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Mendelian randomization (MR) is a method of studying the causal effects of modifiable
exposures (i.e., potential risk factors) on health, social, and economic outcomes using
genetic variants associated with the specific exposures of interest. MR provides a more
robust understanding of the influence of these exposures on outcomes because germline
genetic variants are randomly inherited from parents to offspring and, as a result, should
not be related to potential confounding factors that influence exposure–outcome associa-
tions. The genetic variant can therefore be used as a tool to link the proposed risk factor and
outcome, and to estimate this effect with less confounding and bias than conventional epi-
demiological approaches. We describe the scope of MR, highlighting the range of applica-
tions being made possible as genetic data sets and resources become larger and more freely
available. We outline the MR approach in detail, covering concepts, assumptions, and esti-
mationmethods.We cover somecommonmisconceptions, provide strategies for overcoming
violation of assumptions, and discuss future prospects for extending the clinical applicability,
methodological innovations, robustness, and generalizability of MR findings.

M
endelian randomization (MR) was devel-
oped as a method to help provide a robust

understanding of environmentally modifiable
influences on disease (Davey Smith and Ebra-
him 2003). It was proposed to offer a more reli-
able strategy than conventional observational
epidemiological studies that have traditionally
been plagued by issues such as confounding
(in which a common cause of an exposure X
and outcome Y may distort the association
between X and Y), reverse causation (in which
Y—or the disease process leading to Y—influ-
ences X) and other forms of bias, thus resulting

in potentially misleading causal inference
(Davey Smith and Ebrahim 2002). The clearest
examples are shown through observational epi-
demiological studies that have indicated an ap-
parent causal effect that has later failed to be
confirmed in large-scale randomized controlled
trials (RCTs) (Davey Smith et al. 2020). The
proposed protective effects of vitamin and anti-
oxidant supplements on cardiovascular disease
(CVD) (Rimm et al. 1993; Myung et al. 2013),
β-carotene on lung cancer (Menkes et al. 1986;
Heinonen et al. 1994), and selenium on prostate
cancer (Yoshizawa et al. 1998; Lippman et al.
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2009) are noteworthy examples. Such spurious
findings from observational studies have had
negative consequences, including the launch of
expensive trials based on inadequate evidence,
and increased uptake of nutritional supple-
ments in the general population, some of which
have subsequently been found to have adverse
effects (Heinonen et al. 1994; Lippman et al.
2009).

MR uses genetic variants robustly associated
with exposures to strengthen inference regard-
ing their potential causal influence on a partic-
ular outcome (Davey Smith and Ebrahim 2003;
Davey Smith and Hemani 2014). The online
“MR Dictionary” (Lawlor et al. 2019) offers a
full description and definitions of terminology
specific toMR, which will be useful to refer to as
we elaborate on the concepts and scope of the
approach in this paper.

The MR approach draws on Mendel’s laws
of segregation and independent assortment,
whereby genetic variants are allocated indepen-
dently of environment and other genetic factors
(except those in close physical proximity to the
variant of interest, which tend to be inherited
together through linkage disequilibrium [LD])
(Davey Smith et al. 2020). Based on the premise
that the random inheritance of genetic variants
from parents to offspring is reflected at a popu-
lation level, genetic variants can identify groups
that differ, on average, by a modifiable exposure.
Here, group membership should not be as-
sociated with a range of behavioral, social, and
physiological factors thatmay confound observa-
tional associations (Davey Smith et al. 2007). By
design, genetic associations should therefore be
largely free from confounding, thus any differ-
ence in outcomes between genetically defined
groups can be directly attributed to the exposure.

The association between an outcome and a
genetic variant known to proxy a particular risk
factor mimics the link between the outcome and
the proposed risk factor, and can be used to
estimate this relationship with less confounding
and bias than conventional epidemiological ap-
proaches. Other qualities of (germline) genetic
variants that make them useful in causal infer-
ence analysis are that they (1) can be robustly
associated with modifiable exposures (i.e., can

serve as genetic proxies); (2) are fixed at concep-
tion and not influenced by disease processes
(i.e., are less susceptible to reverse causation);
and (3) are subject to relatively little measure-
ment error and typically have long-term effects
(i.e., are less liable to the underestimation of the
exposure–outcome association, referred to as re-
gression dilution bias) (Davey Smith and Ebra-
him 2004).

Exposures of interest are typically modifi-
able and so evidence of causality can—in prin-
ciple—be used to infer that intervening on an
exposure will lead to a change in the outcome
under investigation. Making such inference de-
pends on considering it reasonable to accept the
principle of gene–environment equivalence:
that perturbation of a phenotype by either a
(hypothetical) change in genotype or by envi-
ronmental change would produce the same
downstream effect on an outcome (Ames 1999;
West-Eberhard 2003; Ebrahim andDavey Smith
2008; Davey Smith 2012a). For example, under
this assumption, we would anticipate genotypic
influence on circulating cholesterol level would
lead to the same effect on coronary heart disease
(CHD) as would a similar change in cholesterol
level induced by dietary influences. Although
many exposures can be closely proxied by
genetic variation, for others it is unlikely that
genetic variation will mimic environment exact-
ly, for example, in capturing aspects of years of
education (Davies et al. 2019b). Gene–environ-
ment equivalence is a fundamental principle in
MR that also brings to the fore the issue of the
time-depth of the exposure that is being exam-
ined, because genetic variants that influence a
phenotype will do so over an extended period.
Wewill come back to the issue of time, discussed
at length in the MR literature since its inception
(Davey Smith and Ebrahim 2003, 2004; Holmes
et al. 2017).

Within a causal inference framework, MR
can be implemented as a form of instrumental
variable (IV) analysis in which the genetic var-
iants serve as proxies or IVs for the modifiable
factors of interest (Fig. 1; Lawlor et al. 2008). If
we suppose X and Y are the exposure and out-
come of interest, C is a set of variables that affects
X and Y (i.e., potential confounding factors),
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andU is a further set of variables that affect Y, we
can use a further variable G (the genetic variant
of interest) as an IV to establish the causal effect
of X on Y if it satisfies the following assumptions
(Hernan and Robins 2020):

1. G is robustly associated with X (“relevance”);

2. G does not share common causes (C and U)
with Y (“independence” or “exchangeabili-
ty”); and

3. G affects Y exclusively through its effect on X
(“exclusion restriction”).

These assumptions are described in more
detail in the section “Assumptions ofMendelian
Randomization” and “Instrumental Variable
Analysis.”

SCOPE OF MENDELIAN RANDOMIZATION

MR has been used to:

• appraise the causal relevance of both endoge-
nous (e.g., blood pressure, low-density lipo-
protein [LDL] cholesterol) and exogenous ex-
posures (e.g., alcohol, smoking),

• confirm and uncover causal effects for known
risk factors of clinical relevance,

• establish the causal role of behavioral traits,

• evaluate causality in relation to social and eco-
nomic factors,

• assess life-course effects,

• elucidate intergenerational influences,

• characterize difficult to measure environmen-
tal exposures,

• proxy for modifiers of environmental expo-
sure (e.g., metabolism or detoxification),

• mimic drug targets,

• evaluate the role of modifiable mediators be-
tween upstream exposures and disease out-
comes, and

• evaluate the effects of genetic liability to a
particular disease.

A selection of studies in Table 1 shows how
MR has been previously used across a wide va-
riety of contexts.

When the basic principles ofMRwere initial-
ly formalized there were few examples of genetic
variants that had robust associations with poten-
tiallymodifiable exposures, and it was recognized
that the future potential of MR would depend
upon identifying such associations (Davey Smith
and Ebrahim2003). There has been very substan-
tial progress in this area. Improvements and cost
reductions in array-based genotyping techniques,
complemented byDNA sequencing and imputa-
tion of information from human genome refer-
ence sets, have led to a dramatic increase in our
understanding of the genetic contribution to dis-
ease risk. Such improvements have alsopermitted
the widespread use of genome-wide association
studies (GWAS), which have been successful at
detecting replicable associations between com-
mon genetic variants and a host of traits in a
hypothesis-free approach.

