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Abstract

Evolutionary Algorithms (EA) are excellent at solving many types of prob-

lems but are inherently ill-suited to solving constrained problems. Previously

there has been four ways to adapt these algorithms to solve constrained

problems - pareto optimal strategies, modified representation and operators,

penalty functions and repair strategies. This thesis makes significant contri-

butions to the topic of genetic repair and introduces a non-Mendelian repair

operator that has been inspired by a naturally occurring genetic repair mech-

anism in the Arabidopsis thaliana plant. Thus, the analogy between EA and

natural evolution is extended to incorporate this (still highly controversial)

biological repair process.

The first and main objective focuses on Evolutionary Algorithms. This

thesis adapts this novel genetic repair strategy to an EA to solve two bench-

mark constraint based problems - specifically permutation problems as this

category of problem are often recognised as the most problematic problems

for the canonical EA to deal with.

The second objective was more biological, relating to Evolutionary Al-

gorithms. A number of algorithmic and parametric interventions were made

to the EA, to examine the repair algorithm’s performance under more bio-

logically inspired conditions.

This thesis illustrates that non-Mendelian ancestral repair templates out-

perform their Mendelian counterparts under a wide variety of conditions and

also shows that under biologically inspired conditions, the non-Mendelian

repair strategy continues to outperform its Mendelian counterpart.
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Chapter 1

Introduction

1.1 Getting Back to Nature & Biomimicry

Biomimicry or biomimetics is the act of taking inspiration from nature in

order to solve human problems. Many different leaders from very different

backgrounds have looked to nature when trying to solve problems. Examples

can be found in many fields from scholars to poets and gurus to scientists

where leaders in the field have proclaimed that nature is the best teacher

humans have available to them. In an article entitled Learn from nature

(Khuvung 2009) Lolano P. Khuvung wrote

�Since we too are a species on this earth and not invaders, we need

to create products and processes that follow natures principles. �

Khuvung was clearly stating that as the problems we are trying to solve

are in the environment in which we exist, we must look to this environment

for solutions. The poet John Celes writes
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�Mother Natures the best teacher we know, Teaching both young

and old without a fee; Through flora, fauna and all creatures, oh!

Her lessons being unique, naturally. �

in his poem Nature’s the Best Teacher. While the poet Celes comes from

the literary world and Khuvung is a scientist, the meaning of his poem reflects

the sentiment of the scientific article. In the same vein the guru Sathya Sai

Baba is credited with the much quoted proverb

�Nature is the best teacher �

We can see that in the literary, scientific and spiritual field there is a

strong belief that we must learn from nature and look to nature to solve

problems. This is not a new phenomenon as scientists have looked to nature

for guidance when solving problems for many years. The design of solutions

inspired by nature is known as Biomimicry. From the design of tongue

and groove which originates from the reproductive organs of humans to the

invention of Velcro which is modelled on the cockleburs plant (See Figure

1.1) many of today’s inventions originate from nature 1.

We do not need to examine the pickaxe for much time before we see the

similarity between this tool and the woodpecker bill. Many more examples of

inventions inspired by nature are available and by now we can see that a wide

variety of different disciplines in our academic society are open to looking to

nature for problem solutions. One such discipline that often looks to nature

for problem solving techniques is the area of Computer Science. The field

1This information were found on the Designed by Nature slideshow at

http://acrodshops.info/resource/eng06.sci.engin.design.biomimicry/
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Figure 1.1: The Cockleburs Plant. Image was taken by Franco Folini and is

used under the terms of the GNU Free Documentation License (Version 1.2

or later)

of artificial intelligence (AI) by its very nature mirrors the intelligence of

human beings in an artificial way. The definition of AI (Poole, Mackworth

& Goebel 1998) is said to be

�the study and design of intelligent agents �

These intelligent agents can then perceive their environment. These

agents may be able to perform tasks that normally require human intelli-

gence, such as visual perception, speech recognition, decision-making, and

translation between languages.

A sub section of artificial intelligence is Evolutionary Computation. Neg-

nevitsky (Negnevitsky 2005)(Page 14) states that:

�Evolutionary computation works by simulating a population

of individuals, evaluating their performance, generating a new

population, and repeating this process a number of times. �
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The four techniques which form evolutionary computation are genetic

algorithms, evolutionary strategies, genetic programming and evolutionary

programming. Evolutionary algorithms (EA) is the name given to genetic al-

gorithms that do not necessarily use binary representation. These algorithms

are ill-suited to dealing with constraints so an adaptation called evolutionary

optimisation (EO) was formed. Thus EO was evolved to solve constraint

based problems. Solutions to constraint based problems must satisfy a de-

fined list of conditions (or constraints) in order to be valid solutions.

In this thesis I will examine the analogy between biology and evolution-

ary algorithms(EA) that is often used to describe EA. I will then attempt

to extend this existing analogy by updating it with a new biological dis-

covery. This new biological discovery of a repair mechanism in the Ara-

bidopsis thaliana plant1 was first published in 2005 (Lolle, Victor, Young

& Pruitt 2005) and we will see further details of this mechanism in Chap-

ter 3. In this thesis I will investigate the use of this repair mechanism when

implemented as part of an EA. Our objective is to investigate whether this re-

pair mechanism will enable evolutionary algorithms to solve constraint based

problems in a biologically inspired way. Our second objective is to perform

stress or reliability tests of the mechanism using biologically inspired param-

eters in conjunction with this biologically inspired EO.

1Also suspected to exist in soybean - Personal communication with Dr Susan Lolle in

University of Waterloo, Ontario, Canada, which is part of ongoing communication and

collaboration

4



Figure 1.2: The Arabidopsis thaliana - A non-Mendelian repair mechanism

was discovered in this plant in 2005

1.2 The Current Field of EA

Later in this thesis I will examine the field of evolutionary algorithms. I will

illustrate the different techniques currently available to enable evolutionary

algorithms to solve constraint based problems. We will clearly see how many

of the techniques available are either problem specific or are unreproducible

due to lack of detail in supporting literature. These techniques are also not

biologically inspired. While biological inspiration is not generally a concern

for computer scientists, this thesis investigates extending the analogy with

biology which is often used to describe evolutionary algorithms and so tries

to maintain this analogy by using a biologically inspired repair mechanism

proposed by biologist Susan Lolle (Lolle et al. 2005). This repair mechanism

5



is highly controversial and, at the time of this publication, not yet supported

by other findings although active research is ongoing.

1.3 Analogy between Natural Evolution and

Evolutionary Computation

Analogy (sometimes referred to as metaphor) is said to be a cognitive process

of transferring information or meaning from a particular subject (the source

analogue) to another particular subject (the target) (Veale, O’Donoghue &

Keane 1999). In Chapter 3 I will introduce the subject of analogies. I will

look at the theory behind analogies using some simple examples to show

how complex analogies can be formed. I will describe the existing analogy

between natural evolution and EA, which is often used to describe the EA

field. I will then show how adding this new natural genetic repair process to

the analogy, results in a new computational process of genetic repair.

1.4 Extending the Analogy using the Ara-

bidopsis thaliana and GeneRepair

In Chapter 4 I will examine further the non-Mendelian repair process found in

the Arabidopsis thaliana plant which was first published in 2005 (Lolle et al.

2005). I will first attempt to use this newly proposed repair process to extend

the analogy between natural evolution and evolutionary algorithms to include

a repair mechanism called GeneRepair. I will fully explain GeneRepair using
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a wide variety of examples and we will see whether it enables evolutionary

algorithms to solve constraint based problems in a natural way in keeping

with original analogy. This thesis has two objectives;

1. Improve EO: the first objective of this thesis is to investigate whether

non-Mendelian template repair can be used to enable EO to solve con-

straint based problems and if so, how does it compare to a popular

penalty function approach.

2. Perform stress or reliability tests on the mechanism: I will compare the

use of Mendelian and non-Mendelian repair mechanisms. In doing this

I will investigate whether non-Mendelian GeneRepair outperforms its

Mendelian counterpart under more �biologically�inspired parameters

as in the controversial theory proposed by Lolle et al (Lolle et al. 2005).

1.5 Simulated Biological Conditions

It is important to clarify that in this thesis, what we term as �biological

experiments�are still computational evaluations and should not be confused

with systems biology or related disciplines. These experiments arise from the

desire to identify if this computational optimisation can shed any light on

ancestral repair when the parameters more closely resemble those found in

biology. These experiments were also motivated by feedback from a number

of collaborators who wished to find any evidence, either positive or negative,

that might shed some light on Lolle et al (2005).

Three specific modifications to the evolutionary optimisation model pre-
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sented lie at the heart of these experiments. Firstly, a much larger problem

size is used to reflect the much longer genome of the Arabidopsis thaliana

plant. Secondly, the far lower mutation rate is experienced under natural

evolution. Finally, some cyclic redundancy is removed in the representation

of Travelling Salesman Problem(TSP), which is explained in Section 2.3, so-

lutions as this does not appear to have an analog in the biological domain

(See Chapter 3).

Thus, throughout this thesis and especially in section 5.6, �biological

experiment�refers specifically to these two interventions and their impact

on relative fitness of the Mendelian and non-Mendelian repair templates.

The primary focus of this section is to assess which of the Mendelian and

non-Mendelian templates appear to work most effectively under these new

operating conditions. As far as the author is aware, these results presented in

Section 5.6 represent the best �in silico�evaluation of Lolles non-Mendelian

genetic restoration hypothesis (Lolle et al. 2005).

1.6 Implementing the Repair Mechanism

In this thesis I will discuss the field of evolutionary algorithms. I will explain

the concept of analogy and illustrate the analogy between natural evolution

and computer science that summarises the field of evolutionary computation.

I will then extend this analogy to include the recent biological finding of

a repair mechanism in the Arabidopsis thaliana plant (Lolle et al. 2005).

Following from this I will write an EO algorithm embodying this extended

understanding of inheritance and genetic repair.
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In Chapter 5 I will illustrate the experiments I conducted in order to

compare GeneRepair to another constraint handling mechanism. I will then

show all of the different experiments I carried out to investigate the influence

of EO parameters on the effectiveness of GeneRepair. During these experi-

ments I constantly compare the use of different ancestral repair templates in

order to explore the analogy with natural repair in the Arabidopsis thaliana

which has been proposed to be non-Mendelian. Chapter 5 investigates the

theory discussed in Chapter 3 and 4 and suggests parameters to use when

using this technique.

Lolle’s theory of non-Mendelian repair in the Arabidopsis thaliana plant

is highly controversial and as of this date unconfirmed by any other publi-

cations. This first publication of experimental evidence suggesting the exis-

tence of a cache of genetic information appeared on March 24th 2005 (Lolle

et al. 2005). This finding was quickly thrown into the media spotlight and

appeared on the front-page of the New York Times and The Washington

Post causing widespread debate among the scientific community. Two dif-

ferent labs,(Peng, Chan, Shah & Jacobsen 2006)(Mercier, Pelletier, Jolivet,

Drouaud, Durand, Vignard & Nogu 2008) who were unable to reproduce the

results, claimed that the original findings were made through experimental

error but this did not decrease the interest among the scientific community. In

2008 The Scientist ran the cover story �Mendel Upended�(Gawrylewski 2008)

and in 2010, five years after the original publication, the 2005 paper was

ranked No. 1 paper in the all time top ten by Faculty of 1000(Hopkins,

Chang, Lai, Doerr & Lolle 2011). In this thesis I will investigate whether
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this proposed technique is successful when incorporated into EO in the field

of Computer Science regardless of its performance in the Arabidopsis thaliana

plant.

1.7 Addressing the Issues Associated with Cur-

rent Constraint Handling Mechanisms

In Chapter 2 I examine the current findings in the field of Evolutionary Op-

timisation (EO) with a focus of constraint handling mechanisms. I will show

that the repair mechanisms summarised are not biologically inspired or are

impossible to reproduce or problem specific. These traits are disadvantageous

as methods which are too problem specific cannot be easily implemented for

a wide variety of problems. Methods which are difficult to reproduce due

to lack of information in the publication are not easily implemented. Non-

biologically inspired methods are suitable when the user is not interested in

the analogy between nature and EO. In this thesis I am concentrating on

extending this analogy and therefore investigate whether a biologically in-

spired repair strategy can be used to enable EO to produce valid solutions

to constraint based problems. Chapters 3 and 4 show the biological roots

of GeneRepair, mirroring the repair mechanism found in the Arabidopsis

thaliana plant (Lolle et al. 2005). In Chapter 5 I will show the experiments

which illustrate the different parameters to use with GeneRepair and give

full and explicit details to investigate the influence of these parameters on

the ancestral repair process. In Chapter 6 I address the final weakness of
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many previously used techniques: Problem Specificity. In this chapter I will

revisit the experiments from Chapter 5 using a different problem. I will show

that the effectiveness of parameters and ancestral templates is not altered by

the change in problem and that this technique may be applied to a different

constraint based problems. This enables EO to be used on a wide variety of

constraint based problems in a biologically inspired way. In this thesis I will

focus particularly on permutation problems.

1.8 Conclusion

The old proverb

�Nature is the best teacher �

attributed to the guru Sathya Sai Baba has been supported by poets

and scientists alike from many different disciplines. We can see the natu-

ral inspiration behind many inventions from Velcro to the pickaxe. In this

thesis we present a repair mechanism inspired by nature to enable EO to

produce valid solutions to constrained problems. The analogy between natu-

ral evolution and EA is often used to describe EA. In the years following the

introduction of EA computer scientists made great advances in the world of

evolutionary computation to enable this problem solving technique to solve

previously problematic constraint based (and other) problems. Some of these

advances broke the analogy between natural evolution and EA, while others

were problem specific and so not widely usable. This thesis provides a wide

review of the advances made in Computer Science and explains how they
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enable EO to solve constraint based problems. It then goes on to explain a

major and controversial biological advance made in 2005 (Lolle et al. 2005).

I incorporate this biological advance into the analogy to create GeneRepair

in the EO. I investigate whether this GeneRepair mechanism enables EO to

produce valid solutions to constraint based problems. I outline how it can be

used for �general�constraint type problems. I will specify how it is applied

to the permutation problems TSP and CVRP - solving both with the very

same repair mechanism. This being explored in great detail. This thesis in-

troduces a biologically inspired repair mechanism for EO and explores various

parameters and values that impact the effectiveness of this mechanism.
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Chapter 2

Literature Review

2.1 Introduction

This chapter gives an introduction into the subject of Evolutionary Algo-

rithms (EA). We look at the beginning of EA and how they work. I go on to

introduce constraint based problems and outline a (standard) sample prob-

lem to be used throughout this thesis. I will show the different mechanisms

EA currently use to handle these constraint based problems. Finally I will

introduce a biological inspired method to handle constraint based problems

using EA. It is this biologically inspired method for handling constraints

that will be the focus of this thesis. I will use high level analogies in order

to illustrate the properties of this method.
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2.1.1 Structure of the Chapter

This chapter has four sections. The first section gives an introduction to and

an explanation of Evolutionary Algorithms. The second section introduces

the sample problem which will be used to illustrate the different operators

in this chapter. The third section describes the different methods currently

used within EA to handle constraints. This section will review the current

methods and show how they differ to the method being explored in this thesis.

The final section will give a conclusion on all of the above sections. This

thesis introduces a new non-Mendelian repair mechanism and investigates

whether it can be used with evolutionary optimisation to solve constraint

based problems. This chapter will therefore give an introduction to the field

of evolutionary algorithms and the current methods which exist to solve

constraint based problems.

2.2 Introduction to Evolutionary Algorithms

Using technology evolutionary algorithms (EA) could be seen to mimic the

organic evolutionary process to solve problems. Though the early study of

evolution is strongly linked to Charles Darwin (12 February 1809 - 19 April

1882) the word evolution dates back to the 17th century. In the 18th century

momentum grew for this idea as natural philosophers Pierre Maupertuis and

Erasmus Darwin began to suggest the idea of proto-evolution (Terrall 2002).

The next development took place when Jean-Baptiste Lamark put forward

the theory of transmutation of species. Radical ideas were being suggested
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and the stage was set for an in depth look at evolution. It is not surprising

therefore that at this time two separate people were working on the idea

of natural selection. These two scientists were Charles Darwin and Alfred

Russel Wallace. Charles Darwin continued to develop his hypothesis and

in 1859 published the first edition of �On the Origin of the Species�. This

book explained that natural selection is nature’s algorithm for evolution.

Natural selection is the natural law that enables evolution by giving the

fittest individuals in a population the highest chance of procreation. For

example, if a certain animal can run faster than its peers then it is more likely

to run away from predators and survive attacks. The chance of this animal

procreating is higher than that of a slower peer as that peer is more likely to

be killed by a predator. Therefore this ability to run fast will most likely be

passed from this generation to the next and this animal may therefore evolve

into a fast runner. If environmental conditions meant that a slower run was

more favourable (probably through conserving its energy) then the slower

of the two animals would be more likely to survive and so over time this

breed of animal may evolve to be slower runners. This is a simple example

of natural selection. Therefore natural selection is the non-random process

by which biological traits become more or less common in a population as a

function of differential reproduction of their bearers and is a key mechanism

of evolution. Survival of the fittest is a simpler idea meaning better adapted

for the immediate, local environment. In this case the word fittest means

most suitable for the given environment.
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2.2.1 The Evolutionary Algorithm Family

Evolutionary algorithms could be seen to mimic this evolutionary process

to develop solutions to problems. A population of solutions is evolved in a

similar way to that of natural evolution. The origins of GA and ES can be

attributed to Holland and Reichenberg (Holland 1975), (Rechenberg 1971).

Solutions that are fittest in relation to the given environment or problem

go forward to produce further generations and eventually a suitable solution

is produced. While there has been many adaptations to the canonical EA

the standard implementation is based on the Genetic Algorithm . Fogel

(Fogel 1994) describes this as

1. The problem to be addressed is defined and captured in an objective

function that indicates the fitness of any potential solution

2. A population of candidate solutions is initialised subject to certain

constraints

3. Each chromosome in the population is decoded into a form appropriate

for evaluation and is then assigned a fitness score

4. Each chromosome is assigned a probability of reproduction

5. A new population is formed and mutated

6. The process is halted if a certain objective is met otherwise the process

proceeds from Step (3) where the new individuals are scored and the

cycle is repeated
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2.2.2 The Basic Evolutionary Algorithm

In the previous section I have shown the six steps outlined by Fogel (Fogel

1994). By studying these steps we can say that once the problem is un-

derstood and the fitness function has been defined, 5 steps are followed to

implement the algorithm. There 5 main steps are:

1. Generate Initial Population

In the first step of the EA a population of possible solutions is gen-

erated. As this first set of solutions is randomly created they are not

necessarily strong (or fit). This population is the first generation of the

Evolutionary Algorithm and the number of solutions generated corre-

sponds to the size of the population. This Generate Initial Population

step is only performed once.

2. Select Fit Solutions

A number of fit individuals (solutions) in the population are selected

and these will be used to create the next generation. There are a

vast number of selection methods available and one standard selection

method is tournament selection (Blickle & Thiele 1996). Using this

method a number n of random individuals are selected and compared

to each other. The fittest individual is selected for the new population.

This is repeated until the population is sufficiently full. This is based

on the selection method used by animals competing to breed in the

wild where two or more males may fight for the female or vice versa.

Another selection method is the truncation selection method. Using
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this method the population is re-ordered according to the fitness of

the individuals. Some proportion (1 \ p) of the fittest individuals are

selected and reproduced. For example if p = 2 then the top of half

(the fittest half) of the population is copied into the bottom half of

the population resulting in the least fit half of the population being

replaced.

3. Crossover or Recombination

Having identified the breeding population in Step 2 we now produce

new individuals. This is the reproductive step of the EA. In the EA

crossover is carried out when a point is chosen and the portion of the

first individual (Parent1) to the left of the point is inserted to the left

most positions of the offspring and the portion of the second individual

(Parent2) to the right of the point is inserted into the rest of the off-

spring. This method produces one offspring from two parents. In order

to produce two offspring from two parents the remaining unused part

of Parent2 is inserted into the leftmost position of the second offspring

and the remaining used part of Parent1 is inserted into the unused

part of the second offspring. The point used to subsection the parents

can be uniform or chosen randomly. The crossover method described

here is single point crossover producing two offspring as described by

Negnevitsky (Negnevitsky 2005) (Reference page 226-227).

4. Mutate

The final step of the EA is mutation. Mutation alters a small pro-
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portion of genetic information in some individuals in order to preserve

diversity. Mutation is the second chance for new individuals to be in-

troduced into the population. As the name suggests mutation causes

an individual to be changed to avoid local maxima/minima, depending

on the choice of mutation method being used.

A simple example of mutation in a binary representation involves flip-

ping a random 1 to a 0 or vice versa creating a new mutated individual.

There are many different methods of mutation. A simple method of

mutation is Swap Mutation, which is often used for permutation prob-

lems. This method involves swapping two random bits in the individual

to be mutated.

5. Repeat until termination requirement met

Steps 2 - 4 are repeated until some termination requirement is met.

Examples of this requirement are: a set number of generations being

reached, a set amount of time or until a certain solution is reached.

The way in which these solutions are monitored and compared is by using a

fitness function. Atmar (Atmar 1994) suggested that a singular measure of

evolutionary fitness is the appropriateness of the species’ behaviour in terms

of its ability to anticipate its environment. This fitness function is often the

most difficult part for the creator of the EA to write. This function calculates

absolute fitness for each of the individuals and they can then be compared

upon this value. Sometimes we evaluate fitness from the phenotype, but
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as we shall later see, some problems (& representations) allow evaluation

directly by examining the genotype.

2.3 The Sample Constraint Problem

We will now look at the application of this canonical GA on a sample prob-

lem of the Travelling Salesman Problem (Reinalt 1991). This will serve two

purposes. Firstly it will illustrate the operation of the GA. Secondly this

constraint problem will highlight how invalid solutions may be inadvertently

generated - something that shall concern us for the remainder of this thesis.

The Travelling Salesman Problem originates with a travelling salesman

who has a set number (n) of cities to visit. He must visit each city once and

at the end of the tour he must return to the first city he visited. The tour

length of fitness of the solution is total distance travelled by the salesman. A

problem constraint is a condition that a solution must meet. The constraints

for this problem are that each city must be visited once with no duplication

or omissions and the after the last city the salesman must return to the

start city. These are �hard�constraints (Luke 2009) as solutions that disobey

these constraints are invalid. (This is opposed �soft�constraints where it is

preferable that each solution obeys the �soft�constraints but disobeying does

not render the solution invalid. )

A small example of this problem would be a TSP with the cities Castlebar,

Waterford, Tralee, Galway, Dublin and Omagh. In Figure 2.1 we can see a

sample solution to this problem where the red arrow indicates the start and

end city. For simplicity each city is replaced with an integer as follows:
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Castlebar - 0

Waterford - 1

Tralee - 2

Galway - 3

Dublin - 4

Omagh 5

So a sample solution which is (Castlebar, Waterford, Tralee, Galway,

Dublin, Omagh) would now be represented by ( 0, 1, 2, 3, 4, 5 )

The initial population is filled with these random solutions until it is full

and this is the Generate Initial Population step from Section 2.2.2. The

individuals that will be used to create the next generation are now chosen

using a selection method and this is the Select Fit Solutions step. These

individuals are now crossed over to create the next generation using the

Crossover or Recombination step from Section 3. Figure 2.2 illustrates the

single-point implementation of the crossover operator.

The next generation has now been created with a new population of

individuals (or solutions). A set amount of these solutions are then mutated

according to the preset mutation rate. There are many different mutation

methods that can be used for this Mutate step. The method I have used is

Swap Mutation as illustrated in Figure 2.3. Swap mutation randomly selects

two elements (locii) according to some mutation rate and swaps the values

at these locii. In Figure 2.3 we can see that City 4 was swapped with City 2

(as illustrated in green).

The next step in the algorithm is to Repeat (until termination requirement
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Figure 2.1: TSP Sample Tour
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Figure 2.2: Sample Crossover

Figure 2.3: Sample Swap Mutation
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met) steps 2 to 4 therefore selection, crossover and mutation are repeated

until some termination condition is satisfied. This objective may be a set

amount of time has passed or a set number of generations have been created.

2.4 Evolutionary Algorithms with constrained

problems

2.4.1 The Problem with Evolutionary Algorithms han-

dling constraints

Evolutionary Algorithms are excellent at solving difficult problems that would

otherwise take high computing power and prohibitive amounts of time when

brute force is used. Where EA are challenged however is when they are used

to solve constraint based problems. These problems call for a number of

constraints to be satisfied in a given solution and this can cause difficulty

for EA. The reason for this difficulty is that EA create a wide and varying

range of solutions and lacks a method to ensure that these solutions obey the

problem constraints. The canonical EA creates diverse solutions and avoid

reaching a local maxima by keeping the population spread across the feasi-

ble search space. The fitness function assumes that presented solutions are

valid or feasible. With constraint problems some portion of population may

represent infeasible solutions which are undesirable.

In order to produce solutions that obey specific problem constraints the

canonical EA (as shown in Section 2.2.2) must be adapted. This adaptation
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can be done in a variety of ways. At present there are 4 main schools of

thought on this subject. The EA can adapt to pareto optimal strategies, can

be tweaked in order to use modified operators, it can incorporate a penalty

system or it can use a form of repair on invalid solutions. Each of these

methods are explained and reviewed in the following subsections.

2.4.2 Pareto Optimal Strategy

The first strategy used to enable EA to find solutions to constraint based

problems is called the Pareto Optimal Strategy. This approach separates

constraint violation from the fitness function. There are four different con-

straint handling techniques (Salcedo-Sanz 2009) that fall under the umbrella

of the Pareto Optimal Strategy. These are co-evolution, superiority of feasi-

ble points, behavioural memory and multi-objective optimisation techniques

(Coello Coello 2002). We will now briefly look at each of these in turn.

Co-Evolution

Co-evolution is a technique where two populations are evolved (Coello Coello

2002). The first population is unlike other populations in that it contains

all of the problem constraints. The second population contains all of the

individuals as normal where the individuals represent valid solutions as well

as invalid solutions. An invalid solution disobeys at least one problem con-

straint. The co-evolutionary strategy is based on the predator-prey analogy

where pressure on individuals in one population depends on the fitness of the

individuals in the other population. In the second population fitness is cal-
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culated by counting the number of constraint violations in each individual. If

an individual has few constraint violations they will have a high fitness value

but individuals that break many constraints will have a low fitness value. In

the first population the fitness of individuals is calculated by counting how

many times a constraint is violated. An individual with high fitness in this

population is a constraint that is broken by many individuals. Encounters

will occur between individuals of each population ( problem solutions and

constraints). Each individual has an encounter history which is stored by

that individual and the fitness of each individual is calculated based on the

past n encounters where n is a predefined integer. The idea is to concentrate

on the constraints that are more difficult to obey by increasing the fitness

of these constraints. Paredis (Paredis 1994) theorises that this approach is

similar to the self adaptive penalty function, as the relevance of constraints

can change over time. An advantage of this approach is that it is efficient

because not every constraint needs to be checked at each iteration. However

a disadvantage is that stagnation may occur if all of the constraints, or the

majority of the constraints are difficult to obey. This approach has not been

extended to numerical optimisation problems.

Superiority of Feasible Points

The second pareto-optimal strategy we shall look at is the superiority of

feasible points. Powell and Skolnick (Powell & Skolnick 1993) describe the

�Superiority of Feasible Points �technique as a map of evaluations of feasible

solutions into the interval (−∞, 1) and infeasible solutions are mapped into
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the interval (1, ∞) (also summarised by Coello Coello (Coello Coello 2002).

Following this individuals are evaluated using

fitness(x⃗) =











f(x⃗) if feasible

1 + r(
n
∑

i=1

gi(x⃗) +
p
∑

j=1

hj(x⃗)) otherwise

x⃗ is scaled into the interval (−∞, 1), gi(x⃗) and hj(x⃗) are scaled into

the interval (1, ∞), and r is a constant penalty factor. The constraint vi-

olation and the objective function remain separate when the individual is

invalid. Linear ranking selection (Davis 1991) was used to enable slow con-

vergence in early generations and enforce convergence in later generations by

increasing the number of occurrences of the highest ranked individuals. The

assumption relied upon by this approach is the superiority of valid individu-

als over invalid ones. In cases where the ratio between the feasible region and

the whole search space is too small this technique will fail unless a feasible

point is introduced by the initial population (Michalewicz 1996). This could

happen if the constraints are difficult to satisfy.

Powell and Skolnick’s approach was changed slightly by Deb (Deb 1998)

by evaluating individuals using

fitness(x⃗) =











f(x⃗) if gi(x⃗) ≥ 0, ∀i = 1, 2, . . . , n

fworst +
n
∑

i=1

gi(x⃗) otherwise

where fworst is the objective function of the worst feasible individual so-

lution in the population and gi(x⃗) refers to the inequality constraints Deb
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has transformed equality constraints to inequality constraints. If there are

no feasible solutions in the population then fworst is set to zero. Using binary

tournament selection Deb goes on to compare each set of two individuals

using the following rules:

� A feasible solution is always preferred over an infeasible one

� Between two feasible solutions; the one having a better objective func-

tion value is preferred.

� Between two infeasible solutions; the one having a lower number of

constraint violations is preferred.

The fitness of feasible individuals is equal to their objective function value.

