ignored; that is, it is assumed that in the current time and space, the
measured vector field and the deterministic error of the sensor are time invariant;

2. For the convenience of discussion, it is assumed that the higher-order term of the
systematic error of the sensor is negligible; that is, the nonlinear part of the systematic
error is not considered, and only the linear error is considered;

3. For the random noise error of the sensor, because for the general random noise
the mean value of the random error tends to 0 when the amount of data reaches a
certain level, this paper assumes that the random error of the sensor is Gaussian noise
with a mean value of 0, we mainly calibrated the deterministic error of the MEMS
inertial sensor.

Combined with the analysis of various error characteristics of the aforementioned
accelerometer and gyroscope, based on the above assumptions, the error model of the
three-axis strapdown accelerometer and gyroscope are established as Equation (5): vx

vy
vz

 =

 mxx mxy mxz
myx myy myz
mzz mzy mzz

 1 cxy cxz
cyx 1 cyz
czx czy 1

 sx 0 0
0 sy 0
0 0 sz

 ux
uy
uz

+

 bx
by
bz

 = MCSu + b (5)
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where u, v, b, S, C and M are the input, output, bias error, scale factor error matrix, cross-
axis sensitivity matrix and misalignment error matrix of the accelerometer and gyroscope,
respectively.

Since each error matrix in the above formula is a general description of the corre-
sponding error, not a specific form, in order to simplify the discussion, this paper simplifies
Equation (5) to Equation (6): vx

vy
vz

 =

 kxx kxy kxz
kyx kyy kyz
kzx kzy kzz

 ux
uy
uz

+

 bx
by
bz

 = Ku + b (6)

where b is the constant term error of the accelerometer and gyroscope and K is the com-
bined error matrix of the accelerometer and gyroscope. In addition, according to the
aforementioned assumptions in this paper, each element in the constant value term error b
and the proportional term error matrix K are undetermined constants, that is, unknown
time-invariant coefficients. The error model described by Equation (6) is a linear expression.

To sum up, the error model established by the mathematical modeling method for the
MEMS inertial sensor is consistent from a mathematical point of view, and can be unified
into the form of Equation (7).

v =

 v1
v2
v3

 =

 k11 k12 k13
k21 k22 k23
k31 k32 k33

 u1
u2
u3

+

 b1
b2
b3

 = Ku + b (7)

where u is the input of the sensor, v is the output of the sensor, b is the constant term
error of the sensor, and K is the proportional term error matrix of the sensor. For different
sensors, although the form of the error model is the same, the error sources are different and
the unknown error parameters are not the same. The idea of the mathematical modeling
approach is to not consider the specific physical mechanism and error sources, but only
the mathematical relationship between the input and output. In practical applications, in
addition to the known error terms that have been analyzed above, other errors proportional
to the input vector contained in the error can also be described as a whole by K, and the
error of the constant term can be described by b as a whole. Therefore, the error model has
its rationality and practicability from both a mathematical point of view and the practical
application point of view.

After the error model of the sensor is determined, the unknown error parameters in the
error model need to be determined by certain mathematical methods. In the aforementioned
process of the error calibration of the sensor, the error calibration of the sensor is essentially
to first calibrate the unknown error parameters K and b in the error model v = Ku + b,
and then according to u = K−1(v− b) calculate the exact value of the measured physical
quantity from the actual output value of the sensor, thereby realizing error compensation.
Ref. [53] illustrates the detailed characterization and calibration process of a MEMS-based
IMU by employing the 3DM-GX1 MEMS inertial sensor, and gives an overview of the
estimation of each error calibration parameter.

3. Calibration Methods

Calibration is used to solve the error coefficient by comparing the difference between
the actual measured output of the sensor and the preset reference value, and construct-
ing the relationship between the measured output and the expected output, so that the
measured output of the sensor tends to be consistent with the ideal output. Through
the difference of preset reference value or reference object, it can be divided into two
categories—autonomous calibration and nonautonomous calibration. The specific differ-
ence lies in whether it needs to be assisted by high-precision equipment in the laboratory,
that is, through the attitude reference datum provided by large precision instruments to
perform error calibration.
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• Nonautonomous calibration: this calibration needs to be assisted by precision instru-
ments with good structure, such as a high-precision turntable, centrifuge, shaking
table, and so on [54–56].

• Autonomous calibration: without the assistance of high-precision instruments, this
calibration is completed by using the external reference excitation provided by the
local gravity field, the rotational angular velocity of the earth, uniform magnetic field,
and so on.

The demand for improving the calibration accuracy of the sensor is increasing. At
the same time, it has been proved by experiments that since the calibration parameters
are given by the parameter estimation algorithm, the use of an appropriate parameter
estimation algorithm can effectively improve the calibration accuracy [57]. Therefore,
before discussing the relevant calibration methods in detail, we first introduce the parameter
estimation algorithm closely related to calibration. When enough effective data samples
are collected, we need to determine or estimate the error parameters in the error model
through appropriate mathematical methods. A more accurate, faster convergence, lower
complexity and more stable parameter estimation algorithm is our common pursuit.

