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Abstract 

 

This paper reviews mass spectrometers based on micro-electro-mechanical systems 

(MEMS) technology. The MEMS approach to integration is first briefly described, and 

the difficulties of miniaturizing mass spectrometers are outlined. MEMS components for 

ionization and mass filtering are then reviewed, together with additional components for 

ion detection, vacuum pressure measurement and pumping. Mass spectrometer systems 

containing MEMS sub-components are then described, applications for miniaturized and 

portable systems are discussed, and challenges and opportunities are presented. 
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1.  Introduction 

 

Microelectromechanical systems (MEMS) technology – the use of microfabrication 

techniques to construct integrated systems - has had a major impact on sensors and 

actuators since the 1980s [1-5]. Applications have been found in the automotive, 

aerospace, consumer, information technology, telecommunications, defense and security, 

energy, and biomedical sectors. MEMS are available as commodity items or as 

specialized enablers for high-value instruments. Operation can involve mechanical, 

electrical, optical, thermal, fluidic, chemical and biochemical principles. Each requires 

specialized materials and processing, and device formats can be very different. Many 

MEMS are based on silicon-compatible materials, but metals, plastics, glasses and 

ceramics all have specific applications. Many different fabrication techniques have been 

developed, but most can only be used with particular materials. As a result, there is no 

universal ‘roadmap’ for MEMS, and development costs have often been high. 

 

In contrast to micro-total-analysis systems (µTAS) [6-9], which were developed quickly, 

MEMS mass spectrometers have taken decades to reach market. For example, a patent 

describing an elementary MEMS mass filter that was originally filed in 1996 [10] 

eventually led to a considerably more complex desktop mass spectrometer in 2011 [11]. 

The most obvious reason is the need for a bulky vacuum system, which renders the case 

for miniaturizing a sub-component such as a mass filter much less convincing. 

Commercial reasons include low unit sales, high development cost, and a 

disadvantageous tradeoff between size and performance. Additional technical reasons 
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include the confusing range of designs, the complexity of the structures needed in each 

case, and the poor performance of early systems. As a result, development was supported 

by the space and defense sectors (which have an overwhelming need for portability) for 

many years. However, considerable progress has recently been made. Performance has 

improved dramatically, markets have been identified, and commercial instruments 

incorporating MEMS are now available. 

 

The aim of this paper is to describe this new success story. Approaches to miniaturizing 

components for mass spectrometers are first described in Section 2, focusing on 

microfabricated devices. MEMS embodiments of the main sub-components - ion sources, 

mass filters, ion detectors, vacuum gauges, and pumps - are reviewed in Sections 3, 4 and 

5. In each case, relevant background is given, followed by a summary of achievements to 

date. Assembly of MEMS components into mass spectrometer systems is considered in 

Section 6. Applications for small mass spectrometers are described in Section 7 and 

opportunities and challenges for MEMS mass spectrometers are presented in Section 8. 

 

2. MEMS mass spectrometers 

 

2.1 Background 

Miniaturized mass spectrometers were first developed in the early 1970s for applications 

such as residual gas analysis (RGA) and space exploration [12-14]. There was a 

resurgence of interest in the 1990s, but progress was slow. Manufacturers were focused 

on the lucrative pharmaceutical sector, which demanded high-performance instruments 
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for drug development, and interest was concentrated on combining chip-based separation 

with electrospray. Miniaturization of systems was therefore mainly driven by portable 

applications, an initially small market. However, in the 2000s, national security concerns 

rose dramatically and interest in field-deployable instruments greatly increased. 

 

All mass spectrometers require an ion source, a mass filter, and an ion detector. However, 

in each case, a bewildering number of variants exist. For example, Figure 1 shows the 

main types of mass filter: a) the magnetic sector, b) the crossed-field or Wien filter, c) the 

Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer, d) the time-of-

flight filter, e) the quadrupole mass spectrometer (QMS), and f) the quadrupole ion trap 

(QIT) [15]. Others, such as the Orbitrap, also exist, but require more complex electrodes. 

Complete instruments also require a vacuum chamber, a method of sample introduction, 

vacuum pumps, a pressure gauge, control electronics and data acquisition, display and 

storage. 

 

During the early development of miniature mass spectrometry (MS), it was not clear 

which variant to use, how to partition a system into sub-units, or how to package the 

units. As a result, most teams developed single miniaturized components for use in 

conventional chambers pumped by compact turbo-pumps. All the filters above have been 

successfully miniaturized, except the FT-ICR-MS, which requires high magnetic fields. 

Two approaches to miniaturization were used. The first involved taking conventional 

technologies such as precision machining, photo-etching and printed circuit board (PCB) 

fabrication to their limits, and resulted in useful, but relatively large, systems. Many of 
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the most common mass analyzers were miniaturized in this way, including magnetic 

sector [13, 16, 17], time-of-flight [14, 18, 19], quadrupole [20-22], cylindrical ion trap 

[23-25] and linear ion trap [26-28] filters. This work is described in excellent reviews 

[29, 30]. The second involved MEMS; however, microfabrication was in its infancy and 

this approach typically yielded smaller systems, but with initially poor performance. 

 

2.2 MEMS Processes 

Early MEMS technologies unfortunately proved unsuitable for fabricating most MS 

components. For example, bulk micromachining [31] involves etching down crystal 

planes in single crystal substrates using wet etchants such as KOH, and is largely 

restricted to features following <111> planes in Si. Using (100) substrates, these consist 

of V-shaped grooves and pits with sloping sidewalls. After additional oxidation and 

metallization, useful structures can be made, such as the quadrupole filter shown in 

Figure 2a (described in more detail in Section 4.7). Here, the grooves are used to mount 

cylindrical electrodes and insulating spacers to form a two-substrate stack. However, 

further lithography and processing are difficult to carry out after etching to any depth. 

 

Surface micromachining [32] offered much greater flexibility, allowing arbitrary features 

to be formed in deposited layers of polysilicon and silicon dioxide, which could each be 

preferentially removed. Multiple cycles of deposition and etching can be carried out, but 

layer thickness is limited in each case to a few microns by intrinsic stress. Again, useful 

systems were made using surface processing, such as the Wien filter shown in Figure 2b, 

which combines diaphragm-based electron and ion optics with an etched vacuum 
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chamber (described later, in Section 4.3). 

 

However, the key difficulties of miniature mass analyzers were that high selectivity 

needed devices with a long ion path (requiring ion optical components to be set up 

perpendicular to the substrate) while high sensitivity needed a large pupil (so these 

components must be large). Much deeper (over 100 µm) structures could be fabricated by 

patterning a thick photoresist layer, either using UV light for exposure or using 

synchrotron radiation in the LIGA (Lithographie, Galvanoforming, Abformung) process 

[33]. In some cases, especially microfluidics, resists such as SU-8 [34] may be used as 

structural materials. High-aspect-ratio metal parts can also be formed, by electroplating 

Ni into a resist mould. However, high cost eventually led to other preferred solutions. 

 

Particularly, deep reactive ion etching (DRIE) allowed the formation of arbitrary features 

in silicon with near-vertical sidewalls [35]. The structures could be extremely deep, in 

some cases etched right through the wafer. In the Bosch DRIE process [36, 37], 

verticality was achieved using inductively coupled plasma, with alternating cycles of 

etching using SF6 and passivation using C4F8. Bonded silicon-on-insulator (BSOI) 

material (a silicon device layer separated from a silicon substrate by a layer of thermal 

oxide) and thick deposited dielectrics allowed the fabrication of electrically insulated 

parts. For example Figure 2c shows the process for fabricating one half of a cylindrical 

ion trap; two such structures, back-to-back, form a complete trap (Section 4.7). 

 

When combined with wafer stacking [38, 39], ion optics with integral pupils could be set 
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up perpendicular to the wafer plane. Plug assembly of deep-etched silicon components 

into mounts containing etched silicon springs also allowed components with more 

general features to be fabricated flat and then assembled into a component train. Despite 

the advantages of BSOI, RF devices have suffered from the poor electrical isolation 

offered by relatively thin buried oxide layers, which typically results in heating of a 

semiconducting substrate. More advanced MEMS technologies such as silicon-on-glass 

were therefore needed to achieve a high mass-range. Other techniques that combine 

dissimilar materials (such as anodic bonding) have therefore also proved important. 

 

More recently, techniques such as rapid prototyping [40, 41] have made an impact. These 

cannot be currently considered true MEMS technologies, but are being combined with 

planar processing [42] and may well have advantages in fabricating complex electrodes. 

 

2.3 MEMS design 

No new physics is required in MEMS MS. Ions are created using known methods and 

filtered using electric and magnetic fields, exactly as in conventional instruments. Ion 

dynamics can therefore be simulated by integration of the equations of motion. 

Nevertheless there are some differences, caused by the limitations of MEMS. These are 

most easily illustrated in terms of the quadrupole filter, discussed in detail in Sections 4.6 

and 4.7. This structure uses a hyperbolic electrostatic field φ(x, y) = φ0 (x
2 - y2)/2r0

2 for 

filtering, shown in idealized form in the left-hand inset to Figure 3a. Ions travel in the z-

direction, and the potential φ0 normally contains both a DC component and a RF 

component at angular frequency ω. Integration yields trajectories of the type shown in the 
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main plot. Here ζ = ωt, and t is time, although with a constant axial velocity ζ is also 

proportional to the axial flight distance z. The trajectory contains complex oscillations 

that are highly sensitive to a number of parameters including the exact shape of the field. 

 

To reduce cost, most conventional quadrupoles are constructed using cylindrical 

electrodes, which approximate the desired hyperbolae. Decades of work have established 

the best radii and the effects of residual imperfections. However, a MEMS process of the 

type shown in Figure 2a makes additional approximations by introducing grounded 

features in close proximity (the Si substrates). Consequently, the real field appears as 

shown in the right-hand inset to Figure 3a. Strenuous efforts must be made to minimize 

the effect of the field imperfections, since they severely limit the achievable resolution. 