The use of constraint violation in the comparisons aims to push infeasible

individuals towards the feasible region. Deb normalised the constraints to

avoid bias as they are usually non-commensurable. This second approach

(Deb 1998) does not require a penalty factor due to the pairwise comparisons

carried out during selection. This approach instead uses niching which means

that the initial focus is on finding feasible solutions and then techniques are

employed to maintain diversity as theses solutions approach the optimal.

This approach has problems maintaining diversity in the population and

the use of niching and high mutation rates is necessary to combat this. This

does mean however a computation cost that can lead to slower execution.
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CONGA

The third version of this Pareto Optimal Strategy is called CONGA (COn-

straint based Numeric Genetic Algorithm) and was proposed by Hinterding

and Michalewicz (Hinterding & Michalewicz 1998). In the first of n phases,

this approach concentrates the search on finding feasible individuals and in-

stead of using the the objective function the information about constraint

violation is used. The second phase is to fine tune the fittest of the increas-

ing number of feasible solutions. Two selection methods are used - one to

select an individual to mutate or to act as the first parent and one to se-

lect a mate for that parent. This second selection method selects a mate

that will �compliment�the first parent. This means that the second parent

should obey the constraints that the first parent does not. This idea came

from Ronald (Ronald 1995) but was changed slightly so that the compli-

mentary parents will be more likely to produce feasible individuals through

crossover. This version relies on the same assumption made by Powell and

Skolnick (above) and so shares the same disadvantage that in cases where

the ratio between the feasible region and the whole search space is too small

this technique will fail unless a feasible point is introduced by the initial

population (Michalewicz 1996). This could happen if the constraints are dif-

ficult to satisfy. It is also difficult to maintain diversity in the population

as the tournament selection strategy may introduce a high selection pressure

(Coello Coello 2002).
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Behavioural Memory

The technique of behavioural memory was originally proposed for uncon-

strained optimisation (DeGaris 1990) and was extended by Schaoenauer and

Xanthakis (Schoenauer & Xanthakis 1993) to handle constraints. The tech-

nique works by handling constraints sequentially using the following algo-

rithm:

1. Start with a random population of individuals

2. Set j = 1 (j is the constraint counter)

3. Evolve this population to minimise the violation of the j-th constraint,

until a given percentage of the population (this is called the flip thresh-

old Φ ) is feasible for this constraint. In this case

fitness(x⃗) = M − g1(x⃗) (2.1)

where M is a sufficiently large positive number which is dynamically

adjusted at each generation.

4. j = j + 1 (Once 3 above is satisfied)

5. The current population is the starting point for the next phase of evo-

lution, minimising the violation of the j-th constraint,

fitness(x⃗) = M − gj(x⃗) (2.2)

During this phase, points that do not satisfy at least one of the 1st,

2nd, . . . (j-1)-th constraints are eliminated from the population. The
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condition required to stop this stage of the algorithm is again the sat-

isfaction of the j-th constraint by the flip threshold percentage Φ of the

population.

6. If j < m, repeat the last two steps, otherwise (j = m) optimise the

objective function f rejecting infeasible individuals.

When a certain percentage of the population satisfies a constraint an at-

tempt to satisfy the next constraint is made and so on. The last step of

the algorithm involves the death penalty, so that invalid individuals are not

present in the population (We look at the death penalty in Section 2.4.4).

This step is only reached however when the majority (or a certain percent-

age defined by Φ) of the population consists of valid individuals. The order

of the constraints can greatly influence the final solutions produced by this

approach. This approach also has a high computational cost which may not

be justified when there are many constraints to obey. Another disadvantage

of this approach is that the flip-threshold introduces another arbitrary pa-

rameter that must be tuned.

Multiobjective Optimisation

We shall now briefly examine Coello Coello’s (Coello Coello 2002) review of

the four MOO techniques. Multiobjective optimisation (MOO) techniques

force EA to produce solutions to constraint based problems by approaching a

single objective optimisation as a multiobjective optimisation problem with

m + 1 objectives where m is the number of constraints. There are many
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multiobjective optimisation techniques that can then be applied to the new

vector v⃗ = (f(x⃗), f1(x⃗), . . . , fm(x⃗)) where f1(x⃗), . . . , fm(x⃗) are the problem

constraints. An ideal solution x⃗ may have fi(x⃗)=0 for 1 ≤ i ≤ m and f(x⃗) ≤

f(y⃗) for all feasible y⃗ assuming minimisation (Coello Coello 2002)

Many MOO techniques have been proposed. COMOGA (Surry & Radcliffe

1997) proposed by Surry et al ranked the population based on constraint vi-

olations. A portion of the population was selected based on this ranking

and the rest of the individuals’ fitness. This did not produce better results

than the penalty function (Surry & Radcliffe 1997) and requires several extra

parameters although it is not very sensitive to their values. This approach is

also computationally expensive. Later in this thesis we compare the GeneRe-

pair technique proposed in this thesis to the penalty technique.

Further Assorted Techniques

Parmee & Purchase (Parmee & Purchase 1994) handled constraints as ob-

jectives allowing the EA to locate a feasible region in the constrained search

space. They used specialised operators to create a variable size hypercube

around each feasible point to ensure the EA stays within the feasible re-

gion. This approach was proposed for heavily constrained search space and

was appropriate for reaching the feasible region but this is not equivalent to

reaching the global optimal. The use of special operators also restricts the

generality of the approach.

Camponogara & Talukdar (Camponogara & Talukdar 1997) proposed to

redefine a single objective optimisation problem to consider two objectives,
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the first is to optimise the original objective function and the second is to

minimise. Non-dominated solutions with respect to the two new objectives

are generated and these define a search direction

d = (xi − xj)/|xi − xj| (2.3)

where xi ϵ Si, xj ϵ Sj and Si and Sj are Pareto sets. A line search is carried

out in this direction (d) so that a solution can be found that is a better

compromise than the previous two solutions found. Thus line search replaces

the crossover operator in this EA. Half the population is also eliminated at

regular intervals by replacing the less fit solutions with randomly generated

points. This approach has a problem maintaining diversity and the use of

line search space is computationally expensive.

Jiménez & Verdegay (Jimnéz & Verdegay 1999) proposed a min-max

MOO technique which followed three simple rules (much like the technique

proposed by Deb (Deb 1998) except that no extra method was used to main-

tain diversity. The rules of this technique for comparing individuals are:

1. If the they are both feasible select based on minimum value of objective

function

2. If one is feasible choose it

3. If both are infeasible choose individual with lowest maximum violation

wins based on max(gj(x⃗)), for j = 1, . . . , m where m is the total number

of constraints.

This approach is not considered to be multiobjective optimisation by some

(Coello Coello 2002) as it only ranks infeasible solutions based on their con-
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straint violations. While this approach may sound like an alternative to

finding feasible points in a heavily constrained search space it can also get

stuck in an infeasible part of the search space, due to its random sampling

of the feasible region and time may be wasted with such a blind search.

Another strong contributor to the field of MOO is Coello Coello (Coello

Coello & Nacional 1999), (Coello Coello 2002). He proposed the use of pop-

ulation based MOO to handle each of the constraints as a separate objective.

The population is split into m+1 sub populations, where m is the number

of constraints, so that part of the population is selected using the objective

function as its fitness. If the problem is a minimisation problem then the

fitness function is multiplied by -1. The other part of the population uses

the first constraint and no penalties are enforced. . The algorithm used is:

if gj(x⃗) ≤ 0.0 then fitness = gj(x⃗)

else if v ̸= 0 then fitness = -v

else fitness = f(x⃗)

where gj(x⃗) refers to the constraint corresponding to sub-population j+1

and v refers to the number of constraints that are violated (≤m), with the

assumption that the first sub-population is assigned to the objective function

f(x⃗). This split of the population is carried out at every generation. Each sub-

population will try to minimise its constraint violations. If a solution does

not violate constraints but is infeasible the algorithm will try to minimise the

total number of violations and join with other sub populations to drive the

EA to a globally feasible region. The aim is to combine the distance from

feasibility with information about the number of constraint violations. If the
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solution is feasible it will be merged with the first sub-population where it

will be evaluated with the same fitness function (the objective function). One

of the main disadvantages of this approach is the number of sub-populations

needed in complex problems.

Coello Coello went on to propose another technique based on non-dominance.

With this new technique fitness is assigned using the following algorithm:

Let the vector x⃗ (i = 1,. . . , pop–size) be an individual in the current

population with the size = pop–size. The rank of an individual x⃗i is computed

using

rank(x⃗i) = count(x⃗i) + 1 (2.4)

The count function is computed using the rules:

1. x⃗i is compared against every individual in the population where x⃗j(j=1,

. . . , pop–size and j̸= i) is the other individual

2. Count is initialised to zero

3. If both x⃗j and x⃗i are feasible then both are ranked zero and count is

unchanged

4. If x⃗i is infeasible but x⃗j is feasible then one is added to count

5. If both are infeasible but x⃗i violates more constraints then count(x⃗i) is

incremented by one

6. If both are infeasible and violate the same number of constraints but

x⃗i has a larger total amount of constraint violations, then count (x⃗i)

is incremented by one. If any constraints gk(x⃗) (k=1,. . .m, where m
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is total constraints) is satisfied if (gi(x⃗) ≤ 0), then the amount of

constraint violations for x⃗ is given by

coef(x⃗i) =

p
∑

k=1

gk(x⃗)forallgk(x⃗) > 0 (2.5)

Fitness is computed using the following rules

1. If x⃗i is feasible, rank(x⃗i) = fitness(x⃗i)

2. else rank(x⃗i) = 1/rank(x⃗i)

Selection of individuals is based on rank(x⃗) and values produced by fitness(x⃗i)

must be normalised. This ensures that the rank of valid individuals is al-

ways higher than the rank of invalid ones. No special techniques are used to

ensure diversity. This approach tends to generate good solutions in highly

constrained search spaces but may have difficulties reaching a global optimal.

Ray et al (Ray, Kang & Chye 2000) went onto to propose a technique

where individuals are ranked separately by their objective function and con-

straints. Mating rules are applied based on the information held by each

individual about its own validity. This was inspired by Hinterding and

Michalewicz (Hinterding & Michalewicz 1998) where the global optimal is

reached through co-operative learning. This is a promising technique but

as with all MOO techniques there are sacrifices made in terms of quality of

solutions produced (Coello Coello 2002).

Runarsson & Yao (Runarsson & Yao 2000) proposed a technique where

the population is ranked using a stochastic version of bubble sort. Individuals

are compared to their adjacent neighbour over a certain number of sweeps.
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This aims to find out whether the objective or penalty function is dominating

so that a balance can be found and the EA can be guided to the global

optimum. This is a MOO function as opposed to a simple penalty function

as it addresses the imbalance and corrects it. One of the drawbacks of this

technique is the need for a parameter to define the probability of using the

objective function for comparison in the ranking process (when lying in the

infeasible region).

2.4.3 Modified Representations and Operators

The second method for handling constraints is the use of modified represen-

tations and operators. The reason that evolutionary algorithms are unsuited

to solving constraint based problems is that blind crossover and mutation

operators will inadvertently introduce errors, generating infeasible solutions.

As shown in Section 2.4.1 EA operators can cause invalid solutions to be

generated.

The second way to enforce constraints in EA involves the use of special

representations and operators (Coello Coello 2002). The use of a special

representation (tailored for each problem type) in an EA means that the

basic standard operators are no longer appropriate, hence the simultaneous

introduction of modified operators. Special representations can be used when

the normal representation is not appropriate for the problem at hand. The

aim of these special representations is to simplify the search process and focus

it (possibly exclusively) on the feasible search space. Special operators can

be used in such a way that invalid solutions are never created.
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An example of modified representations is �Random Key Encoding�proposed

by James C. Bean (Bean 1992) for certain sequencing and optimisation prob-

lems such as job shop scheduling. This method eliminates the need for special

crossover and mutation operators without adding computational overhead.

It does this by encoding a solution with random numbers which are then used

as keys to decode the solution. For example an n-job m-machine schedul-

ing problem has each allele as a real number with an integer part belonging

to the set {1,2,. . .m} but the decimal fraction is randomly generated with

the interval (0,1). The integer part of the number is interpreted as the ma-

chine assignment for that job and the sorted fractional parts provide the

job sequence on each machine (Normal & Bean 1995). This approach is

quite problem specific and does not perform well for some other applications

tested(Coello Coello 2002).

In a paper written by Yuval Davidor (Davidor 1989) a new technique is

proposed which also uses Lamarckian probabilities for crossover and muta-

tion. This introduces an example of a modified operator which is analogous

crossover that chooses crossover points in the parent strings using phenotypic

similarities. Crossover and mutation points were chosen based on the error

distribution across the individual. This technique is also non-Mendelian.

Another example of modified representation is GENOCOP (GEnetic al-

gorithm for Numerical Optimisation for COnstrained Problems). This tech-

nique was developed by Michalewicz and has since gone on to contribute to

the creation of GENOCOPII and GENOCOPIII(Michalewicz & Nazhiyath

1995). GENOCOP gets rid of equality constraints and also eliminates a
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number of problem variables. This simplifies the work of the EA as part of

the search space has been removed. The EA then searches the newly formed

convex set of remaining constraints (which are linear inequalities). An initial

feasible solution is searched for and if it is not found the user is prompted

to provide a starting point. This starting point will be duplicated to cre-

ate the initial population. The operators then form linear combinations of

individuals and this ensures that an invalid offspring will never be created.

One problem with this technique is the requirement that the user of the EA

must have a way of generating a starting point as GENOCOP assumes a

feasible starting point. This technique is also limited to linear constraints

(Dasgupta & Michalewicz 1997). GENOCOPIII incorporates the original

GENOCOP(Michalewicz 1996) system, but also extends it by maintaining

two separate populations, where a development in one population influences

evaluations of individuals in the other population. This is different to the

technique proposed in this thesis as it maintains two populations and it does

not use non-Mendelian inheritance for repair.

Constraint Consistency was proposed by Kowalczyk (Kowalczyk 1997) to

decrease the search space by aborting alleles that are not consistent with

the problem constraints. This method ensures that individuals produce only

valid solutions. A disadvantage of this approach is the computational cost of

propagating constraints which may be more computationally expensive than

the optimisation.

Another modification that can be made to EA is locating the boundary

of the feasible region. As the name suggests this technique involves iden-
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tifying the feasible region and searching the area close to this. This idea

was originally proposed as a technique called strategic oscillation (Glover &

Kochenberger 1995) and can be used in combinatorial and non-linear optimi-

sation problems. It uses adaptive penalties or a similar mechanism to cross

back and forth over the feasibility boundary by relaxing or tightening a fac-

tor that determines the direction of movement. This search of the boundary

between feasible and infeasible regions is justified as in many non-linear op-

timisation problems at least some of the constraints are active at the global

optimum. This approach uses an initialisation procedure to generate feasible

points and genetic operators that explore the feasible region. The crossover

operator is able to create all points between the parents and small mutation

causes small change to the fitness function.

The drawback of this technique is that the genetic operators are highly

confined and problem specific. The second disadvantage is that many prob-

lems have disjoint feasible regions, of which only one would be searched.

Another example of this family of constraint obeying EA is decoders.

This is where the chromosome itself gives instructions on how to build a

valid solution (Coello Coello 2002). The job of the decoder is to create a

relationship is between a feasible solution and a decoded solution.

All of these approaches carry high computation costs. Another disadvan-

tage of modified operators and representations is the extra work that must

be done to maintain diversity. By preventing the creation of invalid solutions

and limiting the search space of the EA, the diversity is weakened which can

hinder the EA in its search to find a global optimal. This is problem specific
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so even small changes to the problem specification can mean the modified

operator/representation does not work.

2.4.4 Imposing Penalties

The third strategy that EA use to handle constraints is to penalise invalid

solutions by imposing a penalty. This penalty may either prohibit or decrease

the chance of the individual contributing to the next generation. There are

seven principal ways to penalise these solutions which range in severity of

and the way in which the penalty is imposed. The attraction of the penalty

method is problem generality. The method does not need to be adapted

for different problems. It is also biologically plausible as unfit individuals in

nature suffer some kind of survival penalty.

Death Penalty

The first form of penalty we look at is the death penalty. As the name sug-

gests this is the most extreme penalty which can be imposed on an individual.

Using this technique invalid solutions are eliminated from the population.

These solutions are identified as they break the problems hard constraints,

representing infeasible or non-valid solutions. One problem with the death

penalty technique is that it assumes that the population contains at least

one valid individual as otherwise the EA will not produce a solution. Obvi-

ously the death penalty is an extreme punishment on invalid solutions, less

extreme methods which impose penalties depending on the level of constraint

violation are shown in the following subsections.
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Static Penalty

While death penalties eliminate infeasible individuals from the population,

static penalties gradually phase invalid solutions out of the population. A

static penalty function reduces the fitness of solutions violating hard of soft

constraints. These penalised individuals therefore have a reduced chance of

contributing to subsequent generations. The penalty imposed increases as

the violation reaches higher levels. When the violation is severe then so is

the penalty but when the violation is minor the penalty is minimal. This

means that the individuals with a major violation are heavily penalised and

unlikely to contribute to further generations while individuals with few or

smaller violations will have a high probability of still contributing to further

generations but with a smaller probability than their valid counterparts.

The main disadvantage with this approach is the intricate formulae which

are used to calculate the penalty applied to the fitness of each individual.

These formulae require many parameters as seen in the technique proposed by

Homaifar et al(Homaifar, Qi & Lai 1994) where a problem withm constraints

needed m(2l +1) parameters.

Dynamic Penalty

This technique involves any penalty function where the current generation

number is used in some way to compute the corresponding penalty factors.

In general the penalty function increases over time\generations. This means

that violations in later generations are penalised in a stronger manner than

violations in earlier generations. As the EA closes in on a solutions constraint
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violations in this solution are less acceptable than in early generations when

the EA is examining all of the possible solutions as it may be more difficult

to find valid solutions earlier in the life cycle of the EA.

The problem with this technique is that it is difficult to produce good

penalty factors and as with static penalties, if a bad penalty factor is chosen

the EA could converge to non-optimal valid solutions or even worse, invalid

solutions.

Annealing Penalty

The annealing penalty like dynamic penalty changes the penalty function

- but in this case it happens when the algorithm has been trapped in a

local optimal. At each generation only active constraints are considered and,

similar to dynamic penalties, the penalty increases over time. This means

that invalid solutions are highly penalised at later generations.

This approach does not fit with the biological analogy of EA with nature.

As with the other penalty techniques the fine tuning of both the penalty

function and the fitness function can prove difficult.

Adaptive Penalty

Another dynamic style penalty, this technique, proposed by Bean and Hadj-

Alouane (Bean & Hadj-Alouane 1992) allows the penalty to loosen if the EA

is producing feasible solutions and to tighten when a high rate of infeasible

solutions are being created. The adaptive penalty technique takes feedback

from the search process. A parameter used in the penalty calculation formula
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is decreased if all individuals in the previous generation were valid. That

parameter is increased if all of the individuals were invalid and it is unchanged

if there were a mixture.

The problem lies in the choosing of the generational gap in which to

feedback this information and as like the other techniques it is difficult to

choose suitable values for the parameters involved in the penalty function.

Co-evolutionary Penalty

Coello Coello proposed a technique (Coello Coello 1999) where the penalty is

split into two values so the EA has information about the number of violated

constraints and also the corresponding amounts of these violations. As with

other co-evolutionary techniques there are two different population used in

this technique. The first population holds the individuals while the second

population encodes the set of weight combinations that would be used to

compute the fitness of the individuals in the first population. Therefore

the second population contains the penalty factors. The problem with this

technique, as with other techniques above, is the number of extra parameters

introduced and the difficulty in initialising these parameters with suitable

values. Ashish Mani and C. Patvardhan (Mani & Patvardhan 2009) suggest

a co-evolutionary algorithm which uses a self determining and regulating

penalty factor method as well as feasibility rules for handling constraints

however this still requires the computation time and implementation for the

upkeep of two populations.
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Segregated Genetic Algorithm

This technique proposed by Le Riche et al (Riche, Knopf-lenoir & Haftka

1995) uses two penalty parameters for each constraint. The aim of this is to

balance heavy and moderate penalties by maintaining two populations of in-

dividuals. When individuals merge they are segregated in terms of constraint

satisfaction. The problem occurs when you try to choose penalties for each

of the two sub-populations. While guidelines are available they are problem

specific, which means that this technique does not lend itself to becoming

problem independent.

Penalty Approach Summary

Penalty functions are the most common approach in the EA community to

handle constraints and, as shown above, there are a wide variety of penalty

functions to choose from. One of the disadvantages of the death penalty

is that it limits diversity across the population. The main drawback of the

static penalty function introduced is the high number of parameters required

while when using dynamic penalties it can be difficult to derive a good dy-

namic penalty function. It is also difficult to produce good penalty factors

for static penalties. The annealing penalty function shown is very sensitive

to the values of its parameters making it difficult to implement while choos-

ing the generation gap for the adaptive penalty function can also prove to

be troublesome. Co-evolutionary penalties introduce additional parameters

which adds to the complexity of the implementation as these need to be

tuned. Similar to this it is difficult to choose the penalties for each of the
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two sub-populations in the segregated genetic algorithm. For a recent survey

of penalty functions for constrained optimisation see (Yeniay 2005).

2.4.5 Repair Strategies

Repair is the final technique to enable EA to handle constraint based prob-

lems. Relatively little work has been done on repair, so little in fact that

in Neumann and Witt’s Bioinspired Computation in Combinatorial Opti-

mization (Neumann & Witt 2010) there was no mention of repair. In this

section we shall examine the area in greater detail as genetic repair strate-

gies are the focus of this thesis. While there are a variety of repair strategies,

the common thread is the repair of invalid individuals to turn these into

valid individuals. This means that individuals that disobey the problem

constraints are repaired in order to satisfy the constraints. These repaired

individuals can then be used in three ways. They can be used only for

evaluation purposes (Liepins & Potter 1991), they can replace their invalid

counterparts in the population (Nakano & Yamada 1991) or they can re-

place invalid individuals with some given probability(Orvosh & Davis 1993).

Repairing invalid individuals and returning them to the population is some-

times known as Lamarckian evolution. This idea is based on the fact that

individuals improve during their lifetime and these improvements are coded

back into the chromosome. However, Lamarckism (Houck, Joines, Kay &

Wilson 1997) specifically refers to traits that (already valid) individuals ac-

crue during their lifetime. (The repair strategy presented in this thesis is not

Lamarckian.) Alternative to the Lamarckian approach, the second heuris-
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tic approach to repair is called Baldwinian. Using this approach the EA

population does not change after the application of the repair heuristic and

only the fitness function is modified (Salcedo-Sanz 2009). Hisao Ishibuchi

and Narukawa (Ishibuchi & Narukawa 2005) use a partial Lamarckian repair

technique to enable EA to solve the multi-objective knapsack problem. This

greedy repair technique removes the heaviest items from the solution in order

to repair it. This technique is problem specific to the knapsack problem.

Salcedo-Sanz (Salcedo-Sanz 2009) published a survey paper giving an

overview of all of the important repair mechanisms enabling EA to handle

constraints in 2009. The first half of the paper examined repair procedures for

different representations while the second half of the paper described applica-

tions of different repair techniques. Salcedo Sanz divided the representations

into four distinct sections. These sections were Repair Procedures in Per-

mutation Encoding, Repair Procedures in Binary Representations, Repair

Procedures in Graphs and Trees and Repair Procedures in Grouping GAs.

In the repair procedures in binary representations Salcedo-Sanz describes re-

pair heuristics for fixing the number of 1s in binary representations and shows

examples of Hopfield Networks as repair heuristics. While describing repair

procedures in graphs and trees several issues related to the use of specific

representations of graphs and trees (specifically spanning trees) in evolution-

ary algorithms are discussed, and also how repair algorithms are sometimes

needed to improve the EA performance in these problems. As the repre-

sentation used for the experiments illustrated in this thesis is permutation

encoding it is this section that is of great interest.
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Repair Procedures in Permutation Encoding

Using a permutation encoding each solution is represented as an ordered list.

This is suited to a wide range of problems such as TSP and RNA folding

structure problem. The disadvantage of this encoding is that crossover pro-

duces invalid individuals so repair must be used if a modified crossover opera-

tor is not. Salcedo-Sanz describes two crossover operators which can be used

with permutation encodings to provide valid individuals. These crossover

operators are the partially mapped crossover operator (PMX) (Goldberg &

Lingle 1985) and the tie-breaking crossover (TBX).

To conduct PMX two crossing points are uniformly chosen, at random in

the parents. The corresponding genes are swapped between the two crossover

points. In each offspring the repeated genes outside of the genes that were

exchanged are located, and these are substituted by the corresponding genes

within the crossover points in the other individual. The rest of the genes

in each individual are maintained as they were before the crossover process.

With TBX a standard two-point crossover is performed. A new permutation

called crossover map is randomly generated. Each offspring is multiplied by

n (the length of the individual) and the corresponding gene of the crossover

map is added. The lowest number in each offspring is replaced by 1, the

second lowest by 2, etc.

While permutation encoding is used in this thesis no modified crossover

operator is used. Operators are therefore independent of representation and

problem domain leading to a constraint enforcing technique which will not

need to be adapted in a major way for different representations or problem
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sets. Instead a GeneRepair technique utilising non-Mendelian inheritance is

presented and later we will examine whether this can be used to enable EO

to solve constraint based problems.

Salcedo-Sanz went on to describe the applications of repair techniques us-

ing six subsections. Some applications of hybrid EA with Repair Techniques

were examined as well as Permutations and Binary Fix Encodings (which

included the TSP, RNA folding problem and Broadcast Scheduling Problem

in ad-hoc networks), Hybrid Hopfield Network Evolution Algorithms, Ap-

plications involving Repair Heuristics in Graphs and trees, Applications of

Hybrid Grouping Genetic Algorithms and Other Applications. Salcedo-Sanz

paper has reviewed (EAs) which use repair techniques for reducing the search

space size. These approaches have been called hybrid algorithms, to differ-

entiate them from memetic algorithms, which use local search procedures to

improve the objective function value of each individual in the EA. Interest-

ingly, he recommends that this paper could be used as a starting point when

investigating new repair techniques.

Davis and Orvosh (Orvosh & Davis 1993) proposed the technique of re-

placing only 5% of invalid individuals with their repaired counterparts. This

highly cited paper uses the rather complex Survivable Network Design Prob-

lem and the standard Graph Colouring Problem to compare the results pro-

duced by different rates of replacement of original chromosomes with their

repaired counterparts. The results produced are the findings when two dif-

ferent problem sets were tested using steady state GAs and are based on 6

CPU months of running data on a Symbolics 3630 Lisp machine. Orvosh

49



and Davis suggest that replacing at a 5% probability yields better results

than either always replacing or never replacing. Orvosh and Davis do not

detail the actual repair mechanism. We conjecture that this might involve

an heuristic repair process, reducing population diversity and necessitating

a low replacement rate.

Liepens et al (Liepins & Potter 1991) have used a different approach and

never return repaired individuals to the population. Instead, these repaired

individuals are used for evaluation and guidance of the EA. This approach

could be seen as somewhat co-evolutionary as the repaired individuals are

not part of the current population but instead guide the current population

towards a feasible search space. The problem used by Liepens et al was the

complex network design problem. While Orvosh and Davis suggest that this

was the correct method for the network design problem and agreed with the

findings of Liepens et al Orvosh and Davis still suggest that a 5% replacement

strategy should be used.

Michalevicz et al (Michalewicz 1996) however went on to propose that the

probability of repair should be 15% for best results in numerical optimisation

problems. The original Genocop (also Michalevicz) (for GEnetic algorithm

for Numerical Optimization of COnstrained Problems) system assumes linear

constraints only and a feasible starting point (or feasible initial population).

A closed set of operators maintains feasibility of solutions. GENOCOPIII

(Michalewicz & Nazhiyath 1995) uses repair by having two populations and

allowing the evaluation of individuals in one population to be influenced

by the results in the other. The first population has search points which
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obey the problems constraints while the second population consists of fea-

sible reference points. The reference points are evaluated by the objective

function but the search points are repaired for evaluation. It is shown that

GenocopIII is a promising tool for constrained nonlinear optimization prob-

lems. However, there are many issues which require further attention and

experiments. This paper addresses the 5% repair replacement suggestion of

Orvosh and Davis and suggests that it would be interesting to check this

rule in numerical domains. Handa et al (Handa, Watanabe, Katai, Konishi

& Baba 1999) also use a co-evolutionary technique whereby a population

called �H-GA�stores solutions and another population called �P-GA�stores

schemata. This complex co-evolutionary technique is quite complicated and

differs to the technique presented in this thesis as it uses two populations and

does not repair using non-Mendelian ancestral information. The repair strat-

egy presented in this thesis uses a repair rate of 100% as it is meta-heuristic

and allows sufficient diversity in the repair process.

Unfortunately repair algorithms tend to be problem specific and some

problems do not lend themselves towards easy repair of individuals which

can lead to high computational costs. The repair operator itself can also in-

troduce a bias which can skew the evolutionary process and greatly limit pop-

ulation diversity. As stated earlier repair strategies have not been researched

as much as other constraint enforcing strategies for EA as up to now the main

disadvantage attributed to genetic repair is its problem dependence(Michalewicz

& Fogel 2000). This is because most genetic repair operators are based upon

heuristics (Ahn & Ramakrishna 2002) (Arroyo 2002) (Bäck, Schütz & Khuri
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1995), (Nakano & Yamada 1991) (Orvosh & Davis 1993), (Walters 1998) that

are highly problem dependent.