3.1. Parameter Estimation Algorithm

(1) Least Squares

In essence, the least squares (LS) algorithm is used to explore the minimum error
between the observed quantity and the target quantity. Here, we can understand it as
the error between the measured data obtained by the accelerometer or gyroscope and
the expected data. Considering the nonlinearity of the deterministic error model, we
usually use the nonlinear least squares method to estimate the optimal parameters, such as
the gradient descent method, Newton’s method [39,58], Gauss–Newton iteration method
(GN) [59], Levenberg–Marquardt method (LM) [60], etc. On the other hand, the nonlinear
problem can be transformed into a linear problem through some skills. The linear least
square method can be used to solve it, such as normal equation, Cholesky decomposition,
singular value decomposition, etc.

(2) Maximum Likelihood Estimation

The maximum likelihood estimation deals with problems from the perspective of
probability, but usually uses the probability density function instead of probability. It can
be seen that the maximum likelihood estimation requires a certain understanding of the
global probability density. Here, assuming that the noisy model conforms to the Gaussian
process, and the probability density function also obeys the Gaussian distribution, the
maximum likelihood estimation can be used to solve it [61].

(3) Kalman Filtering and its extensions

Kalman filtering and its extensions attempt to estimate the carrier state and calibration
parameters simultaneously in a framework according to the system model and observations
over a period of time [62]. Here, continuous rotation excitation can be performed through
the turntable, or other conditions, such as acceleration, electrostatic force, etc., can be taken
as the observed quantities.

(4) Other Intelligent Optimization Algorithms

The particle swarm optimization algorithm is a random search method based on group
cooperation. It realizes the update of speed and position by tracking two extreme values,
with memory function and a high convergence speed [63]. In addition, the neural networks
can calibrate the output without explicitly deriving the error model and estimating the
nonlinear parameters [64].

Although most of the existing algorithms can accurately identify the unknown param-
eters, they have strict requirements for the initial value, cannot always ensure convergence,
and are relatively complex to embed in a microcontroller unit [65]. Therefore, the improve-
ment of calibration accuracy can not only start from model optimization and the reference
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standard selection, but also from the optimization of parameter estimation algorithms. Next,
through the cross-combination of parameter estimation algorithms and calibration schemes,
the calibration methods of accelerometer and gyroscope will be discussed, addressing two
types: nonautonomous calibration and autonomous calibration.

3.2. Accelerometer Calibration Method

The traditional laboratory method of the accelerometer is to provide an attitude
reference through precision instruments such as a three-axis turntable. In order to reduce
the dependence on the turntable, the precision-machined cube housing can be introduced as
an aid so that the strong requirement for the accurate value of gravitational acceleration can
be avoided by selecting a specific attitude. In order to better realize the on-site calibration,
add the constant vector of gravitational acceleration or other external excitation to constrain,
which not only gets rid of the limitations of high-precision instruments in the laboratory,
but also does not require the accurate value of local gravitational acceleration, so as to
broaden the calibration environment further. The acceleration calibration is shown in
Figure 9.

High Precision Large 

Scale Equipment
Precision Machined Cube 

Fixture + Single Axis Turntable
Without  Turntable

+
External Reference

1 2 3

Figure 9. Some crucial existing calibration methods. Box 1 represents the combination of a low-
precision turntable and cube fixture [66]; box 2 represents the tilt sensor with 3D-printed housing [22];
box 3 represents other autonomous calibration methods that do not require a turntable.

3.2.1. Nonautonomous Calibration

Traditional nonautonomous calibration usually uses two-axis or three-axis turnta-
bles [35,67]. The purpose of these high-precision large-scale instruments is to make the
inclination angle of the sensor accurate, knowable, and controllable. In the laboratory envi-
ronment, the accelerometer to be calibrated is placed horizontally in a piece of laboratory
equipment, such as a turntable, and the multi-position rotation calibration based on gravity
is adopted to solve the unknown parameters in the error model according to the theoretical
acceleration (reference value) and measured value of the determined position and angle.

The most classic algorithm for nonautonomous calibration is the static six-position
calibration method. Keep the accelerometer system coordinate system consistent with the
turntable test coordinate system, and test each sensitive axis of acceleration vertically up
and down with the help of high-precision turntable. Once each sensitive axis senses the
acceleration of g and then −g, the bias b (Equation (8)) and the scale factor s (Equation (9))
are calculated [22].

b =
fup + fdown

2
(8)

s =
fup − fdown

2K
(9)
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where fup is the measured value of the sensor when the particular sensitive axis is facing
up, fdown is the measured value when the sensitive axis is facing down, and K is the known
reference signal. For accelerometers, K is the local gravity constant g [28] .