U

C

XG Y

Figure 1.Directedacyclic graph forMendelian randomizationanalysis.Thegenetic variant (G) is associatedwith the
exposure of interest (X); there are noconfounders (C,U)of the associationbetween genetic variant (G) andoutcome
(Y); and the genetic variant (G) does not affect the outcome (Y) except through its effect on the exposure (X).

Mendelian Randomization
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The establishment of GWAS consortia, each
focused on investigating different complex traits
and diseases, has encouraged numerous popula-
tion-based studies to contribute genetic data for
meta-analysis (Table 2). This has in turn in-
creased sample sizes for the discovery and robust
replication of GWAS findings. Many of these
consortia have also made their GWAS summary
data publicly available, which, aided by data re-
sources hosting such summary data (Richardson
et al. 2020a), have catalyzed the development of
summary data-based MR studies (described in
more detail in the section “MR Methods”).

The recent availability of massive genotyped
and phenotyped data sets, including biobank
resources (Table 2), has added considerably to
GWAS efforts. GWAS of phenotypic data from
these resources are increasingly performed in an
automated fashion, with summary statistics
made freely available online (Fig. 2). Efforts
such as these have uncovered a host of genetic
variants related to a range of traits, which may
leverage greater explanatory power by acting as
stronger genetic proxies or instruments in MR
(Dudbridge 2020).

ASSUMPTIONS OF MENDELIAN
RANDOMIZATION AND INSTRUMENTAL
VARIABLE ANALYSIS

The key assumption of MR is that of gene–envi-
ronment equivalence, as discussed above. When
using the properties of germline genetic variants
to strengthen causal inference, the confidence
that a particular modifiable exposure is implicat-
ed in the causation of a disease can be enhanced
by identifying the direction andmagnitude of the
effect. This can be estimated through IV analysis.
The large majority of MR studies are now imple-
mented within an IV framework, and therefore
the IV assumptions are central to MR analysis.

Relevance Assumption: The Genetic Variant
Must Be Robustly Associated with the
Exposure

The most common method of deriving genet-
ic instruments in recent MR studies is via
GWAS, whereby single-nucleotide polymor-

phisms (SNPs) that pass genome-wide signifi-
cance ( p < 5 × 10−8) are typically considered for
inclusion. However, it is important that the
strength of the instrument is tested separately
to appraise the relevance assumption, which is
often done by means of the proportion of vari-
ance explained (r2) and the related F-statistic,
which additionally takes into account the size
of the sample under investigation. Increasingly,
multiple genetic variants are found to be inde-
pendently associated with traits investigated in
GWAS and these may be combined in genetic
risk scores or throughmeta-analysis approaches
to explainmore variation in the trait (Dudbridge
2020). This in turn can be used to increase pow-
er, obtain more precise causal estimates and
minimize risk of weak instrument bias (i.e., un-
certainty in the SNP-exposure association that
can bias causal estimates) (Pierce and Burgess
2013).

Independence/Exchangeability Assumption:
There Are No Confounders of the Association
between the Genetic Variant and Outcome

Because genetic variants are randomized at con-
ception, they should be allocated independent of
environmental and other genetic variants ex-
cluding those in LD. This means that at a family
level, genetic associations should be largely free
from conventional confounding. Although MR
was explicitly introduced in 2003 within a par-
ent–offspring design, data availability did not
generally allow use of such designs at the time.
It was suggested, however, that population-
based studies with appropriate control for pop-
ulation stratification could approximate the par-
ent–offspring design (Davey Smith andEbrahim
2003; Davey Smith et al. 2020). Concerns about
potential violation of this assumption at a pop-
ulation level relate to confounding by ancestry or
population stratification, which can influence
variation in both allele frequency and disease
risk in population(s) being investigated (Fig.
3). Approaches to limit spurious associa-
tions generated because of population groups
include use of genetic associations derived
from homogeneous populations or with ade-
quate control for population structure (e.g.,

Mendelian Randomization
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through principal components analysis or line-
ar mixed models) (Loh et al. 2015). However,
the independence assumption can also be vio-
lated by dynastic effects (when parental geno-
types directly affect offspring phenotypes), or
by assortative mating (when individuals select
a partner based on a particular phenotype).
These biases will likely differ depending on the
exposure(s), outcome(s), and population(s) un-
der study.

It is impossible to prove the independence
assumption in an MR study because, although
attempts can be made to account for ancestry
and examine how genetic variants relate to mea-
sured confounders, associations with unknown
confounders cannot be demonstrated. In addi-
tion, whereas previous recommendations have
been to assess associations between the genetic
instrument and a wide range of factors that
could bias exposure–outcome associations (Da-
vey Smith et al. 2007), these associations are like-
ly to be indicators of confounding by ancestry

(Fig. 3) or horizontal pleiotropy (Fig. 4), rather
than reflecting conventional confounding.

Exclusion Restriction Assumption: The
Genetic Variant Should Only Influence the
Outcome of Interest via the Exposure

Pleiotropy is the phenomenon whereby a genetic
variant influences multiple traits, and is a major
threat to the exclusion restriction assumption.
However, it is important to make the distinction
between vertical and horizontal pleiotropy (Da-
vey Smith and Hemani 2014; Hemani et al.
2018a). Vertical (or mediated) pleiotropy occurs
when the genetic variant (G) is associated with
the outcome (Y) because G affects Y entirely
through the exposure (X). This fulfils the exclu-
sion restriction assumption and is the essence of
the MR approach. Horizontal (unmediated or
biological) pleiotropy occurs when G affects
both X and Y but through different pathways.
This can yield biased estimates inMR if a genetic

76

61

46

32

17

2
1 2 3 4 5 6 7 8 9 1110

Chromosome

Tea intake

N = 349,376

–
lo

g
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0
 (
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Figure 2.Manhattan plot from the “GWASbot” displaying genetic association signals for tea intake from the UK
Biobank.
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instrument influences the outcome via a mecha-
nism other than the exposure of interest (Ver-
banck et al. 2018). Such pleiotropy can be direct,
as in the path from G to Y (uncorrelated pleiot-
ropy), or can be indirect (e.g., when G affects X
and Y through a shared confounder, U [correlat-
ed pleiotropy]) (Fig. 4; Morrison et al. 2020). The
latter may occur in cases of misspecifying the
primary phenotype, such as when a genetic var-
iant is used to proxy for a trait secondary to the
trait with which it is directly associated.

Although it is not possible to prove that
the exclusion restriction assumption holds in
any MR study, various sensitivity analyses can
be applied to uncover deviations from the
assumption.

Use a Functional Polymorphism for the
Exposure of Interest

One method of ensuring that the genetic variant
is unlikely to influence the outcome via another
pathway is to use a SNP that has knownbiological
function or is located in a gene that directly codes
for the exposure of interest. For example, variants
within or near the protein-encoding locus for C-
reactive protein (CRP) are known to alter serum
levels ofCRPandare likely tohave a predominant
influence on any outcomes via this pathway
(Timpson et al. 2011).

Although SNPs serve as valid instruments in
some situations, in other cases their use is lim-
ited if variants do have a pleiotropic effect that

C

SA

G1

G2

SGA

YX

Figure 3. Violation of the independence and exclusion restriction assumptions caused by shared ancestry or
population structure. Shared ancestry (SA) can confound the relationship between shared genetic ancestry (SGA)
and a potential confounder (C), violating the Mendelian randomization (MR) assumption of independence/
exchangeability by inducing an association between a genetic instrument, G1 and C (red line). SGA can also
induce an association between the genetic instrument (G1) and another genetic variant (G2) (green line), thus
violating the MR assumption of exclusion restriction.