Ahn and Ramakrishna (Ahn & Ramakrishna 2002) propose a repair mech-

anism for the Shortest Path Routing Problem which operates by searching

for nested loops within the solution and deleting the nested loop. Variable-

length chromosomes (strings) and their genes (parameters) were used to en-

code the problem. The crossover operation exchanges partial chromosomes

(partial routes) at positionally independent crossing sites and the mutation

operation maintains the genetic diversity of the population. The proposed

algorithm can cure all the infeasible chromosomes with a simple repair func-

tion. Computer simulations show that the proposed algorithm exhibits a

much better quality of solution (route optimality) and a much higher rate of

convergence than other algorithms. Among the authors of this paper it is felt

that the presented algorithm can be used for determining an adequate pop-

ulation size (for a desired quality of solution) in that routing problem. The

drawback of this mechanism is that it is problem specific. It is also different

to the repair strategy presented in this thesis as it repairs the individual by

removing nested loops while the repair strategy presented in this thesis uses

an archived ancestor as a template for repair.

Arroyo (Arroyo 2002) presents a heuristic repair mechanism to solve the

Unit Commitment Problem. This optimisation problem is large-scale, com-

binatorial, mixed-integer, and nonlinear. At the time of publication of this

paper (2002) exact solution techniques to solve it were not available. Aurora

presented a novel genetic algorithm using repair, which employed heuristics
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in order to achieve a near optimal solution to this problem. This optimisation

technique is directly parallelizable, with three different parallel approaches

being developed. The paper showed that the developed genetic algorithm

has been successfully applied to realistic case studies. While this mechanism

avoids high computation cost by exploiting parallel computing it is prob-

lem specific. This means that in order to apply this approach to a different

problem domain a large amount of modification would be required.

Back et al (Bäck et al. 1995) uses the non-unicost set-covering problem

to illustrate their repair technique. They compared the effectiveness of using

various stochastic operators: four different crossover operators are compared

to using a repair heuristic. Their repair heuristic transforms infeasible strings

into feasible ones. The stochastic operators are incorporated into GENEsYs

(Bäck 1992). This uses a simple fitness function that has a graded penalty

term to penalise invalid solutions. GENEsYs does not have any prior knowl-

edge of the problem except for the fitness function which means that this

strategy is less problem specific than other strategies we have examine so

far. When their greedy heuristic repair was compared to the death penalty,

the death penalty was far outperformed. They even went on to say that

while the solutions produced by the death penalty strategy were all feasible

they were nowhere near the quality of those produced by the greedy repair

heuristic. They also suggested that incorporating a simple repair method

into the evaluation of solutions improved the solution quality and caused the

GA to encounter better solutions than the greedy heuristic in most cases.

The paper, however, could not give a definitive answer on the rate of repair
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to use and suggested that further research is required to determine which

portion of infeasible solutions should be repaired.

Nakano and Yamada (Nakano & Yamada 1991) introduce a heuristic re-

pair mechanism to solve the job shop scheduling problem. The first serious

application of GAs to solve the JSSP was proposed by Nakano and Yamada

using a bit string representation and conventional genetic operators. Al-

though this approach is simple and straightforward, it was not very powerful.

Early approaches by the authors were active schedule-based GAs which are

suitable for middle-size problems. It became apparent, however, that it was

necessary to combine each with other heuristics such as the shifting bottle-

neck or local search to solve larger-size problems. The multi-step crossover

fusion (MSXF) was proposed by Yamada and Nakano as a unified opera-

tor of a local search method and a recombination operator in genetic local

search. This paper illustrated that the MSXF-GA outperforms other GA

methods in terms of the MT benchmark and is able to find near-optimal so-

lutions for the ten benchmark problems, including optimal solutions for five

of them. While this method produces excellent results (sometimes optimal)

it is unfortunately tailored to this specific problem.

Walters (Walters 1998) presents a repair technique for the TSP which

incorporates Soft Brood Selection. In brood selection, a pair of parents will

generate several children (a brood) and only the best one or two children will

be selected as offspring for the rest of the genetic algorithm. (�Soft�selection

refers to the fact that children are selected based on their fitness values rela-

tive to each other). Walters has called this algorithm Directed Edge Repair
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(DER) and it uses Nearest Neighbour Notation. The repair approach taken

in this paper assigns as many edges as possible from the original chromo-

some. If an edge from a particular city cannot be assigned to the tour, a new

directed edge from the same city is found, with a distance as close as possible

to the one specified in the original gene value. By attempting to assign edges

that are close in distance to the original values specified in the chromosome,

it is hoped that the final tour is close to the one originally described in the

genes. While this is a successful algorithm for solving the TSP it is problem

specific and further work is required to calculate the optimal brood size, while

identifying the required nearest neighbour can also be extremely expensive

for large problems.

Kuk-Hyun Han and Jong-Hwan Kim (hyun Han & Kim 2000) present a

novel evolutionary computing method called a genetic quantum algorithm

(GQA). This is based on the concept of principles of quantum computing.

The effectiveness and applicability of GQA are illustrated using the knap-

sack problem as the problem domain. The authors suggest that this GQA

method is superior to GAs using penalty functions, repair methods and de-

coders. GQA can represent a linear superposition of states and there is no

need to include many individuals. While this GQA technique does outper-

form penalty functions and some repair methods, it is moving away from the

analogy between natural evolution and EA which this thesis will extend.

Weimer et al(Weimer, Forrest, Le Goues & Nguyen 2010) combine evolu-

tionary computation with program analysis methods to automatically repair

bugs in off-the-shelf legacy C programs. The input to this technique is the
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buggy C code, a failed test case and a small number of other test cases

that encode the required functionality of the problem. Looking at this tech-

nique from an abstract view, the input of test cases that encode the required

functionality of the problem could be seen as the template. This repair tech-

nique does not rely on formal specifications. This paper is more focussed

on completing research which will eventually lead to the dream of automatic

programming, that is evolving new programs from scratch than the improve-

ment of EA to solve constraint based problems, but it does give us an insight

into repair techniques used to evolve legacy software.

Kimbrough and Wood (Kimbrough & Wood 2007) present a repair-by-

interpolation mechanism whereby a genetic operator takes as input two in-

dividuals with differing feasibility and outputs a pair (feasible or infeasible)

that differ by only a single bit. The authors view this as a valuable tech-

nique as any optimal solution is within a single bit of transitioning between

infeasibility and feasibility unless the constraints are irrelevant. This tech-

nique falls into the binary representation category described by Salcedo-Sanz

(Salcedo-Sanz 2009) and is implemented by a binary search along a path con-

necting the two inputs. This path is seen as a portion of randomly selected

gray code. The authors report that their exploratory research indicates that

this operator can find additional good and sometimes better solutions from a

randomly generated initial population. If the GA is run to maturity however

the technique is not particularly productive for the illustrated examples but

is said to be more useful than the GA on difficult problems. This technique

is representation specific and, as with other techniques described, does not
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build on the existing analogy between natural evolution and EA. However,

the repair technique presented in this thesis aims to extend the existing anal-

ogy and build upon the advances made in biology to enable the EA to solve

constraint based problems.

Craenen et al (Craenen, Eiben & Marchiori 2001) provide a broad de-

scription of the field of EA that address constraint based problems. Much

like Salcedo-Sanz (2009) this paper is an excellent starting point when trying

to research the field of EA and constraint based problems.

Eiben (Eiben 2001) also gives a description of definitions, research direc-

tions and methodology which is a valuable resource when conducting research

in this field. Eiben et al (Eiben 2001) describe EA for constraint satisfaction

problems as falling into two categories. The first category is heuristics that

can be incorporated in almost any EA component and the second category

is formed by adaptive features modified during a run. Eiben et al describe

repair as falling into the first category as repair techniques (as shown in

throughout this section) tend to rely on heuristics. The biologically inspired

repair strategy proposed in this thesis is different to the repair strategies men-

tioned as it is a meta-heuristic which means that it is concerned with the

representation space as opposed to the problem space. Eiben et al go on to

give three guidelines for future research into constraint handling mechanisms

for EA. These are as follows:

1. Use, possibly existing, heuristics to estimate the quality of sub-individual

entities in the components of the EA: fitness function, mutation and

recombination operators, selection and repair mechanism.
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2. Exploit the composite nature of the fitness function and change its

composition over time.

3. Try small populations and mutation only schemes.

The repair mechanism presented in this thesis used existing quality esti-

mate for the fitness function which in this case was the tour length as the

TSP problem domain was used as a testbed. While the composite nature of

the fitness function was not exploited and mutation only schemes would not

be suitable as the thesis presents a new repair technique, small populations

were examined.

Previous Work on GeneRepair

This thesis builds on previous work on GeneRepair. This work is described in

(Mitchell, O’Donoghue & Trenaman 2000), (Mitchell, O’Donoghue, Barnes

& McCarville 2003), (Mitchell 2005a), (Mitchell 2005b) and (Mitchell 2007).

In 2007 Dr. George Mitchell presented his PhD thesis (Mitchell 2007) enti-

tled Evolutionary Computation Applied to Optimisation Problems. In this

thesis Mitchell introduced the Genetic Repair technique which repaired in-

valid individuals in a population and incorporated GeneRepair results with

his work on Quality Time Tradeoff (QTT). In this thesis GeneRepair was

described as being a form of template driven repair. Template driven re-

pair uses a template to support the correction of an invalid individual in the

EO. In Figure 2.4 we can see that the Invalid Individual disobeys the TSP

constraints by having a duplicate City 2 and by omitting City 3.
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GeneRepair repairs invalid individuals by using the corrective template to

repair any invalidity identified in the invalid individual. The Repair Template

is shown on the right of the Figure 2.4. This is simply a sequence of all genes

required to solve this permutation problem. The template is valid as it does

not have any duplicate or missing cities. GeneRepair consists of two distinct

phases. The first phase of GeneRepair is called error detection. This phase

identifies genetic defects such as duplicate cities in the solution. The second

phase of GeneRepair is called Error Correction. This replaces the duplicate

City 2 which is highlighted with a red box with the missing City 3 which

is highlighted with an orange box. The repaired individual is produced by

using the repair template to repair any invalidity found to exist in the invalid

individual. The Repaired Individual is shown at the bottom of Figure 2.4 with

the newly inserted City 3 highlighted using a green box. This individual is

valid and can therefore rejoin the population and may be used to produce

further generations. The fact that this individual has been repaired does

not guarantee that it will contribute to the next generation. It simply gives

the individual an equal chance to that of every other valid individual of the

population, depending upon the selection operator being used.

Mitchell describes the GeneRepair technique as being a follow up to the

original CleanUp operator (Mitchell et al. 2000). This was a repair technique

originally designed to improve a genetic algorithm used to find solutions for

the TSP only. It was designed to replace the penalty function and improve

the computational efficiency of the GA. Following on from the original im-

plementation of the CleanUp repair operator, further work was initiated to

59



Figure 2.4: Basic Template Repair

implement a GA which relied solely on the repair operator to ensure solu-

tion validity (Mitchell 2007). This early repair operator was not related to a

natural process of repair but instead was a corrective function which trans-

formed invalid tours in the population to valid tours. In the investigation

of the template repair method Mitchell was focused on the results produced

by the repair templates rather than investigating the ease of use of the re-

pair templates themselves. Mitchell compared the results produced by seven

different techniques for generating repair templates. These were:

� Static Random Template: A random template is generated at the start

of the GA search and remains fixed thereafter

� Dynamic Random Template: A random template is generated for each
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invalid individual, thus each infeasible individual is repaired using a

different template

� Best Solution in Previous Generation

� Best Solution so Far: This is the best tour found in the GA search

� Fitter Parent

� Least Fit Parent

� Varying Combination on Each Generation: Randomly use any of the

foregoing template methodologies

As well as exploring two Mendelian forms of repair, Mitchell et al explored

several strategies that are not biologically inspired. Overall his results indi-

cate that the ”dynamic random template” produced the best result, echoing

the results of Lichtblau (2002). However, even better results were produced

by a random selection of all his techniques.

Mitchell et al (2003) extended the previous research (Mitchell et al. 2000)

on the repair operator and changed the name to GeneRepair. This method

could be seen to be a genetic repair approach as two of the seven templates

investigated use the parent as a repair template. This is directly inherited in-

formation relating the invalid individual and so could be seen to be analogous

with ancestral genetic information.

Mitchell describes three techniques for applying the templates (or three

scanning methods) which are Left-to-Right, Right-to-Left and Random Di-

rection. In this thesis I will also compare these three techniques for applying
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the repair templates. The pseudo code for the implementation of GeneRepair

is shown in Algorithm 2.1

Mitchell et al (Mitchell et al. 2003) the GeneRepair technique was pre-

sented and the problem sets used were the TSP and the VRP. The find-

ings suggested that a random template should be used in conjunction with

GeneRepair and also went on to investigate why GeneRepair is called upon

to a greater extent in early evolution as opposed to later in the evolution-

ary cycle. The authors also point out that GeneRepair is not an alterna-

tive to standard mutation. While Mitchell did carry out experiments and

publish findings (Mitchell 2005b) on this GeneRepair technique much of his

research focused on the cost benefit trade-off function. In (Mitchell 2005a)

presented a Distributed Parameter-Less GA which was used in conjunction

with GeneRepair and allowed its users also to achieve economically viable

results in a shorter space of time as a direct result of the GATermination

operator. This GATermination operator is a quality time tradeoff (QTT)

operator and was successfully been tested on the TSPLIB benchmark prob-

lem set where significant computation time could be saved. QTT simply

stops when it reasons there is little advantage in waiting for a better solution

by signalling to the EA when to quit. It does not produce superior solutions

and is simply a time-saving technique.

Mitchell concludes that a GA with Generepair consistently outperforms

all other GA approaches tested. He also concludes that a cost/benefit func-

tion (QTT Tradeoff) was developed which allowed the user to set his own

criteria in terms of quality and cost for the TSP GA configuration setting
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1 repeat

2 Select candidate from population P(i) based on order in

population (i, j = 0);

3 repeat

4 Generate random tour of cities to form the template;

5 repeat

6 Compare candidate city[j] with template, if city[j] in

template and is un-flagged then flag city[j] in candidate

solution and template;

7 until until all cities have been checked ;

8 If all cities in template and candidate flagged tour valid;

9 Else if unflagged cities in template;

10 repeat

11 Replace first unflagged city in candidate solution with first

unflagged city in template ;

12 Proceed in left to right manner replacing unflagged cities

with unflagged counterparts from template;

13 until until all cities in candidate solution are updated ;

14 Else if unflagged cities in candidate and template all flagged

repeat

15 Delete first unflagged city in candidate solution;

16 Proceed in a left to right manner deleting unflagged cities

17 until until all only flagged cities remain;

18 until until candidate solution validated ;

19 until until all candidate solutions validated ;

Algorithm 2.1: GeneRepair Pseudo code
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problem. His third finding was that optimal configuration settings (genetic

operators and parameters) for three TSP problem sizes were established from

a possible 250 million configurations. Mitchell proposed that the best single

template of those GeneRepair techniques investigated was the use of a dy-

namic random template. He showed that this technique produced superior

results to those produced when the parent was used as a repair template.

While the use of the fittest and least fit parent were compared as repair tem-

plate within GeneRepair the use of a random parent was not investigated.

While Mitchell did mention the exciting biological finding of non-Mendelian

inheritance proposed by Lolle et al (Lolle et al. 2005) his thesis did not ex-

plore the use of a non-Mendelian ancestral repair template with GeneRepair.

Perhaps this is due to the fact that this biological discovery was made close to

the end of his PhD research. Curiously, Mitchell found that the best results

were produced by the final strategy - a random selection of the listed strate-

gies. This is most interesting as the �dynamic random template�did not

produce the best result - thus �true�randomness must be excessive and this

reduced version of randomness outperformed true randomness. Therefore

Mitchell suggested that RTR is not best but something less than completely

random is better and he found this to be a random choice of the templates

compared. This finding provides some of the motivation for this thesis.

As far as the author is aware the non-Mendelian repair template mech-

anism presented in this thesis has not been investigated before, and non-

Mendelian inheritance has not been used for repair. During ongoing com-

munication with Dr. Lolle (University of Waterloo) it has become clear that
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such research in the computer science field is of great interest to those in-

volved in the research of non-Mendelian inheritance in the academic field of

biology.

2.5 Review

In this chapter I have explained how EA are used and how they are im-

plemented. We saw that the standard EA is ill-suited to solving constraint

based problems. For this reason there has been a large amount of research

into adaptations of the canonical EA which enable it solve constraint based

problems. This Chapter reviewed many of these techniques. While these

techniques are hugely advantageous by enabling the EA to solve constraint

based problems, they are also often problem specific and sometimes difficult

to implement. Many of the adaptations are not based on biological findings

and so do not belong to the analogy which is often used to describe EA. This

sometimes causes these techniques to be difficult to understand and recreate.

One common trait shared by the above reviewed papers is that they dispose

of a population when producing the next generation - in contrast we archive

some solutions for possible later inclusion in the population. Thus, a small

number of reasonably fit solutions may have a second chance of contribut-

ing at least some portion of their archived genetic material to (much) later

generations.
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Chapter 3

The Analogy Between

Evolutionary Algorithms and

Biological Evolution

3.1 Introduction

Evolution is the method by which a species is updated in order to exist within

its environment. Our understanding of evolution is based on the Darwinian

idea of Survival of the Fittest (Darwin 1872) (6th Edition). An individual

most suited to the environment will have a greater chance of survival and so

will have a higher probability of contributing towards the next generation.

This is a seemingly simple and successful algorithm. In this chapter I will

show the existing analogy between natural evolution and EA and how it

underpins our understanding of EA. I will then show my novel extension to
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this analogy which updates the analogy to reflect recent biological research

findings.

Analogies can be the foundation for inventions, a teaching tool and even

a problem solving algorithm. By making an inference based on analogy we

can expand our knowledge of a subject in a reliable way. The design of the

camera can be seen to resemble the design of the human eye. When people

are being taught about computers the CPU is often referred to as the brain

of the computer. In computer science analogies based on nature can be used

to solve problems. In this thesis I examine the analogy between nature and

Evolutionary Algorithms (EA).

By bridging the gap between EA and biology this chapter further ex-

amines the links between both disciplines and shows where each of the ex-

perimental parameters originate. This is of interest because knowing the

parameters biological counterpart may allow us to fine-tune these parame-

ters which can cause the EA to produce better results. The motivation for

examining the analogy is so that our EA can be extended in the correct

manner. To do this the current analogy between biology and EA needs to

be explored. This exploration can then extend our biological understand-

ing of Genetic Repair so that this information can be transferred to the EA

in accordance with this extended analogy. This correctly extended analogy

and computational model (EA + GeneRepair) will later be reviewed which

will generate some tentative inferences about the likely viability of Lolle’s

repair strategy in the biological setting. This extended understanding of EA

will be evaluated from both perspectives - the computations as well as the
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biologically inspired perspective.

3.2 Analogy - The Power of Comparing like

with Like

Analogy is a cognitive process of transferring information or meaning from a

particular subject (called the source) to another subject (called the target)

(Gentner 1983). In this thesis I use the analogy between nature and com-

puter science, specifically the analogy that can be drawn between the repair

mechanism of the Arabidopsis thaliana plant and the corresponding repair

mechanism that we add to the Evolutionary Algorithms.

In order to understand this analogy we must first have a brief under-

standing of what forms an analogical comparison between the source and

the target. For the sake of an illustrative example the human eye will be the

source and the basic camera will be the target. On the left of Figure 3.1

we see a basic diagram of the structure of the human eye. The eye is made

up of an opening or iris where light, that has bounced off the image, which

the eye is focusing on, enters the eye. This light is then passed through a

lens and reflected onto the light sensitive area at the back of the eye. The

eye lid serves as a protective layer over this sensitive lens. This is a basic

explanation of how the eye functions omitting several details such as focus,

aperture and the more biological details such as the function of the optical

nerve. If we now focus our attention on the right of Figure 3.1 we can see

a basic diagram for the standard camera. The camera has a shutter which
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Figure 3.1: The Structure of Camera and The Structure of the Human Eye

opens and closes. It also has a transparent protection layer which surrounds

the delicate lens. Light bounces off the subject and passes through the open

shutter onto the lens. The lens then refracts the image on the light-sensitive

film at the back of the camera. Again, this model is basic and does not in-

clude specific details about focus, aperture or image storage. We shall now

explore the details of the analogical comparison between the human eye and

the camera.The purpose of this section is to understand the analogy itself

rather that the structure of the camera per se. In Figure 3.1 the source (the

eye) and the target (the camera) of the analogy are pictured alongside each

other. In this figure we can see that various items in the source form a 1-to-1

correspondence to items in the target.

The art of analogy links the target to the source. This means that we

link the eye to the camera. To identify the individual comparisons that form

the overall analogy See Table 3.1
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Table 3.1: Analogy Between The Structure of the Eye and the Structure of

the Camera

The Eye (the source) The Camera (the target)

Eyelid Shutter

Iris Lens Cover

Lens Lens

Light Sensitive Layer Light Sensitive Film

Figure 3.2 shows the analogy between the eye and the camera. We can

see from this that the analogy has equated (or aligned) the pairs of objects,

with one object from the source aligned to one from the target.

The blue text in Figure 3.2 represents the parts of the eye in the analogy

while the black text represents the corresponding parts of the camera. The

purple text represents the relationship between the parts of the eye/camera

while the arrows show the direction of the relationship. For example the iris

(source) and the transparent lens cover (target) protect the lens of the eye

(source) and camera (target) respectively. Figure 3.2 therefore shows the

analogy between the eye and the camera as it might currently stand.

People often talk about wine tasting in terms of other concepts, while

deeper analogies underlie our conceptualisation of time. One interpretation

sees us as stationary and time moving past while another sees us actively

moving through time. Analogies enable us to gain as good an understanding

of a target subject as we have of the source. Analogies allow us to use our
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Figure 3.2: The Camera and The Eye Analogy

knowledge of one subject to quickly learn about a new subject. This is the

reason that analogies are often used as a teaching aid (Aubusson, Harrison

& Ritchie 1996). Analogies even allow us to reason about complex abstract

ideas in terms of more physical ones. In this thesis we attempt to extend the

analogy between EA and biology by using the complex information we have

about the biological side of the analogy to improve our understanding and

extend the EA side of the analogy. There are many more uses of analogies but

one major advantage is that analogies suggest inferences about the target and

often these can be useful, novel and even creative inferences (O’Donoghue

2007).
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3.3 Extending an Analogy

In Figure 3.2 I showed a mapping from the source to the target. In that anal-

ogy we note that there were no isolated unmapped elements in the source (the

eye). Analogical inference is the practise of extending the mapping between

the source and the target by transferring unmapped source information to

the target thus creating new inferences about the target. To conduct analog-

ical inference the �Copy with Substitution and Generation�(Holyoak, Novick

& Melz 1994) technique is used:

1. Identify extra information in the source which cannot be mapped to

the current information in the target

2. Copy the verbs from the source to create extra information in the target

and map the identified information in the source to this newly created

information in the target

3. Copy the nouns (connected to these verbs) to the target - adapting

them so that they are appropriate to the target

This method of analogical inference can be used to extend the analogy. In

our example, we know that glasses can be used to improve the ability of

the lens in the human eye. We can use this information as an analogical

inference to transfer this information from the source (the eye) to the target

(the camera). Glasses (an extra lens) can be used to improve the ability of

the lens in the eye. When we transfer this to the target we can say that an

extra lens can be used to improve the ability of the lens in the camera.

We can see that the piece of apparatus used in the target would be a zoom
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lens and can therefore extend the analogy using analogical inference, to state

that zoom lens corresponds to glasses. In Figure 3.3 we can see the extra

piece of information in the source, which is the glasses, and can then see the

inferred extra piece of information in the target, which is the newly added

zoom lens. Analogical inference has allowed us to extend our knowledge of

the target using extra knowledge of the source.

This extended analogy is illustrated in Figure 3.4. This diagram shows

the mapping from the source (the eye) to the target (the camera) including

the extra information which has been added.

This example shows the power of analogies. We began with a source and

a target, mapping the information from the source to the target. We went on

to identify extra information in the source. Using analogical inference this

information was transferred to the target. Creating this analogy has allowed

us to extend our knowledge of the target by using additional knowledge of

the source.

3.4 Analogy Between EA and Biological Evo-

lution

In this thesis I will extend the analogy between nature (source) and evolu-

tionary optimisation (target). A mapping between these two subjects already

exists as natural evolution has often been used to describe evolutionary op-

timisation, however new information has been identified in the source that is

not included in this analogy. Specifically we focus on the new information re-
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Figure 3.4: The Camera and The Eye Analogy with Analogical Inference

lating to the repair mechanism found in the Arabidopsis thaliana plant. I will

use the analogical inference approach to extend the analogy by incorporating

this repair mechanism found in the source into the target. By incorporating

this repair mechanism prior knowledge of the source is being used to extend

knowledge of the target in the same way as shown in the previous example.

3.5 The Existing Analogy Between EA and

Natural Evolution

Having seen the process of analogical inference applied to the eye, we shall

now see how this analogical techniques can be applied to the analogy between

natural and simulated evolution. This thesis investigates the new repair
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mechanism in EO resulting from the process of analogical inference. In the

same way as with the analogy between the eye and the camera we will now

examine the original analogy between the biological evolutionary process

(the source) and the EA (the target) - before the inclusion of the repair

mechanism. The first step in biological evolution can be seen to be the

first living organisms (or individuals) of the evolved species. In the EA

the Generate step corresponds to this as it is the first set of individuals

(solutions) created. In biological evolution some of these individuals will

go on to contribute to the next generation while others will not and in the

EA (target) this is the Select step. In the source the individuals mate or

outcross while in the target this is called Crossover. In biological evolution

a tiny portion of these individuals are mutated and this corresponds to the

Mutate step in the EA. This cycle is repeated in both the source and the

target. We can now see how each of the steps described in Section 2.2.2

correspond to biological evolution (the source). In Table 3.2 we can see each

of the items in the source and the corresponding item in the target.

While this analogy is broad and the resulting algorithm can be used in

many different situations (Fogel 1994) there are inherent limitations with this

existing analogy and so the existing structure of EA.

3.5.1 Drawbacks of Existing Analogy

The existing analogy which defines the structure of the EA does not exploit

recent advances in biological research. The original analogy can be viewed

as being based on evolution and how beings evolve in a natural environment.
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Table 3.2: Analogy between EA & Biological Evolution

Biological Evolution Evolutionary Algorithm

Gene City

Genotype Candidate solution (List of Cities)

Phenotype Solution

Variable Size population Fixed size Population

Fitness Optimality

Selection Selection

Outcrossing Crossover

Mutation Mutation

Homozygous Plant Single instance of each gene in solution

DNA Representation

Initial Population Generate Step
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Adaptations to the analogy (Coello Coello 2002) (See Chapter 2) have been

broadly based on improving the results produced and enabling EA to handle

constraints rather than starting by strengthening the analogy with nature.

Computer scientists have understandably focused on improving the algorithm

whereby the improvement is measured in its ability to solve problems.

EA were first introduced as a problem solving strategy mirroring how

nature solves problems. The reason for this is that natural evolution is a

most robust yet efficient problem-solving technique (Fogel 1995). The con-

centrated efforts to improve EA focused on one side of the analogy rather

than improving EA by building on the analogy using information known

about the source. This tangent unfortunately has led to many EA becom-

ing problem specific. EA can be difficult to adapt to solve a new constraint

problem - even if a similar problem has been previously solved.

My approach is to update the analogy to reflect biological advances since

the first EA development and then to use this updated analogy to produce

an EA which is not problem specific and is more suited to constraint based

problems than the current set of algorithms available. For a recent survey

on constraint handling in EA see (Salcedo-Sanz 2009) and Chapter 2.

3.6 Ancestral Repair in Arabidopsis thaliana

We will now look at the biological advances which, in the following section,

will be used to extend the analogy between nature and EO. Since the intro-

duction of the field of evolutionary optimisation there have been many vari-

ations on the original idea (Coello Coello 2002) (Michalewicz 1995). While
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the variations may enable the algorithm to solve different problem types or

to go about solving problems in a slightly different manner the fundamentals

of the algorithm (Fogel 1994) remain the same.

Since these steps were developed research has also continued on the other

side of the analogy. Biologists have made ground breaking advances from

sequencing the human genome (1000 Human Genome Project) to cloning

a sheep (Campbell, McWhir, Ritchie & Wilmut 1996). In 2005 one such

ground breaking advance was described in a peer reviewed research paper

published in Nature (Lolle et al. 2005). This paper described the investi-

gation into non-Mendelian repair in the Arabidopsis thaliana (A. thaliana)

plant. It is called non-Mendelian as it disagrees with the findings laid out

by Gregor Mendel (also known as the father of modern genetics) in 1865

(Mendel 1865). This paper outlined Mendel’s experiments (which were car-

ried out over eight years) tracking seven different characteristics in over

33,500 pea plants. Mendel showed that some parent plants could produce

progeny that did not resemble either parent. Mendel predicted that this was

due to traits which were recessive (or hidden) behind the dominant round

trait. He also determined that each parent had to have two copies of each

trait, one of which was passed down to the offspring. This became known as

the Principle of Independent Segregation (or Mendel’s Law of Segregation)

and states that each allele, or copy of a trait, has an equal likelihood of being

passed on to the progeny. Therefore, when both parents have only domi-

nant genes, the progeny will all be dominant and when both parents have

only recessive genes, the progeny will all be recessive but if both parents
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Figure 3.5: Arabidopsis thaliana

have both types of genes, then the progeny will have varying combinations

of these genes in different proportions.