In static six-position calibrations, the sensitive axis of the sensor is aligned with the
vertical axis of the local-level frame by default, ignoring nonlinear errors, and the crosstalk
effects caused by the nonorthogonality error between axes [68]. The accuracy largely
depends on the degree of alignment. On the one hand, all sensors can be calibrated to
the same frame simultaneously by adding a cube housing to reduce the misalignments
between the measurement plane and the sensor. On the other hand, more unknown
error parameters can be estimated using a multi-position calibration by optimizing the
error model.

Ref. [69] proposed a tilt-compensated digital compass accelerometer output calibration
method assisted by precision aluminum cube housing, which realizes error calibration
by providing six mutually orthogonal directions, east, south, west, north, sky and earth—
twelve positions. However, the introduction of precision cube housing does not mean
turntable is not required. It is only used to reduce the misalignment error between the
turntable and the sensor. The algorithm cannot work when the tilt angle is ±90, which
further increases the limitation of the algorithm.

For multi-position calibrations, Ref. [70] pointed out two key problems:

• Inter-triad misalignment calibration between gyroscope and accelerometer;
• Optimal design of the calibration scheme.

Moreover, through fixed axial rotation, the rotation axis of the accelerometer is used
as the reference of the rotation axis of the gyroscope to solve the inter-triad misalignment
problem between the gyroscope and accelerometer; by maximizing the sensitivity of the
norm to the calibration parameters, an optimal accelerometer calibration scheme with
nine attitudes is obtained. Table 3 is the schematic diagram of the optimal scheme for
accelerometer calibration with nine attitudes. However, in the process of calibration, these
coefficients will change slowly with time, which reduces the efficiency of offline calibration.
If all the error parameters in the accelerometer model are estimated online, it is evident that
the unknown coefficients are too large to be realized.

Ref. [71] simplified the model by conducting online calibration only for bias, which
varies dramatically over time and electricity. First, the off-line calibration eliminates the
scale factor and nonorthogonality error, and then the on-line calibration of the dynamic
bias is based on the time-varying Kalman filter. The effect of the lever arm on accelerometer
calibration is not taken into account.

In order to further improve the accuracy of the sensor and reduce the impact of the
lever arm effect, Ref. [72] proposed a prediction error minimization stochastic modeling
suitable for the skew redundant inertial measurement unit, which takes into account not
only the static errors—bias, scale factor, and misalignments—but also the dynamic errors
caused by gyroscope angle random walk and accelerometer velocity random walk. Com-
pared with the traditional least squares method [28,73,74], which can lead to a nonoptimal
estimation and nonactive bias, a dual Kalman filter estimation method is proposed, which
simulates the influence of bias instability and random walk noise on the Kalman filter,
reduces the bias estimation, and completes the parameter convergence in dynamic motion.
Similarly, Ref. [75] introduced an angular acceleration estimator to improve the additional
error produced by the calibration of the turntable. He proposed a nonlinear model, consid-
ering that the output of the accelerometer is affected by the arm effect, installation error and
the distance from the center of the turntable, and estimated the model parameters through
the use of a transformed unscented Kalman filter (TUKF). However, due to the necessity
of introducing an angular acceleration estimator, this calibration is limited to laboratory
environments.

Although nonautonomous calibrations require expensive laboratory equipment and a
high calibration time, its high calibration accuracy makes it still the first choice for many
large companies and enterprises.
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Table 3. Approximately optimal nine attitudes for calibrating accelerometers [76].

Posture No. Description Illustration

1 x-upward

2 x-downward

3 y-upward

4 y-downward

5 z-upward

6 z-downward

7
x-east, y-north-upward with
45◦ pitch, z-south-upward

with 45◦ pitch

8
y-east, z-north-upward with
45◦ pitch, x-south-upward

with 45◦ pitch

9
z-east, x-north-upward with
45◦ pitch, y-south-upward

with 45◦ pitch

3.2.2. Autonomous Calibration

The traditional split calibration above relies on large-scale turntable equipment, and
the calibration accuracy depends more on turntable equipment. The use environment is
limited, the operation is cumbersome, and data acquisition takes a long time. The on-
site calibration technology of abandoning the turntable—autonomous calibration—came
into being.

The basis of accelerometer autonomous calibrations is that the gravitational accelera-
tion is a constant vector (Equation (9)), so we can no longer rely on the turntable, but start
from the characteristics of the accelerometer; that is, in the static state, the two-norm accel-
eration measurement value is always equal to the local gravitational acceleration (Lötters
et al. [77]), with modulo-length invariance in the free-rotation case, thus constraining the
acceleration. It should be pointed out that the gravitational acceleration as a reference is
justified only in the case of low-range accelerometers.
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Accx
2 + Accy

2 + Accz
2 = G2 (10)

Based on this original idea, we can explore how to transform the above nonau-
tonomous calibration into autonomous calibration.