C

XG Y

Figure 4.Correlated and uncorrelated pleiotropy.Uncorrelated pleiotropyoccurs whenG affects X andY through
separate mechanisms (green line). Correlated pleiotropy occurs when G affects X and Y through a shared
confounder (C) (red line).
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cannot be directly estimated. This may be par-
ticularly problematic if a variant

• is associated with multiple biomarkers on
separate biological pathways (e.g., genetic var-
iants influencing the branched-chain α-ke-
toacid dehydrogenase (BCKD) enzyme are as-
sociated with different branch chain amino
acids [Lotta et al. 2016]);

• disrupts the normal function of the exposure
(e.g., an IL6R variant increases circulating in-
terleukin 6 [IL-6] but reduces aspects of IL-6
signaling and that appears to decrease risk of
CHD [Swerdlow et al. 2012]); and

• is associated with multiple dependent traits on
overlapping pathways, and if those traits have
different roles in disease (e.g., ALDH2 is asso-
ciated with both alcohol consumption and ac-
etaldehyde level, a known carcinogen, which
makes it difficult to disentangle the effects of
alcohol and acetaldehyde on risk of esophageal
carcinoma [Lewis and Davey Smith 2005]).

For a detailed description of these scenarios
and other applied examples, see Holmes et al.
(2017). Although functional SNP analyses may
therefore appear plausible, they can have their
drawbacks and many of the sensitivity analyses
used for evaluating pleiotropy cannot be applied
with a single SNP (see the section “Methods for
Assessing and Accounting for Horizontal Plei-
otropy”). In cases where a single SNP is used, it
is recommended that associations between the
SNP and a wide range of traits are investigated,
as described below.

Assess Associations betweenGenetic Variants
and Other Factors

The presence of associations between genetic
variants and other factors may reveal violations
to the independence and/or exclusion restric-
tion assumption. A common approach to ap-
praise this is to assess whether the genetic vari-
ants used to instrument the exposure (and those
variants in LDwith the genetic instrument) have
been associated with other phenotypes in
GWAS, for example, by searching PhenoScan-
ner (Staley et al. 2016). Although this may high-

light genetic variants with horizontal pleiotropy,
it can also pick up vertical pleiotropy (e.g., a SNP
related to bodymass index [BMI] may appear in
a GWAS of blood pressure via its influence on
BMI). In addition, truly horizontal pleiotropic
SNPs may not be detected by this method if the
GWAS of the phenotype on the pleiotropic path
is absent or underpowered. As such, it is not
sufficient to simply exclude the variants that ap-
pear in other GWAS as a way to assess the ex-
clusion restriction assumption.

Conduct Stratified Analysis in a Subgroup of
the Population inWhich theGenetic Variant Is
Not Associated with the Exposure of Interest

In some instances, conducting a stratified analysis
can provide evidence against the possibility of
horizontal pleiotropy. When a genetic variant is
not related to the exposure of interest in a partic-
ular subgroup of the population, this variant
should also not be associated with the outcome
of interest in this subgroup (given an absence of
the association with the exposure). For example,
ALDH2, coding for aldehyde dehydrogenase 2, is
a common polymorphism in East Asian popula-
tions that has been used as a genetic instrument
for alcohol consumption (Lewis andDavey Smith
2005; Chen et al. 2008; Millwood et al. 2019). In
East Asian populations, in which women are
much less likely to drink alcohol than men, this
polymorphism is not strongly associated with al-
cohol intake among women (Chen et al. 2008).
This approach has been used to assess the pres-
ence of pleiotropy and evaluate a causal relation-
ship between alcohol consumption and increased
blood pressure (Chen et al. 2008) and risk of vas-
cular disease (Millwood et al. 2019). For example,
if the effects of alcohol consumption on blood
pressure and vascular disease are causal, we
would expect to find evidence of association be-
tween variation in ALDH2 and the outcomes in
East Asian men, but not East Asian women. Any
association observed between ALDH2 and the
outcomes in East Asian women, in the absence
of alcohol intake, would indicate pleiotropy. Such
an approach can be considered a negative control
design (Lipsitch et al. 2010; Davey Smith 2012b)
andmodels built on this approach can detect and
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adjust for the pleiotropic effects and provide valid
estimates in such instances (Cho et al. 2015; Spil-
ler et al. 2019) (see the section “Methods for As-
sessing and Accounting for Horizontal Pleiotro-
py”). However, genetic variants that are not
associated with the exposure in a subgroup of a
population may be uncommon, and so such di-
rect assessment of pleiotropy is oftennot possible.

Do Not Condition on the Exposure to Assess
Exclusion Restriction

Although it may seem intuitive to assess whether
statistical adjustment for the exposure leads to

attenuation of the gene–outcome relationship,
this is not a recommended approach for testing
the exclusion restriction assumption. This is be-
cause adjusting for the exposure may induce col-
lider bias, in which another factor that causes the
exposure becomes correlated with the genetic in-
strument by conditioning on the exposure in this
manner (Fig. 5; Cole et al. 2010). Stratifying by
sex is not problematic in this context because
biological sex is not caused by other factors. It
is, however, a potential problem in instances
where genetic effects are investigatedwithinother
subsets of the population, for example, if we were
to stratify on alcohol drinker status itself (Gage

Smoking, socio-

economic position,

depression

YG

A

B

C

U

Smoking, socio-

economic position,

depression

Study

participation

Induced association

Conditioning on a collider

Cardiovascular

disease

Cardiovascular

disease

Alcohol drinker

status

Alcohol

variant

Alcohol

variant

X

X

Figure 5.Collider bias. (A) Generalizable directed acyclic graph (DAG). (B) Collider bias induced from stratifying
on exposure. (C) Collider bias induced from stratifying on study participation (e.g., caused by selection or loss to
follow-up).
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et al. 2016). Bias induced through adjustment for
the exposure may be exacerbated by potential
measurement error in the exposure, in addition
to introducing collider bias (VanderWeele et al.
2012).

More advanced methods have been devel-
oped to assess violation of the exclusion restric-
tion, including techniques that explicitly model
and adjust for pleiotropy, and those that are nat-
urally robust to pleiotropy (Hemani et al. 2018a).
These are described in more detail in the next
section.

MR Methods

Direct Genotype Associations

The simplest MR approach to evaluate the pres-
ence of a causal relationship is to assess the as-
sociation between a genetic variant known to
influence or modify an exposure and the out-
come of interest. However, this does not allow
for the magnitude of causal effect to be estimat-
ed, which is most often the estimate of interest,
especially when considering the translational
implications and clinical utility of findings. In
addition, multiple pathways can often explain
the association between a genetic variant and a
particular outcome, so more knowledge of the

exposure of interest and its association with the
genetic variant is generally required for a valid
interpretation (Holmes et al. 2017).

Original Applications of One-Sample
Mendelian Randomization

In the pre-GWAS era, most examples of applied
MR were conducted within one data set (i.e., in
which genetic variants, exposures, and out-
comes of interest are obtained from individuals
in the same sample) (Fig. 6A). In such a scenario,
the causal effect of the exposure on the outcome
can typically be estimated using two-stage least-
squares (2SLS) regression (Angrist and Imbens
1995a). In the first stage, the exposure is re-
gressed on the genetic instrument and in the
second stage the outcome is regressed against
the predicted values from the first stage regres-
sion. The effect estimate can then be interpreted
as the change in the outcome per unit increase in
the exposure. The genetic instrument used in
one-sample analysis can be a SNP, multiple
SNPs, or a genetic risk score (i.e., a summation
of risk alleles for each individual) that can be
unweighted or weighted to give those genetic
variantswith the strongest effect on the exposure
more weight (Dudbridge 2020).