The presence of additional features such as coupling optics (or other approximations 

caused by MEMS processes) then renders the overall field three-dimensional, especially 

at the electrode ends. Accurate simulation is then most easily carried out numerically, for 

example using the commercial software SIMION®, which combines a fast field solver 

with a trajectory integrator [43]. Figure 3b shows a typical simulation of a more complex 

quadrupole filter constructed using BSOI, including coupling optics. 

 

2.4 Advantages of MEMS 

Earlier reviews of the application of MEMS to mass spectrometry can be found in [44-

47]. Its potential advantages can be established from the limitations of conventional 

systems. Removing the covers from modern instruments reveals that these are very 

complex. The vacuum system dominates but intricate wiring looms and major subsystems 
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responsible for high voltage DC and RF supply, pump control, gas flow control and 

power distribution can also be seen. Within the vacuum chamber, an array of anchor 

points and ceramic stand-offs support precisely manufactured ion optical assemblies. 

Electrical connections are made through stiff copper wire and vacuum feed-throughs. The 

labour costs of assembly, testing and servicing are considerable. 

 

A key advantage of MEMS is therefore the potential for a consumer electronics model for 

product integration. It is now possible to envisage that MS sub-systems or even complete 

systems could be manufactured on a wafer scale and assembled on PCBs, with defective 

systems being rejected rather than re-worked. In addition, a consequence of favourable 

scaling laws is that MEMS ion sources, filters and detectors can be operated at much 

lower voltages than their conventional counterparts. A major obstacle is the provision of 

vacuum, since high vacuum pumps are a major contributor to system size and cost. 

Fortunately, it seems that the higher pressure-tolerance of MEMS mass filters and the 

improving capabilities of MEMS vacuum pumps may converge. It is important that 

performance, particularly sensitivity, is not significantly compromised by 

miniaturization. Arrays of MEMS sources, filters and detectors retain the benefits of low-

voltage, high-pressure operation, but increase the ion flux that can be processed. 

 

3. MEMS ion sources and sample introduction methods 

 

3.1 Background 

A wide variety of ion sources exists; for a review, see [48]. The earliest common method 
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is electron ionization (EI), using a heated filament as an electron source and confining 

electrodes to increase the likelihood of impact. The current density J obtained in an 

electric field E at absolute temperature T obeys the Richardson-Dushman equation J = 

AT2 exp{-(φ - Δφ)/kBT}. Here, φ is the work function of the filament, kB is Boltzmann’s 

constant and A = 4πmekB
2e/h3, where e and me are the electron charge and mass and h is 

Planck’s constant. The field-induced term is Δφ = (eE/4πε0)
1/2, where ε0 is the vacuum 

permittivity. Emission will occur as soon as Δφ > φ, (which requires materials with low 

work functions) and the current will be high if T is also high (which requires filament 

materials that can also easily be heated, such as tungsten). However, if the field is high 

enough, significant emission will be obtained even at room temperature (so-called ‘cold 

cathode’ emission) [49]. High fields can be achieved using pointed (Spindt) emitters. 

 

Later methods include flame ionization, corona discharge and inductively coupled plasma 

(ICP) ionization [50]. Optical methods include photo-ionization (PI) using an ultraviolet 

lamp [51], laser desorption ionization (LDI) [52], and its surface-enhanced and matrix-

assisted variants SELDI and MALDI [53]. The most common ionization method for 

liquids is electrospray ionization (ESI) [54, 55]. A voltage is applied between a liquid in a 

capillary and a counter-electrode, and the electric field distorts the liquid surface into a 

Taylor cone from which charged droplets are emitted [56]. The charge density of a free 

droplet increases as solvent evaporates and its diameter decreases. This continues until 

electrostatic repulsion exceeds surface tension and the droplet undergoes fission, 

eventually leading to single ions (which can be multiply charged). Electrospray is carried 

out with capillaries of ≈100 µm internal diameter (ID), and voltages of 2.5 – 4 kV. 
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Voltages are reduced in nanospray systems with capillaries of ≈10 µm ID [57, 58]. A 

variant - desorption electrospray ionization (DESI), in which adsorbed molecules are 

ionized using an electrosprayed liquid - has found wide application in surface sampling 

[59]. 

 

Regardless of how ionization is achieved, a means of transferring an analyte or an ion 

stream into vacuum is required. For gases, a needle valve or conductance-limiting 

capillary may suffice. For ion traps, which operate cyclically, actively pulsed, 

discontinuous inlets may be used to overcome pumping speed limitations [60]. A simple 

manual method is solid phase microextraction (SPME) [61]. This involves extraction of 

analytes from gas or liquid samples using a polymer-coated silica fibre, which is injected 

through a septum and into the chamber, where the analytes desorb. Membrane 

introduction allows continuous selective transfer of analytes from the gas or liquid phase 

through a porous barrier [62]. The jet expansion interface [63] is the most versatile 

introduction method for ions created at atmospheric pressure. In ESI-MS, other 

components such as air amplifiers use the Venturi effect to increase ion density in the 

spray [64]. Similarly, tapered arrays of ring electrodes driven by RF voltages and known 

as ion funnels are used to improve the coupling of ions into the inlet [65]. 

 

3.2 MEMS ion sources 

Planar hot-cathode EI sources using microfabricated filaments have been demonstrated 

[66, 67]. Figure 4a shows a suspended tungsten filament for a miniature TOF mass 

spectrometer, with a zig-zag layout. However, integrated filaments are used relatively 
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rarely because of their high power consumption, high temperature and the potential for 

thermal runaway. For this reason, more recent demonstrations have used replaceable 

external filaments [68]. Cold-cathode EI sources are much more common; the ability of 

isotropic plasma etching to form extremely sharp tips in silicon (which may easily be 

combined with concentric anodes) allows the high fields needed for ion extraction at 

room temperature to be provided at low voltage [69]. Emission can also be enhanced, by 

over-coating with low-work function materials such as thin-film diamond [70]. The 

sources are small, and can be formed in large arrays. Several small mass spectrometers 

with field emission sources have been constructed [71, 72], including the miniature ion 

trap for the European Space Agency’s Rosetta Comet Rendezvous Mission [73]. More 

recent devices have used carbon nanoparticles [74] and nanotubes [75, 76] as sharp 

emitting tips, with advanced devices being fabricated in arrays with double gates [77]. 

 

No microfabricated photoionization (PI) sources have been developed, since these would 

require optoelectronic materials, but portable mass spectrometers employing external 

lasers have been demonstrated [78], and systems have been developed for combining 

photoionization with chip or capillary flow systems [79, 80]. Microfabricated plasma 

sources only require a sealed, etched chamber containing channels for gas flow and 

electrodes for plasma excitation, and a variety have been demonstrated using inductive 

and capacitive excitation [81-85] and even integrated with mass spectrometers [86]. Here, 

the main difficulty has been to prolong the life of the electrodes, since the relatively thin 

metal layers formed using most deposition methods are rapidly eroded by sputtering. For 

example, Figure 4b shows electrodes before and after prolonged use in a plasma source. 
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The greatest advances have been in ESI sources, which require, at minimum, a liquid 

analyte brought to a sharp tip using a channel of some sort, a contact and a counter 

electrode (often located on the mass spectrometer inlet) [87-91]. At the flow rates and 

channel dimensions used, the regime is universally nanospray, and chip-based sources 

have been constructed from glass [92], oxidised silicon and a wide variety of polymers 

[93], using capillaries, sealed channels, open channels and nibs [94, 95] for emission. For 

example, Figure 5a shows a nib emitter formed as a cantilevered element in SOI [96]. 

More recent devices have been formed using nanopillar arrays [97] and even paper [98] 

as a wick. Sources with in-plane flow have been arranged as single elements and 1D 

arrays [99]. Geometries with through-wafer flow have been fabricated as 2D arrays [100, 

101], and combined with sampling systems (for example, for rapid analysis of proteins 

separated by 2D gel electrophoresis [102]). Figure 5b shows the first commercial system, 

the Advion Triversa Nanomate®, which contains 400 nanoelectrospray nozzles formed by 

deep reactive ion etching. 

 

Components designed to improve ionization efficiency, such as pneumatic nebulizers 

[103] and air amplifiers [104] have also been incorporated into chip based ESI sources. 

Figure 6a shows a V-groove mount for a conventional nanospray tip. Two such parts are 

used in a sandwich, as shown in the inset to Figure 6b. Each part is formed in etched Si 

substrate on an SU-8 base, and the combination provides a complete ion gun that allows 

nebulization and heating of the spray. Emission begins at a threshold voltage of around 

800 V (which is highly repeatable, due to the integration of a counter-electrode) and rises 
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rapidly until a limit caused by spray instability [103]. Many other sources have also 

included upstream separation, and these will be described in Section 6.4. 

 

3.3 MEMS sample introduction methods 

Until recently, the development of MEMS for sample introduction has received little 

attention. However, inlets with low gas conductance known as 'micro-leaks' have now 

been developed for planetary mass spectrometer probes, using serpentine channels etched 

in a silicon substrate, to achieve a low gas conductance within a small volume, together 

with an integrated inlet heater [105]. MEMS valves for similar applications have also 

been demonstrated [106]. 

 

Similarly, most nanospray sources have been designed for use with a conventional ESI-

MS instrument, leaving miniaturization of the latter as an unsolved problem. A major 

advance has been the demonstration of a chip-based vacuum interface that allows ions 

generated at atmospheric pressure to be transferred into vacuum for analysis [107]. The 

device is a multilayer silicon stack with deep etched capillaries for ion entrance and exit 

and a differentially pumped intermediate chamber. Figure 7a shows the components of an 

early device, before and after assembly into a two-part stack. Microfabricated 

components designed to increase the ion density in the entrained gas, such as ion funnels, 

have also been developed in microfabricated form [108, 109]. For example, Figure 7b 

shows the concentric ring electrodes of a planar RF ion funnel. Further work is required 

on such components, since they represent the key to improving the sensitivity of small 

instruments. 
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4.  MEMS mass filters 

 

4.1 General background 

Mass spectrometry is an old field, and approaches to mass filtering are described in 

several reviews [110-113]. Filtering involves the separation of ions based on their mass-

to-charge ratio. For an ion of mass m and charge q = ze, where z is the charge number, 

the mass-to-charge ratio is m/z.  Separation is carried out using electric and magnetic 

forces applied in vacuum. Assuming an ion velocity v, an electric field E and a magnetic 

flux density B, the force is F = q(E + v x B). This force results in an acceleration a from 

Newton’s law. Integration of the dynamical equation yields the trajectory. For example, 

for an electric field E in the x-direction, qE = m d2x/dt2. However, E = dV/dx, where V(x) 

is the potential. Introducing the velocity v = dx/dt we can write d2x/dt2 = v dv/dx. 