(1) Cube Housing

Ref. [78] certified that the use of suitable housing, preferably cube housing, is beneficial
for calibration. Different from the above [69], Ref. [66] only used cube housing and a fixture
to calibrate all sensors to the same frame at the same time. Equation (11) is used as
calibration model and the high-precision cube frame is used as a rotating tool to change the
sensor position, so as to minimize the residual of overdetermined equations and estimate
the direction of gravity and more calibration parameters.

g̃(tk) = SaCs
c(tk)C

c
l g + ba + εa (11)

where Cc
l maps the references from local frame, where the reference signals are presented,

to the calibration frame, where the calibration rotations and matrix Cs
c(tk) map the reference

from the calibration frame to the sensors’ frame. g is the original output, εa is noise, ba is
bias, and Sa is a nonsingular constant scale matrix. g̃(tk) is the mean of the gravity.

The use of specially designed cube housings can be easily and quickly recalibrated
by the user in order to eliminate such considerable errors as thermal and long-term drifts
as well as effects of aging, keeping the sensitive axes aligned with respect to the external
mechanical datum [22].

(2) Multi-position

Ref. [77] first proposed a multi-position method based on ellipsoid fitting that does
not require a turntable. The IMU output signal passes through the high-pass filter, the
rectifier and the low-pass filter successively, and the output is Equation (12),

vout,detection = LPF
(
REC

(
HPF

(
vin,detection

)))
(12)

However, the nonorthogonality error is not considered and, in the nonstationary state,
it is necessary to know the value of each moment and the computation is large.

Based on the original idea of accelerometer autonomous calibration [77], Ref. [58]
derived a cost function equation, Equation (13), from the error model to describe the
deviation between the square of the accelerometer measurement

∥∥ h
(

As
k, X
)∥∥2 and the

square of the gravitational acceleration ‖g‖2, and used the Newton iterative method to
estimate the accelerometer parameters.

G(X) =
L

∑
K=1

(
‖ h( As

k, X)‖2 − ‖g‖2
)2

(13)

Its convergence speed is fast, but it has strict requirements for the initial value [79].
The LS method usually gives the nonoptimal estimation of calibration parameters and may
lead to nonactive bias in the estimation. In particular, this method does not consider the
influence of the bias instability of MEMS inertial sensor residuals in the calibration process.
Therefore, Ref. [65] proposed a six-point G-optimal experimental scheme for the special
six-parameter second-degree model based on DoE. A convergence-guaranteed recursive
parameter estimation algorithm is developed since the nonlinear parameter estimation
method cannot always converge ideally, and the algorithm’s efficiency is low. It can realize
the accurate estimation of parameters in three iterations and the response of parameter
estimation is stable for different initial values. Ref. [80] used the generalized nonlinear
least square (GNLS) method to estimate the deterministic error. Compared with the GN
iteration method and LM method, it is proved that the convergence speed of the scheme is
better, but it takes more time to collect data from 30 locations.

(3) Other External Equipment
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Ref. [81] proposed a calibration method of an accelerometer without physical stim-
ulation, which realizes nonphysical excitation calibration by using the electrostatic force
applied at transducer test plates to excite the proof mass. The purpose is to replace the
physical acceleration with electrostatic force, and use the extended Kalman filter algorithm
to estimate the gain parameters, which is helpful to evaluate the linearity and sensitivity
of the equipment. Ref. [82] proposed a closed-loop self-calibration system for accelerom-
eters, combining the sensor and actuator. In the self-calibration system, the standard
acceleration environment provided by the microvibrator is realized through a closed-loop
control based on the embedded optical displacement sensing system. Through the designed
self-calibration process, the accelerometer’s error coefficient and compensation coefficient
are obtained.

In addition, there is no robust method to calibrate the acceleration output without
explicit derivation of the error model and estimation of the nonlinear error parameters.
Ref. [64] presented a new calibration algorithm based on neural networks. Using the neural
network with the back-propagation and optimization method, the actual measurement and
the expected value of the accelerometer at rest are used as training data to find the best
model to match the sensor’s output signal with the acceleration of static position.

Although the autonomous calibration of accelerometers involves extensive formula
derivation, lengthy operations, and attention to the convergence of the estimation algorithm
during specific runs, it can be used in-field calibration compared with the nonautonomous
calibration, and does not require a high-accuracy operation. Through optimization, the
accuracy is also gradually aligned to the nonautonomous calibration.

3.3. Gyroscope Calibration Method

Since the rotational angular velocity of the earth is a weak signal, that is, the earth
rotation speed is hidden in large noise, only gyroscopes with medium or higher accuracy
can sense it acutely, so the calibration of gyroscopes requires more external excitation than
accelerometers, such as large-scale instruments—centrifuges, motion rate tables, etc.—and
other external excitation—electrostatic force, gravitational acceleration, etc.