G X

Sample 1

Y

X

Sample 1 Sample 2

Y

CA

B
C

G

Figure 6.One-sample and two-sample Mendelian randomization (MR) study designs. (A) One-sample MR uses
a data set in which genotype, exposure, and outcome have been assessed. (B) Two-sampleMR uses a genetic data
set in which the exposure has been measured (to derive SNP-exposure estimates, sample 1) and a second genetic
data set in which the outcome has been measured (to derive SNP-outcome estimates, sample 2).
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Studies with more individual-level data may
also permit an assessment of associations be-
tween genetic variants and confounders of the
exposure–outcome relationship to interrogate
the independence and exclusion restriction as-
sumptions. Additional approaches to evaluate
violation of the exclusion restriction assumption
in one-sample MR include the Sargan test (Sar-
gan 1958), which evaluates heterogeneity of the
individual SNP estimates, and IV approaches,
which can estimate the causal effect in the pres-
ence of invalid (e.g., pleiotropic) instruments
(Kang et al. 2016; Windmeijer et al. 2019).

Early one-sample MR studies suffered the
limitation of low power because few large data
sets with relevant genotypic and phenotypic
data were available. To counteract this, a
number of MR studies were conducted using
meta-analysis of causal estimates obtained
from independent studies, which was greatly
aided by the existence of large genetic consor-
tia (Tyrrell et al. 2016a). However, the develop-

ment of two-sample MR analysis has vastly im-
proved the scope of MR applied to large-scale
data sets.

Development of Two-Sample Mendelian
Randomization

It is possible to use MR to estimate causal effects
in which genetic associations with the exposure
and the outcome have been estimated in differ-
ent samples (Fig. 6B). This approach, now
known as two-sample MR (Pierce and Burgess
2013), has greatly increased both the scope and
popularity of MR analysis (Fig. 7). Although the
initial extended exposition of MR in 2003 (Da-
vey Smith and Ebrahim 2003) included exam-
ples of what is now called two-sample MR, the
rise in popularity in recent years is attributed to
the public availability of GWAS summary data,
as well as the development of methods to har-
monize and integrate data sets and compute
causal estimates when the SNP–exposure and
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SNP–outcome associations come from different
studies (Hemani et al. 2018b).

The two-sample approach eliminates the re-
quirement to have access to raw genetic data on
individuals within a study and also makes per-
forming MR less time consuming. In terms of
data requirements, all that is needed are the
details of the genetic association between the
variant(s) and the trait from the exposure
GWAS (sample one) and the outcome GWAS
(sample two). This typically includes informa-
tion on the effect and other allele, effect allele
frequency, effect estimate, and standard error
from both GWAS. In addition, the development
of web software and code for summary-level
data makes MR very straightforward to imple-
ment (see the section “Novel Informatic
Tools”). It also increases the scope of MR anal-
yses, with a wealth of data on exposures and
outcomes available for interrogation, which
may be infeasible or expensive to measure in
the same set of individuals. Furthermore, a se-
ries of methods have been developed within this
setting in recent years to assess and correct for
potential pleiotropy (see the section “Methods
for Assessing and Accounting for Horizontal
Pleiotropy”).

The simplest approach for using summary-
level data in an MR framework is to derive a
Wald ratio for a SNP. This is the effect estimate
for the SNP–outcome association (from sample
2) divided by the coefficient of the SNP–expo-
sure association (from sample 1), with the stan-
dard error of theWald ratio often approximated
by the delta method (Thomas et al. 2007). In
the presence of multiple genetic instruments,
a meta-analysis approach (usually inverse-
weighted [IVW] meta-analysis) may be used
to combine Wald ratio estimates of the causal
effect obtained from different SNPs (Dudbridge
2020). The point estimates from an IVWMRare
equivalent to a weighted linear regression of the
SNP–outcome associations on SNP–exposure
associations when the intercept is constrained
to zero. The effect estimates obtained should
also be equivalent to the effect estimated in
2SLS when sample sizes are large, SNPs inde-
pendent, and there is limited heterogeneity in
the Wald ratios.

One- versus Two-Sample MR

Despite its ease of application, there are various
limitations of the two-sample MR that also re-
quire consideration. These have been discussed in
detail elsewhere (Haycock et al. 2016; Zheng et al.
2017) and are also summarized inTable 3. In part
because of these limitations, and also because of
the recent availability of large-scale genotyped
and phenotyped data sets (Table 1), there has
been a recent resurgence of one-sampleMR.Ma-
jor benefits of the one-sample MR approach are
the flexibility to perform rigorous MR, and the
ability to assess the independence and exclusion
restriction assumptions through assessment of
individual-level confounders.

However, weak instrument bias may threat-
en the estimation of causal effects in one-sample
data sets (Burgess and Thompson 2011), in
which uncertainty in the SNP–exposure associ-
ation could bias the causal estimate (Table 3).
Importantly, where weak instruments will bias
causal estimates in the direction of the null in a
two-sample setting, weak instrument bias will be
toward the observational association in a one-
sample setting (Zheng et al. 2017). In addition,
selection bias caused by winner’s curse could
lead to biased causal estimates if the genetic var-
iants were discovered in the same sample under
investigation. This is a phenomenon that occurs
in GWAS by using a P-value cut-off that can
lead to chance overestimation of the effect size
of SNPs with the strongest genetic signals in the
GWAS discovery sample (Garner 2007).

Whereas two-sample methods can be used
for one-sampleMR analysis (Minelli et al. 2021),
these may produce biased estimates and type 1
error rate inflation (i.e., incorrectly rejecting the
null hypothesis of no association), something
learned from two-sampleMR analyses when ge-
netic consortia have overlapping samples (Bur-
gess et al. 2016a). It is advised that the covariance
between the SNP–exposure and SNP–outcome
association estimates are taken into account and
that external weights be used where possible to
minimize the risk of bias. Specifically, genetic
variants can be weighted by the magnitude of
their association with the exposure in an inde-
pendent data set (Burgess andThompson 2013),
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in what could be described as a “one-and-a-half
sample MR” design.

Extensions to the Basic MR Approach

Other Methods

A series of developments have been made to
extend the application of MR to

• consider the prevailing direction of causality
between two traits (bidirectional MR);

• evaluate intermediates on the causal pathway
between exposures and outcomes (two-step,
network, or mediation MR);

• assess the causal role of closely related traits
and to establish independent effects of each
(multivariable MR); and

Table 3.Comparison of strengths and limitations of one-sample and two-sampleMendelian randomization (MR)

One-sample MR Two-sample MR

Strengths Flexibility of the analytical strategy in terms of
regression models that can be performed as
well as covariates and participants that can
be included/excluded

Improved sample size and power
Flexibility and enhanced power to perform an

array of sensitivity analyses (e.g., pleiotropy-
robust methods)

Permits thorough evaluation of confounders to
test above assumption

Less time-consuming and easier to implement

Allows for comparison with observational
estimates in same study (e.g., through
Durbin-Wu-Hausman test)

Can evaluate causal relationships between a
range of exposure and outcomes, which might
not be possible in a single sample setting

Can model interactions, survival time, and
other analyses (including MR analysis of
nonlinear effects)

Unable to thoroughly evaluate individual-level
confounding factors

Assumes the two samples are exchangeable.
Examples of where this is difficult to assert are
where the samples are heterogeneous in terms
of age, sex distributions or ancestry

Limitations Traditionally low power and therefore
imprecise causal estimates

Potential for selection bias caused by study
sampling

Weak instrument bias is toward null
Potential for selection bias caused by study
sampling

Winner’s curse in which the discovery GWAS
used to estimate the SNP-trait associationmay
overestimate the effect of the genetic
instrument relative to the exposure

Weak instrument bias is toward observational
estimate

Relative rigidity of the summary data available,
which is limited by the original GWAS model
performed (e.g., adjustment for unwanted
covariates and a lack of available data on
subgroups of interest (e.g., sex-specific
estimates)

Winner’s curse in which the sample in the
discovery GWAS is the same as that used for
MR, which can lead to overestimation of the
strength of association of the genetic
instrument with the exposure

SNP–exposure and SNP–outcome associations
should be coded relative to the same effect
allele, also known as “harmonization,” which
is nontrivial in the situation of palindromic
SNPs (i.e., G/C and A/T SNPs) and in the
absence of information on allele frequencies

Need to have access to individual-level genetic
and phenotypic data

Assumes no overlap between samples, which
could bias estimates if this is not true

Direct comparison with observational estimates
not as straightforward

Unable to model interactions, survival time, and
other analyses (including nonlinear analyses)

Mendelian Randomization
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• evaluate combined causal effects of risk fac-
tors (factorial MR or exposure interactions).