Consequently, q dV/dx = mv dv/dx. Integration from rest over a potential difference Va 

then yields qVa = 1/2mv2, so the ion velocity is v = √(2qVa/m). However, for ions to 

follow this trajectory, collisions must be minimized. From kinetic theory, the mean free 

path λ in a gas with a molecular collision diameter  d at pressure P is λ = kBT/(√2πd2P). 

Typically, λ must be larger than the flight path, implying that low pressures are needed. 

One potential advantage of miniaturization is an increase in allowable pressure, with (for 

example) a ten-fold reduction in the ion flight path allowing a ten-fold increase in 

working pressure. 

 

Any combination of fields that can induce different trajectories for different m/z can be 
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used. However, separation is complicated by uncertainty in the initial position of the ion, 

coupled with its thermal velocity, which has a random direction and a root-mean-square 

value vth = √(kBT/m). Significant additional refinements are required to overcome these 

effects, so ions with a given m/z are focused together. Key performance indicators are the 

sensitivity, mass range mmax, and mass resolution m/Δm (where Δm is the mass spectral 

peak width), which defines the ability of the system to distinguish different ions. Below, 

we describe each of the mass filter types that have been miniaturized. 

 

4.2 Magnetic sector instruments - background 

The earliest MS systems were magnetic spectrographs [114], as shown in Figure 1a. 

These systems use a static flux applied perpendicular to the velocity vector to cause the 

ions to follow circular trajectories whose radius can be found from a balance between the 

magnetic and centrifugal forces qvB and mv2/r, as r = (m/q) (v/B). Assuming the velocity 

has resulted from a potential Va as described earlier, m/z = er2B2/2Va. Consequently, 

different m/z give different radii, and the dispersion can be observed on film or a detector 

array. The ion path can be partially straightened using an additional, perpendicular 

electric field, in the Wien filter [115], as shown in Figure 1b. Steady advances and major 

scientific achievements were made (the discovery of new elements) but large magnets 

were required, and early instruments were extremely bulky.  

 

Unfortunately, miniaturization (which involves reducing r) requires a corresponding 

increase in B, and the achievable value is limited by magnetic saturation. In a given 

magnet design, volume and mass are inversely proportional to the energy product B x H 
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of the magnet material. The most common compositions based on Al-Ni-Co-Fe (the 

Alnico series) have energy products of 5-6 MGOe. However, alternatives such as Nd-B-

Fe allow the energy product to be raised to 45-50 MGOe. When combined with a high 

permeability yoke in V-Co-Fe (Hyperco 50A, saturation flux 22,000 G), a useful 

reduction in size could be obtained. Mattauch-Herzog double-focusing spectrographs (an 

electrostatic sector followed by a magnetic sector) have been demonstrated [13, 16], and 

spectrometers based on superimposed 90o electric and magnetic sectors (which can 

operate using a single detector) were developed using similar materials [17]. However, 

the fundamental problems of magnetic analyzers were soon recognised. 

 

4.3 MEMS magnetic sector instruments  

Despite the above, attempts have been made to construct MEMS magnetic mass filters. 

For example, a Wien filter has been developed at Northrop Grumman, USA [116, 117]. 

The device is based on a continuous ion source, crossed magnetic and electric fields, and 

a detector array. The whole analyzer except for the source is formed in a shallow cavity, 

measuring 1500 µm x 100 µm x 1 cm, etched into a silicon substrate, as shown in Figure 

2b. The main advance was to provide a uniform in-plane transverse electric field using an 

electrode array, despite the presence of nearby grounded magnet poles. A mass range of 

m/z = 40-200 and a mass resolution m/Δm of 150 were achieved, and a partially resolved 

spectrum of Xe isotopes (m/z 128-132) was recorded. A MEMS Wien filter has also been 

fabricated at CEA LETI (France) [118], using electrodes formed by DRIE of BSOI, with 

connections being made via etched grooves in the substrate. Two stacked wafers then 

formed a complete filter. Mass filtering was demonstrated, but with poor resolution. 
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Proposals have also been made to fabricate MEMS magnetic sectors [119].  

 

Recently, 1-D and 2-D coded apertures formed by DRIE of 250 µm thick silicon wafers 

have been used to increase the sensitivity of conventional sector instruments [120, 121]. 

The traditional object slit is replaced with a set of slits of varying size. Following 

dispersion of the component ions, a convoluted image of the coded aperture is recorded 

with an imaging detector, and deconvolution allows reconstruction of the spectrum. 

Throughput is dependent on the open area of the aperture while resolution is determined 

by the minimum feature size. An order of magnitude increase in sensitivity with no loss 

of resolution was achieved using a 1-D aperture with a minimum feature size of 125 µm.  

 

4.4 Time-of-flight analyzers – background 

An alternative approach that does not require a magnet is time-of-flight (TOF) filtering 

[122], previously shown in Figure 1d. A TOF mass spectrometer consists of a pulsed ion 

source, a drift tube of length L and a detector. An ion pulse entering the tube at t = 0 will 

exit at t = L/v. Assuming the velocity has resulted from a potential Va, m/z = 2eVaτ
2/L2. 

Consequently, ions with different m/z have different arrival times, and their presence can 

be distinguished as peaks in a detected signal. However, uncertainty in the initial position 

and velocity must be compensated to obtain sharp peaks. Space and velocity focusing 

were introduced in the first commercial instruments, and an improved method of 

compensation (the reflectron, a stack of reflecting electrodes) was then developed. 

 

TOF mass spectrometers have an inherently high mass range. However, miniaturization 
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(which involves a reduction in L) requires a reduction in ion velocity, which becomes 

increasingly difficult as the thermal velocity is approached. The necessary electrodes are 

planar and can be constructed from photoetched metal or PCBs. The key difficulty has 

been to obtain sufficient separation in a short distance, since the difference in arrival time 

Δt of ions with a difference in velocity Δv near a velocity v is Δt = L(Δv/v2), and v itself 

cannot be reduced arbitrarily because of thermal velocity effects. PI and MALDI have 

both been used to generate a short initial pulse of ions, and systems with Wiley-McLaren 

electrodes and reflectrons have been developed to compensate for uncertainty in initial 

ion position and velocity. The most successful work has been at Johns Hopkins 

University, who obtained impressive results with bench-top and portable systems (the 

‘Tiny-TOF’ and ‘Suitcase-TOF’). This group extended their work to TOF arrays, tandem 

TOF systems based on dual reflectrons and curved field reflectrons (which provide 

improved focusing) [18, 19]. 

 

4.5 MEMS time-of-flight analyzers  

Several chip-based TOF-MS systems have been demonstrated, using metal electroplating 

or deep silicon etching to form electrodes in the Wiley-McLaren geometry. In the earliest 

of these [123], four pairs of shallow nickel electrodes were patterned onto an oxide 

covered silicon substrate (10 x 10 mm) to define electron extraction, sample ionization, 

ion acceleration, and ion drift regions. A suspended tungsten filament and a repeller 

electrode were also provided, as previously shown in Figure 4a. While thermionic 

emission from the filament was observed [66], ionization of the sample gas was not 

demonstrated. However, acetone fragments were detected when UV light from an 
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external pulsed laser was focussed through a hole in the acceleration region (which 

obviated the need for on-chip pulsed ion injection), leading to the mass spectrum shown 

in Figure 8a. A considerably more sophisticated system incorporating orthogonal ion 

injection optics and a reflectron has been developed at CEA-DAM [68, 124] and used to 

record spectra of ethanol, argon, krypton, and xenon. The flight tube was created by 

DRIE of an upper silicon wafer and the reflectron was defined by patterning a resistive 

layer deposited on a lower glass wafer.  

 

Discrete components for TOF-MS have been fabricated by The University of North 

Texas and Zyvex [125]. One of these, a Bradbury-Nielson gate, is used to produce ion 

pulses. It consists of an array of parallel wires that prevent transmission when alternate 

wires are at different potentials and allow transmission when all wires are at the same 

potential. A grid of suspended silicon wires was fabricated using DRIE. Gating was 

demonstrated by placing the grid between an electron source and a detector. A reflectron 

comprising fifteen planar silicon electrodes plugged into a silicon motherboard was also 

manufactured, as shown in Figure 8b. Although a signal was detected following pulse 

extraction of ions, resolved peaks were not observed, due to the large pulse width and 

short path length.  

 

The most advanced MEMS TOF mass spectrometer is the integrated system developed at 

TU Hamburg-Harburg [126]. Electrostatic gates are provided both before and after the 

drift region. The first gate chops the ion beam and the second gate allows transmission 

only of ions within a narrow time window. A mass spectrum is acquired by scanning the 
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delay between the gating pulses. To increase resolution, ions are filtered with an 

electrostatic energy analyzer between the drift region and the detector. The system is 

fabricated by DRIE of silicon-on-glass, using a single mask. The resolution is sufficient 

to resolve peaks corresponding to N+, Ne+, N2
+, and Ar+ at m/z = 14, 20, 28, and 40, 

respectively. 

 

In general, many MEMS MS components are scaled versions of conventional designs, 

often with compromises imposed by the restrictions of planar processing. However, in 

some instances, unorthodox architectures can be realised. One example is a TOF 

instrument for space science applications in which initial ion pulses are produced by 

chopping the incoming flux with a micromechanical shutter fabricated on SOI [127]. The 

shutter operates at 306 kHz and has an open time of 100 ns. 