A. thaliana is a model plant widely used in genetic studies, having a num-

ber of qualities that make it attractive for genetic study. It has a relatively

short genome with about 157 million base-pairs encoding 27,000 genes and

was the first plant to have its entire genome sequenced in 2000. Addition-

ally its very fast life-cycle of around 6 weeks from germination to mature

seed makes it ideal to longitudinal study and allows comparison of multiple

genomes from the same species.

In the 2005 article in Nature it was suggested that some offspring of this

plant inherit genetic material from individuals other than those of the direct

parents (Lolle et al, 2005). This paper attracted a great deal of attention,

with letters expressing both supporting (Weigel & Jürgens 2005),(Chaudhury

2005), (Ray 2005) and contrary opinions (Peng et al. 2006) (Mercier et al.
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2008).

The findings that lie at the centre of this paper relate to the HOTHEAD

(HTH) gene of A. thaliana, which impacts on formation of the flower and

epidermis (Figure 3.5). Mutated forms of this HOTHEAD gene (labelled hth)

result in a malformed flower (Figure 3.6). Individuals were studied that had

the hothead mutation (hth) on both of their DNA strands (these plants were

homozygous for this recessive mutant allele). When these hth mutants were

allowed to self-fertilise, amazingly around 10% of the progeny were of the

wild type (HTH) (See Figure 3.7) - even though this genetic information was

not detected in either parent!

In Figure 3.8 the crossover of a wildtype (HTH ) and mutant (hth) A.

thaliana is shown. The three possible offspring are HTH/HTH, HTH/hth and

hth/hth where hth/hth is the mutant plant as shown in Figure 3.6. When two

of these pure mutants (hth/hth) are crossed over the result is shown in Figure

3.9. Following Mendels theories we can predict that since each parent has

only the mutant copy of the gene, all progeny should inherit those mutant

copies. In this Figure it is shown that approximately 90% of the time a

mutant plant (hth/hth) is produced as expected. Surprisingly, as illustrated

in the Figure, approximately 10% of the time the wildtype flowering (See

Figure 3.7) A. thaliana (HTH/hth) is produced. This illustrates the plant

using the genetic �cache �of information to revert back to the preferred state.

This use of information not present in the parent illustrates non-Mendelian

inheritance. This 10% rate of correction is a far higher rate than can be

accounted for by random point mutations, which would generally occur with
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Figure 3.6: Arabidopsis thaliana - hth Mutant

Figure 3.7: Arabidopsis thaliana - HTH Wildtype

a frequency of the order of 1 per billions per allele per generation (Weigel and

Jrgens, 2005). These findings are not consistent with the standard Mendelian

model of inheritance (as shown in Figure 3.8) and led to the controversial non-

Mendelian theory - for an accessible overview of these findings see (Agrawal,

2005).

Lolle’s explanation centres on a genetic repair process that restores the

normal HTH allele using an ancestral repair template. Lolle posits that each
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plant carries an additional �cache�of genetic information derived from each

individual’s ancestors. This cache is then used to drive a template-directed

repair process, which restores the validity of these mutant individuals. While

most explanations for this non-Mendelian inheritance rely on RNA mediated

inheritance (Rassoulzadegan, 2006), our model is akin to the archival DNA

explanation offered by (Ray, 2005). Ray suggests a form of encrypted DNA

records the ancestral genomic data that supports the repair process. This

archival DNA is not responsive to the techniques such as Southern blotting

or PCR that are used to process DNA1.

Figure 3.8: Normal Mendelian Inheritance

This advance in biological research suggests one method which has been

proposed to be used in nature (Lolle et al. 2005) for correcting genetic defects

or errors. This method allows many erroneous individuals to fix themselves

1This information is result of knowledge gained while working in Dr. Susan Lolle’s lab

during Summer 2009 under a scholarship awarded by ICUF
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Figure 3.9: Non Mendelian Inheritance

and return to the population.

This advance however was widely disputed in the academic field of biology

(Peng et al. 2006) (Mercier et al. 2008). Until such a time as supporting

results are produced this theory can be viewed as a tentative hypothesis.

This thesis investigates whether this proposal, when implemented as part

of the overall analogy, can enable EA to produce solutions to constraint based

problems. I investigate whether non-Mendelian ancestral repair templates

are useful in the field of Computer Science when compared to Mendelian

templates. This thesis is concerned with the impact of ancestral repair on

the field of EO regardless of whether the proposal is further supported or in

fact disproved.

In the overall analogy this proposed repair mechanism in the A. thaliana

could be viewed as a repair mechanism to enable individuals to repair them-

selves in order to continue in the environment. This method may allow the
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EA to produce valid solutions to constraint based problems by fixing invalid

solutions.

In the Arabidopsis thaliana plant a known mutation is a glue like sub-

stance on the leaves which prevents the plant from blooming fully. This

mutation is called �organ fusion�and allows pollen to germinate on all plant

surfaces as opposed to the usual case where it can only germinate on the

stigma. Another mutation spotted in this plant is double flowering. Neither

of these mutations in the A. thaliana cause the plant to be invalid though

they do make it more difficult to propagate. For this reason the mutation

method used in the EO presented is a validity preserving mutation method

(swap mutation). This method mutates a small percentage of individuals to

maintain diversity but does not cause individuals to become invalid.

I have adapted the standard evolutionary algorithm to include this repair

method or GeneRepair which is modelled on (but not identical to) that found

in nature in the A. thaliana plant and is now found in the EA (FitzGerald

& O’Donoghue 2008). Our EA will now maintain the normal population as

well as an ancestral archive for each individual. This archive will be used to

carry out GeneRepair on invalid individuals.

Thus far we have seen how the original analogy between EA and natural

evolution was created and developed over time. Unfortunately this EA is

unsuited to solving constraint based problems and has not been updated

to mirror biological research in the same way that it mirrors advances in

computer science research. I will now look at how the original analogy can

be updated to incorporate this new exciting advance in biology. In order to
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adapt this new feature the links in the analogy between nature and the EA

must be extended. I can now clearly identify a link between constraints in

the EA and in nature. I am going to investigate if this repair mechanism can

be adapted and applied to the task of handling constraints with an EA. I

will now explore the possibility of this expanded analogy by examining both

sides of the analogy.

3.7 Extending the Evolutionary Analogy to

Include Genetic Repair

While EA are efficient at solving large complex problems they are ill-suited

to solving constraint based problems (Eiben 2001). When constraints are

broken EA do not have an innate repair mechanism. This thesis presents a

novel approach which adapts the standard EA which we hope will allow it

to produce valid solutions to constrained problems efficiently by mirroring

nature. The EA can now incorporate the natural repair mechanism found in

the A. thaliana plant and this further strengthens the analogy between EA

and biological evolution. The extended analogy can be seen in Table 3.3.

The constraints facing our sample problem domain (the TSP - See Section

2.3) are prohibition of duplicate cities as well as the inclusion of all cities.

This means that each city must appear in a tour once and once only. If

these constraints are broken the individual is no longer valid. A constraint

violation of this type could be introduced during the crossover phase of evo-

lution or during the mutation phase. The constraints that we see on the A.
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Table 3.3: Extended Analogy between EA with GeneRepair& Biological Evo-

lution

Biological Evolution Evolutionary Algorithm

Genetic Error Missing Sequence

hothead hth mutants Invalid Solution (tour)

Non-Parental Sequence Restoration City Re-insertion

Genetic Repair by restoration GeneRepair

DNA/RNA Cache Complete Solution Cache

thaliana is that it produces a wildtype offspring rather than a mutant. That

is, A. thaliana always tries to generate a feasible plant. While the mutant

offspring is still valid the wildtype is seen to be fitter biologically as it has

a much higher chance of reproducing. The mutant offspring (as described

above), also known as a �fusion mutant�allows germination to occur on the

full plant surface rather than restricting it to the stigma. This type of muta-

tion breaks the validity constraints and causes the individual organisms to die

during construction as this is a non-viable phenotype construction. Typically

infeasible individuals are marked in nature by �abortion events�where there

is a failure to construct a valid phenotype from the genotype. Genetic repair

appears to be one means of correcting some of these infeasible individuals.
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3.8 Dealing with Constraint Violations

In the previous section I have mentioned that constraint violations can be

easily introduced to the population of the EA. Similar to this, constraint

violations can also be easily introduced into the A. thaliana causing it to

produce a fusion mutant offspring. The way in which the A. thaliana repairs

this constraint violation is to use information from a generation previous

to the parent as a template. Repair in the A. thaliana plant appears to

occur when the mutant creates offspring while repair in the EA will occur

the instant the mutant is generated BEFORE it enters the population. This

means that there is a generation of delay allowing the mutants to form in

the A thaliana life cycle but the mutants are prohibited from forming in the

EA.

This proposed repair information of the A thaliana is inherited through

a Non-Mendelian inheritance process which means that it is not inherited

from the parents as you might suspect. This means that the erroneous in-

formation was inherited as normal in the construction of the offspring while

the genetic information used to carry out the repair was not inherited in the

same Mendelian way. The genetic information used to carry out the repair

is seen to exist in the grandparent of the individual but may have originated

in a generation previous to this.1 This template is used as a type of cache to

repair the violation. The plant then produces an offspring which has reverted

back to the non-mutant form and does not possess the fused organs(As shown

in Figure 3.5. The details of how exactly this is performed in the A. thaliana

1Personal communication with Dr Susan J. Lolle
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are not completely clear as research is ongoing.

The novel approach addressed in this thesis to enforce constraints in EA

is to use a previous generation as a repair template to correct constraint vi-

olations. In order to do this I store the ancestors of each individual in the

population. In this thesis I compare their use as repair templates and examine

which template should be used for various conditions. The A. thaliana plant

was shown to have a parallel path of inheritance. Robert Pruitt used this term

in an interview with the Washington Post which appeared on March 23rd

2005 to describe what appears to occur in addition to standard Mendelian

inheritance, where information from generations previous to the parent is

used to ensure that constraints are obeyed in the newest generation. This

has been mirrored in the EO presented which uses generations previous to

the parent as templates to repair constraint violations in the newest genera-

tion. This strengthens the analogy between EA and biological evolution by

enforcing the same method of constraint violation repair. This analogy gave

us an inference and motivated us to investigate whether the ancestral repair

generates strong solutions.

3.8.1 Representation

Representation is the word given to describe how individuals are depicted in

the environment. This representation is part of the overall analogy so in this

subsection I will show the representation of the A. thaliana and the corre-

sponding representation of the individuals in the presented EA. A. thaliana is

made up of approximately 157 million base pairs and 5 chromosomes encod-
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ing 27,000 genes. Each individual in the EA represents a tour or a possible

solution to the TSP in the case of experiments illustrated in Chapter 5. This

means that each individual contains all of the cities in the order that they

are visited. The cities are represented by integers for ease of computation

(as suggested by (Luger 2002) on p 476).

3.8.2 Fitness

Fitness is a measure of the health or strength of an individual. The for-

mula to determine the fitness of an individual (fitness formula) is completely

dependent on the environment where the individual exists. The fitness of

the A. thaliana is measured by testing if the plant is alive or dead and how

well it survives. The fitness of living plants could be equated to one while

the fitness of dead plants could be zero. It could also be said that when

the mutant A. thaliana is compared to the wildtype, wildtype is seen to be

fitter. Similarly, the fitness of each individual in the EA is the calculation

of its tour length. Shorter tours represent higher fitness while longer tours

have lower fitness. This problem (the TSP) can therefore be described as a

minimisation problem as the goal is to minimise the cost function. In the

EA the fitness function adds the distance between each set of neighbouring

cities, including the distance from the last city back to the starting city to

give the tour length or fitness of the individual.
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3.8.3 Optimisation

Optimisation is the term given to the improvement of the population in an

EA. In biological evolution this would be the improvement of the A. thaliana

plant in comparison to previous generations competing for the same resources

and within the same space. This is the fundamental idea behind evolution -

there are occasional large improvements with small genetic drifts in between

over a large number of generations. As explained previously the theory of

natural selection and survival of the fittest suggests that as a species evolves,

it becomes stronger in relation to the environment in which it exists. The

evolution of the EA can be shown by Holland’s Schema Theorem which

states that short, low-order, schemata with above-average fitness increase

exponentially in successive generations. This is the EA counterpart to the

notion of survival of the fittest.

3.9 Conclusion

Many Computer Science inventions and theories are based on analogies with

biology. The design of the SLR camera can be seen as being closely related

to the design of the human eye. The motherboard in a standard desktop

computer can be seen to be the brain while the hard-drive is often described

as memory. Evolutionary computation is no different in that it is analogically

linked with natural evolution. In this chapter I have shown the pre-existing

analogy between evolution in nature and EA. While the computer science

and biological side of the analogy have been researched in great detail the
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central analogy has remained the same. This means that the drawbacks of

EA remain although the EA may be adapted to enable them to produce

valid solutions to constraint based problems. I have updated the analogy to

reflect advances in biological research with the introduction of a natural non-

Mendelian repair mechanism (Lolle et al. 2005) proposed in the Arabidopsis

thaliana plant. In this chapter I have presented the two sides of the analogy

in the form of representation, constraints and basic evolution between the

EA and the Arabidopsis thaliana plant. I have shown how many properties

of the EA have a real-life counterpart in the Arabidopsis thaliana plant. The

implications of this analogy will be investigated and tested throughout the

thesis to show how it enables EA to handle constraints in a similar manner

to that of the Arabidopsis thaliana plant. In order to concrete this analogy

with the reader I have created a simple reference table (See Table 3.4) to

show the computer science and biological evolution counterparts to terms

continuously mentioned throughout the thesis.

In Chapter 4 I will show how this new addition to the analogy is imple-

mented. I will explain the process of GeneRepair and investigate whether it

can adapt EA to produce valid solutions to constraint based problems. In

this following chapters I will investigate a central tenet of Lolles controversial

hypothesis - whether repair using a non-Mendelian template outperforms the

Mendelian alternative, for computational problems.
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Chapter 4

The GeneRepair Operator

4.1 Introduction

Evolutionary algorithms (EA) are problem solving techniques often viewed

as being analogous with natural evolution. EA are used successfully by com-

puter scientists to solve a wide range of different problem sets but are ill-

suited to constraint based problems (Eiben 2001). A recent biological sug-

gestion has enabled the extension of the analogy between nature and biology

which might enable EA to handle constraint based problems. In Section 3.6 I

explained the biological research which has proposed a new and controversial

genetic repair hypothesis in the A. thaliana plant. I will now introduce the

repair operator which attempts to mirror this repair process within the EA.

This repair mechanism enables the EA to produce valid solutions to con-

straint based problems as errors introduced to the population are no longer

a critical issue.
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4.2 Introduction of Validity Errors

An analogy exists between natural evolution and artificial computer based

evolution. In Chapter 3 we saw that since EA were created a repair mecha-

nism was not generally incorporated. This means that EA did not incorpo-

rate a way to repair errors in individuals. An error is a constraint violation

in the individual thus causing the solution to be invalid. These constraint

breakages or invalid individuals are easily produced as I shall now illustrate.

Figure 4.1 (top) shows two individuals in a population that will be crossed

over to create two new offspring. Each of these individuals represents a six

city solution to a TSP problem. The constraint of interest for this problem

is that each city must appear once and only once in each solution.

Figure 4.1: Parents A and B with Offspring AB and BA

Figure 4.1 (bottom) shows the two offspring produced by Parent A and
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Parent B, using single point crossover, where the crossover point in the par-

ents is illustrated by a grey line. These offspring do not break any of the

problem constraints and so it would appear that this algorithm is able to

successfully produce solutions to a constraint based problem.

In the next example we will see that the validity of the solutions produced

by crossover cannot be guaranteed. If we look at Figure 4.2 we see Parent C

and Parent D produce two offspring with single point crossover. The offspring

in Figure 4.2 break the problem constraint as City 2 appears more than once

in offspring CD and also City 3 appears more than once in offspring DC.

CD also breaks the problem constraint as City 3 does not appear and DC

breaks the problem constraint by not containing City 2. It should be noted

that with this fixed length representation, for each duplicate city constraint

violation there is also a missing city constraint violation. The individuals

CD and DC can therefore not be used as their fitness cannot be assessed, nor

can they produce feasible offspring.

A number of techniques have been introduced to counteract this problem

and allow EA to handle this invalidity, as discussed in Chapter 2. The

technique developed and explored in this thesis is not only suitable for many

problems it is also based on nature. It extends the underlying analogy by

incorporating new biological information into the analogy and producing a

new extended and cohesive model for EO.

This section has shown how constraint violations are introduced using

standard single point crossover. The second way for errors to be introduced

to the population is through point mutation. Holland said of mutation that
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Figure 4.2: Parents C and D with Offspring CD and DC

�Though mutation is one of the most familiar of the genetic operators, its

role in adaptation is frequently misinterpreted. In genetics, mutation is a

process wherein one allele of a gene is randomly replaced by (or modified to)

another to yield a new structure.�(Holland 1975) Point mutation, which is

a specific type of mutation, can introduce errors to the individual. Point

mutation replaces an arbitrarily chosen allele with a different allele. In a

binary representation point mutation flips the identified bit so if it is a 1 it

would change to a 0 and vise versa. In the representation used in this thesis

where the individual is an ordered list of integers the identified allele would

be replaced with a different integer (such as a positive integer within the

required range). This mutation would frequently cause a duplication error

which is a constraint violation. In the experiments described in this thesis I

have not used point mutation but instead have used swap mutation. As the
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name suggests swap mutation swaps two alleles in the individual which does

not break the problem constraints as no errors are introduced though this

method (Luger 2002). The reason that swap mutation was chosen over point

mutation is so that the focus is on repairing errors arising from crossover.

Swap mutation also fits into the underlying analogy.

4.3 Impact of Errors on Fitness

Each individual in the EO population has an associated fitness value. The

fitness of the individual is a rating depending on the suitability of the individ-

ual to the environment. If Individual A has a better or stronger fitness than

Individual B this means that Individual A is a superior solution to the given

problem and is more suitable to the current environment. To illustrate this

we can compare the fitness of two individuals in our given TSP. The fitness

of each of these individuals is a calculation of their tour length. Therefore

the fittest individual will be the individual with the smallest �cost�for this

minimisation problem (FitzGerald & O’Donoghue 2008). In a maximisation

problem the individual with the highest fitness value would be the fittest

individual in the population.

In Figure 4.3 a 6 City TSP is shown. The objective is to find the shortest

route that visits each of the cities once and once only. In Figure 4.4 a

possible solution to this problem is illustrated. In Figure 4.5 the optimal

route is shown. The individual representing the tour shown in 4.4 would

have a larger cost than the optimal tour shown in Figure 4.5. The reason for

this is that the fitness for this problem represents tour length and the tour
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Figure 4.3: Travelling Salesman Problem - Sample 6 City Problem

Figure 4.4: Travelling Salesman Problem - Sample 6 City Tour

Figure 4.5: 6 City TSP Optimal Route

in Figure 4.4 is longer than the tour illustrated in Figure 4.5.

If a constraint was broken in one of these solutions and a city appeared

twice, this would often lower the distance travelled and so produce a low tour

length. This is particularly true when a city and its duplicate appear adja-
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cent to one another on the tour as one inter-city distance will have the null

cost of 0. This would make the invalid individual appear to be fitter than the

other valid individuals potentially increasing its impact on subsequent gener-

ations. This is one of the reasons that repair (or another constraint handling

mechanism) is extremely important. It prohibits false positive fitness values

from being created.

4.4 The GeneRepair Adjunct Operator

GeneRepair is the biologically inspired technique used in conjunction with EA

to repair invalid solutions in the population allowing them to be reintroduced

to the population of feasible solutions. The technique is based on the Non-

Mendelian repair technique proposed for the A. thaliana plant (Lolle et al.

2005).

This technique builds on previous research into template directed repair

by Mitchell et al (See Section 2.4.5) in 2000 which introduced a cleanup

operator to repair invalid solutions. GeneRepair uses ancestral information

to replace invalid alleles in an individual. In its simplest form, ancestral

repair simply replaces any erroneous alleles with a corresponding allele from

an (ancestral) repair template. We know that it has been proposed that

the A. thaliana uses non-Mendelian ancestral information to repair invalid

genes so GeneRepair also explores the use of non-Mendelian information as

a template for repair. When an invalid (duplicate) allele is detected it can

be replaced by another allele from the repair template. As shown previously

the standard EO has five steps (Fogel 1994), three of which are repeated
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for some number of generations. GeneRepair fits into these steps to allow a

standard EO to handle problem constraints:

1. Generate

2. Select

3. Crossover

4. Mutate

5. GENEREPAIR

6. Repeat Steps 2 - 5

We decompose this new adjunct genetic operator (GeneRepair) into two

distinct phases of error detection followed by error correction.

4.4.1 Error Detection

Error detection occurs whenever the genotype cannot generate a valid phe-

notype. That is, the solution generated is not a valid, complete or usable

solution to the given problem. In our TSP representation erroneous alleles

are identified as duplicate cities. However different representations may re-

sult in different invalidity signatures: missing cities or cities not within the

range of the given problem. This process may also identify the specific alle-

les (or sequences of alleles) that will undergo repair. Error detection can be

seen as metaheuristic as it makes few direct assumptions about the underly-

ing problem and could be based on �phenotype �construction. In Figure 2.4

101



(Section 2.4.5 of Chapter 2) error detection identifies a constraint violation

because there is a duplicate of City 2 in the invalid individual. Which of

these will be replaced is arbitrated by the direction of detection and this will

be explained in Section 4.7.

4.4.2 Error Correction

In Section 2.4.5 we saw how Template Repair uses a repair template to sup-

port the correction of an invalid individual in the EO. In Figure 2.4 (Section

2.4.5 of Chapter 2) a template was used to repair an invalid individual. This

template was simply a valid individual. GeneRepair is a form of template

repair in that it uses a template to advise the EO on the properties of a valid

individual. In this thesis we modify template repair so that it does not use

a static sequence as the repair template. Instead the template is a direct

ancestor of the individual being repaired. This means that the template can

change from one generation to the next. The order of items in the GeneRe-

pair template (the location of each element within the template) also dictates

the repaired individual. Different templates and corrective strategies yield

different solutions. Using the alternative constraint handling mechanisms in-

dividuals with a small constraint violation could be lost forever but GeneRe-

pair restores these individuals to full validity enabling them to participate in

the population. Now we will look at how this dynamic version of GeneRe-

pair repairs invalid individuals. GeneRepair archives the ancestral data of

the individual and uses this as the repair template. This thesis explores and

compares the relative efficiency of different templates.
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4.5 Repair using the Parent template

We have seen how repair templates can be used to enforce constraints on

individuals. This section shows an example of how an ancestral repair tem-

plate can be used in a similar way to repair errors in an invalid individual.

Previously, in Figure 4.2 it was illustrated how two parents could produce

invalid offspring during crossover. So, to repair Offspring DC from this Fig-

ure we can use one parent as a template for repair. However, there is a

choice of two parents, Parent C or Parent D, to act as a template. For this

example I shall randomly choose Parent D. (Later in this thesis I will explore

this choice by comparing the use of different ancestors and investigating the

results produced.) Figure 4.6 illustrates how Parent D and Offspring DC

(from Figure 4.2) have been identified as the Repair Template and Invalid

Individual respectively.

GeneRepair first implements Error Detection to detect the constraint

violations in the individual. This detection phase identifies that City 3 is

a duplicate and therefore an error. GeneRepair then implements the Error

Correction phase. This step replaces the error City 3 with the missing City

2 using the Repair Template to dictate the order of the elements repaired. In

Figure 4.7 we can see that City 3 is identified as an extra city in the Invalid

Individual ( highlighted with a red box). As City 3 is a duplicated there is two

City 3s that could be detected as the error. The direction of error detection

arbitrates which City 3 is the error and this will be explained in Section

4.7. As we will see in later chapters the �direction�of GeneRepair impacts

directly on the final solution and shall be explained and explored in later
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Figure 4.6: Parent Template Repair - Template and Individual prior to Re-

pair

sections. The identified duplicate is then replaced with City 2 from the Repair

Template (the Parent) which is highlighted with an orange box. We can see

the previously missing City 2 is now present in the Repaired Individual as

highlighted with a green box. The Repaired Individual now obeys the problem

constraint. This repaired individual has been transformed using GeneRepair.

The GeneRepair technique used the Parent D as a repair template to correct

the invalidity on the Offspring DC. This Repaired Individual now replaces

the Invalid Individual in the population.
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Figure 4.7: Parent Template Repair

4.6 Ancestry

A. thaliana uses non-Mendelian information to repair invalidity found in the

offspring. The information used to repair this invalidity, also known as the

�cache�, is the plant’s repair template. It is a central claim of Lolle’s hypoth-

esis that this repair template information does not originate in the parent

but is present in the grandparent (Lolle et al. 2005). In order to incorporate

an analogous strategy into the EO, the GeneRepair technique can use the

parents, grandparents or great-grandparents as a repair template. Each of

these generations are stored by the EO along with the present generation.

These templates can then be used as repair templates in the same way as the

parent was used as a template in Section 4.5 so that the efficiency of each

template can be compared.
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In Figure 4.8 we can see how the parent, grandparent or great-grandparent

can be used as repair templates to repair the invalid individual. In this

example there is only one error and the choice of template does not affect the

resultant Repaired Individual. In reality the invalid individual being repaired

would often have more than one error and so this thesis investigates whether

the choice of template will directly affect the resultant repaired individual.

Figure 4.8: GeneRepair - A choice of Ancestral Repair Templates

4.7 Direction of Error Detection

As shown in Section 4.4 GeneRepair has two phases, error detection and

error correction. When the errors in the individual are repaired the resultant
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individual will depend on a number of different variables such as the template

used. Another such variable that impacts on the resultant individual is the

direction of repair. For example in Figure 4.9 we can see that the City 2

appears twice. This has been detected as an error during the error detection

phase as the problem constraint states that each city must appear once only.

Whether the red City 2 or the blue City 2 in the diagram are replaced

depends on the direction of repair, specifically, on the direction of the error

detection process. The GeneRepair model always starts at one end (City

0 or City (n-1)) and works either from left-to-right or from right-to-left.

The only exception to this is when Reduced Redundancy Representation is

used (See Section 5.6.1) in which case it starts from City 1 or City (n-1).

During traversal of the solution, it is always the 1st instance of a city that is

encountered which is tagged as the duplicate.

If error detection is carried out in a left to right direction, the resultant

individual will be the Repaired Individual A illustrated in Figure 4.9. This

is because City 2 (in red) has been identified as a duplicate city during the

error detection phase of GeneRepair.

If the repair however is carried out in a right to left direction the resultant

repaired individual will be the Repaired Individual B as illustrated in Figure

4.9. This is because GeneRepair scans the Invalid Individual from right to

left and replaces the first instance of the identified duplicate, in this case

City 2 (blue), found. Figure 4.9 illustrates the effect of repair direction

where one error is being repaired. As the number of errors increases the

difference between the repaired individuals would be much greater. In Figure
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Figure 4.9: GeneRepair - Effect of Repair Direction

4.10 we can see an individual with two City 3s and two City 5s. Whether

the cities surrounded by the blue boxes or the cities surrounded by the red

boxes will be replaced depends on the direction of detection. Each identified

duplicate is replaced with the first Missing City found in the repair template.

This is illustrated in Figure 4.10. We can see from this Figure that the

resultant individuals would be drastically different depending on which alleles

are repaired.

In this section I have described the parameter of repair direction and

illustrated the effect of two repair directions on resultant individuals. There

is however a third repair direction in addition to the right to left and left to

right repair directions previously described (FitzGerald & O’Donoghue 2008).

Individuals can be repaired in a random and varying direction. For each
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Figure 4.10: Individual with More than One Constraint Violation

individual this method chooses randomly between right to left direction and

left to right direction. This choice is made at the start of repairing each

individual. Then, the entire solution is repaired in that direction. This

thesis will examine the three different repair direction choices and compare

the results produced by each in order to identify a superior repair direction

to be used by GeneRepair. In Chapter 5 the effects of direction (and varying

direction) on the results produced will be examined.

4.8 Template Fitness

In Section 4.3 we looked at the definition of fitness in an EA. Each individual

in the EA has an associated fitness. When choosing the repair template,
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GeneRepair may use the fitness level of the template to decide which template

to store or to use for the repair process. The three choices would be to use

the fittest template for repair, the least fit template or a random template

from the templates available. In Chapter 5 we will explore the influence of

each of these choices on the resultant repaired individuals.

4.9 Implementation of GeneRepair

GeneRepair was implemented as part of an EO using the Java programming

language. As shown in the class diagram (See Figure A.1 in Appendix) the

package was made up of 8 classes and utilises one imported package. The

only other resource used is the problem data, in this case this is the TSP

text files, the benchmark TSPLIB problem data. Further information on the

implementation can be found in the Appendix (A).

4.9.1 Implementation Discussion

In the Appendix (See A) I have shown the computational implementation of

the GeneRepair technique presented in this thesis. While this GeneRepair

technique was presented in a previous thesis (Mitchell 2007) the implemen-

tation and research in this thesis are novel. The implementation described

above differs from previous descriptions. The design of the EvolutionaryOptimisation

was originally based on Mitchell’s model but has been changed significantly.