Descriptions, directed acyclic graphs
(DAGs), and applied examples for each of these
methods are outlined in Table 4.

Novel Informatic Tools

The recent widespread availability of GWAS
summary data for a range of traits, with large
data repositories and bioinformatic resources
for performing MR, provides a powerful and

user-friendly way of investigating causal relation-
ships between many different traits (Richardson
et al. 2020a). For example, MR-Base is a platform
that has retrospectively collected GWAS data sets
for more than 20,000 traits, as well as protein-,
methylation-, and expression-quantitative trait
loci (pQTL, mQTL, and eQTL) statistics for
tens of thousands ofmolecularmarkers (Hemani
et al. 2018b). Together with its web-based inter-
face, which allows the user to explore a range of
causal relations, there is an accompanying R
package (TwoSampleMR), which allows for LD
pruning of genetic instruments in the exposure

Table 4. Extensions to the basic Mendelian randomization (MR) approach

Method Description Directed acyclic graphs (DAGs) Applications

Bidirectional or
reciprocal MR
(Timpson et al.
2011)

Used to evaluate the causal
direction(s) of effect between
two traits X and Y, with the
use of valid instruments GX

and GY

G1

G2

X

Y

Y

X

Body mass index
(BMI) and vitamin
D (Vimaleswaran
et al. 2013)

Two-step MR
(Relton and
Davey Smith
2012)

Used to assess the role of an
intermediary factor (Z) in
mediating the effect of X on Y
with the use of valid
instruments GX and Gz

Y

G1

X Z

G2 DNA methylation,
gene expression,
and BMI
(Mendelson et al.
2017)

Network MR
(Burgess et al.
2015)

Extension of the two-step MR
approach to consider the
causal role of multiple
mediators or causal networks

G1

X Z

G2

WG3

Y

Effect of education on
cardiovascular
disease (CVD) via
smoking, BMI, and
alcohol (Carter et al.
2019)

Multivariable MR
(Burgess and
Thompson
2015)

Used to assess the role of
multiple correlated exposures
using genetic variants that
are associated with one or
multiple exposures to estimate
the independent causal effect
of each exposure on the
outcome. Can also be adapted
to evaluate mediation (in
combination with or separate
to two-step MR)

X

Z

G1

G2

YG12

Lipid fractions and
coronary heart
disease (CHD)
(Burgess et al. 2014)

Factorial MR/
exposure
interactions
(Rees et al.
2020)

Used to determine the combined
causal effects of two or more
risk factors for diseasewithin a
factorial design

Y

G1 X

Z

XZ

G2

Statin (HMGCR),
ezetimibe
(NPC1L1) and
CHD (Ference et al.
2015)

R.C. Richmond and G. Davey Smith
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GWAS, the identification of SNPs and tagging
SNPs for each instrument in the outcome
GWAS, the careful harmonization of summary
statistics between exposure and outcome
GWAS, as well as the use of sensitivity analyses
to promote evaluation of the MR assumptions.

Methods for Assessing and Accounting for
Horizontal Pleiotropy

Violation of the exclusion restriction assumption
via horizontal pleiotropy is a major threat to the
validity of MR analyses and so various methods
have been developed in recent years to try to
overcome this. These methods (1) can test for
potential pleiotropy (e.g., heterogeneity and out-
lier tests); (2) can directly model and correct for
pleiotropy (e.g., MR Egger regression [Bowden
et al. 2015]) and MR-TRYX [Cho et al. 2020]);
or (3) are “naturally robust” to pleiotropy (e.g.,
mode and median estimators [Bowden et al.
2016a; Hartwig et al. 2017]). These typically use
IVestimates as the basis of the sensitivity analyses
and can be used to explore how robust MR find-
ings are to the assumption that the genetic instru-
ments used have nohorizontal pleiotropic effects.

If the estimate obtained for a causal effect is
of a consistent magnitude across multiple inde-
pendent variants, then pleiotropy is less likely to
be a concern. However, often effect estimates are
not consistent across independent instruments,
with some “outlying” variants having an ob-

served association with the outcome that is sub-
stantially different to that expected given their
association with the exposure. If the instrument
is valid, it should have an effect on the outcome
that is proportional to the effect on the exposure.
Formal tests for examining heterogeneity in-
clude Sargan’s test for 2SLS and Cochran’s Q
statistic, Rucker’s Q, and likelihood ratio
tests in two-sample MR (Bowden et al. 2018b;
Hemani et al. 2018a). For detecting outliers,
the following approaches can be considered:
leave-one-out analysis, Cook’s distance, studen-
tized residuals, Q-contribution, and the MR-
PRESSO global and outlier tests (Verbanck
et al. 2018).

Graphical assessment is also helpful for as-
sessing potential pleiotropy. Heterogeneity can
be visualized in scatter plots (Fig. 8), in which
estimates derived from each genetic variant do
not align with the regression line (i.e., do not
converge to the same causal estimate), or in forest
plots inwhich there is clear variation in the causal
estimates obtained from each variant. Funnel plot
displays of MR estimates of individual genetic
variants against their precision will show asym-
metry if some variants have unusually strong ef-
fects, indicative of pleiotropy. Leave-one-out
plots can be used to assess the influence of indi-
vidual outliers; and the Galbraith radial plot can
be considered in place of the scatter plot for de-
tecting outliers and influential data points (Bow-
den et al. 2018a).

SNP-exposure

Y-intercept

different to 0

Pleiotropic SNP Nonpleiotropic SNP

True slope

S
N

P
-o

u
tc

o
m

e MR-Egger: valid causal estimate

IVW: invalid causal estimate

Figure 8. Inverse-variance weighted (IVW) and Mendelian randomization (MR)-Egger regression.
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Whereas random variation could result in
different effects estimated by the individual vari-
ants, the presence of heterogeneity in the causal
effect estimated by individual SNPs could also
indicate horizontal pleiotropy. The simplest
method of accounting for this is with the use of
a random effects IVW meta-analysis model
(Dudbridge 2020). However, this approach can
only be used where horizontal pleiotropy is “ba-
lanced” (i.e., where the random effects have zero
weighted mean) (Hemani et al. 2018a). The first
method developed for assessing and counteract-
ing the extent of “unbalanced” or “directional”
pleiotropy was the application of the Egger re-
gression technique to MR analysis (Bowden
et al. 2015). This approach, first introduced in
the context of small-study bias withinmeta-anal-
ysis, allows the intercept of the weighted linear
regression line of the SNP–outcome on the
SNP–exposure association to vary freely (Fig. 8).
Directional pleiotropy can be tested by assessing
the extent to which the intercept deviates when it
is not constrained to the origin (as in IVW), and
the gradient of the line can be used to provide a
causal estimate in the presence of directional plei-
otropyusing theMR-Eggerapproach. It is impor-
tant to report both estimates.