 

4.6 Radio frequency filters, traps and ion guides- background 

Two other methods that again do not require a magnet use time-varying inhomogeneous 

electric fields: the quadrupole filter show in Figure 1e [128] and the quadrupole ion trap 

shown in Figure 1f [129]. In the filter, four parallel electrodes with hyperbolic sections 

are used to generate a two-dimensional potential φ(x, y) = φ0(x
2 - y2)/2r0

2. Here, r0 is the 

radius of a circle touching the electrodes, whose potentials are φ = ± φ0/2. This field 

exerts forces in the x- and y-directions on an ion moving in the z-direction. For a singly 

charged ion, the equations of motion are m d2x/dt2 = -eφ0x/r0
2 and m d2y/dt2 = +eφ0y/r0

2. 

Normally the potential varies as φ0(t) = U - V cos[ω(t - t0)], where ω = 2πf, f is a 

frequency in the RF range, t0 is the starting time and U and V are constants. In this case, 
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normalized trajectory equations of the form d2u/dζ2 + {au - 2qu cos[2(ζ - ζ0)]} u = 0 are 

obtained. Here, ζ = ωt/2, ζ0 = ωt0/2, a = 4eU/(mω2r0
2) and q = 2eV/(mω2r0

2), u is x or y, a 

= ax = -ay and q = qx = -qy. 

 

Numerical integrations of the type previously shown in Figure 3a show that the trajectory 

can be bounded or divergent. Its nature depends little on the initial conditions ζ0, u(0) and 

u’(0), instead being determined almost entirely by a and q. Several regions on the q-a 

plane give stable solutions. The lower region is approximately triangular, and bounded by 

the loci a0(q) = q2/2 - 7q4/128 + 29q6/2304 …. and b1(q) =1 - q - q2/8 + q3/64 …. that 

define the limits for stability in the y- and x-directions, respectively. Between the two, 

trajectories are stable in both directions. The apex of this region is at a = 0.237, q = 0.706, 

so that a/2q = U/V = 0.168. In a quadrupole mass spectrometer (QMS), U and V are 

ramped together, following a line passing just below the apex. Stable trajectories are only 

obtained for a narrow mass range, so the device acts as a tuneable mass filter. 

 

The mass resolution varies as m/Δm ≈ n2/20, where n is the number of RF cycles 

experienced by an ion. If the ions are injected with axial energy Va, the number of cycles 

is n ≈ fL/v, where L is the quadrupole length, so Δm ≈ 40eVa/(f
2L2). The maximum mass 

is limited by the potentials that can be applied. However, since U and V depend on r0
2, 

decreasing the size by (say) 10 will reduce both potentials 100-fold. Conversely, Δm 

increases as L is reduced. Compensation can be provided through an increase in 

frequency, but this in turn requires an increase in voltage. QMS systems are workhorse 

instruments, with a good combination of range, resolution and sensitivity. 
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When the DC potential is omitted, the mass filtering action is largely lost. However, RF-

only quadrupoles can guide ions in a ‘pseudopotential’ derived from the time variation of 

the inhomogeneous field. If ion guides are placed in an intermediate high-pressure cell 

containing a neutral background gas, energetic collisions can cool or fragment the ions. 

In the triple quadrupole (or QQQ), a first quadrupole filter is used for precursor ion 

selection, a RF-only quadrupole or ion guide is used for collision-induced dissociation, 

and a second quadrupole filter is used for analysis of the resulting fragments. This form 

of so-called ‘tandem’ mass spectrometry (MS-MS or MS2) has much greater 

discriminatory power, since it allows differentiation of ions with the same m/z [130]. 

Alternative filters can be used for selection or analysis, leading to other tandem systems 

including Q-TOF and TOF-TOF. However, the need for multiple stages increases system 

complexity. 

 

An alternative approach is to confine ions in a trap, and release them in a mass selective 

operation. The quadrupole ion trap (QIT) is effectively a quadrupole filter wrapped round 

in a circle whose radius is then shrunk down to eliminate the inner electrode. Toroidal 

traps (in which the inner electrode is retained) have a larger trapping volume, and the 

linear ion trap (LIT), effectively a quadrupole filter with end-electrodes, has an even 

larger volume. A rather different type of trap, the Orbitrap [131], also exists, but has not 

so far been miniaturized. In contrast to continual filters, all ion traps have a duty cycle. 

However, they allow tandem mass spectrometry to be performed using a sequence of 

operations in a single component and hence enable very compact instruments. 
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The main difficulty encountered when miniaturizing RF mass filters and ion traps lies in 

realising the necessary 3D electric fields with sufficient accuracy, since any deviation can 

cause major perturbations to ion trajectories under the conditions used for selective 

filtering, which are normally manifested as a reduction in mass resolution. Two 

approaches have been used. The first is dimensional optimization of simpler surfaces 

such as planes and cylinders to approximate the fields generated by hyperbolic 

electrodes. The second is the use of planes carrying multiple electrodes, each held at a 

different potential. 

 

Quadrupole filters, ion guides and linear ion traps (LITs) have all been miniaturized using 

cylindrical rods with optimized radii and separation in place of hyperbolic electrodes. 

Using conventional technologies, NASA and its contractors developed array-type 

quadrupoles to recover the sensitivity lost by miniaturization [20-22]. Because it can be 

constructed as a three-layer stack, with each layer simply containing a hole, the 

cylindrical ion trap (CIT) has proved extremely popular. The CIT uses optimized 

electrode radii and separations to approximate the 3D electrostatic fields normally 

generated in a QIT using precisely machined hyperbolic surfaces. However, the most 

impressive work has been that of Cooks at Purdue University, who has developed many 

miniature filters, including CITs, LITs and trap arrays [23-26]. Many variants have 

subsequently been demonstrated (for example, LITs with hyperbolic electrodes formed 

by rapid prototyping [27, 28]). 
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Segmented electrodes, which involve a set of planar electrodes held at different 

potentials, allow three-dimensional fields to be realised without the need for shaped 

electrodes, and have been extensively investigated at Brigham Young University. 

Examples include segmented-electrode cylindrical and linear ion traps [132, 133], and the 

‘halo’ ion trap [134, 135], which approximates a toroidal trap. Brigham Young have also 

developed continuous resistive electrodes, which again allow 3D fields to be generated, 

but from a single potential. 

 

4.7 MEMS RF filters, traps, and ion guides 

Early attempts to fabricate MEMS quadrupole filters with an out-of-plane ion path were 

made by JPL [136], using a synchrotron to expose a 1 mm layer of thick photoresist and 

replicating the resulting mould in electroplated nickel. However, the very short ion path 

and small pupil presented intrinsic performance limitations. Much greater success has 

been achieved by mounting cylindrical metal electrodes with diameters of around 0.5 mm 

and lengths of a few cm into microfabricated silicon mounts, and filters with out-of-plane 

rods have been constructed using deep-etched silicon mountings at MIT [137]. 

 

Filters with in-plane rods have been constructed as shown in Figure 2a using a pair of 

stacked, oxidized Si wafers carrying V-groove alignment features for 30 mm long metal-

coated glass electrodes and glass spacer rods [138-141], in a joint project between 

Imperial College and Liverpool University. Here the challenge was to minimize the effect 

of the grounded substrate on the electric field. Figure 9a shows a completed device, 

together with an early spectrum (for an Ar-Kr mixture). Although the peaks are distinct, 
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the resolution is clearly insufficient to separate adjacent elements. In addition, the mass 

range was limited to m/z ≈ 100 by the thin oxide insulator, which resulted in RF heating, 

differential thermal expansion and eventual rod detachment. Although additional 

components such as 1-D coupling lenses were also demonstrated [142], the range of 

features that could be provided by bulk micromachining was a fundamental limitation. 

However, such early results provided evidence that chip-based MS was possible. 

 

A more advanced system was developed by the Imperial College spin-out company 

Microsaic Systems using BSOI [143], which allows improved oxide isolation, removal of 

the surrounding silicon, and fabrication of sliding spring mounts for metal rods and 

additional ion coupling optics as previously shown in Figure 3b. Figure 9b shows the 

completed device, near the exit pupil, showing the spring mounted rods and output 

coupling optics. As a result, the mass range could be increased to m/z ≈ 400 and such 

filters formed the basis of the first commercial MEMS mass spectrometers. 

 

A further iteration has used anodically bonded silicon-on-glass substrates, separated 

using balls in sockets rather than rods [144]. The glass provides isolation comparable 

with conventional quadrupoles, and has allowed the mass range to be increased to m/z ≈ 

1200. Figure 10a shows the filter on a sub-mount, together with a spectrum of 

tris(perfluoroheptyl)-s-triazine that highlights the performance improvements made since 

the demonstration of early V-groove devices. Microsaic has also demonstrated RF-only 

(or Brubaker) pre-filters (which increase ion coupling), RF-only ion guides (which 

improve ion transfer in intermediate pressure stages) and collision cells. 
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Recently, there has been interest in using square electrodes to generate approximations to 

hyperbolic fields. This approach allows the electrodes to be batch fabricated using DRIE, 

drastically reducing fabrication cost [145, 146]. Figure 10b shows the device, together 

with a cross-section sawn to expose the electrodes. The filter operates in a higher region 

of the stability diagram, and useful performance has already been obtained. Quadrupole 

filters and a wide variety of linear ion traps have been proposed using similar approaches 

[147]. For example, Figure 11a shows a LIT formed as a multilayer stack in GaAs-based 

technology, with the gaps between electrode sections defining the trapping region [148]. 