All of the other classes are new and designed for this implementation of

GeneRepair. To overcome some bottlenecks in Mitchell’s model, the Map class
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was introduced to alleviate unnecessary complexity of previous implementa-

tions where the (x,y) co-ordinates of the TSP were scattered throughout

the EO disallowing separation between representation and problem defini-

tion. The tour manager class allows the EO to carry out calculations on the

problem data while allowing a significant degree of separation between the

problem representation and the repair technique employed. The implemen-

tation used in this thesis only requires the use of an ordered list of integers,

thereby making minimal assumptions about the underlying problem. The im-

plementation of the GeneRepair technique also differs from (Mitchell 2007)

as the invalid individual is scanned for constraint violations, the template is

scanned for violation repairs and the final scan repairs the first violation of

each constraint breakage found rather than using a flag system and repairing

un-flagged elements of the individual. For integrity of results the Mersen-

neTwister package is used as this is more reliable than the java.util.Random

method (Luke 2009). The principal item to note in the implementation de-

scribed in this section is that the EO stores the parent, grandparent and

great-grandparent of every individual and ensures that regardless of muta-

tion or selection mechanisms used, the correct ancestors are associated with

the individual in the current population.
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4.10 General EO Parameters and GeneRe-

pair

There are other parameters which are not specific to the GeneRepair tech-

nique that impact on the quality of the EO results. These parameters are

used both when GeneRepair is used and when it is not. The parameters in

question are population size, number of generations and mutation rate.

4.10.1 Population Size

The size of the population can directly affect the diversity maintained across

the population as shown by C. Ahn and R. S. Ramakrishna who investigate

a method to create appropriate population size (Ahn & Ramakrishna 2002).

If a population is small it may not be diverse enough, while large populations

may be too diverse. The techniques for finding the correct population size

to use are limited to specific problems and can only ever act as a guide

rather than a rule. The A. thaliana reproduces mostly by selfing leading to

little diversity in a population. Selfing is the main process for propagation -

common to many crop plants(Hopkins et al. 2011). The word selfing refers

to the act of reproduction without the need for another plant, that is the

plant reproduces independently or by the acting of �selfing�. The A. thaliana

reproducing mostly by selfing may suggest that a smaller population should

be used with the corresponding repair method (GeneRepair) on the EO side

of the analogy. We will investigate the effect of population size on GeneRepair

in Section 5.5.7.
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4.10.2 Number of Generations

The length of execution of an EO is also not specific to the GeneRepair

technique but is an EO parameter. This parameter specifies how long the

experiment will run. It can range from number of generations to a set time

or until the some milestone has been reached. There has been research

(Mitchell 2007) into the results produced by of letting the EO run for a longer

execution time and if the difference in results outweigh the computation cost.

In Chapter 5 we will investigate the effects of running the experiments for

varying numbers of generations. I will show the influence of this parameter

on the resulting repaired individuals and on the ancestral template choice.

Among the questions that motivate this thesis, it would be beneficial to know

if GeneRepair works well in populations containing a lot of homogeneity -

such as in A.thaliana.

4.10.3 Mutation Rate

The mutation rate specifies the number of individuals that will be mutated

per generation. Evolutionary algorithms can benefit from both high muta-

tion and low mutation depending on the problem size and/or representation.

There is also findings that adaptive mutation (Smith & Fogarty 1996) is pre-

ferred for specific problems. While much research has been carried out on

mutation and which type and rate to use there is a suggestion to use 1/l

where l denotes the bit string length in a genetic algorithm, but there are

also contrasting views and no agreed upon discipline-wide guideline (Tate &

Smith 1993)(Bäck 1993). In the following Chapter I will investigate the ef-
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fect of mutation rate on the choice of ancestral repair template for a number

of TSPs and show how the repair templates behave near the optimal (from

those investigated) mutation rates found.

4.11 GeneRepair Parameter Choices

Previously in this chapter the GeneRepair technique has been introduced.

This technique, which is based on the repair mechanism of the Arabidopsis

thaliana plant, offers a novel approach to allowing EO to produce valid so-

lutions to constraint based problems. The technique uses an invalid individ-

ual’s ancestor as a repair template to correct errors in that invalid individual.

There are a number of parameters which influence the resultant repaired in-

dividual. Each parameter can have a huge influence on the fitness of the

repaired individual. In the following chapters I will investigate the effects of

each parameter and suggest the parameter values to use in conjunction with

GeneRepair for two different constraint based problems.

The first choice of parameter is which generation of ancestor to use as

a repair template. I investigate and compare the use of parent, grandparent

and great-grandparent templates in this thesis. The GeneRepair technique

also allows you to use a more removed ancestor from further back in the

lineage than the great-grandparent but this calls for more storage space and

longer computation times and is not presented in this thesis.

At the time this thesis was undertaken, Lolle and others were primarily

interested in recent generations - especially the grandparent generation. In

line with this work, this thesis has also focused on the grandparent generation
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as well as its immediate neighbours. This tactic of course, focuses on the

central contention claim of Lolle et al - that the proposed genetic repair

process is non-Mendelian. That is, the repaired individual contains genetic

information that does not originate in the parent generation. Such a repair

mechanism suggests that this genetic repair process offers the competitive

advantage over competing (ie Mendelian) hypotheses.

The next choice of parameter is which of the ancestors to use. Natural be-

ings have two parents, four grandparents and eight great-grandparents. The

GeneRepair model stores two ancestors for each generation. This means that

there is a choice of two parents, two grandparents or two great-grandparents.

The choice of which two ancestors are stored from the grandparent and great-

grandparent generation is arbitrary.

4.12 Conclusion

EO are excellent at solving difficult problems and are widely used in Com-

puter Science. They solve problems by evolving a solution much like the

evolution of any species in nature. EO are often viewed as being analo-

gous with natural evolution to solve problems in Computer Science. When

evolutionary algorithms and more specifically genetic algorithms were first

created no constraint handling technique was included on the nature side

(source) of the analogy. For this reason EO constraint handling mechanisms

often use modified operators. These operators break the analogy with na-

ture. These modified operators are often not biologically inspired and can be

very problem specific (See Chapter 2). In Chapter 3 I showed how this thesis
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extends the analogy between natural and simulated evolution by attempting

to mirror the repair mechanism found in the Arabidopsis thaliana plant. This

thesis presents a repair technique called GeneRepair. GeneRepair allows EO

to repair invalid individuals in the population. This ability allows the EO

to handle constraints without modifying any other part of the EO. GeneRe-

pair makes use of recent ancestors to bootstrap individuals with somewhat

minor genetic defects, that is defects that can be repaired with ancestral ge-

nomic data. Unlike many existing genetic repair operators, this technique is

not heuristic but is metaheuristic - repairing the representation rather than

addressing the underlying problem specifically. Furthermore, repair cannot

solve the given problem ab initio, whereas many heuristic techniques are

often used to solve these problems without the use of EO.

In this chapter I showed how individuals may break the problem con-

straints and become invalid through simple crossover or mutation. I de-

scribed Template Repair and showed how this can be used as a template to

repair invalid individuals. I went on to introduce GeneRepair which uses the

individual’s ancestor as the repair template. I showed how the parent, grand-

parent or great-grandparent can be used to repair an invalid individual in

the population. I described how GeneRepair operates in two distinct phases:

error detection followed by ancestor driven error correction. I explained the

GeneRepair parameters of ancestor, generation, repair direction and fitness

and illustrated how each of these can dictate the properties of the repaired

individual.

In the next chapter I will conduct experiments to investigate GeneRepair
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and the influence of each of its parameters. The goal when deciding on all of

these properties is to try to find the optimal solution by using GeneRepair

in conjunction with an EO. In order to do this diversity must be maintained

across the population. If diversity is not maintained the EO will quickly reach

a local maxima but will never reach the global optimal. The reason for this is

that all individuals in the population will tend towards the best individual.

Soon the population will consist of duplicates of the best individual. By

maintaining diversity across the population the individuals will evolve in

different directions allowing the EO to reach a global optimal rather than

local maxima.

For the first collection of experiments the Travelling Salesman Problem

will be used as a sample problem. While this technique of constraint handling

is not the most suited technique to use when solving the TSP, I have chosen

the TSP as it clearly illustrates the use of repair in the experiments and is

widely known and accepted as a sample constraint based problem. As it is a

de facto standard constraint satisfaction problem, it also affords us the pos-

sibility to explore the effectiveness of Lolles hypothesised repair strategy on

a standard problem domain. Experimental results (See Chapter 5) may help

shed some light on the likely efficiency of this controversial non-Mendelian

inheritance theory.

Each of the experiments conducted will illustrate the effect of the different

parameters on the individual repaired by GeneRepair. Using the results

produced by these experiments suggestions will be proposed on the optimal

parameters to use. In order to support these experimental results I will use
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a number of different datasets within the TSP. I will also show how problem

size affects GeneRepair and make suggestions based on this trend for the

possible result of even larger untested problems.

118



Chapter 5

Testing the Theory

5.1 Introduction

There are two primary objectives of this thesis. The first concerns the field

of computer science. This objective is to investigate whether non-Mendelian

template repair can be used to enable EO to produce valid solutions to con-

straint based problems. I will investigate this non-Mendelian template repair

thoroughly and compare it to the alternative Mendelian repair where the par-

ent is used as the repair template. The results produced when achieving this

objective are illustrated in Section 5.5. The second objective of this thesis

is to find out if the computer science side of the EO analogy can support or

undermine the findings of Lolle et al that suggest that non-Mendelian repair

can be used to repair individuals in the current population. The results pro-

duced when achieving this objective are explored throughout these results

but are the central focus in Section 5.6. The use of GeneRepair in conjunc-
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tion with EO was investigated thoroughly and the results are illustrated in

this chapter.

5.1.1 Structure of Chapter

This chapter begins by explaining the problem set. It then goes on to illus-

trate the experimental setup for all experiments described in this chapter.

The results are divided in two in terms of the two objectives described above.

The first section begins by establishing a base line for the results. This is

done by comparing the death penalty to parent template GeneRepair (PTR).

We go on to see PTR compared to its non-Mendelian counterparts. The ef-

fect of mutation rate on the repair strategy is then investigated followed by

the effect of the templates fitness. We then go on to compare different popu-

lation sizes and also examine how GeneRepair behaves during early evolution

and at various generational milestones. Following this we introduce Random

Template Repair and compare this to the proposed GeneRepair strategy. We

examine the effect of problem size on ancestral repair template efficiency. We

will investigate the impact of the direction of repair on the repair strategy

and finish by showing how the storage of ancestors is conducted by the repair

strategy.

The second objective of this thesis is to investigate whether the CS side of

the EO analogy can support or undermine the findings of Lolle et al. In this

set of results we will look at the effect of reduced redundancy representation

on the choice of ancestral repair template. We will also investigate the use of

self-crossover as well as low mutation rates. The results in this second section
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aim to use biologically inspired parameters to explore the proposed repair

strategy, however (as explained in Section 1.5) what we term as �biological

experiments�are still computational evaluations and should not be confused

with systems biology or related disciplines.

5.2 Explanation of the Problem

The Travelling Salesman Problem (TSP), as the name suggests, originates

from the optimisation problem facing a travelling salesman who has a number

of cities to visit and wants to visit each one exactly once and return to the

first city using the shortest possible route. The salesman wants to cover as

little distance as possible but still visit each city once and once only returning

to the first city at the end. The distance travelled is called the tour length

and the order of the cities visited is called the tour.

Previously, in Figure 4.3 I illustrated a sample 6 city TSP. In Figure 4.4

a possible solution to this TSP is illustrated while in Figure 4.5 an optimal

solution is shown. This 6 city tour has 6! possible solutions as it has been

previously proved that a

NumberofPossibleSolutions(n City TSP ) = n! (5.1)

possible solutions. This 6 City problem therefore has 720 possible solu-

tions. This is a small problem used for illustrative purposes only. In our

experiments we will be using the 51 City (eil51), 101 City (eil101), 532 City

(att532) and the 18512 City (d18512) TSPs. For the smallest of these prob-
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lems, the 51 city problem, there are

1.55111875× 1066 (5.2)

possible solutions.

In this thesis the use of GeneRepair is investigated and the effect of a vari-

ety of impacting parameters are examined. In order to carry out these experi-

ments a standard travelling salesman problem dataset was used. GeneRepair

is not necessarily the best technique for TSP (Lin & Kernighan 1973) but

GeneRepair can in principle be applied to many constraint problems. As

mentioned previously, the reason that the TSP is used in this thesis is that it

is a standard example of a constraint based problem thus there is no confu-

sion about the problem and all focus is on the GeneRepair technique. There

is also a wide and varying number of datasets that can be used.

5.2.1 Datasets

During the investigation of GeneRepair I will conduct experiments using

the TSP library (Reinalt 1991). From this library I will use a number of

different datasets to guarantee integrity. The use of different datasets will

also eliminate the possibility that results depend on accidental artefacts of

a particular problem and allow me to investigate effect related to problem

size. In Chapter 6 we will look at the effectiveness of genetic repair on some

of the CVRP datasets from TSPLIB repository (Reinalt 1991).
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5.3 Experimental Setup

The previously described model of Genetic Repair was implemented in a

Java model in order to test its efficiency. As the biological origins are of

central significance to this work, many experiments investigate the impact of

biological factors as much as factors of pure computational significance.

For the experiments in this chapter the problem used is the TSP so the

fitness is calculated as the tour length of the individual. This fitness value

is calculated by using the Euclidean Distance Formula between each of the

cities in the individual including the distance from the last city back to the

first city. The experiments are repeated for a number of times under identical

conditions to ensure that the results are reproducible and reliable. In order

to obtain reliable results that could be statistically analysed each experiment

was repeated for a number of iterations.

5.3.1 Repetition of Experiments

In the implementation the experiments were labelled from a to z and so the

number of iterations was either 26 or occasionally 52. Truncation selection

is the selection method used throughout this chapter. The experimental

parameters for each experiment in this Chapter are listed in Table 5.1.

5.3.2 Population Size

As shown in Table 5.1 population sizes of 4, 10, 50 and 100 were used. In

order to investigate the effect of population size on the results produced I
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Table 5.1: Overview of Results Presented
Figure TSP Size Population Mutation Rate (%) Generations Iterations

5.1 101 100 0.5, 2, 5 and 10 500k 26

5.2 101 50 2 and 10 500k 26

5.3 532 50 2 500k 26

5.4 18512 10 0.001 500k 16

5.5 101 50 2 500k 26

5.6 51 50 2 500k 52

5.7 76 50 2 500k 26

5.8 532 50 2 500k 26

5.9 18512 10 0.001 500k 16

5.10 51 50 2 500k 26

5.11 76 50 2 500k 26

5.12 51 50 2 500k 52

5.13 101 50 2, 1.75, 1.5, 1.25, 1, 0.75, 0.5, 0.25 and 0.1 500k 52

5.14 51 50 2, 1.75, 1.5, 1.25, 1, 0.75, 0.5, 0.25 and 0.1 500k 52

5.15 101 50 2 500k 26

5.16 101 50 2 500k 26

5.17 101 50 2 500k 26

5.18 101 50 2 500k 26

5.19 101 100 2 500k 26

5.20 101 4 2 500k 26

5.21 101 100 2 500k 26

5.22 18512 10 0.01 50k 26

5.23 76 100 2, 1.75, 1.5, 1.25, 1, 0.75, 0.5, 0.25 and 0.1 500k 26

5.24 532 50 2 500k 26

5.25 51 100 2 500k 52

5.26 51 100 2 500k 52

5.27 51 100 2 500k 52

5.28 51 100 1.75 500k 52

5.29 101 50 2 500k 26

5.30 101 50 2 500k 26

5.31 101 50 2 500k 26

5.33 101 50 2 500k 26

5.34 101 50 2 500k 26

5.35 101 50 2 500k 26

5.36 1379 100 0.1 10k 26

5.37 1379 100 0.1 10k 26

5.38 101 50 2 500k 26

5.39 101 50 2 500k 26

5.40 101 50 2 500k 26

5.41 101 50 2 500k 26

5.42 101 50 2 500k 50

5.43 101 50 2 500k 50
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amended the population size. While it may be argued that 50 and 100 are

too close to similar to show the effect of population size on the results I argue

that by doubling the population size (from 50 to 100) this is a drastic change

to the parameter. Using a population of 10 in conjunction with the 18512

city TSP attempts to reproduce a more �biologically�plausible parameter.

The A. thaliana is predominantly a population of clones with little diversity

so this experiment with a small population of 10 and a large problem size

(18512 cities) attempts to simulate this biological environment in the EO.

5.3.3 Mutation Rate

The mutation rate represents the % of change that is inflicted on the popu-

lation during each generation. The rate is

MutationRate% ∗ (populationsize ∗ numberofCities) (5.3)

Therefore if the mutation rate is 2.0%, the population is 50 and there are

51 Cities the number of Cities mutated is equal to:

0.02 ∗ (50 ∗ 51) = 51 (5.4)

In the experiments described in this thesis swap mutation was used which

means that for the above equation 51 swap mutations would be carried out

which equates to 102 alleles (51 identified by the swap mutation technique

and the 51 alleles that these are swapped with) in the entire population being

affected by the mutation. Using this mutation technique the city selected for
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TSP Dataset Known Optimal

eil 51 426

eil 76 538

eil 101 629

att 532 27686

nrw 1379 56638

d18512 [645092,645300]

Table 5.2: TSP datasets and their optimal tour length or interval of upper

and lower bound

mutation is swapped randomly with another city (also known as reciprocal

exchange mutation).

5.3.4 Solutions Produced by Alternative Methods

In this thesis I compare the use of different ancestral templates as repair

templates to use with GeneRepair. The results are compared to each other

as opposed to benchmark results produced by other EA. For reference, Table

5.2 shows the TSPs used in this Chapter along with their known optimal tour

length ( or interval in the case of d18512 TSP). This shows the performance of

other EA on these problems. This thesis compares ancestral repair templates

to each other and to the use of the death penalty as opposed to comparing

them to the performance of other EA.
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5.3.5 Computational Effort

In order to multi-task and save time some of the experiments presented were

run on the The Irish Centre for High-End Computing (ICHEC) and CREIG

(which is the NUI Maynooth cluster) 1 servers. The majority of the experi-

ments, however, were run on a standard PC as they did not have any special

computational requirements. One of the merits of the GeneRepair method is

the low computational running cost. For example a 500,000 generation eil101

TSP with a population of 100 and great-grandparent template GeneRepair

took less than six minutes to run on a standard unmodified PC running Win-

dows XP. The experiments which took the longest time were those using the

d18512 city TSP dataset but with a population of 10 and 10,000 generations

each iteration of this experiment took less than 45 minutes to complete.

5.4 Presentation of Results

To illustrate the results produced by the experiments I have used boxplots,

graphs and tables, accompanied by statistics as appropriate. For the majority

of the results presented I chose to use the ”quartile graph” (boxplot) which

details the minimum, maximum (max/min.avg). Where graphs are used in

this thesis, the results displayed in each graph have been pre-sorted from

smallest to largest for convenience and ease of comparison. The statistical

analysis tools that I have used are the Kruskal-Wallis test and the Mann-

1This is the NUI Maynooth cluster. More information available at available at

http://creig.cs.nuim.ie/wordpress/
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Whitney U test.

The Kruskal-Wallis test is a nonparametric test that compares three or

more unpaired or unmatched groups. This one-way analysis of variance by

ranks is a non-parametric method for testing whether samples originate from

the same distribution. When the Kruskal-Wallis test leads to significant

results this shows that at least one of the samples is different from the other

samples. The test does not identify where the differences occur or how many

differences actually occur. It is an extension of the MannWhitney U test to

3 or more groups. The Mann-Whitney U test can provide more information

as it analyses the specific sample pairs for significant differences.

The MannWhitney U test (also called the MannWhitneyWilcoxon (MWW)

or Wilcoxon rank-sum test) is a non-parametric statistical hypothesis test for

assessing whether two independent samples of observations have equally large

values. It is one of the most well-known non-parametric significance tests.

For presented statistics the sample size (n) and the p value are provided.

This statistical analysis method first ranks all of the values from low to high.

If two values are the same, then they both get the average of the two ranks

for which they tie. The smallest number gets a rank of 1. The largest number

gets a rank of N, where N is the total number of values in the two groups.

The ranks are then summed in each group, and the two sums are reported.

If the sums of the ranks are very different, the P value will be small. If the

P value is small, you can reject the idea that the difference is a coincidence,

and conclude instead that the populations have different medians.

The TSP is a minimisation problem so the lower the result in the ta-
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ble/graph the better the result or the lower the tour length the stronger

the result. In this chapter the boxplots/graphs shown have tour length on

the Y-axis. The X-axis is labelled and this generally represents the type of

ancestral GeneRepair carried out. Each graph contains a legend describing

which repair methods are being compared.

5.5 Objective 1 - Computationally Focused

Investigation of GeneRepair

As stated in Chapter 1 the first objective of this thesis is to investigate

whether non-Mendelian template repair can be used to enable EO to pro-

duce valid solutions to constraint based problems. In this Section I will

compare the use of non-Mendelian template repair to the use of Mendelian

template repair in a number of various situations using different parameters

and problem sets. But before moving onto this central issue of non-Mendelian

repair, we shall first explore a version of GeneRepair that uses a Mendelian

(ie parent based) repair template. Our objective is to establish a baseline for

comparison, by comparing Mendelian repair to another biologically inspired

constraint handling method of the Death Penalty (as described in Section

2.4.4).

5.5.1 Death Penalty

The Death Penalty is a method that can be used to enable EO to solve

constraint based problems. As the name suggests this method �kills�or elim-
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inates invalid individuals from the population. This constraint enforcing

mechanism is part of the family of mechanisms known as Penalties (See Sec-

tion 2.4.4). In this Section the death penalty technique is used as an initial

benchmark to illustrate one technique EO may use to solve constraint based

problems. In the next Section I will compare this technique to GeneRepair

using the parent of the individual as the repair template. To investigate the

effect of death penalty as a constraint handling mechanism an EO was run

on the 101 City TSP (eil101) for 500,000 generations and mutations of 0.5%,

2%, 5% and 10% on a population of 100. This mutation rate choice will be

explained thoroughly in Section 5.5.5.

In Figure 5.1 we can see the results produced by this experiment. The

known optimal result for this problem set is a tour length of 629. Figure 5.1

shows that none of the mutation rates enable the death penalty technique

to produce results close to the optimal of 629 with the best result produced

having a tour length of over 3,000. This Figure also shows that the mutation

rates of 10% and 2% produced the strongest results. It was expected that

the 10% mutation would perform well as death penalty drastically reduces

diversity and high mutation brings back some of that lost diversity. Mutation

at 2% may have produced strong results as it introduces just enough diversity

to keep the algorithm evolving as opposed to 0.5% which may not introduce

enough diversity.
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Figure 5.1: Death Penalty Results

5.5.2 Parent Template Repair

Thus far we have seen the performance of the death penalty to enable EO to

solve a standard constraint based problem. This technique shall now be used

as a benchmark to measure the efficiency of GeneRepair using the parent as

a repair template to produce valid solutions to the same constraint based

problem.

Hypothesis: Parent Driven GeneRepair provides a more efficient tech-

nique to enable EO to handle constraints than Death Penalty approaches

As described in Section 4.5 Parent Template Repair(abbreviated to PTR)

is the use of the parent as a repair template in the GeneRepair mechanism.

This section compares the use of Death Penalty with the use of Parent Tem-

plate GeneRepair on a number of different TSPs. The population is set to 50.

The experiment is run for a standard of 500,000 generations. The mutation
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Figure 5.2: Death Penalty vs Parent Template Repair for 101 City TSP

rate has been set to 2.0% and the problem is the 101 City TSP (eil101).

Figure 5.2 shows that the parent template can be used by GeneRepair to

enable EO to produce valid solutions to a standard constraint based problem.

As shown in Figure 5.2 the GeneRepair technique using a parent repair tem-

plate greatly outperforms the death penalty at the best mutation rate found

in Section 5.5.1 when the results of the three (Death Penalty at two mutation

rates and PTR) experiment sets are compared. Using all 26 repetitions of

this experiment, Kruskal-Wallis analysis showed that there was a significant

different among the three groups (PTR, DPTR at 2% and DPTR at 10%

mutation) with H = 51.71, df = 2 and p <0.0001. Mann Whitney statistical

analysis found that PTR <DP with (p <0.0001). This provides support for

the hypothesis that parent template GeneRepair provides a more efficient

technique to enable EO to handle constraints than the death penalty for

the given conditions. This result is in agreement with previously published
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work (FitzGerald & O’Donoghue 2008). Many similar results were produced

showing weakness of death penalty and so further results are not included

for this reason.

5.5.3 Non-Mendelian Template Repair

Thus far in this thesis we have seen that GeneRepair can successfully use

the parent as a repair template to enable EO to produce valid solutions to

a standard constraint based problem. We have also seen that this method

produces superior results to the death penalty approach. In this Section

we will investigate whether non-Mendelian repair templates are successful at

enabling GeneRepair to produce valid solutions to the same constraint based

problem and if they produce superior results to that of the parent template.

Hypothesis: Non-Mendelian repair templates are more effective than

Mendelian Repair Template

In Section 4.6 the use of the Grandparent as a repair template was ex-

plained and this was shown to be the central contentious claim of Lolle et

al(Lolle et al. 2005). This repair mechanism is tested in this section for a

standard of 500,000 generations with a population of 50 and a mutation rate

of 2.0% using the larger 532 City TSP. For reasons that shall soon become

clear we will not commence by looking at the 101 city problem, but shall

start by looking a the 532 city problem instead. In this Section Grandparent

Repair Template GeneRepair (GPTR) is compared to the use of Parent Re-

pair Template GeneRepair (PTR) which was previously described in Section

5.5.2. The results produced by this experiment are illustrated in Figure 5.3.
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This illustrates that the grandparent was more effective as a repair template

than the parent as it produced results with a shorter tour length. There is a

clear difference between the two lines showing that across 26 separate exper-

iments the grandparent and parent produced reliably different results with

the grandparent repair template producing better results. This experiment

was run 52 times, as opposed to 26, to clearly show the results produced by

running the experiment 26 times are as reliable as those produced when it

is run 52 times. Using the Mann Whitney statistical analysis with a sample

size 52 it was shown that GPTR <PTR with (p <0.0001). This strong prob-

ability shows that the difference between the results is more than coincidence

and we can confidently say that the grandparent repair template used with

GeneRepair produced stronger results than the parent template.

This is a surprising and startlingly strong finding that may have implica-

tions for researchers of Mendelian and non-Mendelian inheritance in the Bio-

logical Research Community 1. It also represents the first piece of supporting

evidence (albeit highly indirect) for Lolle’s non-Mendelian inheritance theory.

While Figure 5.3 illustrates that the use of parent and grandparent as repair

templates produce different results with grandparent outperforming parent,

neither of these result sets are close to the known optimal for this solution

which is 27,686 as convergence was still proceeding and I am confident that

later in this thesis we will see instance where GeneRepair gets extremely close

to the known optimal for a problem. In this Section the hypothesis that non-

Mendelian repair templates can prove more effective than their Mendelian

1Personal communication with Dr Susan Lolle in University of Waterloo, Ontario,

Canada. Biological considerations will be revisited later in this thesis.
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Figure 5.3: Parent vs Grandparent Results - 532 City TSP

counterparts was supported(FitzGerald & O’Donoghue 2008).

While the statistical analysis for this set of results (See Figure 5.3 ) shows

that the grandparent repair template outperforms the parent repair tem-

plate. I will now strengthen this result by showing the findings again show

the superiority of the non-Mendelian template repair when the 18512 City

TSP is used. In Figure 5.4 the results are shown when the parent template

GeneRepair is compared to the Grandparent template GeneRepair for the

18512 City TSP with 0.001% mutation and a population of 10. These new

parameters have been used to reduce the computation time for such a large

problem. High mutation of 2% is not necessary for such a large problem

size as the diversity will be maintained at lower mutation due to the length

of the individual (number of cities). The direction of repair was a random

and varying direction which will be discussed in Section 5.5.12. We can see

from Figure 5.4 that once again the grandparent template outperforms the
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Figure 5.4: Parent vs Grandparent Results - 18512 City TSP

parent template when used with GeneRepair. Comparing the use of the par-

ent and grandparent repair templates on the 532 and 18512 City problems

we have seen that the grandparent outperforms the parent when used with

GeneRepair to enforce the problem constraints.

Now I will examine a smaller problem which is the 101 City TSP. In Fig-

ure 5.5 we can see that on this smaller problem size surprisingly the parent

template outperforms the grandparent template. We see the same superiority

of parent template when we compare the use of parent template and grand-

parent template GeneRepair on the 51 and 76 City TSP (See Figures 5.6 and

5.7) problems. Thus far we have seen that grandparent template GeneRepair

outperforms parent template GeneRepair for the (large) 532 and 18512 City

problems but when the problem size is reduced to 51, 76 and 101 Cities the

parent outperforms the grandparent repair template. In Section 5.5.4 I shall

explain this seemingly contradictory result.
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Figure 5.5: Parent vs Grandparent Results 101 City TSP

5.5.4 Great-Grandparent Template Repair

Following from this finding I will now examine the great-grandparent repair

template to examine whether this outperforms the grandparent template for

larger (18512 and 532 City) and smaller (101, 76 and 51 City) problems.