Additional pleiotropy-robust approaches in-
clude the modal and median based estimators
that both avoid the contribution of some invalid
instruments (Bowden et al. 2016a; Hartwig et al.
2017). Both of these methods can be viewed as
implicit outlier correction techniques, because
they only allow certain more “reliable” SNPs to
contribute to the overall estimate. Use of a
weighted approach for both of these methods is
typically advocated tomaximize statistical power.

Additional methods intended to account for
pleiotropy include direct outlier removal (e.g.,
MR-PRESSO [Verbanck et al. 2018], generalized
summary MR [GSMR] [Zhu et al. 2018], and
Cook’s distance [Corbin et al. 2016]), outlier
penalization (e.g., MR-TRYX [Cho et al.
2020]), “no-relevance point” approaches includ-
ing negative controls (Gage et al. 2017), gener-
alized gene–environment interaction models
(MRGxE [Spiller et al. 2019]), pleiotropy-robust
MR (van Kippersluis and Rietveld 2018), and
techniques that attempt to directly model pleio-

tropic pathways including multivariable MR
(Burgess and Thompson 2015), structural equa-
tionmodeling (SEM) (Evans et al. 2019), and the
direction of causation approach (MR-DOC)
(Evans et al. 2019; Hwang et al. 2020). These
methods are described in more detail elsewhere
(Hemani et al. 2018a; Burgess et al. 2019; Slob
and Burgess 2020).

It should be emphasized that while these
approaches can relax or bypass the exclusion
restriction assumption of conventional MR
analysis, they in turn come with their own as-
sumptions (Table 5; Hemani et al. 2018a). In
addition, these approaches are typically less
well powered than the IVW approach. As such,
methods for assessing and accounting for plei-
otropy should be viewed as sensitivity analyses
to conventional approaches such as IVW.

COMMON MISCONCEPTIONS

With rising popularity of the MR approach,
which is now becoming a common element of
GWAS papers, there are a number of common
misconceptions that require debunking to en-
sure that the findings from MR analysis are in-
terpreted appropriately.

There Are Three Assumptions on Which MR
Relies for Estimating Causal Effects

Although there are three core IV assumptions
that apply to manyMR studies (relevance, inde-
pendence, and exclusion restriction), additional
assumptions are needed to quantify the effect or
to consider that the study is informative about
effects that may be produced bymanipulation of
the exposure. The latter is made under the gene–
environment equivalence assumption already
discussed.

Another assumption in instrumental variable
analysis that is relevant for effect estimation, is
the assumption of homogeneity (Swanson 2017).
This assumption relates to assessing whether the
causal effect obtained in MR is uniform across
the population, and so represents an average
treatment effect (ATE). For example, if investi-
gating the effect of BMI on CVD, we would
assume that a kg/m2 increase in BMI would el-
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evate risk of CVD irrespective of the person’s
gender or age. The homogeneity assumption
can also be replaced by the less stringent mono-
tonicity assumption, which assumes that an in-
crease in the number of risk alleles will never
lower the likelihood of exposure (Swanson and
Hernán 2018) (e.g., a BMI genetic risk score
should not increase BMI for some individuals
and decrease it for others). If this assumption
holds, then estimation of a local average treat-
ment effect (LATE) among those individuals
whose exposure level is affected by their geno-
type is possible. Such assumptions must be
made for the effect estimate obtained from any
MR analysis to be interpreted as the causal effect
of the exposure on the outcome. Although they
cannot be explicitly tested, the assumptions can
be interrogated through various means. One
possibility is to estimate causal effects in differ-
ent subpopulations and to evaluate whether the
estimated effects differ. Alternatively, as nonho-
mogeneity in the genetic variant–exposure asso-
ciation would lead to nonhomogeneity in the
genetic variant–outcome association, evaluating
the variance of exposure and outcome groups by
genotype would provide a test for the presence
and degree of violation of this assumption (Mills

et al. 2020). Large GWAS allow variance to be
characterized well, and so can be interrogated to
investigate this (Young et al. 2018).

An instance in which it is difficult to obtain
relevant treatment effects fromMRestimates is in
the presence of binary exposures (Burgess and
Labrecque 2018). As the assumptions of homo-
geneity and monotonicity are less likely to hold
when interpreting causal estimates with binary
exposures using MR, it is often simpler to report
on the existence and direction (rather than the
magnitude) of the causal effect (Burgess and La-
brecque 2018). If these assumptions can bemade,
there are options for causal estimation with a
binary exposure that allow estimates to be con-
verted onto amore clinically meaningful scale. In
one-sample data with timed events, it may be
possible in principle to estimate the causal effect
of a binary exposure, but this has not yet been
demonstrated. Even if these assumptions can be
made, interpretation is to the liability to the bi-
nary exposure, rather than the binary exposure
itself (Davey Smith 2019; Richmond and Davey
Smith 2019).

Interpretation of causal effects on binary out-
comes is also challenging (Palmer et al. 2008).
Although it is empirically possible to calculate

Table 5. Additional assumptions of Mendelian randomization (MR) sensitivity analyses

Approach Assumption Description References

Inverse-variance
weighted (IVW)
and MR-Egger
regression

No measurement error
(NOME)

There is no measurement error in the
association between the single-
nucleotide polymorphism (SNP)
and the exposure

Bowden et al.
2016b

MR-Egger regression Instrument strength
independent of direct effect
(InSIDE)

The strength of the SNP–exposure
association should not correlate
with the strength of the pleiotropy
effect

Bowden et al.
2015

Modal estimator Zero modal pleiotropy
assumption (ZEMPA)

The most common causal effect
estimate is a consistent estimate of
the true causal effect, even if the
majority of instruments are invalid

Hartwig
et al. 2017

Median estimator Simple median = the causal
effect is provided by the
median SNP estimate

Simple median = at least 50% of the
instruments are valid (i.e., not
pleiotropic)

Bowden et al.
2016a

Weighted median = the causal
effect is provided by the
weighted median SNP
estimate

Weightedmedian = at least 50% of the
weight in the analysis stems from
variants that are valid instruments
(i.e., not pleiotropic)

Mendelian Randomization
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causal estimates in a similar manner to those for
continuous variables, for example, with use of the
log odds scale, theMReffect estimatemayonly be
approximate in the case of a binary outcome
(Burgess et al. 2016c). This is because the “non-
collapsibility” of odds ratios means that these es-
timates may not be constant across strata, and so
cannot be used to obtain a precise causal effect
(Greenland et al. 1999). Alternatively, analyses
can be conducted on the risk difference scale,
which reduces the risk of bias caused by noncol-
lapsibility.

As mentioned, whereas sensitivity analyses
may relax some of the core IV assumptions (e.g.,
exclusion restriction in the case of pleiotropy-
robust methods), they impose their own set of
(albeit weaker) assumptions (Table 5). Two-
sample MR also imposes additional assump-
tions to the one-sampleMR approach, including
exchangeability of the two samples (i.e., whether
they are both drawn from the same underlying
population), as well as the assumption that the
two samples are nonoverlapping (Lawlor 2016).