 

Many quadrupole ion traps have been fabricated by using different processes to form the 

holes needed in the cylindrical electrode approximation. In each case, CITs have been 

formed as single elements and as arrays, with a trapping volume limited by the substrate 

thickness. The simplest methods yield single layers, which must be arranged into the CIT 

geometry by stacking, using insulating interlayers. Suitable processes include lug 

assembly [125], drilling (for metals) [149, 150], punching and metal-coating (for low 

temperature co-fired ceramics) [151] and deep etching (for silicon) [152-154]. Figure 11b 

shows a deep-etched component for a CIT formed as previously described in Figure 2c, 

showing the central ring electrode and one of the end-caps. Two such dies, placed back-

to-back, form a complete trap. In this case, construction of an array is made simpler and 

can be used to compensate for the loss in sensitivity caused by size reduction. 

 

Integrated approaches, which involve patterning and etching multiple layers of deposited 
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material, yield three-layer electrode stacks directly. In this case, the volume is limited by 

the thickness of material that can be deposited. The most complex design used a 

multilayer ‘Damascene’ process developed at Sandia National Laboratory [155]. SiO2 is 

first deposited on an insulated Si substrate, and patterned and etched to form a mould. 

The mould is then filled with tungsten by chemical vapor deposition, and the surface is 

planarized using chemical-mechanical polishing. This cycle is repeated seven times to 

form all three electrodes and spacers, with a final layer containing connections and an ion 

collector. Finally, the SiO2 is removed to leave a free-standing tungsten structure. 

 

5.  MEMS ion detectors, vacuum gauges and pumps 

 

5.1 Ion detectors - background 

The simplest electronic ion detector is the Faraday detector, which uses a metal electrode 

to collect incident ions and an amplifier to produce a measurable current. Faraday 

detectors offer good stability and linearity, but sensitivity is limited by intrinsic thermal 

and shot noise. To improve performance, secondary electron multipliers are almost 

universally used. Discrete dynode multipliers comprise a staggered set of electrodes in a 

material with a high secondary electron yield, such as Be-Cu alloy. A resistor network 

establishes a potential difference between each of the 10-20 electrodes. Ions impinge on 

the first electrode (the conversion dynode), resulting in secondary electron emission. The 

electrons are accelerated towards the next electrode where they induce further emission. 

If the secondary yield is greater than unity, there is amplification at each stage and a total 

gain of > 106 is common. The avalanche is collected and measured as integrated charge 
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or a discrete pulse. 

 

Continuous dynode (or channel) multipliers were proposed by Farnsworth in 1930 and 

developed in the 1960s. Channel multipliers are lead silicate glass tubes with curved 

internal channels. Treatments applied to the glass leave a thin surface layer with 

secondary electron emissive properties and a buried semiconducting layer that can be 

used to establish a potential gradient without an external resistor chain. Ion impacts 

initiate electron emission. The secondary electrons are accelerated by the applied 

potential and collide with the sidewall, generating further secondary electrons. Multiple 

impacts then result in a measurable integrated charge at the collector. Microchannel 

plates (MCPs), which were originally developed for military night vision, use a similar 

principle. A typical plate comprises an array of 106 - 107 straight channels formed in a 1-2 

mm thick lead glass substrate, with each channel measuring 10-15 µm in diameter. The 

gain of a single plate is approximately 104 but plates may be stacked for higher gain. 

 

5.2 MEMS ion detectors 

Because of the ease with which electrodes and electronics can be combined in silicon, 

integrated detectors have been demonstrated using arrays of Faraday cups [156-158] or 

charge-coupled devices (CCDs) [159]. However, there has been limited progress on 

multiplying detectors, due to the complex nature of the materials required (which must 

have a high secondary electron yield, and in continuous channel must also be 

semiconducting). MCPs have been made by deep etching silicon substrates [160, 161] 

and their emission properties have been improved with CVD diamond [162]. MCPs have 
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also been combined with microelectronics for readout [163-165]. A small number of 

discrete dynode electron multipliers have also been demonstrated [166, 167]. However, 

the vast majority of MS systems still use channel electron multipliers. 

 

An interesting new development is the use of resonant MEMS cantilevers [168, 169], 

beams [170, 171] and membranes [172-174]; these allow direct detection of the ion mass 

rather than its charge. Attachment of ions causes changes in resonant frequency 

proportional to the ion mass. Not only the mass but also the position of individual ions 

can be tracked by monitoring two different vibrational modes [171]. For example, Figure 

12a shows a vibrating beam resonator and the time variation of the frequency of two 

modes, showing abrupt, correlated steps that correspond to ion attachment. Mechanical 

oscillations can also be detected via field emission of electrons from a membrane, 

allowing the detector to convert thermal energy deposited by ion bombardment into an 

electrical signal [173, 174]. 

 

5.3 Vacuum gauges - background 

Gas pressure can be determined directly by using the force resulting from molecular 

impacts to deflect a moveable mechanical element or displace a liquid. Alternatively, it 

may be measured indirectly by exploiting a pressure-dependent property such as 

viscosity, thermal conductivity, or ion yield under ionizing conditions. Direct gauges 

measure true pressure whereas indirect gauge measurements depend on gas composition. 

 

Direct pressure gauges based on the deflection of a membrane separating a reference 
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pressure from an unknown pressure are widely used. For vacuum measurements the 

reference pressure is usually well below the working range of the gauge. The deflection 

of the membrane can be detected using a strain gauge, or by monitoring the change in 

capacitance between the diaphragm and a fixed electrode. In thermal conductivity 

gauges, heat loss from a hot wire due to the thermal conductivity of the surrounding gas 

is measured. As the pressure is reduced, radiation and heat conduction through the 

supports eventually limit the measurable pressure. In Pirani gauges, the hot wire forms 

one side of a Wheatstone bridge. Thermocouple gauges directly measure the temperature 

using a thermocouple junction attached to the wire. 

 

5.4 MEMS vacuum gauges 

MEMS pressure gauges that use the deflection of a diaphragm to measure a pressure 

differential are well-established [175]. However, these cannot measure low pressures 

accurately if the comparison pressure is atmospheric, and attempts to use evacuated 

cavities to provide a low-pressure comparison have only been marginally successful [176, 

177]. The friction gauge, which uses damping of a resonator by residual gas as an 

indicator of pressure, has also had limited acceptance [178, 179]. The most common 

MEMS vacuum gauges are thermopiles and Pirani gauges. Both exploit cooling by 

residual gas. Thermopiles use the Seebeck effect in resistively heated silicon to generate a 

voltage, which is then reduced by any cooling [180, 181]. Pirani gauges are based on a 

heated wire formed in a material such as Pt with a high temperature coefficient of 

resistance. Suspension of the heated element on a slender support minimizes cooling by 

parasitic solid conduction, allowing much lower pressures to be sensed [182-184]. Figure 
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12b shows a modern MEMS thermal conductivity gauge with a meander resistor 

suspended on a small table. On-chip circuitry for heating, sensing and analog-to-digital 

conversion can be incorporated [185-187]. MEMS thermal conductivity gauges are 

available commercially (e.g. 925TM Micropirani, from MKS Instruments [188]). 

 

5.5 Vacuum pumps - background 

Many types of vacuum pumps exist [189]. However, their mechanism can generally be 

characterized as positive displacement, momentum transfer, capture, or thermal. In 

positive displacement pumps, a rotating or reciprocating motion causes gas to be drawn 

in at the inlet, compressed, and expelled through the exhaust. Examples include vane, 

scroll, piston, Roots, diaphragm, claw and screw pumps. In some cases, oil provides a 

seal between moving parts, while in others back-leakage is reduced by using high-

accuracy machining to minimize clearances. 

 

In momentum transfer pumps, gas molecules gain momentum through interaction with a 

supersonic vapour jet (diffusion) or a fast moving rotor (turbo). Diffusion and turbo 

pumps cannot pump down from atmospheric pressure or exhaust to atmosphere, as they 

work in the molecular flow regime. Consequently, a displacement pump must be used for 

evacuation and backing. The main challenge in miniaturizing a turbo pump is that the 

rotor speed must rise, so that the blade velocity (which must be a significant fraction of 

the average molecular velocity) is sufficient to pump lighter gases. For example the 

Creare Minivac turbo pump has a rotor diameter of 2.5 cm and achieves a pumping speed 

of 4 L/s with a rotor speed of 200, 000 rpm [190, 191]. 
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In capture pumps, gas molecules are condensed on cryogenically cooled surfaces, 

adsorbed by chemically active surfaces (gettering), or buried. Gettering involves 

chemisorption of gases by a reactive surface, often generated by sputtering of titanium. 

The surfaces of non-evaporable getter (NEG) pumps must be activated, by heating to 

400°C (which causes surface reaction products to diffuse into the bulk). In sputter-ion 

pumps, gas molecules are ionized by a Penning discharge between two Ti cathodes and a 

cylindrical anode, whose axis is aligned with a strong magnetic field. When the ions are 

accelerated in the electric field and impact a cathode they become implanted, but also 

sputter titanium, which deposits on the anode and opposing cathode. Hence, in addition to 

ion pumping, gas is removed by gettering at the fresh Ti surface.  Thermal pumps exploit 

the temperature dependence of gas properties. In Knudsen pumps, a hot chamber is 

connected to a cold chamber by a narrow channel where molecular flow conditions exist. 

A net flow from the cold to the hot chamber is then established, as the rate of effusion 

from either side is proportional to 1/√T.  

 

Pumps are characterized in terms of their pumping speed, compression ratio, and ultimate 

pressure. The speed is S = Q/P, where Q is the throughput and P is the pressure at the 

inlet. In general, S is a function of P, and may also depend on the molecular mass of the 

gas. The compression ratio is the ratio of inlet pressure to outlet pressure. For diaphragm 

pumps, compression ratios of 10-102 are typical, whereas for high vacuum pumps, values 

as large as 106-108 are achieved. A pressure of 10 - 10-3 Torr can typically be achieved 

with positive displacement pumps, but lower pressures require momentum transfer or 
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capture pumps.  