3.3.1. Nonautonomous Calibration

Nonautonomous calibration is dependent on a mechanical platform, rotating the IMU
into different, predefined, precisely controlled orientations and angular rates. The gyro-
scope can be calibrated theoretically through Equations (8) and (9), in which K represents
the vertical projection of the earth’s rotation rate in a fixed dimension [28]. Ref. [83]’s exper-
iment shows that due to the small amplitude of the earth’s rotation rate, it is unacceptable
to calibrate the accuracy of the gyroscope using the static six-position method, and calibrat-
ing the gyroscope requires greater rotation excitation. Ref. [79] provides greater rotation
excitation through a turntable with a precision of 0.1 °/s, noting that the accelerometer and
the gyroscope are calibrated separately. Therefore, it is impossible to estimate the inter-triad
misalignments between the gyroscopes and accelerometers.

Ref. [84] proposed an improved scheme based on multi-position calibration [83], which
is optimized for the two shortcomings of gyro multi-position calibration.

• Inability to sense weak signals of the earth’s rotation.
• Stringent requirements for initial values.

This scheme does not need leveling, but ignores the difference between the angular
velocity of the spindle and that of the reverse rotating platform. The accelerometer and
gyroscope are independently calibrated, so the calibration accuracy depends on the degree
of alignment.

In order to solve the problem that the gyro calibration is sensitive to the input angular
rate and the angular rate is affected by the difference between the spindle rate and the
reverse rotating platform rate, Ref. [85] further analyzed the possible error sources on the
turntables or centrifuges and established the corresponding coordinate system. By combin-
ing the output of 16 specific positions, the angular velocity derived by the centrifuges, the
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input specific force and the static error model of the gyroscopes, the expression of the bias
coefficient is obtained to improve error compensation precision.

In response to the independent calibration of acceleration and gyroscope, ignoring the
inter-triad misalignments, Ref. [86] in 2008 took advantage of the fact that the dot product
of accelerometer and gyroscope output is directly related to the dot product of the earth’s
rotation rate and gravitational acceleration to increase the constraint between accelerometer
and gyroscope. However, the accuracy of the error parameters of the gyroscope obtained
by this method needs to be improved. Ref. [76] considered the combined calibration of
accelerometer and gyroscope, and proposed a new method to calibrate the inter-triad
misalignments between gyroscope and accelerometer, by constructing the following model
Equation (14),

ω̃
g
ig = KgTg

o Ro
pω

p
ip + bg + vg (14)

where ω
p
ip denotes the true platform angular velocity with respect to the inertial coordinates

expressed in platform coordinates, Kg is the diagonal scale factor matrix, bg is the bias
vector of the gyroscope cluster, vg is the measurement noise, Ro

p denotes the directional
cosine matrix, rotating a vector from the platform coordinates to the o-frame, and Tg

o
represents the nonorthogonality error between the orthogonal coordinate system o-frame
and the sensitive axis of the gyroscope.

Ref. [87] introduced a thermal chamber. After estimating scale factors, misalign-
ments and biases, thermal calibration was performed to determine the scale factors and
biases at different temperatures, and a Kalman filter was used to derive the optimal
calibration algorithm.

Although nonautonomous calibrations can have higher accuracy through the intro-
duction of turntables, centrifuges and so on, many scholars have also noticed that the
introduction of large-scale equipments will also bring new errors. And when the sensors
are integrated in a frame, the mutual crosstalk between the two also needs to be consid-
ered. Therefore, it needs to be further improved through fine division of error sources and
optimization of models.

3.3.2. Autonomous Calibration

For the autonomous calibration of gyroscopes, in addition to the rotational angular
velocity of the earths, some other auxiliary excitation are used—accelerometers, magne-
tometers, etc. The following mainly explains the autonomous calibration of the gyroscopes
under different auxiliary excitations:

(1) Multi-position

Ref. [78] realized the estimation of 12 position parameters through the four mea-
surements in Figure 10, and only required manual rotation to complete the gyroscope
calibration. However, many assumptions are set, and the robustness and generality of its
algorithm cannot be guaranteed.

(2) Accelerometer

Ref. [88] first calibrated the accelerometer through the six-position method, then
determined the wheel speed with the help of the accelerometer, and proposed a scheme
for calibrating the gyroscope by combining the accelerometer and the bicycle wheel, so
the error caused by the accelerometer will be superimposed on the gyroscope. Ref. [89]
calibrated the gyroscope by comparing the output of the accelerometer and the directional
integral of the IMU after any motion. It is necessary to roughly estimate the gyroscope
parameters. In addition, theoretically, the gravitational vector of the accelerometer should
be equal to the calculated gravitational vector through the output of gyroscope, so some
scholars adopted the form of combination of motion and static state, and use the error
parameters under static state as the initial values under dynamic motion to improve
the precision.
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Refs. [58,90] eliminate the limitation of sensor orientation by introducing the gravi-
tational field of the earth so that the calibration of the gyroscope can be achieved only by
simple rotation. However, the gyroscope must be rotated in a fixed structure. Ref. [66]
utilizes the known rotations between positions in a multi-position calibration to correlate
the first and last quaternions of each rotation with the corresponding 24 reference positions,
so that the calibration process does not require precise alignment, enabling the rotation
plane freedom.