MR Is Analogous to a Randomized Controlled
Trial

An analogy has often beenmade between anMR
study and an RCT, in which genotypes are said to
randomize participants into different levels of
exposure or treatment, independent of con-
founding (Davey Smith and Ebrahim 2005). In
particular, it is this random allocation of genetic
variants from parents to offspring that can be
viewed as analogous to an RCT (Davey Smith
and Ebrahim 2003; Davey Smith et al. 2020). Of-
ten this analogy is useful, particularly when it is
possible to scale causal effect estimates to that of
interventions, for example, in the case of (retro-
spectively) predicting the null effect of selenium
on risk of prostate cancer using MR (RR 1.01
[95% CI 0.89, 1.13] per 114 µg/L in MR vs. RR
1.04 [95% CI 0.91, 1.19] per 114 µg/L in RCT)
(Yarmolinsky et al. 2018). However, the analogy
is not perfect because RCTs typically involve in-
terventions of short duration, whereas an indi-
vidual’s genotype could reflect lifelong exposures,
time-dependent or critical period effects, as well
as potential developmental compensation that

may arise over time (Davey Smith and Ebrahim
2003; Holmes et al. 2017). Causal estimates ob-
tained from MR analyses may therefore differ in
magnitude to those seen or anticipated in an
RCT, although can also be useful in providing
added value regarding life-course effects. For ex-
ample, knowledge that cholesterol lowering in
earlier life is likely to be important for preventing
CVD (Ference et al. 2014). However, inMR anal-
ysis conducted at a population, rather than fam-
ily-level, the analogy with RCTs is only approx-
imate (Davey Smith and Ebrahim 2003), as
described below.

Genetic Variants Are Not Influenced by
Confounding Factors

Under Mendel’s laws of segregation and inde-
pendent assortment, it is assumed that genetic
variants should be inherited independently of
other genetic and environmental factors. Al-
though population-level genetic variants are
typically much less associated withmany poten-
tial confounders than directly measured expo-
sures (Davey Smith et al. 2007), the random
inheritance of genetic variants from parents to
offspring does not guarantee that genetic vari-
ants and confounders will be independent in
samples of unrelated individuals. For example,
an obvious violation of this is created because of
population stratification that can introduce con-
founding of genotype–disease associations by
factors related to subpopulation groupmember-
ship within the overall population. This might
occur even within groups of relatively homoge-
neous ancestry, as a result of underlying sub-
structure (Abdellaoui et al. 2019; Haworth
et al. 2019; Lawson et al. 2020), or also at the
family level, for example, caused by assortative
mating (Hartwig et al. 2018). One potential vi-
olation of the second IV assumption is that of
“dynastic” or “genetic nurture” effects, in which
parental genotypes affect the offspring via the
environment that parents create for their off-
spring by affecting the parental phenotype (Da-
vies et al. 2019; Brumpton et al. 2020). As a
result, a genetic instrument in the offspring
will be correlated with the environment created
by the parents. One solution to this problem is to
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performMR analysis between siblings who have
a shared family background and whose geno-
type differences will not be confounded by pa-
rental or family factors (within-familyMR) (Da-
vies et al. 2019a; Brumpton et al. 2020). In the
initial presentation of MR, it was suggested that
the most robust form would be within families
(Davey Smith and Ebrahim 2003) and with in-
creasing sources of data for family-based studies,
this approach offers potential for elucidating
causal effects for those traits that are most likely
to be influenced by dynastic effects (e.g., socio-
economic and behavioral factors).

The Exclusion Restriction Assumption
Is Violated because of Pleiotropy

The exclusion restriction assumption is some-
times referred to as the “no pleiotropy assump-
tion,” although it can be violated in a number of
other ways, including timing effects, interac-
tions, reverse causation, collider bias, and LD,
as previously described (VanderWeele et al.
2014).

In particular, the following sources of collid-
er bias may induce spurious associations be-
tween a genetic variant and factors other than
the exposure of interest that may influence the
outcome (Fig. 5):

• The use of instruments generated from a
GWAS that adjusts for another phenotype;

• Ascertainment bias in case-control studies;

• Selection and loss to follow-up bias in cohort
studies;

• Survival bias when investigating later-life out-
comes; and

• Evaluation of disease progression in a case-
only setting.

When there are only moderate effects of a
phenotype on selection, bias is generally small
(Gkatzionis and Burgess 2019). However, where
collider bias is likely to exist, it is recommended
that sensitivity and simulation studies are car-
ried out to evaluate the extent to which bias
might distort estimates (Hughes et al. 2019).
In addition, alternative approaches such as in-

verse-probability weighting, modeling compet-
ing risks, adjusting for index event bias (Dud-
bridge et al. 2019; Mahmoud et al. 2020), and
the use of negative control outcomes (Sanderson
et al. 2021) can also be considered.

Another way in which the exclusion restric-
tion may be violated is when genetic instru-
ments are in LD with other variants that
have an effect on the outcome not via the expo-
sure. In this instance, genetic colocalization ap-
proaches (Giambartolomei et al. 2014) may be
used that attempt to evaluate whether two traits
share the same causal variant at a particular lo-
cus, and thus contribute to evaluation of wheth-
er the exclusion restriction assumption is likely
to hold.

Reverse Causation Is Not an Issue
for MR

Because germline genotypes are fixed at concep-
tion, they cannot be influenced by reverse cau-
sation, and therefore it is often claimed that re-
verse causation is not an issue forMR. Although
this is true, a scenario in which reverse causation
might pose a problem for MR is where the ge-
netic instruments for two traits (X and Y), GX

and GY, are not well characterized (Table 4; Da-
vey Smith andHemani 2014). If trait X influenc-
es trait Y, then a GWAS with adequate statistical
power will identify a genetic variant with its pri-
mary influence of trait X as being associatedwith
trait Y (for example, the CHRNA5 variant relat-
ed to smoking intensity has been identified at
genome-wide significance in relation to lung
cancer [Amos et al. 2008]). This will lead to
spurious conclusions if this variant were then
used as a genetic instrument for trait Y (e.g.,
that lung cancer causes smoking), that is, by
misspecifying the primary phenotype. One way
to minimize this problem is to ensure that the
two sets of instruments are independent of each
other by excluding the genetic variants that they
have in common. However, this may also in-
crease the risk of type II error if variants are
excluded from the genetic instruments that re-
flect vertical pleiotropy (e.g., if the CHRNA5
variant were removed from both the smoking
and lung cancer instruments). In situations

Mendelian Randomization
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where an outcome Y influences trait X, for ex-
ample, developing coronary heart disease in-
creases CRP levels, it may be possible to investi-
gate the number of “cases” of the outcome in the
sample used to run the exposure GWAS. Here, a
low prevalence of the outcome in the exposure
sample would minimize risk of such a reverse
signal. Another approach that can be used in
this context is the Steiger method applied to
MR (Hemani et al. 2017b). This has been devel-
oped to investigate whether the genetic variants
being used to instrument trait X are more
strongly correlated with trait Y than X, in which
case they will be excluded from the instrument
for X.

One way in which this kind of reverse cau-
sation can be leveraged within an MR study is
with the notion of “reverse MR” (Holmes and
Davey Smith 2019). Here, a disease-associated
genetic risk score would be expected to associate
with causes of the disease (e.g., a genetic risk
score for lung cancer would be associated with
smoking because the CHRNA5 variant is in-
cluded in the score). If the outcome of interest
cannot plausibly cause the exposure being con-
sidered (for example, in a subgroup in which the
outcome is not prevalent, e.g., among young
study participants in the case of lung cancer),
then this situation can be used to confirm causal
exposures. This principle has been applied to
investigate perturbations in proteins andmetab-
olites in relation to later cardiometabolic disease
risk (Battram 2018; Bell et al. 2020; Ritchie et al.
2021). However, alternative scenarios such as
pleiotropy, a causal effect of disease liability, or
early stages of disease that influence the exposure
(e.g., prediagnostic cholesterol lowering in cancer
[Ahn et al. 2009]) also need to be considered.