 

5.6 MEMS vacuum pumps 

Vacuum encapsulation technologies for MEMS devices such as gyroscopes, 

accelerometers, and RF switches are well advanced. Getter films are often deposited at 

manufacture to pump the small gas load due to outgassing and micro-leaks. Early 

attempts at fabricating micromachined pumps met with limited success, mainly because 

of the performance limits set by the poor dimensional scaling of dead volumes and 

clearances [192], and for some time the best-known example was the LIGA fabricated 

scroll pump developed at JPL [136]. However, there has recently been considerable 

progress, with significant developments arising from a DARPA program (Chip-Scale 

Vacuum MicroPumps) involving the University of Michigan, MIT, and Honeywell. It is 

now possible to envisage MEMS mass spectrometers with microfabricated pumps, 

although considerable development will be needed to achieve sufficient base pressure, 

pumping speed, and mechanical reliability.  

 

Coarse vacuum can be generated relatively simply on-chip by gas-liquid phase transition 

[193]. Knudsen pumps are also well suited to chip-scale pumping and a number of 

attempts have been reported [194, 195]. There are no moving parts and the principal 

requirement is a series of chambers connected by channels. Performance can be improved 

using multiple pump stages. The most successful example is a 162-stage pump fabricated 

using a five-mask, single-wafer process [196]. With the pump inlet sealed, the pressure at 

the final stage decreased from atmospheric pressure to 0.9 Torr (a compression ratio of 



35 

844) after 30 hours. Continuous operation was sustained for 37 days. 

 

A micro-scale sputter-ion pump employing thin film titanium electrodes has been 

developed for vacuum-encapsulated MEMS [197]. Cells comprising of an inner circular 

anode and an outer concentric cathode were patterned in a titanium layer deposited on a 

glass substrate. An external magnet was not required as the plasma is spatially confined 

when the gap between electrodes is very small, and stable discharges can be maintained 

at pressures as high as 760 Torr. Miniature sputter ion pumps based on Penning cells 

have also been demonstrated [198], and orbitron pumps have been proposed [199]. Figure 

13a shows the stainless-steel anode, titanium cathode and overall assembly of a Penning-

type sputter ion pump, which achieved a pressure of < 10 mTorr after 4 hours pumping. 

 

As part of a broader effort to develop fully integrated mass spectrometers, a vapour jet 

pump has been developed at TU Hamburg-Harburg [200, 201]. The micromachined 

silicon pump incorporates a Laval nozzle to generate a supersonic jet of a working fluid.  

The gas throughput of more than 23 mL/min is impressive but the ultimate pressure was 

only 495 Torr after pumping from atmospheric pressure. 

 

A pneumatically actuated four-layer silicon diaphragm pump capable of pumping from 

atmospheric pressure to 164 Torr has been fabricated using DRIE and wafer bonding 

[202]. The moveable components were defined in BSOI by etching through the handle 

layer to the oxide. The remaining 10 µm thick device layer is flexible and acts as the 

diaphragm, allowing actuation of the valves and piston. A high compression ratio was 
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achieved, by minimizing dead volume. A similar electromagnetically actuated pump has 

also been demonstrated with a latex membrane [203]. 

 

A number of authors have discussed liquid [204] or vacuum [205] turbo pumps based on 

rotors fabricated by DRIE of silicon. Impressive results have been obtained at Honeywell, 

who have demonstrated a deep etched, electrostatically levitated rotor designed for radial 

pumping [206]. Figure 13b shows the blade array, together with a complete rotor on a 

spindle for testing. Vacuum is developed at the center of the rotor, with each ring of 

blades acting as a separate pumping stage. The pump is a hybrid device as other parts, 

including the casing, motor, and bearings, are small but otherwise conventional. 

 

6.  MEMS mass spectrometer systems 

 

6.1 Modular systems 

Complete MEMS MS systems can be constructed by combining individual components 

as modules, or by chip-level integration. However, the components often have widely 

varying pressure, temperature, electrical, and mechanical requirements. Arguably, the 

best route is to develop sub-systems as separate modules, using MEMS or conventional 

techniques where appropriate. This has been the approach taken by Microsaic Systems. 

 

In 2005, Microsaic developed a miniature benchtop system (ChemCubeTM) [207]. The 

core is a module comprising a MEMS quadrupole filter (IONCHIP, previously shown in 

Figure 9b), a small conventional EI source, and a channel electron multiplier. Figure 14a 
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shows the module, which has the filter at the centre, the source on the right and the 

multiplier on the left, each in a shielded enclosure. This module plugs into a connector in 

the base of a 220 cc vacuum chamber, which is pumped by a 10 L/s turbo pump and a 

diaphragm pump contained in a compact chassis. Figure 14b shows the instrument with 

and without its enclosure. The pumping system is on the left and the chamber at the 

centre. To introduce an analyte, a SPME fibre is first exposed to the headspace above a 

sample and then pushed through a heated septum, where the analyte desorbs.  

 

Other things being equal, the sensitivity of ESI-MS systems is dominated by the capacity 

of the pumping system. Miniaturization can therefore have a drastic effect. Despite this 

Microsaic has successfully developed MEMS ESI-MS instruments, the 3500 MiD [11] 

and later the 4000 MiD. Each incorporates a nanospray source, a vacuum interface, an 

ion guide, and a high-performance quadrupole with a pre-filter, all packaged as MEMS 

modules as shown in Figure 15a. Figure 15b shows the 4000 MiD. No other components 

are required; the computer and pump system are both contained in the enclosure. The 

portal on the right-hand side allows access to the spray source, which receives the analyte 

via capillary tubing. Both instruments can be coupled to an HPLC system to form a 

complete LC-MS. A later variant has been incorporated into a flash chromatography 

system (Biotage Isolera Dalton [208]) and used to identify separated reaction products. 

 

The use of PCBs as structural elements has been a key feature of modular systems. 

MEMS quadrupole filters and ion guides are conveniently supplied as header boards that 

plug into mating connectors on a base PCB. The pins and sockets provide electrical 
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connections and structural support. Recently, a triple quadrupole mass spectrometer with 

six separate MEMS modules (ESI source, vacuum interface, ion guide, filter for 

precursor ion selection, collision cell for ion fragmentation, and filter for analysis of the 

resulting fragments) was demonstrated. The quadrupole components are each mounted on 

separate header boards that plug into a series of PCBs supported in a skeleton aluminium 

frame, revealing the power of MEMS to simplify complex instruments [209]. 

 

6.2 Mass spectrometer-on-a-chip 

Several attempts have been made to increase chip-level integration, by combining a mass 

filter with a source or detector. Efforts have also been made to create an entire system in 

a microfabricated vacuum chamber. However, performance has generally been lower 

than for modular MEMS MS, partly due to the inherently lower sensitivity of smaller 

systems and partly to the fact that integration makes the optimization of individual 

components more difficult. Progress has also been slower, due to the higher costs of 

larger MEMS dies and the increased cycle times and lower yields associated with more 

complex dies. 

 

Notable efforts on magnetic systems include the previously mentioned Wien filter 

developed by Northrop Grumman [116, 117], while non-magnetic systems include the 

TOF systems developed at CEA LETI/DAM [68, 124] and TU Hamburg-Harburg [126]. 

Figure 16a shows the CEA TOF-MS, which has an external filament, a chip-based 

analyzer and an external MCP detector. The inset shows the analyzer, which contains a 

grid for introducing electrons, an ionization chamber, an einzel lens for extracting and 
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focusing ions, and a drift zone and a reflectron for mass analysis. The most complete 

system is the planar integrated micro mass spectrometer (PIMMS), also developed at TU 

Hamburg-Harburg and shown in Figure 16b. The chip integrates a microwave plasma ion 

source, ionization chamber, electron and ion extraction, acceleration and focusing, a 

novel mass filter (the synchronous ion shield, SIS), an energy filter and alignment 

features for a MCP detector, truly a tour de force [210-212]. 

 

6.3 Hyphenated systems - background 

Complex mixtures are often separated into components before each is analysed in a mass 

spectrometer. Separation methods for gases include gas chromatography (GC) [213] and 

ion mobility spectrometry (IMS) [214] and its field-asymmetric variant (FAIMS). 

Techniques for liquids include liquid chromatography (LC) [215] and capillary 

electrophoresis (CE) [216]. In LC and GC, separation occurs as the mixture is swept by 

the mobile phase through a column containing a stationary phase. IMS and CE separate 

ionic components according to their drift velocities in an electric field. Systems that 

follow separation with analysis are described as ‘hyphenated’. The first such technique 

was gas chromatography-mass spectrometry (GC-MS). Later techniques include liquid 

chromatography-mass spectrometry (LC-MS), capillary electrophoresis-mass 

spectrometry (CE-MS) and ion mobility spectrometry-mass spectrometry (IMS-MS). 

 

6.4 MEMS hyphenated techniques 

Following the demonstration of a silicon gas chromatograph [217], MEMS GCs have 

been extensively developed. Columns have been fabricated in parylene [218], silicon 
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oxynitride [219] and nickel [220], and packed with a range of stationary phases including 

plasma polymerised poly(dimethylsiloxane) (PDMS) [221], functionalized parylene 

[222], monolayer-protected gold [223], and atomic-layer deposited alumina [224]. Figure 

17a shows a modern semi-packed column, formed using etched and coated pillar arrays 

to avoid difficulties with particulate filling. Columns have been formed in arrays [225], 

and integrated with sample injectors [226], temperature controlled heaters [227], pumps 

and preconcentrators [228] and photoionization detectors [229]. Portable GC units have 

been constructed [230, 231], and portable GC-MS systems have been demonstrated using 

valved injectors and electron ionization [232, 233]. However, the development of MEMS 

GC has taken place entirely separately from that of MEMS MS.  

 

Similar developments have occurred in ion mobility spectrometry; although 

microfabricated IMS and FAIMS devices have been demonstrated [234-239], these have 

been developed as separate units, and no combined MEMS IMS-MS system has 

appeared. However, MEMS-based FAIMS instruments such as the Owlstone Lonestar 

Gas Analyzer [240] have been available commercially for some years. 