In Section 4.6 the use of Great-Grandparent Template in conjunction

with GeneRepair was discussed. This Great-grandparent repair (GGPTR)

is investigated in this section. As with the experiments described previously

in this chapter (See Section 5.5.2 and 5.5.3) the population is set to 50 and

the experiment is run for 500,000 generations with a mutation rate of 2.0%

(as was used in Section 5.5.2 and 5.5.3).

In Figure 5.8 we can see that the great-grandparent repair template out-

performs the parent template but fails to outperform the grandparent tem-

plate. In this set of results both non-Mendelian templates yet again out-
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Figure 5.6: Parent vs Grandparent Results - 51 City TSP
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Figure 5.7: Parent vs Grandparent Results - 76 City TSP
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Figure 5.8: Parent vs Grandparent vs Great Grand Parent Results - 532 City

TSP

perform their Mendelian counterparts. Kruskal-Wallis analysis showed that

there was a significant different among the three groups (PTR, GPTR and

GGPTR) with H = 68.25, df = 2 and p <0.0001. The Mann Whitney sta-

tistical analysis for this set of results showed that GPTR <GGPTR with a

(p <0.0001) and GGPTR <PTR with (p <0.0001).

In Figure 5.9 we can see that the great-grandparent repair template out-

performs the parent template but fails to outperform the grandparent tem-

plate which is the same as when the other large problem (532 City TSP) was

investigated. This again supports the hypothesis that non-Mendelian an-

cestral repair templates outperform their Mendelian counterparts. Kruskal-

Wallis analysis on this set of showed a significant difference in the three

groups with H = 36.15, df = 2 and p <0.0001.

In Figure 5.10 we can see the results produced when the 101 City TSP was
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Figure 5.9: Parent vs Grandparent vs Great Grand Parent Results - 18512

City TSP
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Figure 5.10: Parent vs Grandparent vs Great Grand Parent Results for 101

City TSP
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used to compare parent, grandparent and great-grandparent repair templates

with GeneRepair. In Figure 5.10 we can see that the use of the great grand-

parent as a repair template is more effective than using either the parent

or the grandparent. This again supports the hypothesis that non-Mendelian

repair templates can prove more effective than their Mendelian counterparts.

We must still remember that the known optimal for this problem is a tour

length of 629 so this Section suggests the effectiveness of the repair tem-

plates in comparison to each other as opposed to other possible techniques

(FitzGerald, O’Donoghue & Liu 2009). With greatly increasing the number

of generations we are confident that GeneRepair will generate more compet-

itive solutions and it should also be noted that we have not used adaptive

mutation, elitism or other techniques to improve the results obtained in this

chapter. Kruskal-Wallis analysis on this set of results showed a significant

difference in the three sets of results with H = 66.25, df = 2 and p <0.0001. If

we look at the Mann Whitney statistics for these results we find that GGPTR

<GPTR with (p <0.0001) and GGPTR <PTR with (p <0.0001). We can

therefore confidently state that non-Mendelian repair templates outperform

the Mendelian template GeneRepair.

Thus, on the larger problems, both non-Mendelian repair templates yield

results that outperform the Mendelian alternative. We now re-visit the re-

sults produced on the smaller problems that appear to contradict this find-

ing. We saw in Figure 5.6 and Figure 5.7 that for the smaller 51 and 76 City

problems parent template GeneRepair outperformed grandparent template

repair apparently contradicting the results suggesting that superior results

141



are produced using the non-Mendelian templates. These results are exam-

ined further by comparing them to great-grandparent template repair. In

Figures 5.12 and 5.11 we can see that while parent template GeneRepair

outperforms grandparent template GeneRepair, great-grandparent template

GeneRepair outperforms both of these options with a confidence level of

(p<0.0001). Kruskal-Wallis analysis showed significant difference in the sets

of results produced with H = 68.46, df = 2 and p <0.0001 for the data shown

in Figure 5.11 and H = 111.93, df = 2 and p <0.0001 for Figure 5.12.

This supports the hypothesis that non-Mendelian repair templates are

more effective than Mendelian repair. For smaller problems the great-grandparent

template seems to outperform the parent template while for larger problems

both the grandparent template and the great-grandparent template outper-

form their Mendelian counterpart. We can hypothesise that this effectiveness

of repair template may be linked to problem size. The problem size dictates

the size of the individual. Using an older ancestral template may produce

more diversity than a closer (in ancestral terms) template as it would be

more diverse to the individual being repaired. This high level of diversity

may be advantageous for the smaller individual which achieved a greater de-

gree of convergence in the given 500,000 generations. In contrast we expect

the slightly less diverse template (grandparent) may suit the larger individual

which would have a slower convergence. It should also be pointed out that

the larger problems were further from their known optimal solutions when

these experiments were terminated (at 500,000 generations). This of course

was also related to the populations diversity. (For an example of GeneRepair
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Figure 5.11: Parent vs Grandparent vs Great Grand Parent Results - 76 City

TSP

producing near optimal solutions see Section 5.5.10). In this section it has

been shown that when the three ancestral repair templates were compared

one of the non-Mendelian templates always outperformed the PTR. This is

a central finding to this body of research as it suggests that the storage of

non-Mendelian ancestral templates to be used with the GeneRepair strategy

provides a superior repair strategy to that using Mendelian repair templates.

5.5.5 Mutation Rate

In the experiments carried out so far in this chapter a standard mutation

rate of 2.0% has been used throughout with the exception of the 18512 City

TSP experiment where a lower mutation was used. In this Section a wide

variety of different mutation rates are investigated to examine the efficiency
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Figure 5.12: Parent vs Grandparent vs Great Grand Parent Results - 51 City

TSP

of Mendelian and non-Mendelian repair templates at different mutation rates.

Hypothesis: The choice of template to use with GeneRepair template

does not affect the optimal mutation rate for the specific problem

In Section 5.5.6 I investigated the effect of the fitness of the repair tem-

plate used. I found that choosing a random template as opposed to the

fittest or least fit available produced superior results. In this section I will

incorporate that finding by choosing a random repair template from the two

available as opposed to the fittest or least fit. Repair is carried out in a ran-

dom and varying direction (See Section 5.5.12). In Figure 5.13 the results of

the experiment illustrate that regardless of the repair template used the same

optimal (of those compared) mutation rate is found at 0.75%. Each mutation

rate was run for 52 experiments to ensure integrity of results. When Mann
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Figure 5.13: Comparing the Efficiency of Ancestral Repair Templates Across

a Variety of Mutation Rates using the 101 City TSP

Whitney statistical analysis was carried out on these results, with all 52 sam-

ples included, the mutation rate of 0.75% was found to be most efficient when

great-grandparents of each mutation rate were compared with (p <0.0001).

To carry out the analysis the great-grandparent results of each mutation rate

were compared to those at 0.75%. The reason great-grandparent was used

for the analysis was that it seemed to produce the best overall result, es-

pecially at high mutation rates. We can also note from this Figure that at

very low mutation rates the particular repair template has a smaller effect on

the results making it apparently less clear which ancestral repair template

is most efficient. This property will be investigated later in Section 5.6.3.

Figure 5.13 supports the hypothesis that the choice of repair template does

not affect the optimal mutation rate for the specific problem (FitzGerald &

O’Donoghue 2010).
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Figure 5.14: 51 City TSP Effect of Repair Template on Mutation Rate Ef-

fectiveness

In Figure 5.13 the 101 City TSP was used and the optimal mutation

rate for all three of the ancestral repair templates was 0.75%. Figure 5.13

and 5.14 show the average tour length across the experiment iterations at

each mutation rate. Figure 5.14 shows the effect of varying the mutation

rate across the three different ancestral repair templates as in Section 5.5.5

except that the 51 City TSP is used in Figure 5.14. The optimal mutation

rate was found at the same value, 1.75%, for each of the three templates .

As you can see in Figure 5.14 the repair template used does not affect which

mutation rate produces the best results.

5.5.6 Fitness

Thus far in this thesis we have seen how the parent can be used by GeneRe-

pair as a repair template to enable EO to produce valid solutions to a stan-
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dard constraint based problem in a more efficient manner than the death

penalty approach. We went on to investigate the use on non-Mendelian re-

pair templates (the grandparent and great-grandparent) and found that non-

Mendelian repair templates outperform the Mendelian parent template. As

these experiments were for a standard mutation rate of 2% an investigation

into the behaviour of GeneRepair at different mutation rates was carried out

and it was found that regardless of the template used, the optimal mutation

rate found remains the same. To further analyse the efficiency of GeneRepair

using Mendelian and non-Mendelian repair templates we will now examine

the choice of specific template after the ancestor is chosen by using fitness as

a parameter.

Hypothesis: Non-Mendelian Repair templates outperform their Mendelian

counterpart regardless of the fitness of the chosen template

Fitness is a calculation of the quality of the individual in the EO (See Sec-

tion 4.3). As previously explained the TSP is the problem set used for these

experiments so the fitness refers to the tour length of each individual and as

this is a minimisation problem, the lower the fitness - the stronger the result.

When choosing a repair template there are three variations of fitness to

choose from. Therefore the choice of repair template in the experiments de-

scribed in Section 5.5.2 was between two parents while the choice of repair

template in the experiments described in Section 5.5.3 was between the two

previously stored grandparents. For each of these choices an associated prop-

erty with each of the repair templates is the fitness value. In this Section I

will investigate the impact of using template fitness as a factor in selecting
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Figure 5.15: Comparison of Parent, Grandparent and Great-Grandparent

Ancestral Repair Using the Fittest Template

which ancestor to store as the ancestral template. I will compare the three

template selection strategies: the fittest template and the least fit template

(of the two ancestors) to a random chosen template (of the two ancestors)

and assess how this affects the repair template efficiency. The population

will be set to 50 and the experiments are run for 500,000 generations with a

mutation rate of 2.0% using the 101 City TSP.

In Figures 5.15, 5.16 and 5.17 we can see the effect of choosing the fittest,

least fit and randomly chosen ancestral template (respectively) on the ef-

fectiveness of each ancestral repair template. In each of these Figures it is

clear to see that the order of effectiveness of the ancestral repair templates is

identical with the great-grandparent repair template producing the best re-

sults (lowest tour length). The parent repair template is second in the order

of results with the great-grandparent repair template producing the worst
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Figure 5.16: Comparison of Parent, Grandparent and Great-Grandparent

Ancestral Repair Using the Least Fit Template
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Figure 5.17: Comparison of Parent, Grandparent and Great-Grandparent

Ancestral Repair Using a Randomly Chosen Template
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Minimum

Ancestor Fittest Least Fit Randomly Chosen

PTR 2013 2072 2060

GPTR 2124 2171 2094

GGPTR 1809 1843 1809

Table 5.3: Comparing the use of the Fittest Template, Least Fit Template

and Randomly Chosen Template - Minimum Tour Length Obtained

results for each of the template fitness options compared. Figures 5.15, 5.16

and 5.17 also illustrate that the fitness of the template chosen from the deter-

mined ancestry (parent, grandparent or great-grandparent) does not affect

the choice of ancestor to use. Therefore when choosing an ancestral repair

template for the 101 City TSP the grandparent should be chosen regardless of

which fitness parameter (fittest, least fit or random) is used. Kruskal-Wallis

analysis for the results shown in Figure 5.15 showed a significant difference

in the three sets of results with H = 68, df = 2 and p <0.0001.The same data

was produced by Kruskal-Wallis analysis for the results shown in Figure 5.16

while the results in Figure 5.17 produced H = 66.25, df = 2 and p <0.0001.

Returning to the hypothesis posed at the beginning of this section, in

Table 5.3 and Table 5.4 the fittest repair template is compared to both the

least fit template and the randomly chosen repair template (from the specific

ancestral level). (Note: Randomly chosen repair template of two parents or

grandparents or great-grandparents of the individual as opposed to a random

template chosen from the population. Randomly chosen template is where we

150



Average

Ancestor Fittest Template Least Fit Template Randomly Chosen Template

PTR 2096 2134 2129

GPTR 2221 2221 2219

GGPTR 1901 1913 1909

Table 5.4: Comparing the use of the Fittest Template, Least Fit Template

and Randomly Chosen Template - Average Tour Length Obtained

are (randomly) selecting an ancestor to store as a repair template irrespective

of its fitness value. In contrast a random template is a template formed

directly by a random number generator as discussed in Section 5.5.9). Table

5.3 shows the minimum result obtained by the experiments while Table 5.4

shows the average result across the 26 repetitions of the experiment.

Looking at the strongest results produced, as illustrated in Table 5.3, we

can see that the lowest tour length produced was 1809 and this was produced

in separate experiments where the fittest parent repair template was used and

where the randomly chosen template was used. We can also see from Table

5.3 and Table 5.4 that the least fit template never produced the strongest

results and so will not be used in future experiments for this thesis. If we look

at the results produced by the fittest great-grandparent template compared

to those produced by the random great-grandparent template we can see that

they are stronger using Mann Whitney statistical analysis with a sample size

of 26 and (p = 0.2389). This is not as strong a confidence value as we

have previously seen in the comparisons in this chapter and suggests that
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these results are not as radically different to each other as those previously

presented (See Section 5.5.3). In previously published work (FitzGerald &

O’Donoghue 2008) we have shown that using a randomly chosen template

outperforms the use of the fittest or least fit template. For this reason we

shall be using a randomly chosen template in the following experiments.

The strong result that emerges from this set of experiments is that re-

gardless of the fitness of the template chosen non-Mendelian repair (in the

case of this problem size that is the great-grandparent) templates outperform

the standard Mendelian parent template. While this does not relate to the

hypothesis of this section it is one of the core contributions of this thesis.

5.5.7 Effect of Population Size on Choice of Ancestral

Repair Template

In the majority of cases the A. thaliana breeds by selfing, leading to a very ho-

mogenous population. This may suggest that ancestral repair is only needed

in populations with little diversity, that is small populations. This section

examines this suggestion.

Hypothesis: The choice of GeneRepair template is independent of Pop-

ulation Size

In this set of experiments I will compare the use of different population sizes.

In the experiments thus far a standard size of 50 for the population has been

used. In this section this is compared to the use of populations of size 100.

In Figure 5.18 the 101 City TSP was used to compare the efficiency of

three ancestral repair templates on a population of 50 with the experiments
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Figure 5.18: Comparison of Parent, Grandparent and Great-Grandparent

Ancestral Repair with Population Size 50
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Figure 5.19: Comparison of Parent, Grandparent and Great-Grandparent

Ancestral Repair with Population Size 100
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Figure 5.20: Comparison of Parent, Grandparent and Great-Grandparent

Ancestral Repair with Micro-Population of 4 Individuals

running for 500,000 generations. We can compare this graph to Figure 5.19

where similar experiments were carried out using a population of 100. It

is clear from the results in these two graphs that population size does not

appear to impact the relative efficiency of the repair templates. Therefore

the grandparent remains the most effective with the great-grandparent least

efficient for this problem size.

The specific tour lengths produced by the experiments illustrated in Fig-

ures 5.18 and 5.19 are illustrated in Table 5.5. In this table we can see that

for both population sizes the Great Grand Parent repair template (GGPTR)

produces the best results with the Parent Repair Template ranking second

and the Grand Parent Repair template ranking third. When Mann Whit-

ney statistical analysis was carried out with a sample size of 26 it concluded

that great-grandparent template repair with population of 100 was more effi-
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cient (produces shorter tour lengths) than great-grandparent repair template

with population of 50 with (p <0.0001). This strong confidence level tells us

that this is a firm finding and using great-grandparent template repair with

a population of 100 is more efficient than with a population of 50. When

grandparent template repair was compared for populations of 100 and 50

with a sample size of 26 a population of 50 was shown to produce more ef-

ficient results with a p value of 0.4052. This is not a strong p value and

therefore can not be seen as a conclusive finding. When the parent template

repair was compared for both populations a population of 100 was found

to produce better results than a population of 50 with a strong p value of

0.0001. While fitter results were expected from the larger population, the

lack of significant difference on the GP template was quite a surprise.

In Figure 5.20 a micro population of just four individuals was used with

the same experimental parameters as for Table 5.5. When this micro popula-

tion was used the relative efficiency of the repair templates did not follow the

pattern as for populations of 50 and 100. In Figure 5.20 parent outperforms

both grandparent and great-grandparent with p values of 0.063 and 0.0107

respectively with a sample size of 26. Kruskal-Wallis analysis on these results

shows a slight difference in the result sets produced with H = 5.18, df = 2

with p <0.075. Perhaps for this tiny population a mutation rate of 2% was

too high and non-Mendelian repair templates may have thus introduced an

excessive amount of diversity. Further research could be carried out into the

efficiency of ancestral repair templates when used with micro-populations as

this has proved to be an interesting result.
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Comparison of Population Size

Population Statistic PTR GPTR GGPTR

50
Average 2129 2219 1909

Minimum 2060 2094 1809

100
Average 2077 2119 1758

Minimum 2029 2122 1705

Table 5.5: Effect of Population Size on Choice of GeneRepair Template

Looking at Table 5.5 and taking into account the described statistical

analysis we can say, with the exception of the micro-population experiment,

that for parent and great-grandparent repair a population of 100 is more effi-

cient than a population of 50. We can also say that the population size does

not affect the order of efficiency of the ancestral repair templates with the

great-grandparent repair template once again proving to be most efficient for

this problem size followed by the parent and finally the grandparent. For this

reason the choice of population size (between 50 and 100) is not important

for further experiments when comparing the effectiveness of ancestral repair

templates (FitzGerald & O’Donoghue 2010).

5.5.8 The Effect of GeneRepair at Different Genera-

tional Milestones

The differing results produced on the larger (50, 100) and micro-population

(4) suggest that population diversity may be a factor influencing ancestral

genetic repair. This also echoes some of the more recent findings on Ara-
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bidopsis thaliana (Hopkins et al. 2011). With this in mind, we now explore

the performance of GeneRepair under situations of greater population di-

versity (during early evolution) with the performance of GeneRepair in the

presence of less population diversity (late evolution).

Hypothesis: The most effective template is not the most efficient at

every generational milestone

This Section investigates at whether the effectiveness of the repair templates

changes as the generations continue to evolve. Each of the experiments above

were run for 500,000 generations but only the final results have been presented

and discussed. In this Section I will show the intermediate results produced

at 10, 100, 10000, 100000 and 500000 generations. We can therefore identify

where GeneRepair carries out most of its changes. By conducting further

experiments into each of the generational milestones perhaps an ideal number

of generations could be found at the point where GeneRepair is found to be

most active.

Table 5.6 illustrates the results produced at each generational milestone

for the 101 City TSP at the optimal mutation rate ( of those compared ) of

0.75%. This is only the second time in this thesis that the parent template

has been more efficient than its non-Mendelian counterpart. At 500,000

generations the parent template outperforms the non-Mendelian template

with (p <0.0001) when Mann Whitney statistical analysis is conducted. For

mutation rates of 1%, 1.25%, 1,5%, 1.75% and 2% the great-grandparent

repair template was more efficient than the parent template with a sample

size of 52 and (p <0.0001). For mutation rate of 0.1% the great-grandparent
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repair template again outperformed the parent template with a p value of

0.2389 for a sample size of 52. However, as at the optimal mutation rate,

with the mutation rate of 0.75% the parent template outperformed the great-

grandparent template with a p value of 0.0918 and also at the mutation rate

of 0.5% parent was more efficient than great-grandparent repair with a p

value of 0.2483. From this we can see that at the optimal mutation rate of

0.75% and slightly lower mutation than optimal, 0.25% and 0.5% the parent

template outperforms the great-grandparent. But at all other mutation rates

the great-grandparent is most efficient. Perhaps near this optimal rate of

mutation only slight diversity is needed from the repair template.

Table 5.6 shows that the repair template is sensitive to number of genera-

tions when looking at the average result. This is in support of the hypothesis

that the most effective template is not the most efficient at every generational

milestone. If we look at the minimum result produced at each milestone we

can see that the PTR is best at 1,000, 10,000 and 100,000 generations while

non-Mendelian repair templates are best at all other milestones. While the

average result shows the parent template to be most efficient (See statis-

tical analysis is previous paragraph) the best result was produced by the

great-grandparent template.

5.5.9 Random Template Repair

In the above experiments the use of different ancestral repair templates within

the GeneRepair technique was compared. The experimental results indicate

that the choice of repair template should be selected independently of its fit-
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ness relative to other ancestors of that generation (as opposed to the fittest

template) and that repair should be carried out in a random and varying

direction. This may suggest that the use of random template repair (RTR)

(Lichtblau 2002) as opposed to an ancestral template may improve the exper-

imental results even more. RTR is a form of template driven repair that uses

templates that are randomly generated for each invalid individual. This offers

the maximum diversity in the contents of the repaired alleles. RTR identifies

duplicates and produces a list of missing information. RTR then randomly

chooses a piece of missing information from the list and replaces a duplicate.

In this way the order of the repaired genes is completely random as opposed

to their order being derived from some ancestral template. It should be noted

that RTR is a form of inheritance that is both non-Mendelian and also non-

Darwinian. Errors in the invalid individual are repaired using a completely

random template. This method is used by Mathematica for general purpose

combinatoric and discrete optimisation problems (Lichtblau 2002).

In this section of experiments I compared the use of a random repair

template (RTR) to each of the three ancestral templates investigated so far.

In contrast to RTR the GPTR and GGPTR strategies are non-Mendelian but

are fully Darwinian, with only PTR being both Mendelian and Darwinian.

Hypothesis: Using an ancestral repair template is superior to using ran-

dom template repair(RTR)

However, this situation looks different when we examine a larger problem.

Figure 5.21 compares the results produced by RTR against the three ancestral

161



Figure 5.21: Comparison of Ancestral Repair Templates and RTR for the

101 City TSP
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Figure 5.22: Comparison of Ancestral Repair Templates and RTR for the

18512 City TSP

strategies, for a small 101 city problem. The RTR performs very well on

this initial small problem, producing the lowest average and minimum tour

lengths. This can be attributed to RTR exploring the most diverse solution

space as it is operating as a form of blind search, modifying the given search

space provided by the population. Unlike ancestral repair the error detection

and error correction is completely random so which duplicate is replaced with

which extra piece of information is random.

Figure 5.22 compares the results produced by RTR against the three an-
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cestral strategies, for a larger 18512 city (Reinelt 1991) problem. The box

plot shows the results after 50,000 generations, using a population of 10

and mutation set at 0.01%. This boxplot shows that the non-Mendelian re-

pair strategies are far more effective than either RTR or PTR on the larger

18512 city problem. This illustrates the advantage to be gained from us-

ing non-Mendelian repair, because the repaired alleles have already been

evaluated in a previous generation and have surviving ancestors to attest

to their quality (FitzGerald & O’Donoghue in preparation). RTR performs

well on small problems as its blind search strategy is effective on smaller

search spaces. However when RTR is applied to larger problems, these ran-

dom explorations generally prove fruitless. On these problems, the ancestral

repair strategies have a far greater likelihood of producing a reasonably fit

individual (FitzGerald & O’Donoghue in preparation).

5.5.10 The Effect of Problem Size on Ancestral Repair

Template Efficiency

In the above Sections the 51, 101 and 18512 City TSP were used to illustrate

a number of experimental results in order to find support for a number of

hypotheses. In this Section I will show the above experiments using the

532 City Tour and the 76 City Tour in order to illustrate that the results

produced are not problem size specific. The details of each of these TSPs

can be found online by accessing the TSP library (TSPLIB).

Hypothesis: A Non-Mendelian Repair Template will Outperform the

Mendelian Counterpart regardless of Problem Size
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Figure 5.23: 76 City TSP Repair Template and Mutation Rate Effectiveness

As in Figure 5.14 Figure 5.23 shows the same finding. Each of the repair

templates investigated has the same optimal mutation rate of those rates

tested. At the optimal mutation rate, 1%, the best repair template to use

differs slightly than at the other mutation rates (as previously illustrated in

Section 5.5.8. This graph supports the hypothesis that the repair templates

do not have different optimal mutation rates.

In Figure 5.24 the results found when the att532 TSP was used to com-

pare three different repair templates are illustrated. In this experiment we

can see that the Great-Grandparent repair template produces the fittest

results followed by the Grandparent and lastly the Parent (FitzGerald &

O’Donoghue 2010) at each generational milestone. This Figure supports the

hypothesis that the most effective template is most efficient at every gener-

ational milestone.
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Figure 5.24: 532 City TSP Effect of Repair at Each Generation Milestone

This section illustrates that regardless of problem size the repair template

chosen does not affect the choice of optimal mutation rate. The mutation

rate is dependent on the problem size and not the repair template. This

section went on to show that the most effective template is most efficient

at every generational milestone using the 532 City TSP. The results already

illustrated in this chapter were produced using the 101 City tour as the

problem set. We can now see that the previously presented results were not

dataset dependent. This section has illustrated that these results can be

reproduced using different size TSPs.

5.5.11 Selection Methods

Returning briefly to the inter-domain analogy, it might be said that ancestral

repair only works when there is little selection pressure - such as that found

amongst the predominantly selfing A.thaliana (Hopkins et al. 2011). In this
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Figure 5.25: 51 City TSP with Tournament Selection Method

Section a comparison is made of the effect of selection method (See Section 2)

on the relative performance of each of the repair templates. Each experiment

in this section is carried out using the 51 City TSP with a mutation of 2%

and a population of 100.

Hypothesis: The choice of ancestral repair template is not changed by

the selection method used

Figure 5.25 shows the results produced when the tournament selection

method is used while Figure 5.26 shows the results produced when the trun-

cation selection method is used. In each of the graphs the best results are

produced when the great-grandparent repair template is used. You can also

see that the worst results are produced when the parent template is used in

conjunction with the GeneRepair mechanism. The order of effectiveness of

the repair templates is not sensitive to the selection strategy used. We can
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Figure 5.26: 51 City TSP with Truncation Selection Method

also see that the repair templates perform in the same order for both se-

lection mechanisms. Interestingly, the results produced are better when the

truncation method is used. Two separate figures (5.25 and 5.26 were used to

clearly illustrate the results produced by each Selection method. The com-

parison of these results is then shown using Figure 5.27 so that the difference

between the selection methods is clearly seen. In this Figure we can see that

the order of efficiency of the templates is independent of the selection method

used, while the superior results are produced when the truncation selection

method is used.

To ensure this result the same experiment was carried out to compare the

use of tournament and truncation selection at the optimal mutation rate (of

those tested in Section 5.5.5 of 1.75%). The results of this experiment are

illustrated in Figure 5.28. In this Figure we can see that even at the optimal

mutation rate the truncation outperforms its tournament competitor. In
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Figure 5.27: Comparing the use of both Truncation and Tournament Selec-

tion Methods on the 51 City TSP with 2% Mutation

Figure 5.28 the results produced using truncation selection are also tending

towards the optimal which is 426 for this problem. Truncation selection is

the method used in all experiments in this chapter. While there are a huge

number of selection methods available the objective of this Section is not to

find the best one but merely to show that they do not affect the choice of

repair template chosen.
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Figure 5.28: Comparing the use of both Truncation and Tournament Selec-

tion Methods on the 51 City TSP at the optimal mutation rate of 1.75%

5.5.12 Direction of Repair

Thus far we have seen how non-Mendelian repair templates can outperform

their Mendelian counterparts. We have investigated the various parameter

choices available within GeneRepair to examine the behaviour of the three

ancestral repair templates in a wide variety of situations. We have found

that using a randomly chosen template (as opposed to the fittest) produces

superior results. We have also seen that for larger problems non-Mendelian

repair templates outperform RTR, which is the method of using a randomly
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created repair template as opposed to an ancestral repair template. In this

Section we will examine the behaviour of GeneRepair further by looking at

another parameter choice which is the direction of repair.

Hypothesis: Performing repair in a consistent and uniform direction

will produce weaker results than randomly varying the direction in which the

repair process operates

In Section 4.7 the effect of repair direction on the repaired individual was

discussed. There are three choices of repair direction: Right to Left, Left to

Right and a Random and Varying Direction. It is important to remember

that the random and varying direction of repair is still linear and varies be-

tween the other two directions. The differing effect of these repair directions

are clearly illustrated in Figure 4.9. This current section illustrates the re-

sult produced by a number of experiments to investigate the three directions

of repair. Again, for this set of experiments a population of 50 individuals

has been used and the experiment was run for 500,000 generations with a

mutation of 2.0% using the 101 City TSP.

In Figures 5.29, 5.30 and 5.31 the effect of the repair template is compared

when GeneRepair is carried out in a left to right, right to left and random

and varying direction respectively. We can see from these three Figures that

the order of effectiveness of the repair templates, when compared to each

other, is identical for each of the three repair directions. In all three of the

Figures (5.29, 5.30 and 5.31) the great-grandparent repair template is most

effective. The parent repair template is more effective than the grandparent

repair template which is least effective for this problem size. Regardless of
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Figure 5.29: Comparison of Parent, Grandparent and Great-Grandparent

Ancestral Repair Performed in a Left to Right Direction

the direction of repair the non-Mendelian repair template (in the case of this

problem size this is the grandparent) is superior to the Mendelian repair

template (the parent).

In Table 5.7 the results are investigated further by looking at the actual

tour lengths produced. The `Average´in Table 5.7 refers to the average tour

length over the full set of experiments while the `Minimum´refers to the

lowest tour length produced across the 26 repetitions of this experiment.