Figure 10. Orientations of the 3D gyroscope during the four calibration measurements [78].

(3) Magnetometer

Ref. [91] proved that the uniform magnetic field vector could be used as a reference for
low-cost gyroscopes under enough rotation excitation, and the gyroscopes can be calibrated
in a uniform magnetic field by using a magnetometer. However, it requires high magnetic
field stability, which cannot be used as a reference when the magnetic field is disturbed by
an external alternating magnetic field. Ref. [92] put forward a complete solution to calibrate
the inertial sensor, which can calibrate the inertial measurement unit in the case of dynamic
magnetic interference.

(4) Electrostatic Force

Ref. [93] mimicked the effect of the Coriolis force by the application of a rotating
excitation to the drive and sense resonance modes of the device. The purpose of this is
to utilize the condition that the phase shift of the vibration mode is proportional to the
excitation rotation rate so that the rotating excitation generated by the rotating electrostatic
field applied to the equipment electrode replaces the physical rotation.

From the description of various calibration algorithms in Table 4, we can see that
it is difficult to determine the merits of the algorithm from just one aspect, such as cost,
accuracy, complexity, etc. It is more a choice based on specific scenarios. For example,
the static six-position method and rate calibration, which need the assistance of precision
instruments, are still the first option for calibration by most enterprises. However, it is
worth considering the appropriate exchange of accuracy for operation efficiency and scene
expansion in practical applications.
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Table 4. Comprehensive overview of inertial sensor calibration methods. (Note: Acc—accelerometer;
Gyro—gyroscope; Mag—magnetometer).

Group Type—Reference Advantage Disadvantage Remark

Nonautonomous
Calibration

Acc and Gyro—[84]

There is a
pre-estimation of the

initial value, using the
turntable

26-position calibration,
cumbersome operation,
and unusable when the

triplet is seriously
dislocated

Increased rotational
excitation via a

single-axis turntable

Acc and Gyro—[86]
Combined calibration,

taking triplet errors
into account

Accuracy needs to be
improved

Based on dot product
invariant method

Acc and Mag—[69]

Reduced misalignment
errors through the use

of turntable and
precision aluminum

cubes

Cannot be used when
the inclination is close

to ±90◦

Cumbersome
operation—need to
acquire data of 12

positions and 36 axes

Acc—[71]

Only bias is
dynamically calibrated
to simplify the dynamic

model

Leverage arm effect is
not considered

Bias online calibration
based on time-varying

Kalman filter

Acc and Gyro—[76]

Optimal calibration
rotation scheme,

considering triple
calibration deviation

cumbersome,
involuntary

By fixing the axial
rotation, the triplet bias
calibration is resolved

Acc and Gyro—[87]

Taking into account
scale factors and

deviations at different
temperatures

Complicated operation,
inconvenient for

engineering application

Real-time thermal
calibration by using
rate table, thermal
chamber and cube

housing

Acc and Gyro—[72]

Take into account the
accelerometer lever
arm effect (add two

variables for the
accelerometer)

The operation is
complex and

time-consuming, and
the amount of

calculation is large

Two-axis turntable and
requires continuous
rotational excitation

Gyro—[85]

Taking into account
scale factors and

deviations at different
temperatures

Complicated operation,
inconvenient for

engineering application

Real-time thermal
calibration by using
rate table, thermal
chamber and cube

housing

Acc and Gyro—[75] Taking into account the
lever arm effect

Turntable and angular
acceleration estimator,

limited usage scenarios

Propose TUKF to
estimate model

parameters
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Table 4. Cont.

Group Type—Reference Advantage Disadvantage Remark

Acc—[77]

The operation is simple,
and the density

function does not need
to know too much

The calculation amount
is large in the

nonstationary state

The misalignment error
is not considered

Acc and Gyro—[79]
Minimize model
parameters using
Newton’s method

The actual calibration
of the gyroscope is not
described, the initial

value needs to be
determined

Accelerometer
calibration is based on

a cost function

Acc—[68] Tilt angle information
is not required

Only six calibration
parameters are

estimated, which is
cumbersome to operate

Using a shell and
three-way milling vice,

with reduced initial
value requirements

Autonomous
Calibration

Gyro—[93]
Creating virtual rate on
the gyroscope by using

its drive electrodes

Calibration method
requires gain

adjustment in the
output and is affected

by aging

Using the condition
that the phase shift of
the vibration mode is

proportional to the
excitation rotation rate

Acc and Gyro—[90]

Taking into account the
triplet error between

the gyroscope and the
accelerometer

Gyroscope accuracy
depends on

accelerometer
calibration accuracy

Using gravity vector
calculated from

gyroscope output to
calibrate

Acc—[61]