 

In contrast, the coupling of chip-scale LC and CE to MS is an area of considerable 

activity, and the field has been extensively reviewed [45, 46, 87-91, 241-243]. In each 

case, the advantage is that small samples can be processed without excessive dilution, 

resulting in high detection sensitivities. As the analytes are in solution, ionization is 

almost exclusively by nano-ESI [57, 58]. In many cases, the separator and nanospray 

source are distinct components; in others they are monolithically integrated. The latter 
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approach is more challenging but the lower dead volume reduces peak broadening and 

chromatographic delay.  

 

Development of MEMS LC has followed a similar course to MEMS GC. Following 

original demonstration in Si [244], chip based high performance liquid chromatography 

(HPLC) systems were developed to operate at higher pressures [245, 246]. Flow is 

typically generated using external pumps, although electrolytically generated gas has also 

been used to displace liquid from reservoirs [247, 248]. Columns have again been 

fabricated in other substrates, including glass [248] and PDMS [249], and packed with 

particulates [250] and pillar arrays fabricated by DRIE [251]. Figure 17b shows a LC 

column designed for use with matrix-assisted laser desorption ionization [252]. The chip 

combines eluent reservoirs, sample reservoirs, valves, channels for pumping by electro-

osmotic force, separation channels and outlets for MALDI to allow subsequent analysis. 

 

Co-integration with nanoelectrospray tips soon followed. For example, Agilent have 

developed a chip LC mounted between the rotor and stator of a mechanical valve, 

allowing sample introduction and coupling to an LC pump [253, 254]. The   is 

constructed from laminated polyimide films with laser ablated channels, and a conical, 

micromachined nanospray tip. Another system [247] combines a packed column, a low 

volume mixer and an electrospray nozzle, and is fabricated by lithographic patterning of 

parylene on a silicon substrate. Stationary phases have also been fabricated as porous 

monoliths by polymerization of a liquid precursor [255, 256], or as deep-etched silicon 

micropillar arrays that are subsequently coated with a polymer stationary phase [257, 
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258]. 

 

Chip-based CE systems are simple, requiring only a separation channel with appropriate 

electrodes. However, because of the voltages involved, substrates are insulating. The 

original demonstrations used glass [259], but injection-molded plastics [260], poly 

methyl methacrylate (PMMA) [261] and PDMS [262] are all common. CE was again 

rapidly integrated with nano-ESI. A wide variety of substrates and processing techniques 

have again been used, including photolithography and wet etching of glass [263], laser 

micromachining of polycarbonate [264], casting of PDMS [265], lithographic patterning 

of SU-8 resist [266, 267], and UV embossing of the inorganic-organic hybrid Ormocomp 

[268]. Internal polymer monoliths may also be incorporated, using in-situ casting [269]. 

A complication is that the buffers needed for electrophoresis are not well suited to 

electrospray. Consequently, the analyte is often mixed with another solvent at the emitter 

tip, in so-called sheath flow. Chip-based CE-ESI is widely used with conventional mass 

spectrometers; however, miniaturized CE-MS systems are starting to be developed [270]. 

 

7.   Applications 

 

7.1 Portable systems 

Many universities, companies and government laboratories have constructed battery-

powered portable MS systems based on conventional technology, typically using an EI 

source and a miniaturized filter. Cylindrical [271] and linear [272, 273] ion traps have 

been developed at Purdue University and its spin-out Griffin (renamed ICx Technologies 
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and now part of FLIR Systems (current product: Griffin 460, linear ion trap [274]).  908 

Devices have also developed a handheld mass spectrometer based on a CIT (M908 

[275]), and the Sam Yang Chemical company has developed a similar ‘palm portable’ 

system [276]. Toroidal traps have been developed at Brigham Young University [277] 

and commercialized at Torion, now partnered with Smiths Detection. Both have products 

for homeland security applications (Tridion-9 [278] and Guardion [279]). 

 

Microsaic have developed the portable ChempackTM instrument containing MEMS [280], 

related to the previously described ChemcubeTM. Figure 18a shows the instrument, which 

had a weight of 15 kg, a pump-down time of 5 mins, a Li ion battery pack with a life of 

10 hours, and a mass range of m/z = 400. Figure 18b compares the measured spectrum of 

perfluorotributylamine (PFTBA) and the corresponding library spectrum, showing good 

performance up to m/z = 250. 

 

7.2 Security applications 

The rising incidence of terror attacks and asymmetric warfare have accelerated 

development of portable MS for the detection of explosives, and potentially large markets 

exist for passenger screening in transport hubs.  Unfortunately, most nitrogen-based 

explosives have very low vapor pressure [281]. Although considerable advances have 

been made in portable MS for explosive detection [282-284], improvements in sensitivity 

are still required. 

 

Preconcentrators (which adsorb explosive molecules onto chemoselective surfaces [285, 
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286], and then thermally desorb them in a concentrated pulse) are used to improve 

detection limits. Here, MEMS have again made a significant contribution. The ability of 

integrated systems to reduce dead volumes has increased concentration factors, while the 

low thermal mass of miniaturized parts has decreased cycle times. Two variants have 

been developed: valved systems (which alternately expose the chemoselective surface to 

ambient atmosphere and then to the analysis system) [287-291], and flow-through 

systems (which rely purely on cyclic heating) [292-295]. Of these, the best known is 

CASPAR (Cascade Avalanche Sorbent Plate aRray), developed at NRL [292]. 

 

Searches for weapons of mass destruction have similarly spurred development of MS 

methods for detecting chemical weapons such as mustard gas and sarin [296]. Field-

portable GC-MS systems have been demonstrated [297, 298], and the MEMS TOF-MS 

under development at LETI-DAM is targeted at similar applications [299]. However, the 

limited mass range of small MS systems has made it difficult to detect biological 

weapons such as anthrax. Law enforcement applications include the detection of 

recreational drugs [300, 301], and forensic detection of drug metabolites in blood, hair or 

fingerprints and accelerants at fire scenes [302, 303]. Related applications include the 

detection of performance enhancing drugs in sports. 

 

7.3 Industrial and medical applications 

The oldest applications for portable MS are leak detection (originally developed by Nier 

during the Manhattan project [304]) and residual gas analysis. Many suitable systems are 

commercially available, often based on quadrupole filters [128]. Current industrial 



45 

applications requiring portability include the monitoring of oil spills [305] and 

wastewater from oil sand [306], the measurement of gas and water in borehole fluids 

[307, 308] and analysis of downhole fluids for reservoir evaluation [309]. Benchtop MS 

systems for general industrial analysis containing EI sources and miniature mass filters 

have again been developed (e.g. 1st Detect MMS-1000; cylindrical trap [310]).  

 

The use of miniature MS in pharmaceutical labs is a growing application. Typically, 

chemists confirm that a reaction has produced the desired product by submitting samples 

to a centralized, queued-access LC-MS facility. Workflows can be improved and delays 

minimized using a small, low-cost ESI instrument in the lab itself. High sensitivities are 

not required as samples normally have mg/ml concentration. Compact conventional 

systems are available (e.g. Advion Expression CMS; quadrupole [311]), and MEMS-

based systems (the 3500MiD and 4000MiD) have again been developed by Microsaic. 

These instruments can be coupled to LC systems [11, 312]. Figure 19a shows the total 

ion chromatogram (TIC) and base peak chromatogram (BPC) obtained using the 3500 

MiD coupled to conventional HPLC. Each peak corresponds to elution of a component of 

an injected mixture (here, melamine, reserpine, warfarin and simvastin). Figure 19b 

shows the mass spectrum corresponding to the reserpine peak at a retention time of 5.7 

mins. 

 

Alternatively, miniature mass spectrometers can be used for automated on-line 

monitoring of reactions [313, 314]. Small samples are periodically withdrawn, diluted 

and then directly analyzed without chromatographic separation Reaction conditions can 
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be quickly optimized this way and unstable compounds that would decompose during an 

LC-MS analysis can be monitored. 

  

The oldest medical applications of portable MS include monitoring of anaesthesia [315, 

316] and of respiration in artificially ventilated intensive-care patients [317], and the 

detection of breath markers for lung cancer [318]. More recent applications include 

cancer diagnosis by analysis of vapors generated during radiofrequency electrosurgery 

[319]. New sampling techniques such DESI are being used to differentiate normal tissue 

from cancerous tissue in biopsy samples [320], in some cases during endoscopic 

procedures (by sealing the sampling probe directly against the tissue, and transferring the 

desorbed charged species along a tube) [321]. Other recent medical applications include 

the detection of bacterial infections such as strep throat from swabs [322]. 

 

7.4 Environmental and consumer protection applications 

Environmental applications involve the monitoring of pollution in the air, soil, and 

waterways. Man-made pollutants include vehicle exhaust, toxic emissions from process 

plants and greenhouse gases, while more 'natural' pollutants include toxic algae 

encouraged by global warming. Portable, hand-held and backpack-mounted instruments 

have been used to monitoring atmospheric pollutants, in some cases autonomously [323-

326]. Instruments have been mounted in submersibles with membrane inlets for 

measurement of dissolved gases and volatile organics in seawater [327, 328], and flown 

in light aircraft to detect emissions from active volcanoes [329, 330]. 
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Consumer protection applications include the detection of counterfeit medical drugs 

[331] and adulterants in food, including herbicide and pesticide residues, antibiotics and 

veterinary drugs, carcinogenic dyes, preservatives and other illegal additives [332-334]. 

Appropriate conventional and portable MS monitoring is being developed [335, 336]. 

However, the specificity and sensitivity typically requires tandem mass spectrometry. 

Tandem MS has been demonstrated using miniaturized LITs, which allow the operations 

of ion selection, fragmentation and analysis to be carried out in sequence in the same 

component [337]. Microsaic have developed a MEMS-based tandem-MS system in the 

form of a triple quadrupole [209], which carries out MS-MS as 'tandem in space' rather 

than 'tandem in time'. 