In Section 5.5.6 we saw that under certain circumstances a randomly cho-

sen template, as opposed to the fittest template, produced the best results.

Table 5.7 compares the three different repair directions using a randomly

chosen template.

However when Mann Whitney statistical analysis was carried out on the

results in this Table the confidence levels were not conclusive. Using a sample
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Figure 5.30: Comparison of Parent, Grandparent and Great-Grandparent

Ancestral Repair Performed in a Right to Left Direction

size of 26 the statistical analysis showed that the Random great-grandparent

template did not outperform the left to right great grandparent template

(p <0.4562). This is quite a high p value which indicates there is not a

strong enough difference between the result sets to draw a firm conclusion.

The statistics also showed that the great-grandparent template acting in a

random direction did not outperform the great-grandparent template acting

in a right to left direction either with a p value of 0.4364 which is also too

high to show a strong difference between the result sets. When each of the

sets of results were compared with their alternative direction counterpart

(grandparent template acting in a random and varying direction compared

with grandparent template acting from right to left etc.) there were only two

strong conclusive p values. The lowest p value was obtained when the grand-

parent repair template was used with repair acting in a random and varying
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Figure 5.31: Comparison of Parent, Grandparent and Great-Grandparent

Ancestral Repair Performed in a Random and Varying Direction

direction compared with using the grandparent repair template acting in a

right to left direction. Mann Whitney statistical analysis showed that the

random direction was more effective than the right to left direction with a

p value of 0.0764. The other strong p value was obtained when parent tem-

plate repair acting in a random direction was compared with repair acting

from right to left. Repair acting in a random and varying direction was more

effective than in a right to left direction with a p value of 0.1788.

From these two statistics and the fact that the lowest result overall re-

sults (shortest tour length) and the lowest average result were achieved by

the great-grandparent repair template with repair carried out in a random

and varying direction we can suggest that the repair direction to use should

be the random and varying repair direction. The reason for this may be

that the great-grandparent would give the highest amount of diversity across
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Comparison of Repair Directions on choice of Ancestral Repair Template

Direction Statistic PTR GPTR GGPTR

Right to Left
Average 2135 2227 1908

Minimum 2033 2136 1839

Left to Right
Average 2127 2222 1912

Minimum 2062 2153 1861

Random and Varying
Average 2129 2219 1909

Minimum 2060 2094 1809

Table 5.7: Comparison of Three Different Repair Directions with Random

Template Selection

the population and the random and varying direction would also maintain

diversity. If we concentrate on the direction of repair - the results are so far

away from their nearest competitor I suggest that carrying out repair in a

random and varying direction produces the most suitable level of diversity

which leads to strong results (FitzGerald & O’Donoghue 2008) especially for

permutation problems. Additionally, in the absence of a clear reason for

selecting a specific direction, we opted for the �random and varying�as the

preferred repair direction

5.5.13 Storage of Ancestors

Hypothesis: The method used to choose the specified ancestor stored does

not affect the overall result

In the experiments above there was a choice between two ancestors for each
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Figure 5.32: The Family Tree of each individual in the population

GeneRepair mechanism unless otherwise specified (See Section 5.5.6). The

selection between available ancestors was carried out in an arbitrary way. In

this section we address a potential criticism that our method for selecting

the repair templates does not actually implement the stated strategy. For

example in Section 5.5.6 one of our results attests to using the fittest great

grandparent as a repair template. In the implementation of the EO a subset

of the possible ancestors is stored for each individual. GeneRepair stores

two of each ancestor (parent, grandparent and great-grandparent) for each

individual. This improves computational time by decreasing memory costs

and complexity. In this Section I will explain how the ancestors to be stored

are chosen and compare this method to the alternative to show the effect on

results produced.

In Figure 5.32 we can see the family tree for each individual in the

population. For clarity each Grandparent is labelled GP and each Great-

Grandparent is labelled GGP. We can see that the individual has two par-
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ents, four grandparents and eight great-grandparents. The issue is that we

present results at the great-grandparent level, however the templates are only

stored anew when they are at the parent level. The system does not store all

eight possible great-grandparents for each individual. That is, templates en-

ter our ancestral ”conveyor belt” that maintains templates of different ages.

So, when we presented the fittest great-grandparent results this is the fittest

of the stored pair for this individual.

The choice of which ancestor to store is arbitrarily made by choosing

ParentA (See Section 3) of the parent and storing this at each generation.

ParentA is the parent with the lowest array index of the two parents. For the

first generation both parents are stored for the individual. At generation two

ParentA of the first individual selected for the crossover operation is stored

as the first grandparent and ParentA of the second individual selected for the

crossover operation is stored is stored as the second grandparent. Thus begin

an ancestral �conveyor belt�. This choice was made to reduce the amount

of information that needs to be stored and increase computation time. This

arbitrary choice does not affect the results produced. In order to illustrate

this I carried out an experiment where a random ancestor was chosen instead

of always choosing ParentA of the given ancestor. I did this by randomly

(with a 50% probability) swapping ParentA and ParentB of each individual

so that a random side of the individual was stored.

In Figure 5.33 I have shown the results produced when three ancestral

repair templates are compared through the running of an experiment of 101

Cities with a population of 50 and a mutation rate set to 2% for 500,000
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Figure 5.33: Random Parent Stored as opposed to arbitrarily choosing

ParentA of the given ancestor

generations with repair acting in a random and varying direction. In this ex-

periment ParentA and ParentB were randomly swapped (with a 50% prob-

ability) to ensure that ParentA of the given ancestor was not always the

stored template. In Figure 5.34 the results produced by storing an arbitrary

parent (as described previously in this Section) are illustrated. To com-

pare these two sets of results Figure 5.35 compares parent, grandparent and

great-grandparent repair template storage. In this graph we can see that

the great-grandparent template stored in an arbitrary way sits on top of the

results for the great-grandparent stored in a random way as do the parent

templates and the great-grandparent templates. The order of effectiveness

of the templates is the same. This supports the hypothesis that the method

used to choose the ancestor stored does not affect the overall result.
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Figure 5.34: Storing ParentA of the given ancestor as in the rest of the

experiments

5.5.14 Discussion of Computationally Focused Investi-

gation

Given the results presented thus far in this chapter, there were two ways

we could have proceeded. One was to apply ancestral repair to a variety of

different problems which could possibly include other permutation problems,

combinatorial problems, or constrained numeric optimisation etc. The cur-

rent implementation is limited to certain permutation problems but could be

adapted quite easily to produce valid solutions to a wider set of constrained

problems.

The other option was to explore ancestral repair under more biologically

inspired conditions. While the previous results were based on a loose analogy

between the two domains, the rest of this chapter strengthens the analogy
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Figure 5.35: The Comparison of Storing ParentA of the given ancestor as in

the rest of the experiments as opposed to a Random Parent

by importing more biologically founded parameters into our computational

model. We chose this second route because our results were proving to be

of huge interest to the original proposer of non-Mendelian repair in the Ara-

bidopsis thaliana Dr Susan Lolle 1 and to a number of her collaborators.

The results so far inspired a natural line of questioning as to whether the

repair templates would remain as effective when more biologically inspired

parameters were used. We decided to carry out a set of experiments with

parameters that attempt to mimic those in the biological realm. This leads

on to the second objective of this thesis.

1Personal communication with Dr Susan Lolle in University of Waterloo, Ontario,

Canada
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5.6 Objective 2 - Biologically Focused Inves-

tigation of GeneRepair

At this point, the reader is reminded that the proposed non Mendelian repair

theory suggested to exist in the Arabidopsis thaliana plant (Lolle et al. 2005)

has proven to be very controversial. In this section we attempt to use our

model to see if we can shed any light on the process. In this section we

perform stress or reliability tests to test the mechanism under, what could

be seen as, more �biologically�inspired parameters. While inconclusive, these

results have generated suggestions that are of great interest to the biological

community 1.

While Section 5.5 compared Mendelian to non-Mendelian repair using

a number of different parameters and problem sets, this Section will delve

deeper into the parameters of interest in the field of biology. This Section

also further investigates whether any other mechanism can be employed with

GeneRepair to improve it even more. As previously stated in Section 1.5 what

we term as �biological experiments�are still computational evaluations and

should not be confused with systems biology or related disciplines.

5.6.1 Reduced Redundancy Representation and An-

cestral Repair Templates

An optimal solution to a 3 city TSP could be represented in 6 different ways,

as locii are interchangeable. Removing this locus interchangeability might

1Personal communication with Dr Susan Lolle in UW and Dr R. Palmer in ISU
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focus evolution and thereby affect the relative fitness of the repair templates.

Hypothesis: DNA is an order based representation with a definite start

and end. Applying such a structure to our representation and thus reduc-

ing the number of representations for each optimal solution might affect the

choice of ancestral repair template used

DNA is an order based representation with definite start and end codons.

Would such a structure applied to the representation of individuals in an

EO alter the effect of the ancestral template? The TSP is a circular tour

beginning and ending at the same point (See Section 5.2. For this reason the

specific city that represents the first city of the tour (and also the end point)

is not important as the tour can be seen as a closed loop. The important

property of the tour is the order of the cities.

In this Section the use of one fixed allele is investigated( Acyclic Repre-

sentation ), where the first city is fixed to City 0 (an arbitrary choice), with

Non-Fixed ( Cyclic Representation ), where the EO is run as normal and the

first city is randomly decided by the EO, are compared. We acknowledge that

the term �Acyclic�is an exaggeration and merely use this term to distinguish

between the greater degree of redundancy in the �Cyclic�representation as

compared to our �Acyclic�representation. By fixing the first city the com-

putation time for the EO should be decreased. While one may argue that

the acyclic representations reduce diversity at each locus and thus the diver-

sity expected within the whole population, it may therefore slow down the

EO the number of computations are greatly reduced by effectively removing

one element from the individual. This could be seen as reducing the prob-
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Figure 5.36: 1379 City TSP Without Fixing First City

lem complexity to that of numberOfCities - 1 which will therefore reduce

computation time for the EO.

In Figure 5.36 we can see the results of the experiment where a 1379 City

TSP (Reinalt 1991) was used to compare the effectiveness of three ancestral

repair templates. This experiment was run for 10,000 generations with a

population of 100 and a mutation rate of 0.1%.

The results shown in Figure 5.37 were produced using the same param-

eters except that the first city was fixed to zero. We can see that the order

of effectiveness of the three repair templates does not change when the first

city is fixed. The grandparent repair template is shown to be the most ef-

fective template by a wide margin in both cases. Figure 5.37 and Figure

5.36 support the hypothesis that fixing the first city of the population does

not change the order of effectiveness of the repair templates. Therefore, this

result does not undermine the ancestral repair hypothesis.
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Figure 5.37: 1379 City TSP Effect of Fixing First City

Mann Whitney statistical analysis was carried out to compare these two

sets of results using a sample size of 26. No difference was found between the

cyclic and acyclic results for the great-grandparent template (p <0.4168).

When the grandparent template and parent template GeneRepair were com-

pared when acyclic and cyclic representation was used no significant differ-

ence was found between both sets of results (p <0.496). These p value show

that the results produced by cyclic and acyclic representation are not differ-

ent enough to produce a strong confidence level. This shows that the choice

of acyclic and cyclic representation does not affect the efficiency of the repair

templates and so also does not affect the order of efficiency of the ancestral

repair templates.
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Figure 5.38: 101 City TSP with self-crossover Prohibited

5.6.2 Non-Self Crossover

In all of the previous results described in this chapter self crossover has

been allowed. The reason that this crossover property is of interest and is

examined in this thesis is that the Arabidopsis thaliana has the ability to

self-crossover (Meinke, Cherry, Dean, Rounsley & Koornneef 1998) and in

the biological world this is referred to as a selfer. Selfing is the main process

for propagation - common to many crop plants(Hopkins et al. 2011).

Hypothesis: Ancestral repair will perform differently on inbred pop-

ulations where self-crossover is prevalent than in populations where self-

crossover in prohibited

In Figure 5.38 we can see the results produced by running the EO on a

101 city TSP with a population of 50 and a mutation rate set to 2.0% for

500,000 generations with repair acting in a random and varying direction.
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Figure 5.39: 101 City TSP with self-crossover Permitted

The difference with this experiment is that self-crossover was prohibited. If

we compare this to Figure 5.39 we can see that the order of efficiency of

the ancestral repair templates is not altered by the use or prohibition of self

crossover. This allows us to reject the hypothesis that ancestral repair per-

forms differently in non-inbred populations. Thus, ancestral repair templates

are not greatly affected by the presence or absence of inbreeding in the pop-

ulations. This was the expected result as the amount of inbreeding would

generally be considered relatively small within the EO.

If we compare the use of great-grandparent repair templates using Mann

Whitney statistical analysis with a sample of 26 allowing self crossover than

when self crossover was not allowed, with a p value of 0.0668. This confidence

level shows that there is a significant difference between the two sets of results

and that allowing self crossover when using the great-grandparent ancestral

repair template outperforms the use of this template when self crossover is
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not allowed. This result indicates that allowing inbreeding can have positive

consequences - we note also that this might be an indirect means of introduc-

ing �elitism�into our population. The reason that this investigation into the

use of self crossover was carried out was in order to mirror the Arabidopsis

thaliana plant which allows self-crossover. This finding that self crossover

is beneficial to great-grandparent GeneRepair may link in some way to the

fact that the plant allows self crossover and uses non-Mendelian inheritance.

This may be an area that deserves further study and investigation in order

to fully explain the meaning of this finding.

When the use of grandparent template repair was compared using self

crossover and prohibiting self crossover, prohibiting self crossover was shown

to produce stronger results but with a weaker p value of 0.1562 with a sample

size of 26. This confidence value suggests that prohibiting self crossover

produces stronger results when the grandparent repair template is used but

not to the same extent as self crossover performs when the great-grandparent

repair template is used. There was no significant difference between the two

sets of parent repair templates with non self crossover producing stronger

results with a p value of 0.409. Again this result suggests that population

diversity is a significant factor in the use of older ancestral templates for

genetic repair.

This section shows that the use or disuse of self-crossover does not affect

the order of efficiency of the ancestral repair templates. We have also seen

that for great-grandparent ancestral repair allowing self crossover produces

better results than when it is not allowed.
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5.6.3 Low Mutation Rates

Section 5.5.5 explained the effect of the mutation rate on diversity. When

this mutation rate is decreased the amount of diversity it introduces into the

population decreases also. Another step which introduces diversity into the

EO is GeneRepair. As we decrease the mutation rate, we can see GeneRe-

pair as one possible operator that can help re-introduce additional diversity

into an overly homogenous population. In order to examine this property

experiments were carried out to compare the effectiveness of GeneRepair at

very low mutation rates. As previously stated, the biological inspiration for

this thesis arises from a non-Mendelian repair mechanism in the Arabidopsis

thaliana plant (Lolle et al. 2005). This theory might suggest that ances-

tral templates are more effective in the presence of low mutation rates. The

A.thaliana plant experiences mutation at a rate of approximately only 1 per

billion alleles per generation (Weigel & Jürgens 2005). This experiment may

be seen as the closest model to the Arabidopsis thaliana plant of all of the

experiments illustrated as it has a very large number of cities which corre-

sponds to the long genome of the plant and it is being tested at very low

mutations which would also correspond to the low mutation rate experienced

by the plant.

Hypothesis: At low mutation rates non-Mendelian repair templates can

provide additional diversity to the EO

Table 5.8 shows the results produced when an EO was run on the 18512

City TSP with a population of 10 for 10,000 generations. We can see that

even at very low mutation rates the grandparent repair template is the most
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Comparison of Repair Template Effectiveness using Low Mutation Rates

Mutation Rate PTR GPTR GGPTR

0.1% Average 54927424 49961984 54860117

0.01% Average 43811928 43054071 44319322

0.001% Average 50137666 44726073 48071941

Table 5.8: Very Low Mutation comparison of Repair Template Effectiveness

effective with a p value of <0.0001 for mutations of 0.1% and 0.01%. The

finding of this experiment is that at very low mutation rates the grandparent

template should be used by GeneRepair to produce the strongest results.

Non-Mendelian repair templates have shown themselves to be a strong con-

tributor to the overall diversity of the EO. This introduction of diversity is

of particular importance at low mutation rates when otherwise diversity may

be greatly reduced leading to the EO finding plateauing at a local optimal.

5.6.4 Diversity Maintenance Illustrated by Investigat-

ing the Average Fitness of Individuals in each

Generation

In order to illustrate that diversity is maintained across the experiment I

have investigated the average fitness of the individuals in the population. If

diversity decreased across the population this would mean that individuals

would become similar and thus the average fitness would tend towards the

lowest fitness as the range would decrease. If diversity was maintained across

the population the average fitness would not tend towards the minimum
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Figure 5.40: 101 City TSP with Minimum Tour Length Found for Each

Experiment

fitness (fittest individual) as the large or diverse range of individuals would

exist.

In the biological research community there is also an interest in average

fitness of individuals as opposed to solely the fittest individual 1. The last

section of this investigation of results therefore examines the average fitness

across the individuals at each generation.

In Figure 5.40 the results produced when a 101 City TSP was used with

2% mutation and a population of 50 and the experiment was run for 500,000

generations. This graph illustrates the minimum tour length, or best result,

produced by each experiment. The best result produced by each repair tem-

plate (the lowest tour lengths in Figure 5.40) was investigated further. Figure

1Personal communication with Dr Susan Lolle in University of Waterloo, Ontario,

Canada.
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Figure 5.41: 101 City TSP Average Tour Length Found at Each Generation

For the Best Tours of Each Ancestral Repair Template

5.41 shows the average fitness across the population at 1000 generation steps

for each of these three results. Comparing the two graphs the first observa-

tion is that the order of efficiency of the ancestral repair templates is identical

with great-grandparent performing best and grandparent performing worst

(as expected for the 101 City TSP). When Mann Whitney statistical analysis

was carried out on the results it was found that the average fitness across

the great-grandparent template was less than that of the parent and grand-

parent template with p value of <0.0001 for both with a sample size of 500.

The sample size is 500 as there were 500,000 generations and the average fit-

ness across the population was calculated every thousand generations. The

second observation is that the average fitness across the population is very

different to the minimum tour length found at that generational milestone.

When the experiments finish at 500,000 generations the average tour length
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of the parent, grandparent and great-grandparent are 3382, 3384 and 3392 re-

spectively while the minimum tour lengths found were 2070, 2138 and 1804

respectively. The statistical analysis in this section, however, shows that

when taking minimum results or averages across the population the great-

grandparent repair template outperforms the parent for this experimental

set up. This suggests that regardless of whether the average or minimum

tour length is being investigated non-Mendelian ancestral repair template

outperforms the Mendelian ancestral repair template and also that diversity

is maintained across the population as the average tour length is not close

to the minimum tour length found.

Figure 5.42 shows the standard deviation of tour length over generations.

While this graph does not give a precise picture statistical analysis spreads

some light on the issue. Using the Mann-Whitney U test shows that the

standard deviation of PTR<GGPTR with a confidence of p<0.1271. Further

research could be carried out in this area to pinpoint spikes and ebbs in

diversity by Mendelian and non-Mendelian templates.

Figure 5.43 shows the difference between the maximum and minimum

fitness for one iteration at every 10,000 generations. When statistical analysis

is carried out on these results the Mann-Whitney U test shows that PTR has

a smaller absolute difference than GGPTR with a confidence of p <0.0985.

This suggests that there is more diversity across the set of results produced

by GGPTR than PTR.
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Figure 5.42: Standard Deviation of tour lengths produced using 101 City

TSP

Figure 5.43: Absolute Difference between minimum and maximum tour

length using 101 City TSP
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5.7 Summary and Discussion

Throughout this thesis the effectiveness of Mendelian repair templates are

compared to that of non-Mendelian ancestral repair templates under a variety

of conditions. In this chapter the ancestral repair hypothesis presented in

this thesis was tested within the context of EO to produce valid solutions to

a standard constraint based problem. This ancestral repair mechanism was

inspired by the controversial suggestion of a non-Mendelian repair mechanism

in Arabidopsis thaliana (Lolle et al. 2005). It was controversially suggested

that this plant uses non-Mendelian inheritance to enable it to use information

that is not present in either parent but may be present in the grandparent,

or a previous generation, to repair errors in the current individual. This

controversial finding has led to the expansion of the analogy between EO and

nature in order to include a repair mechanism in EO, as presented in this

thesis. This repair mechanism, called GeneRepair has been implemented to

enable EO to produce valid solutions to constraint based problems by giving

it the tools to repair invalid individuals that break the problem constraints.

There are two main objectives underlying the results presented in this

chapter: The first objective is to investigate whether non-Mendelian template

repair can be used to enable EO to produce valid solutions to a standard

constraint based problem. The second objective is to explore if the computer

science side of the EO analogy can provide any evidence either supporting

the non-Mendelian repair hypothesis (Lolle et al. 2005) or any evidence that

appears to contradict this hypothesis. This results chapter is thus divided

into two sections; Results that have implications for the Computer Science
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Community (Section 5.5) and results that may have implications for the

Biology Research Community (Section 5.6) even if these results are only

analogically founded.

The chapter began by comparing the computational efficiency of Mendelian

ancestral repair with the death penalty method and then went on to compare

non-Mendelian ancestral GeneRepair to Mendelian ancestral GeneRepair. In

order to measure these techniques to enable EO to produce valid solutions

to a constraint based problem (TSP) was used. In Section 5.5.2 I showed

that parent template GeneRepair is a far more efficient method of handling

constraints than the death penalty. Parent based GeneRepair outperformed

the death penalty for every mutation rate compared.

In Section 5.5.3 the use of the grandparent as a repair template was com-

pared to the use of parent repair template. It was found that the grandparent

produced stronger results than the parent, which led to the investigation of

the use of the great-grandparent as a repair template. While Lolle’s 2005

paper only focuses on grandparent, in this Section the great-grandparent

showed itself to be the less efficient repair template to use with GeneRepair

when compared to the grandparent but was also shown to be more efficient

than the parent under the fixed direction fittest template condition.

At each ancestral level, (parent, grandparent or great-grandparent) there

is a choice of two templates in the EO presented in this thesis. To investigate

this choice using fittest of the two templates was compared randomly choos-

ing between the two templates. While the results for this experiment were

not as definite as other results produced, using the random great-grandparent
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template (as opposed to the fittest) produced the strongest results, when par-

ent, grandparent and great-grandparent were compared examining the use

of the fittest and random templates.

For this reason there was further experiments carried out to examine the

randomly selected ancestral template choice by comparing the three repair

directions in conjunction with this parameter. It was found that repair car-

ried out in a random and varying direction is more efficient than when carried

out in a fixed right-to-left or left-to-right direction. It was also found that

the great-grandparent produced stronger results when a random template

was used as opposed to the fittest as did the grandparent when repair was

carried out in a random direction. From these results it could be seen that

non-Mendelian repair is most efficient when a randomly chosen template (as

opposed to the fittest template) is used and repair is carried out in a random

and varying direction. In the next set of results I examined the effect of

population size on GeneRepair template choice and found that there is no

effect of population size on the order of effectiveness of the repair templates.

Throughout this thesis the effectiveness of Mendelian repair templates are

compared to that of non-Mendelian ancestral repair templates under a vari-

ety of conditions. So far this thesis has shown that non-Mendelian templates

outperform the parent template in a wide variety of situations.

This investigation continued to explore different mutation rates and it was

found that the mutation rate that produced the best results for each template

was (surprisingly) the same for each of the three different templates. This is

important as it means that the choice of mutation rate is independent of the
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choice of repair template.

Previous research (Mitchell 2007) has suggested that using a random

repair template is the most effective method of template repair for EO. The

use of random template repair (RTR) and this new GeneRepair technique was

compared and found that for smaller problems the random repair template is

more effective than ancestral repair templates. However for larger problems

ancestral GeneRepair is far more effective than random template repair (As

illustrated in Section 5.5.9). This is also a very significant finding because

the focus of research tends towards a focus on larger problems, rather than

smaller ones.

In order to make useful comparisons the majority of the results presented

for Chapter 5 used the 101 city TSP. In order to show that the findings pre-

sented are independent of problem size I revisit some previously presented

experiments using different problem sizes to show that the findings are not

limited to the 101 city TSP. These results showed that GeneRepair is not

sensitive to problem size. For 101 City TSP and smaller problems the great-

grandparent repair outperformed the non-Mendelian parent repair while for

532 City TSP and larger problems the grandparent repair template out-

performed the Mendelian parent repair template. Therefore, regardless of

problem size, the non-Mendelian ancestral repair template outperformed the

Mendelian ancestral repair template. Again this is a very significant finding

and also echoes the controversial findings of Lolle et al (2005).

The comparison of two different selection methods to show that the results

presented in this thesis are not dependent on selection method. Results show
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that the truncation method was more effective with GeneRepair than the

tournament method and also that the order of effectiveness of the repair

templates is the same for both selection methods compared. This supports

the hypothesis that GeneRepair is not sensitive to the selection method used.

Therefore while using a different selection method may produce stronger

results the �best �ancestral repair template remains the same.

While the results summarised so far fall into the Computer Science ob-

jective of my research (See Section 5.5), the next set of results are concerned

with the Biological Field objective (See Section 5.6). I examined the ad-

vantages of fixing the first city of the population and found that fixing this

city does not change the order of effectiveness of the repair templates. I

also examined the effects of prohibiting self crossover in the EO. As the Ara-

bidopsis thaliana allows self crossover I wanted to compare the effectiveness

of the GeneRepair mechanism when this property is present and absent. I

found that prohibiting self-crossover in the population produces weaker re-

sults than when self-crossover is allowed for great-grandparent repair. The

mutation rate experienced by Arabidopsis thaliana in its natural environment

is far lower than the rates used in evolutionary computation. For this rea-

son the next experiment examined the performance of GeneRepair at very

low mutation rates. I found that results produced by EO with very low

mutation rates depend heavily upon the repair template used. I also found

that the grandparent repair template is more effective than the parent and

great-grandparent at very low mutation rates.

Overall, the results presented and discussed in this chapter, which are of
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interest in both the academic field of Computer Science and Biology, support

the use of GeneRepair with non-Mendelian repair templates to enable EO to

produce valid solutions to constraint based problems.
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Chapter 6

Repetition of Experiments

Using CVRP Domain

6.1 Introduction

In Chapter 5 the results of a thorough investigation into the use of GeneRe-

pair to enable EO to produce valid solutions to a constrained problem, were

illustrated using the TSP as a problem domain. That chapter showed the

results of many experiments into the parameters associated with GeneRepair

as well as a wide variety of experiments to compare the efficiency of differ-

ent ancestral templates. In this chapter it will be shown that these results

are not specific to the TSP as many experiments described in Chapter 5

will be repeated with identical parameters and experimental setup using the

Capacitated Vehicle Routing Problem (CVRP) instead of the TSP.

One of the advantages of GeneRepair is, unlike many other constraint
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handling EO, it is not problem specific. In this chapter this property will be

illustrated and supported by introducing the Capacitated Vehicle Routing

Problem (CVRP). I will show the results of running similar experiments to

those shown in Chapter 5 on this problem rather than the TSP. Importantly,

the code for performing GeneRepair is unchanged between the TSP and

CVRP problems and thus represents a good test of the potential generality

of this permutation oriented version of ancestral template repair. This over-

comes the disadvantage of problem specificity that is associated with many

EO adaptations as shown in Chapter 2. The implementation of GeneRe-

pair used in this thesis is specifically aimed at certain permutation problems

(simple order based permutation problems) but with slight adaptation this

implementation can be applied to a wide variety of problems. We again

highlight that the ancestral repair algorithm itself originated in the domain

of natural evolution, giving yet further weight to our claims for generality.

6.2 Structure of Chapter

This Chapter begins by introducing the Capacitated Vehicle Routing Prob-

lem. This problem will serve as an alternative to the TSP to investigate

behaviour of GeneRepair on a different problem domain. Next the exper-

imental setup for the results examined in this chapter is explained. This

chapter then goes on to compare the use of Mendelian and non-Mendelian

repair templates in a similar way to that of Chapter 5 except that the problem

domain is different. The behaviour of GeneRepair when the population size

is changed is then investigated. In a similar fashion to Section 5.5.5 the use of
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GeneRepair at a variety of different mutation rates is examined. Finally the

use of GeneRepair for different CVRP sizes is examined. Throughout this

chapter we will be reminded of the results produced using the same parame-

ters with the TSP and show how the results produced using the Capacitated

Vehicle Routing Problem differ or match those shown in Chapter 5.

6.3 Capacitated Vehicle Routing Problem

The Capacitated Vehicle Routing Problem (CVRP) (Ralphs, Kopman, Pul-

leyblank, Trotter & Jr. 2001) is a combinatorial optimisation problem. It

can be described as follows: n customers must be served from a unique de-

pot. Each customer (or node) asks for a quantity qi of goods (i = 1,..., n)

and a vehicle of capacity Q is available to deliver goods. Since the vehicle

capacity is limited, the vehicle has to periodically return to the depot for

reloading. The problem data provides n-1 nodes, one depot and distances

from the nodes to the depot as well as between the nodes. All nodes have

demands which the depot can satisfy and the optimal result is the tour with

minimal total length that satisfies the node demands without breaking the

trucks capacity constraint.

6.4 Experimental Set-Up

As in Chapter 5 a standard population of 100 was used with 500,000 genera-

tions and a mutation rate of 2%. This experimental set up was used for all the

experiments described in this chapter unless otherwise stated. The CVRP
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problem data was obtained from the library of CVRP data presented in the

TSPLIB collection by Heidelberg University in Germany (Reinalt 1991).