Introduce white
Gaussian noise,

assuming a Gaussian
process

Offline calibration,
requires knowledge of
the random variable

density function

Accelerometer offline
calibration based on
maximum likelihood

estimation

Gyro and Mag—[91]
Utilizing magnetic field
vectors as low cost gyro

references

High requirements for
magnetic field stability

With sufficient
rotational excitation,

the magnetic field can
be used as a calibration

reference

Acc—[65]

Accurate parameter
estimation within three

iterations, with low
requirements for initial

values

Lacks nonlinear
corrections and only

assumes positive scale
factors

Can be implemented
on wearable devices

with limited computing
power

Acc and Gyro and
Mag—[66]

Free rotation plane,
pre-estimated initial

value

Numerical integration
may introduce errors

Known rotations in
multi-position

calibration are utilized

Acc and Gyro—[58]
Static parameters are
used as initial values

and judged

Must be rotated in a
fixed configuration

Adopt dynamic and
static combination

Acc—[64]

There is no need to
explicitly derive the

error model and
estimate the error

parameters

A large amount of data
needs to be trained in

the early stage

A new calibration
algorithm based on

neural networks

Acc—[80]
Using GNLS method,

the convergence speed
is fast

30 positions, tedious
operation

The accuracy is slightly
higher than using LM

and GN
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4. Discussion
4.1. Current Situation Analysis

Based on a large number of literature materials, we conducted an extensive compar-
ative analysis of the existing research methods proposed for MEMS inertial sensor error
calibration and summarized based on this. So far, many effective error calibration methods
for MEMS inertial sensors have been proposed by researchers in this field for different
practical applications and have achieved good results, as well as good practicality and
applicability. As far as the autonomous calibration method is concerned, the classical
independent ellipsoid fitting method and the independent dot product invariant method
are proposed to guarantee the error calibration effect from the mathematical principle, and
are easy to use. However, the application of this method to a single device calibration has
its inherent drawbacks, such as the ellipsoidal fitting method which introduces artificial
misalignment errors to the sensor during calibration, and the independent dot product
invariant method which requires an internally predetermined reference vector, which is
not available and difficult to implement in many practical applications. Moreover, there is
no unified method for error calibration of multi-sensor combinations, especially in terms of
autonomous calibration.

As for nonautonomous calibration, the input and output data sequences of the sensors
are obtained by artificially creating vector fields under laboratory conditions, for example,
by applying a centrifuge or a high-precision turntable to calibrate triaxial accelerome-
ters [60,94]. This type of calibration method is not only expensive in terms of investment
in equipment and experimental conditions, but also the calibration process can only be
performed in a dedicated artificial laboratory environment, which is not universal to the
actual application environment, so it is not suitable for low-cost application scenarios.

Based on this, we identified three key directions to focus on for error calibration of
MEMS inertial sensors, especially when considering multi-sensor combinations (Figure 11).

• In order to effectively take advantage of the low cost of the MEMS inertial sensor, it
should be considered that the error calibration method it adopts should also meet the
requirements of being low cost while achieving the calibration effect;

• For the error calibration of the multi-sensor combination, it is necessary to consider
avoiding the problem of complicating the error calibration caused by the nonuniform
coordinates of the multi-sensor combination;

• The current research does not propose a unified and general solution for error calibra-
tion of multi-sensor combinations, especially in terms of autonomous calibration.

In a word, because the method of improving the hardware of the sensor is not only
tricky and the research cost is high, but also its related technology is also restricted by the
current research level in the entire field. In practical operation, there will also be technical
limitations in various links such as product processing, packaging, testing and equipping,
which are not applicable in most application scenarios. Therefore, at present, improving the
accuracy of MEMS sensors mainly adopts the software level method and develops towards
low cost. Based on the existing device development level, the product performance is
improved by the error calibration method.
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Figure 11. Schematic of key directions. On the right is a further exploration of three key directions,
from top to bottom, the balance between low cost and calibration effect, the impact of coordinate
inconsistency on multi-sensor combinations, and the lack of a universal solution for autonomous
calibration of multi-sensor combinations.