 

7.5 General scientific applications 

A significant scientific application of portable mass spectrometers continues to be space 

exploration. In unmanned probes, these have historically been used for characterization 

of the upper atmosphere, space plasmas, interstellar dust, and planetary and cometary 

atmospheres [338-340]. More recent unmanned landers and planetary rovers have 

included GC-MS for analysis of thermally evolved gas [341] or laser ablation ionization 

for elemental and isotopic analysis of rocks [342, 343]. A strong driver is the search for 

organic molecules that might indicate an extraterrestrial origin of life. Manned flights 

such as the NASA Space Shuttle have additionally used mass spectrometers for 

monitoring of cabin air and water quality [232, 344]. A number of space-borne systems 

have already used MEMS [73, 105, 106, 127] and this trend looks set to continue in low-

cost missions [345] and miniaturized satellites such as CubeSat [346]. 
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More recently, there has been interest in chip-scale ion trap arrays for quantum 

information processing [347-349]. In this case, the emphasis is on creating, transporting 

and confining ion packets based on ionized single atoms, which are deliberately injected, 

rather than chemical analysis of larger, unknown molecules. Much lower selectivity and 

mass range are therefore required; instead, it is the ability to interact selected numbers of 

ions with observable quantities such as spin (known as ‘qubits’) to perform quantum 

computational operations that is important. The amount of information held by such a 

system scales as 2N, where N is the number of qubits, and hence may rapidly outrun the 

capability of conventional electronic processors. 

 

Silicon-based linear ion trap arrays [350] and sophisticated ion optical circuits such as T-

junctions [351] and X-junctions [352] have now been demonstrated, in each case based 

on the surface electrode approximation. Figures 20a and 20b show T- and X-junctions, 

respectively. The same problems (RF heating, and flashover at high voltage) in devices 

with poor electrical isolation have been observed [353]. However these are now being 

overcome using Si3N4 isolation layers in place of SiO2 [354, 355]. Development seems to 

be following a similar path to MEMS MS, and the advantage of MEMS in realizing 

complex functionality and reducing coupling losses is clear. 

 

8.  Opportunities and challenges 

 

MEMS MS has advanced considerably. Performance is now good enough to enable 
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applications requiring portability, small size or low cost. The availability of such systems 

– which allow the instrument to be taken to the sample – now allows in situ analysis. 

Mainframe instruments are evolving into desktop systems, backpack-mounted systems 

into hand-held units, and vehicle-mounted systems into airborne systems. The new 

paradigm will generate changes broadly analogous to those driven by the development of 

personal computers. However, many opportunities and challenges remain. 

 

The most promising commercial opportunities are those for which compact instruments 

with moderate performance are required in significant numbers. Unfortunately, the 

original drivers do not satisfy all these constraints. For example, although lightweight 

instruments are needed for space exploration, the market is drastically limited. Similarly, 

although portable instruments are required in large numbers for explosives detection, 

achieving sufficient sensitivity is challenging. Some important laboratory applications 

(high-throughput analysis for proteomics and metabolomics) remain similarly out of 

reach, because of limitations on mass range. However, on-line monitoring of chemical 

synthesis and food safety are both suitable applications. Success in these markets should 

allow other applications, and foster the performance improvements needed. 

 

The most significant challenge for MEMS MS is that miniaturizing components such as 

sources and filters has relatively little impact on overall cost. The two largest contributors 

to the overall cost of manufacturing are assembly and alignment of the ion optical 

system, and the vacuum pumps. Nevertheless, recent developments have shown that 

investment in MEMS can pay dividends, since its ability to provide precision alignment 
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can reduce assembly costs, and provision of sub-components as packaged modules can 

reduce downtime and the lifetime costs of servicing. The cost of conventional pumps will 

clearly reduce as volumes rise. As a result, MEMS MS should address some markets at 

costs that cannot be matched by conventional instruments. 

 

If the performance and reliability of MEMS MS can be improved and sizes reduced, 

significant gains may be achieved. Systems based on integrated vacuum chambers and 

MEMS-based pumps would open new markets for hand-held instruments. The ability of a 

mass spectrometer to act as a universal gas sensor would then allow replacement of 

dedicated chemical sensors, with applications ranging from engine emission monitoring 

to point-of-care diagnosis of cancer and hazard detection. In the latter case, a key advance 

would be to move beyond the restriction of passenger screening to choke points in 

transportation hubs. MEMS MS may therefore be poised to address many of today’s 

major societal challenges, including the environment, health and security. 
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Figures 

 

Figure 1. Mass spectrometer types: a) magnetic sector; b) Wien filter; c) Fourier 

transform ion cyclotron resonance; d) time of flight; e) quadrupole filter; f) quadrupole 

ion trap. 
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Figure 2. MS components fabricated using different MEMS processes: a) bulk micro-

machined quadrupole filter [138] (reproduced by permission of the Institute of 

Engineering and Technology); b) surface micromachined Wien filter (reproduced by 

permission from [117]. Copyright JVST 1999, American Vacuum Society); c) deep 

reactive ion etched cylindrical ion trap (one half thereof) [153] (© Taylor and Francis, 

2008). 
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Figure 3. Modelling of MEMS MS systems: a) Exact and approximate fields in a V-

groove quadrupole filter, and example ion trajectory; b) realistic simulation of a BSOI 

type quadrupole filter using SIMION® (courtesy Microsaic Systems). 

 

 

 

 

 

Figure 4. Microfabricated ion sources: a) hot cathode EI source [67] (courtesy Prof. 

Hyeun Joong Yoon, South Dakota State University; © IOP Publishing. Reproduced with 

permission. All rights reserved.); b) electrodes for plasma discharge ion source, before 

and after prolonged use (courtesy Dr Ralph Longwitz, EPFL). 
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Figure 5. Microfabricated nanospray sources: a) nib-type nanospray source (courtesy 

Prof. Steve Arscott, Lille University); b) Advion Triversa Nanomate® array-type source 

(courtesy Dr Jack Henion, Advion Inc.). 

 

 

 

 

 

Figure 6. a) Microfabricated electrospray ion gun (courtesy Microsaic Systems), and b) 

emission characteristics [103] (courtesy Microsaic Systems; © IOP Publishing. 

Reproduced with permission. All rights reserved).
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Figure 7. Microfabricated interface devices: a) vacuum interface (courtesy Microsaic 

Systems); b) planar ion funnel (courtesy Prof. Tim Short, SRI International). 

 

 

 

 

Figure 8. Microfabricated TOF-MS: a) surface micromachined device, and spectrum of 

acetone (courtesy Prof. Hyeun Joong Yoon, South Dakota State University, reprinted 

from [123] with permission from Elsevier); b) plug-assembled reflectron electrode stack 

(courtesy Prof. Guido Verbeck, University of North Texas).
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Figure 9. Microfabricated quadrupole filters: a) V-groove type with spectrum of Ar-Kr 

mixture (data courtesy Prof. Steve Taylor, Liverpool University); b) BSOI type (courtesy 

Microsaic Systems). 

 

 

 

 

Figure 10. Microfabricated quadrupole filters: a) silicon-on-glass type, and mass 

spectrum of tris(perfluoroheptyl)-s-triazine (courtesy Microsaic Systems, © 2010 IEEE, 

Reprinted with permission, from [144]); b) BSOI type with square electrodes (courtesy 

Prof. Luis Velásquez-García, Massachusetts Institute of Technology).



94 

 

Figure 11. Microfabricated ion traps: a) linear trap in GaAs (courtesy Dr Chris Monroe, 

University of Maryland, adapted by permission from Macmillan Publishers [148], © 

2006); b) cylindrical trap in BSOI (courtesy Dr Tim Short, SRI International). 

 

 

 

 

Figure 12. MEMS sensor components: a) mechanical mass detector and its time response 

(courtesy Prof. Selim Hanay, California Institute of Technology, adapted by permission 

from Macmillan Publishers [171], © 2012); b) thermal conductivity vacuum gauge 

(courtesy Prof. Zhenan Tang, Dalian University of Technology).
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Figure 13. Microfabricated vacuum pumps: a) components for a Ti sputter ion pump 

(courtesy Prof. Yogesh Gianchandani, University of Michigan, © 2013 IEEE, Reprinted 

with permission, from [198]); b) deep etched silicon turbo pump rotor blade (courtesy Dr 

Wei Yang, Honeywell). 

 

 

 

 

Figure 14. MEMS-based mass spectrometer sub-systems and systems: a) IONCHIP 

quadrupole filter module; b) ChemcubeTM benchtop instruments, closed, and revealing 

chassis (all courtesy Microsaic Systems).



96 

 

Figure 15. MEMS ESI-MS: a) packaged sub-components [11] (copyright © John Wiley 

& Sons, Ltd.); b) Microsaic 4000 MiD (all courtesy Microsaic Systems). 

 

 

 

 

Figure 16. Integrated MEMS MS: a) TOF-MS (courtesy Dr Charles-Marie Tassetti, 

CEA-DAM); b) planar integrated micro mass spectrometer (courtesy Dr Grigory Quiring, 

TU Hamburg-Harburg).
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Figure 17. Microfabricated separation systems: a) semi-packed GC column (courtesy 

Prof. Masoud Agah, Virginia Tech, reprinted from [224] with permission from Elsevier); 

b) LC column with orthogonal sample extraction for MALDI-MS [252] (courtesy Prof. 

Iuliana Lazar, Virginia Tech). 

 

 

 

 

Figure 18. Portable MEMS mass spectrometer: a) ChempackTM instrument (courtesy 

Microsaic Systems) and b) mass spectrum of perfluorotributylamine (courtesy Microsaic; 

Systems, reprinted with permission from [207]. Copyright 2010 American Chemical 

Society).
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Figure 19. Performance of MEMS ESI-MS: a) total ion chromatogram (TIC) and base 

peak chromatogram (BPC) for a multi-component LC separation; b) mass spectrum 

corresponding to the reserpine peak [11] (courtesy Microsaic Systems; copyright © John 

Wiley & Sons, Ltd.). 

 

 

 

 

Figure 20. Microfabricated quantum processors: a) T-junction ion guide (courtesy Prof. 

Winfried Hensinger, Sussex University; reproduced by permission from [351]. Copyright 

APL 2006, American Vacuum Society); b) X-junction ion guide (courtesy Dr Brad 

Blakestad, California Institute of Technology). 