6.5 Ancestral Templates

In Sections 5.5.2 and 5.5.3 the use of ancestors as repair templates for the

GeneRepair mechanism was examined. This technique repairs invalid indi-

viduals in the current population using the chosen ancestor of this individual

to serve as the repair template (FitzGerald & O’Donoghue 2008). In this

chapter we investigate whether the results in Chapter 5 relate to aspects that

are specific to the TSP problem alone or are the results representative of the

behaviour of ancestral repair. This technique mirrors the repair mechanism

found in the Arabidopsis thaliana plant where, it has been suggested, the

mutant plant repairs itself using information found in a generation previous

to the parent (Lolle et al. 2005).

In this section the results produced from carrying out similar experiments

to those of Chapter 5 are presented except that a different problem has

been used. As previously stated, GeneRepair is not problem specific and has

been implemented to produce valid solutions to any order based permutation

problem that uses a simple linear representation. The results in this section

were produced using the same technique on the CVRP problem. The same

code was used with the same parameters and problem sizes. The reason

for this mirror technique is to prove the problem independence property of

GeneRepair (FitzGerald & O’Donoghue in preparation).

In Figure 6.1 the effectiveness of the three ancestral repair templates are
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Figure 6.1: CVRP Ancestral GeneRepair Template Comparison

compared using the 101 City CVRP. Kruskal-Wallis statistical analysis in-

dicated that there was a significant different among the three groups (PTR,

GPTR and GGPTR) with H = 68.46 with df = 2 and p <0.0001. We can see

from this graph that the Great-Grandparent repair template is most effective,

with GGPTR <PTR and GPTR (p <0.0001). This supports the hypothe-

sis from Section 5.5.3 that non-Mendelian ancestral templates can be more

effective as GeneRepair templates than their Mendelian counterparts. The

results mimic those of Section 5.5.12 (Figure 5.31)that non-Mendelian repair

templates outperform their Mendelian counterparts for experimental condi-

tions shown. This is not only applicable to the Computer Science community

but also to the Biology Research community as it shows that when the con-
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troversial suggestion of non-Mendelian repair mechanisms is implemented in

an EO the non-Mendelian template outperforms the Mendelian template.

6.6 Variation of the Population Size

In this Chapter the same experiment were run on the CVRP problem with

the same conclusion about ancestral templates found as those illustrated in

Section 5.5.7. This was carried out to show that the GeneRepair technique

can be applied to another (simple) order based permutation problem. In

Figure 6.2 the results produced when the 101 node CVRP is used to compare

three ancestral repair templates. The minimum result produced for each of

the 52 repetitions of the experiment are shown. Kruskal-Wallis statistical

analysis indicates a significant difference among the three groups with H

=132.31, df = 2 with p <0.0001. The Mann-Whitney U test on these results

further indicates that GGPTR<GPTR and PTR (p<0.0001). If we compare

Figure 6.2 which used a population of 50 to Figure 6.1 with a population

of 100 we can see that the order of effectiveness of the repair templates is

identical. This supports the hypothesis in Section 5.5.7 which states that the

choice of GeneRepair template is not impacted by population size. While

in Section 5.5.7 this hypothesis was supported using the TSP, the results

depicted in Figure 6.2 show that this hypothesis is not TSP specific as it has

also been supported using the CVRP.
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Figure 6.2: A comparison of the three ancestral repair templates for 101 city

CVRP using a population of 50

6.7 Comparison Across Mutation Rates

In Section 5.5.5 the effect of the repair template on the optimal mutation

rate for the specific problems was investigated using the TSP. It was found

that the choice of repair template does not affect the optimal mutation as

each of the repair templates converged to the same optimal mutation rate

for the TSP. In this Section this finding is investigated using the CVRP. The

results presented in this section were produced by exploring the (average)

fitness produced across a variety of mutation rates between 2% and 0.1%.

This experiment used for the 101 node CVRP with a population of 100 run
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for 500,000 generations. This experiment mirrors the experiment illustrated

in Figure 5.13 however the results shown in Figure 6.3 were produced using

the CVRP as opposed to the TSP.

Figure 6.3: A comparison of the three ancestral repair templates across a

range of Mutation Rates for 101 node CVRP

Figure 6.3 shows that the optimal mutation rate occurs at 0.75% mu-

tation - for each of the three ancestral repair strategies. This supports the

hypothesis from Section 5.5.5 which states the choice of repair template does

not affect the optimal mutation rate for the specific problem. In fact, for

a similarly sized TSP problem (eil101) the optimal mutation rate was also

found to be 0.75% for each of the repair templates. This was to be expected

as the TSP is a 101 City problem and the CVRP is a 101 node problem with

the added complexity of the depot property. We can see from the results
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presented that this property of GeneRepair is not problem specific. This

continues to support the thesis that GeneRepair is not problem specific.

As in the results presented in Section 5.5.5, Figure 6.3 shows that the

difference between the repair template effect is stronger for mutation rates

above the optimal (0.75%) and there is little difference at the optimal and

below it. This finding echoes that of Section 5.5.5 which again shows that

the results produced by GeneRepair are not problem specific (to the TSP).

6.8 Different Problem Size

In Section 5.5.10 we saw that the ancestral effect of GeneRepair for the

TSP is not specific to problem size. In Figure 6.4 this experiment was re-

peated using a 51 node CVRP as opposed to the 101 City CVRP used in

previous experiments in this Chapter. Kruskal-Wallis analysis indicates a

significant difference among the three sets of results with H = 47.64, df = 2

with p <0.0001. The Figure shows that for a problem of this size the great-

grandparent repair template produces the strongest results, with GGPTR

<GPTR and PTR (p <0.0001). This graph echoes the results discussed

in Section 5.5.10, the finding that the order of efficiency of ancestral repair

templates is independent of problem type but specific to problem size with

great-grandparent repair producing the strongest results for small problems

(101 City TSP and less). This section shows that this property of GeneRe-

pair is not specific to the TSP. While the properties of GeneRepair are not

specific to problem size they are also not specific to problem domain of the

TSP as the results illustrated in Figure 6.4 were produced using the 51 node
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Figure 6.4: A comparison of the three ancestral repair templates used with

GeneRepair on a 51 node CVRP with Mutation Rate of 2%

6.9 Conclusion

In Chapter 2 it was shown that a number of EO implementations to handle

constraints are problem specific. This chapter addresses this issue by extend-

ing some previous research on GeneRepair. We investigate whether GeneRe-

pair applicable to other constraint problems (in addition to the TSP investi-

gated in a previous chapter) and whether our implementation of GeneRepair

is applicable to other order based permutation problems. In order to investi-
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gate whether GeneRepair is TSP specific a number of the experiments from

Chapter 5 were repeated in this Chapter using a different problem domain.

These investigations also investigate the ancestral template effect found in

Chapter 5, that generally the non-Mendelian repair templates outperformed

the Mendelian alternative. The problem domain used in this Chapter is the

Capacitated Vehicle Routing Problem (CVRP) 1 which is the problem of

routing multiple vehicles around n nodes. Each node has a demand and this

demand is met by the vehicle returning to the depot in order to fill the node.

Each vehicle also has an associated capacity limit. The optimal results is the

minimum tour length that satisfies all node demands and does not violate

the vehicles finite capacity.

The results indicate the same order of effectiveness of the ancestral repair

templates as when compared with the TSP results from the previous chapter.

This means that when the great-grandparent template was most effective for

a certain set of parameters using the TSP then it was also most effective for

the CVRP. This indicates that the same choice of repair template should be

made for both the TSP and the CVRP permutation problems. The results

also showed that the optimal mutation rate (of those tested) was the same

for the same size TSP and CVRP. This indicates that the optimal mutation

rate for the 51 City TSP is equal to the optimal mutation rate for the 51

node CVRP. The order of efficiency of the ancestral repair templates was

also the same for the both problem types. While this illustrates that the

same mutation rate can be used in conjunction with the repair template for

1All CVRP Data available online at http://comopt.ifi.uni-

heidelberg.de/software/TSPLIB95/vrp/
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both the TSP and CVRP the conclusion from these sets of results is that

the order of efficiency of the repair templates is the same at each mutation

rate. Specifically, the best results are reliably produced by using the great-

grandparent as the repair template - this template producing better results

than either the parent or grandparent templates. This Chapter has shown

that the application of ancestral repair templates and GeneRepair in not

limited to the TSP. The results presented in Chapter 5 are therefore not

isolated instances where the GeneRepair technique is successful but rather a

strong indication of how the technique will work with other constraint based

problems.
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Chapter 7

Conclusion

7.1 Introduction

Evolutionary Algorithms (EA) are an excellent technique for solving diffi-

cult problems. Where EA are challenged however is when they are used to

solve constraint based problems. In addition to presenting large and com-

plex problem spaces, these problems call for a number of constraints to be

satisfied in a given solution and this can cause difficulty for EA. The reason

that standard EA are not suited to solving this type of problem is that they

create a wide and varying range of solutions and lack a method to ensure

that these solutions obey the problem constraints. EA create diverse solu-

tions and avoid reaching a local maxima by keeping the population spread

across the feasible search space. Often the fitness function is inapplicable

outside of the feasible search space and the feasible search space may be

small in comparison with the overall search space. In order to produce so-

212



lutions that obey specific problem constraints the generic EA (as shown in

Section 2.2.2) must be adapted. This adaptation can be done in a variety of

ways. At present there are 4 main schools of thought on this subject. The

EO can be tweaked to use modified operators, it can be adapted to use a

pareto-optimal strategy, it can incorporate a penalty system or it can use

a form of repair on invalid solutions. Each of these methods are explained

and reviewed in Chapter 2. While each of these fields enable EO to handle

constraints their disadvantages include non-biologically inspired implemen-

tation, problem specificity, complex implementations and difficulty in result

reproduction based on information provided.

This thesis explored a biologically inspired method to enforcing con-

straints within an EO. This method falls into the repair category of tech-

niques for handling constraints within EA. This method called GeneRepair

is a repair mechanism to enable EO to produce valid solutions to constraint

based problems. GeneRepair was formed by strengthening the existing anal-

ogy between EO and a recently postulated theory (Lolle et al. 2005) for

natural evolution. In 2005 a non-Mendelian repair mechanism was suggested

in the Arabidopsis thaliana plant (Lolle et al. 2005). It is suggested that this

controversial repair mechanism uses information that is not present in the

parent to repair its own genetic defects. This non-Mendelian inheritance in-

curred both support (Chaudhury 2005), (Ray 2005), (Weigel & Jürgens 2005)

and doubt (Mercier et al. 2008), (Peng et al. 2006) in the field of biology.

Analogy is the cognitive process of transferring information or meaning from

a particular subject (the source) to another subject (the target). In this the-
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sis the analogy between nature and computer science was used, in particular

the analogy that can be drawn between the proposed repair mechanism of the

Arabidopsis thaliana plant and the derived repair mechanism in Evolution-

ary Optimisation. In this analogy the source is nature and more specifically

the Arabidopsis thaliana plant and the target is EO. It should be noted that

although work is ongoing, at the time of writing there has still been no in-

dependently published work confirming this finding. This possible biological

breakthrough was used in this thesis to extend the analogy between biol-

ogy and EO. This thesis compared the effectiveness of a number of different

ancestral repair templates to not only each other but also to a penalty ap-

proach. This thesis also went on to compare the effectiveness of GeneRepair

on a second problem domain.

The findings in this thesis can provide support to the suggestions made

by Lolle et al (Lolle et al. 2005) as non-Mendelian ancestral repair templates

were shown to be more effective than their Mendelian counterparts for a wide

variety of experiments carried out (See Chapter 5 and Chapter 6).

7.2 Summary of Main Results

In this thesis the effectiveness of Mendelian repair templates are compared

to that of non-Mendelian ancestral repair templates under a variety of con-

ditions. In Chapter 5 it was shown that parent template GeneRepair is a far

more efficient method of handling constraints than the death penalty. Par-

ent based GeneRepair outperformed the death penalty for every mutation

rate compared. It was then shown that the grandparent template produced
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stronger results than the parent template, which led to the investigation of

the use of the great-grandparent as a repair template. The great-grandparent

was shown to be the less efficient repair template to use with GeneRepair

on smaller problems when compared to the grandparent but more efficient

than the parent under the fixed direction fittest template condition. When

the comparison of conducting repair in the three directions was shown it was

found that repair carried out in a random and varying direction is more effi-

cient than when carried out in a fixed right-to-left or left-to-right direction.

It was also found that the great-grandparent produced stronger results when

a random template was used as opposed to the fittest as did the grandparent

when repair was carried out in a random direction. From these results it

could be seen that non-Mendelian repair is most efficient when a randomly

chosen template (as opposed to the fittest template) is used and repair is

carried out in a random and varying direction. The effect of population

size on the GeneRepair template choice was examined and it was found that

population size does not affect of the order of effectiveness of the repair tem-

plates. When mutation rates were explored it was found that the mutation

rate that produced the best results for each template was (surprisingly) the

same for each of the three different templates which means that the choice

of mutation rate is independent of the choice of repair template. The use

of random template repair (RTR) and this new GeneRepair technique was

compared and found that for smaller problems the random repair template is

more effective than ancestral repair templates. However for larger problems

ancestral GeneRepair is far more effective than random template repair (As
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illustrated in Section 5.5.9). This is also a very significant finding because

the focus of research tends towards a focus on larger problems, rather than

smaller ones. The investigation went on to show that GeneRepair is not

sensitive to problem size. For 101 City TSP and smaller problems the great-

grandparent repair outperformed the non-Mendelian parent repair while for

532 City TSP and larger problems the grandparent repair template out-

performed the Mendelian parent repair template. Therefore, regardless of

problem size, the non-Mendelian ancestral repair template outperformed the

Mendelian ancestral repair template. When selection methods were com-

pared results showed that the truncation method was more effective with

GeneRepair than the tournament method and also that the order of effective-

ness of the repair templates is the same for both selection methods compared.

I also examined the advantages of fixing the first city of the population and

found that fixing this city does not change the order of effectiveness of the

repair templates. When self crossover was prohibited it was found that the

population produces weaker results than when self-crossover is allowed for

great-grandparent repair. When we examined the performance of GeneRe-

pair at very low mutation rates it was found that results produced by EO

with very low mutation rates depend heavily upon the repair template used.

It was also found that the grandparent repair template is more effective than

the parent and great-grandparent at very low mutation rates.

Overall, the results presented and discussed in this thesis, which are of

interest in both the academic field of Computer Science and Biology, support

the use of GeneRepair with non-Mendelian repair templates to enable EO to
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produce valid solutions to constraint based problems. We went on to examine

similar experiments carried out using a different problem domain, the CVRP

as opposed to the TSP, and found that the results produced were similar and

that the order of effectiveness (and thus the choice) of repair template was

the same.

7.3 Future Work

GeneRepair using non-Mendelian inheritance is an exciting new technique to

enable EO to produce valid solutions to constraint based problems. While

previous findings have been published on GeneRepair (FitzGerald & O’Donoghue

in preparation), (FitzGerald & O’Donoghue 2010), (FitzGerald & O’Donoghue

2008), (FitzGerald et al. 2009), (FitzGerald & O’Donoghue 2009), (Hatton,

O’Donoghue & FitzGerald 2010), (Hatton & O’Donoghue 2011), (Mitchell

2007) this is the first PhD thesis which concentrates on comparing Mendelian

and non-Mendelian repair templates under a wide variety of conditions. This

thesis investigates the use of GeneRepair and suggests findings that relate to

the fields of both Computer Science and Biology. This thesis has opened up

new possibilities for future researchers to explore. The analogy that inspired

my research is potentially a developing one, with ongoing work by Dr Susan

Lolle and a number of other active research groups involved in plant genet-

ics. This ongoing research into the natural inspiration behind this thesis may

enable future research which will build upon the foundation created by this

thesis.
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7.3.1 Other Problem Sets

In this thesis I investigated the different properties of GeneRepair as applied

to solving the TSP. In order to illustrate the generality of GeneRepair I went

on to show similar properties and findings when the CVRP was used as the

problem domain. While this shows that the properties of GeneRepair are not

specific to the TSP it also suggests that GeneRepair could be used with other

combinatorial optimisation problems. Future work might even include inves-

tigating the use of GeneRepair on non-combinatorial optimisation problems.

This would widen the possible uses of GeneRepair and would be of interest

to a wide community of researchers in the field of EO.

7.3.2 Multiple Constraint Problems

The experiments presented in Chapter 5 and Chapter 6 used a single con-

straint problem (TSP and CVRP). The method of GeneRepair could also be

used to find valid solutions to multiple constraint problems. One suggestion

of how to conduct GeneRepair as part of an EO on a multiple constraint prob-

lem would be to implement a small change to the algorithm. The GeneRepair

step of the EO would be carried out on each constraint until all constraints are

satisfied. The next individual would then undergo GeneRepair. A manda-

tory repair of hard constraints may be imposed with a percentage repair

of soft constraints but further research into multiple constraint problems is

necessary.
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7.3.3 Beyond Permutation Problems

Thus far I have investigated and hypothesised how GeneRepair in conjunc-

tion with EO could produce valid solutions to constrained permutation prob-

lems. Further to this, GeneRepair could also be used to find solutions to the

�Graph Colouring Problem�where the objective is to find the minimum num-

ber of colours necessary to fill a map or graph with the constraint that no

two touching boundaries may be of the same colour. This problem could be

represented as a matrix of integers where each integer represents a colour.

The integers would start at 1 and continue increasing as each colour is added.

When a colour is found to be redundant the highest integer would be removed

and the matrix corrected accordingly. GeneRepair could be carried out to

ensure that no touching elements in the matrix (diagonal, vertical or hori-

zontal) are the same integer. The fittest solution would be the one with the

lowest maximum integer used. Further research into this algorithm could

be done to enable GeneRepair with EO to produce valid solutions to this

problem.

7.3.4 Further Arabidopsis thaliana Study

The non-Mendelian repair mechanism suggested (Lolle et al. 2005) is highly

controversial and the subject to ongoing discussion in the academic field of

biology (Mercier et al. 2008), (Peng et al. 2006) as existing results have yet to

be independently confirmed. As further research is carried out and more light

is shed on this repair mechanism an adaptation to the GeneRepair mechanism

to strengthen the analogy with biology (See Chapter 3) could be made. This
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adapted implementation may provide a stronger repair mechanism for the

field of Computer Science and at least some evidence of support for the

findings made in the field of biology.

7.3.5 Further Ancestral Repair Research

There is currently research being carried out into the use of ancestral re-

pair templates that are between one and many thousands of generations old

(Hatton & O’Donoghue 2011). This research may lead to further collabora-

tion with Dr Susan Lolle if the natural inspiration for this repair mechanism

(Lolle et al. 2005) is independently supported.

7.3.6 Further PTR Research

In the findings presented in this thesis non-Mendelian repair templates (grand-

parent or great-grandparent depending on problem size) were shown to out-

perform their Mendelian (parent) counterparts for the the conditions inves-

tigated. While non-Mendelian templates outperformed the parent template,

the parent template usually ranked second out of the three templates inves-

tigated. This raises questions and opens the door to further research into

whether the parent template is the �safer�option to use as, while it is not

usually the best, it is also not usually the worst option, out of the three

options investigated.
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7.4 Summary of Findings on GeneRepair

This body of research establishes GeneRepair as a technique in the repair

category of mechanisms to enable EO to produce valid solutions to con-

straint based problems. This thesis indicates that extending the analogy

between EO and nature can enable the EO to produce valid solutions to con-

straint based problems in a biologically inspired manner. This method called

GeneRepair is easily implemented and is meta heuristic. Inspired by the re-

pair mechanism suggested in the Arabidopsis thaliana plant GeneRepair uses

an ancestral repair template to repair errors or constraint violations in the

current population of the EO. Investigating this method led to a number of

conclusions.

1. GeneRepair enables EO to produce valid solutions to a con-

straint based problem

The first conclusion of this thesis is that ancestral driven repair im-

proved the functionality of EO on the TSP. This ancestral GeneRepair

improved EO by enabling it produce valid solutions to constraint based

problems.

2. Non-Mendelian repair templates,in conjunction with GeneRe-

pair, produce superior results to the Mendelian template

The second conclusion of this research is that non-Mendelian repair

templates are frequently more effective than their Mendelian counter-

parts. We saw that for smaller problems (101 City TSP and smaller) the

great-grandparent outperformed the parent and grandparent template
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while for problems larger than this the grandparent template outper-

formed the parent and great-grandparent. This finding indicates than

non-Mendelian repair templates can outperform their Mendelian coun-

terparts.

3. GeneRepair is not problem specific

The third conclusion of this thesis is that ancestral driven repair is im-

proves EO on the two chosen problem domains. This finding illustrates

the non-problem specificity of GeneRepair as it is not limited to the

TSP domain. Ancestral GeneRepair has been evaluated on two per-

mutation problem. It can in principle be applied to other permutation

problems with relatively minor modification to the current implemen-

tation.

4. GeneRepair outperforms RTR for large problems

The next conclusion of this thesis is that ancestral GeneRepair works

well across varied mutation rates, with typically a better performance

than the Random Template Repair (RTR) (which has been favoured in

the past (Lichtblau 2002) (Mitchell 2007). In the experiments carried

out for this body of research GeneRepair was only outperformed by

RTR under a limited number of conditions. It was beaten by RTR on

small problem sizes but at larger problem sizes it outperformed RTR.

5. Favouring the Fitter of the Ancestral Repair Templates does

not produce superior results
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It was found that using a randomly chosen template (of the two avail-

able) produces superior results to choosing the fittest of the two tem-

plates available. ‘

An aim of this research was to compare Mendelian and non-Mendelian

repair templates to produce valid solutions to constraint based problems.

While the results do not show a clear winner between the grandparent and

great-grandparent templates the parent template is generally beaten by one

of the two. In Chapter 5 there are only a small number of conditions where

the parent template produces the best results but this is only for small prob-

lems at the optimal mutation rate. For the large portion of the results the

non-Mendelian template outperformed its Mendelian counterpart. In Chap-

ter 5 we saw that the Ancestral repair strategy continues to perform well,

even under more biologically inspired conditions such as reduced mutation

rates and much larger problem sizes that correspond to the larger genome

found in natural organisms. The success of ancestral GeneRepair may be

attributed to the fact that it uses an evolved solution, that has survived the

selection process, as a basis to repair a more evolved but invalid solutions

which may otherwise be eliminated from the population.

In Chapter 6 it was shown that the effectiveness of this non-Mendelian

GeneRepair mechanism is not limited to the TSP. In Chapter 6 the problem

domain was changed to the CVRP and the non-Mendelian repair templates

continued to outperform their Mendelian counterparts. This thesis has il-

lustrated how GeneRepair could be applied to permutation problems using

content-based repair. It has also been shown how GeneRepair could be ap-

223



plied to combinatoric optimisation problems. GeneRepair could be imple-

mented to solve combinatoric optimisation problems by making use of differ-

ent error signatures. Looking at GeneRepair with a broader view it could be

used to solve general constraint problems. We again point out that the inspi-

ration for ancestral repair lies in the Arabidopsis thaliana plant. In this thesis

it was used to produce valid solutions to the TSP and the CVRP but with

slight adaptation of the implementation it could in theory be used to solve a

wide range of numeric or Genetic Programming Problems. In Genetic Pro-

gramming a similar technique proposed by Conor Ryan et al (Murphy, Ryan

& Howard 2007) using run-time transferable libraries. Run-time transferable

libraries allow the transfer of useful libraries of evolved solutions - between

�independent�runs of their Genetic Programming system. This technique

could be adapted to use non-Mendelian ancestral information instead.

The second objective of this thesis was to conduct stress or reliability test-

ing of the mechanism by comparing the use of Mendelian and non-Mendelian

repair mechanisms in an EO. It should be again pointed out that while the

objective was essentially biological, the analysis was conducted exclusively

at the algorithmic level. Thus the aim was to assess the effectiveness of

the ancestral repair hypothesis. Our analogy extension and evaluation ap-

proach has shed light on non-Mendelian crossover for researchers in the field

of biology(Hopkins et al. 2011). This has also been discussed during ongoing

collaboration (which included a lab internship) with Dr Susan Lolle, Biol-

ogy Department of University of Waterloo. By examining the repair process

from a different perspective this research has provided tentative support for
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the non-Mendelian inheritance repair mechanism. Our results suggest that

for larger genomes and when populations lack diversity, then non-Mendelian

repair templates greatly outperform their Mendelian (and death penalty) al-

ternatives. While this support is cross-disciplinary, and so only suggestive,

it may suggest new avenues of research for those working in the biological

field.

The principal finding of this thesis is that non-Mendelian ancestral GeneRe-

pair inspired by the Arabidopsis thaliana plant enables EO to produce valid

solutions to constraint based problems. This non-Mendelian ancestral GeneRe-

pair process outperforms its Mendelian counterpart across a wide number

of different parameters. This finding lends support to the suggestion that

non-Mendelian repair occurs in nature as it may be more effective than the

Mendelian alternative.

This is the beginning of the road for ancestor driven GeneRepair. This

thesis has illustrated a thorough investigation into the technique. A wide

number of experiments have been discussed which test and examine the dif-

ferent properties including the ancestry of the repair template, population

size, problem size, mutation rate, number of generations and fitness of tem-

plate utilising two different problem domains. Conclusions have been drawn

on parameter effectiveness and these suggest which ancestral repair tem-

plates are most effective. This thesis opens up new vistas on evolutionary

computation and makes novel contributions to the study of evolution.
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Appendix A

Appendices

A.1 Implementation of GeneRepair

A.1.1 EvolutionaryOptimisation File

The main file of the GeneRepair package is the EvolutionaryOptimisation

Class. The pseudo code for this class is shown in Algorithm A.1. This class

executes the EO by following the steps of the basic Evolutionary Algorithm

as described in Section 2.2.2. The population of individuals is a 2 dimensional

array of tours or individuals where cities are represented by integers and each

tour is a simple ordered sequence of cities - thus making as few assumptions

about the underlying problem domain as possible. The last value in the tour

stores the fitness of this tour. The sequence diagram (Figure A.2) illustrates

how this class interacts during the running of the EO.
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1 Generate an initial population reading information from the Map File

for generation = 0; generation <numberOfGenerations; generation++

do

2 Perform Chosen Selection Method on population;

3 Copy each ancestral repair template into its the subsequent

template. (parent into grandparent etc);

4 Crossover parents using single point crossover;

5 Perform mutation according to rate provided by EODriver;

6 Call repair method in PTR, GPTR or GGPTR file according to

parameter passed in by EO driver;

7 end

8 Print all findings to file and flush file;

Algorithm A.1: EO Pseudo Code
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A.1.2 EODriver File

The EO Driver creates an instance of the EO passing in all of the necessary

parameters. These parameters are:

� Population Size

� Number of Generations EO will Run

� Problem Data File Name

� Selection Method Identifier

� Mutation Rate

� GeneRepair Type Identifier (PTR, GPTR or GGPTR)

� GeneRepair Ancestor Fitness Identifier

� GeneRepair Direction

A.1.3 Map File

The Map file reads in the problem data and stores it in a two dimensional

array. This reduces computation time as the information is read in once at

the beginning of the EO and can be easily accessed from then on.

A.1.4 TourManager File

The Tour Manager file is used to access the data in the Map file and carry

out calculations and manipulations using this data. This file is responsible

for calculation of fitness.
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A.1.5 Repair Files

The PTR, GPTR, GGPTR and RTR files can all be seen as repair files. The only

difference between each of these files is the template they use to repair inva-

liditys in the individual. Each of these repair files uses the same algorithm

which is illustrated in Algorithm A.2. The error detection phase is identical

for all repair strategies - only the error correction differs between them. Er-

ror correction then uses different templates to support the repair operation.

Erroneous alleles are replaced with corrective information that is selected

from the relevant repair template.

A.1.6 Mersenne Twister Package

In order to ensure reliability when random numbers were used by the GeneRe-

pair package a Mersenne Twister package was used. This MersenneTwister

package version is Version 16 and is based on version MT199937(99/10/29) of

the Mersenne Twister algorithm1 and was written by Sean Luke in October

2004. This is a Java version of the C-program for MT19937: Integer version

which was created by Makoto Matsumoto and Takuji Nishimura (Matsumoto

& Nishimura 1998). This was used to avoid the pitfalls known to be associ-

ated with the java.util.Random method.

1This can be found at http://www.math.keio.ac.jp/matumoto/emt.html
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1 for Every Individual in the Population do

2 Identify Repair template according to parameters;

3 Identify Direction of Repair;

4 Scan the individual and store a list of duplicates and a list of

missing elements (Error Detection phase);

5 for i = first Missing City on List, i <total number of missing

cities; i++ do

6 Scan invalid individual and identify first instance of erroneous

information;

7 Scan repair template and identify first instance of repair

information;

8 Replace identified extra city with missing city identified in

repair template;

9 end

10 end

Algorithm A.2: GeneRepair Pseudo Code
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A.1.7 Problem Data Files

The problem data files used for the experiments illustrated in Chapter 5 are

the TSP and CVRP text files2. The files that were used to produce the

results illustrated in this thesis are included in the Appendix. All datasets

are benchmark problems from the TSPLIB.

2These text files are freely available to download at http://comopt.ifi.uni-

heidelberg.de/software/TSPLIB95/
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