4.2. Future Trends

As for the future direction of MEMS inertial sensor calibration technology, our view is
towards diversification. On the one hand, combining cameras with IMUs to form vision-
aided inertial navigation systems (VINS) has been a hot research topic [95]. The camera
and IMU are complementary in terms of accuracy and frequency response. Specifically, the
IMU can provide scale information and robustness for dynamic motion, while the camera
can estimate the maximum scale pose. In the work of IMU-camera joint calibration, it can
be traced back to Alves et al.’s proposal to install visual-inertial sensors on a pendulum
and estimate the relative orientation between the camera and the IMU, as well as the scale
and axis misalignment parameters of the IMU [96]. Ref. [97,98] also made much effort to
perform a calibration in the minimal sensing case of a single camera and IMU. Ref. [99]
introduced the open-source Kalibr toolbox for the spatial and temporal calibration of
multiple sensors (cameras/IMUs) for the offline estimation of extrinsic parameters within
a maximum likelihood estimation framework. However, due to the narrow field of view
of the monocular camera, the calibration results will be limited, so Ref. [100] proposed
adding multiple additional cameras to assist the calibration based on the monocular IMU-
camera system, and combining a multi-camera visual-inertial state estimation algorithm
(denoted as Mu-CI) was applied to the sensor platform to perform the calibration, achieving
excellent calibration performance. The joint calibration framework of the IMU-camera,
as a novel vision-based calibration technique, utilizes the information collected from the
frame sequence to estimate the calibration parameters, but the complexity and constraints
still pose great challenges to this scheme. On the other hand, light detection and ranging
(LiDAR), as an optical measurement instrument, can be used to obtain the surface of
an object as a highly redundant discrete point in a three-dimensional coordinate system,
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and it can also be used to obtain high-precision position information for use in an error
calibration of the IMU. Ref. [101] proposed a multi-feature based method that combines
the advantages of point/sphere, line/cylinder and plane features in LiDAR scan data for
the field calibration of LiDAR-IMU systems without using any artificial targets or specific
facilities. First, the calibration of LiDAR extrinsic parameters is performed by estimating
geometric features and solving a multi-feature geometric constraint optimization problem.
Then, the relationship between the LiDAR and the IMU intrinsic calibration parameters is
determined through a coordinate transformation. Finally, the full information maximum
likelihood estimation method is applied to solve the optimization problem of IMU intrinsic
parameter calibration. Although their calibration performance is good, they usually have
some disadvantages, such as the problem of field real-time calibration of the overall system,
and the newly developed 3D-LiDAR will lead to a very complex transformation model
between LiDAR and IMU [102].

In addition, many researchers have also introduced deep learning techniques into the
calibration of inertial sensors; Ref. [103] proposed using machine learning techniques to
regress the velocity vector with linear acceleration and angular velocity as input. Ref. [104]
proposed to model the IMU calibration as a Markov Decision Process and use reinforcement
learning to implement the regression of the calibration parameters. Ref. [105] proposed a
lightweight and efficient deep convolutional neural network Calib-Net for low-cost IMU
calibration. Calib-Net employs dilated convolutions for spatiotemporal feature extraction,
learning to generate gyroscope measurement compensation dynamically, and introducing
a mathematical calibration model to design the training and calibration framework. The
introduction of deep learning can reduce human intervention and help achieve autonomous
systems. Since deep learning methods are data driven, their internal algorithms are more
difficult to interpret from a physical and geometric perspective than traditional methods
such as observability analysis, which is a natural difference between deep learning and
geometric model-based methods [106]. In addition, the generalization ability of the network
to different types of IMU proposed by some relevant studies is still limited and the real-time
performance is poor. As mentioned above, we briefly analyzed the current situation of
calibration technology, introduced some representative cutting-edge calibration technolo-
gies that can reflect future development, and defined the brief contents and calibration
characteristics of various methods.

5. Conclusions

MEMS inertial sensors have a series of advantages such as a low cost, small volume,
light weight, low power consumption, mass production, strong impact resistance, high
reliability and relatively long service life. Their appearance and continuous development
have extensively promoted the further application and development of carrier attitude
measurement [107–109]. AHRS based on the MEMS inertial sensor/magnetic sensor com-
bination has attracted more and more attention because of its significant advantages, i.e.,
being low cost and convenient, and the reliable provision of carrier attitude information.
This paper gives a brief overview of different MEMS inertial sensor calibration techniques,
from traditional calibration schemes to sensor fusion, and covers the latest advances in
calibration techniques, but still cannot provide a comprehensive introduction and anal-
ysis of related technologies. MEMS inertial sensors are often affected by various factors,
sometimes with significantly nonlinear characteristics. Furthermore, the interaction of
environmental factors and dynamic changes will have different effects on the sensor. It is
foreseeable that the calibration of inertial sensors in complex environments is characterized
by nonlinearity and dynamics, which is very different from traditional calibration. While
some research has been produced in the field of MEMS inertial sensor calibration, a com-
plete solution suite for most problems still does not exist, and there is still a lot of room for
improving calibration schemes. We also summarize the following points to better promote
the prospect of calibration technology in MEMS inertial sensors:
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• The selection or improvement of appropriate calibration methods will depend on the
accuracy requirements and application scenarios;

• The combination of common calibration methods or sensor fusion can improve the
performance.

To sum up, the error cannot be completely eliminated under the current technical
conditions. All we can do is to make the measurement results closer to the actual value
through calibration technology. In the future, determining how to calibrate MEMS inertial
sensors in a complex environment is still an important development direction of MEMS
inertial sensor calibration technology.
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