OVERCOMING LIMITATIONS

Limitations of the MR approach have been dis-
cussed extensively elsewhere (Davey Smith and
Ebrahim 2003, 2004; Davey Smith and Hemani
2014; VanderWeele et al. 2014; Haycock et al.
2016; Zheng et al. 2017; Davey Smith et al.
2020). Although some of the early concerns of
the MR approach such as a lack of genetic in-
struments, horizontal pleiotropy, and low power

have been ameliorated with larger data sets and
novel methods, some limitations remain and
new constraints have been recognized.

Lack of Reliable Polymorphisms for Studying
Modifiable Exposures of Interest

Genetic instruments extracted from a single
genewith awell-understood biological function,
and therefore most likely to meet the MR as-
sumptions, are not available for all exposures.
Although the proliferation of GWAS has in-
creased the availability of genetic variants to
use as potential instruments, the role of the var-
iants identified often requires careful consider-
ation to assess their validity in MR. Polygenic
influences onmost phenotypes imply individual
SNPs of small effect size, each with a marginal
contribution to the variance explained in a trait.
This is both a threat to the exclusion restriction
assumption and can lead to problems of weak
instruments, unless the variants can be com-
bined into a genetic risk score or applied in large
sample sizes.

The use of genetic variants may sometimes
lead to counterintuitive results. For example,
while it would be expected that longer-term IL-
6 levels would elevate the risk of CHD (Danesh
et al. 2008), genetic variation in the IL-6 receptor
that increases circulating IL-6 levels has actually
been found to decrease risk of CHD (Swerdlow
et al. 2012). This can be explained because car-
riers of this polymorphism exhibit higher circu-
lating IL-6 levels but reduced membrane-bound
IL-6, with reduced IL-6 signaling, which in turn
reduces risk of CHD (Swerdlowet al. 2012). Sim-
ilarly, if genetic polymorphisms are associated
with multiple aspects of a single trait, for exam-
ple, variation inCHRNA5 that is associated with
different dimensions of smoking behavior (e.g.,
number of puffs per cigarette, depth of inhala-
tion) (Lassi et al. 2016), this can also lead to
problems in the interpretation of causal effects
for any particular dimension of the trait.

A further limitation posed by a lack of un-
derstanding of genetic variants is that of “con-
tamination” of the instrument by variants asso-
ciated with traits “upstream” from the trait of
interest, leading to misspecification of the pri-
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mary phenotype (Davey Smith and Hemani
2014). This is a particular concern as GWAS
sample sizes increase, because it increases the
power to detect genetic variants that act indi-
rectly on the trait of interest. For example, ge-
netic variants with a primary influence on BMI
appear among the top hits in GWAS of C-reac-
tive protein (Dehghan et al. 2011), but should
not be used as instruments for CRP levels. This
has already been discussed within the context of
a bidirectional relationship, in which genetic
variants that influence the exposure through re-
verse causemay be picked up. In addition, itmay
reintroduce confounding if genetic variants as-
sociated with confounders are picked up as ge-
netic variants for the exposure. For example, ge-
netic variants identified in relation to drinking
behavior have been found to be strongly related
to socioeconomic factors (Rosoff et al. 2021).
This may lead to confounding in MR studies if
the genetic variants used to instrument the ex-
posure (here drinking behavior) are primarily
associated with factors upstream from the expo-
sure (e.g., educational attainment) and may ex-
plain the opposite genetic correlations observed
for alcohol quantity and intake frequency
(which are differentially associated with educa-
tional attainment) in relation to various health
outcomes in a recent study (Marees et al. 2020).
MultivariableMR can be used in this instance to
estimate the “true” effect of the phenotype being
investigated, for example, accounting for educa-
tional attainment to estimate direct effects of
drinking behavior, but this requires knowing
the structure of the underlying phenotypes.

Horizontal Pleiotropy

There is a clear trade-off between including
more variants in a genetic instrument to maxi-
mize variance explained in the exposure and the
increased risk of pleiotropy by including more
poorly characterized variants. However, the po-
tential advantage of including more variants is
the ability to use the suite of approaches already
described. These approaches relax the exclusion
restriction assumption but each has its own sets
of assumptions (Table 5). If results are largely
consistent across methods that have orthogonal

biases (Munafo et al. 2020), there can be more
confidence in drawing robust conclusions. Al-
ternatively, in the presence of inconsistent
results across methods, a Bayesian model aver-
aging framework may be used as a basis for effi-
cient estimation in the presence of pleiotropy
(Shapland et al. 2020).

Lack of Independent Instruments

Although it is not necessary that a genetic vari-
ant used to instrument a modifiable exposure of
interest in MR should be the causal variant for
that trait, it is important to assess whether mul-
tiple SNPs used in the instrument are likely to be
tagging the same causal variant. This is because
including correlated variants will typically lead
to erroneous precision in the causal estimate
obtained. LD-based clumping or pruning can
be used to exclude variants in strong LD, which
can ensure independence of the instruments.
Another approach is to use a weighted general-
ized linear regression method that takes into ac-
count correlation of multiple nonindependent
SNPs (Burgess et al. 2016b). This approach is
particularly useful when assessing causality of
molecular phenotypes (e.g., DNA methylation,
gene expression, protein levels) that are often
characterized by few independent instruments
in cis (genetic variants located close to the target
locus/gene). A method that is often used in con-
junction with MR when there is, for example,
one independent variant to instrument a molec-
ular trait in cis, is the approach of genetic colo-
calization mentioned previously. Alternatively,
the inclusion of trans instruments (genetic var-
iants more distal to the target locus/gene) in the
MR analysis can be considered, although it is
more likely that these variants will violate the
exclusion restriction criteria via horizontal plei-
otropy.

Need for Optimal Precision

A failure to recognize the importance of both
sample size and instrument strength in MR
studies for the detection of expected effects has
in the past led to uninformative findings that
lack adequate precision to support or reject hy-

Mendelian Randomization
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potheses about causal effects. Genotyping in
large-scale epidemiological studies as well as
the availability of GWAS summary statistics
has vastly improved the power of MR studies
and has revealed an increasing number of genet-
ic variants that explain a larger proportion of
trait variance. Nonetheless, it is recommended
that power calculations for MR studies be con-
ducted a priori (Brion et al. 2013). Equivalence
testing may also be used to evaluate observed
effects within a priori defined equivalence
bounds, to distinguish effects that are large
enough in magnitude to be deemed robust.

It is important to recognize that several of the
extensions of the conventional MR approach,
such as factorial MR, multivariable MR, sensitiv-
ity analyses such asMR-Egger, andwithin-family
MR analyses all suffer from precision constraints
that should be taken into consideration. This can
be evaluated through additional tests, for exam-
ple, with the Sanderson-Windmeijer conditional
F-statistic in the case of multivariable MR, which
can be used to assess instrument strength for
multiple exposures when estimated jointly (San-
derson et al. 2019, 2020). Furthermore, precision
can be limited in specific contexts, for example,
when evaluating intergenerational causal effects
that have previously been limited to studies with
genetic data available in two generations (Lawlor
et al. 2017). In this context, new structural equa-
tion model (SEM) approaches have been devel-
oped that allow effects of parental exposures on
offspring outcomes to be inferred without having
to have intergenerational genetic data, and which
leverage power from large GWAS summary data
in a two-sample approach (Evans et al. 2019;
Hwang et al. 2020).

Weak Instrument Bias

Methods to overcome potential weak instru-
ment bias in MR include the use of SIMEX-cor-
rected estimates when the assumption of no
measurement error (NOME) cannot be met
(Bowden et al. 2016b), the use of robust-adjust-
ed profile scores (Zhao et al. 2018; Wang et al.
2021b), as well as a weak instrument and pleiot-
ropy robust estimation method for use in mul-
tivariable MR (Sanderson et al. 2020).

Winner’s Curse

It is recommended that the GWAS discovery
sample is independent of the sample(s) used to
conduct the MR analysis (Haycock et al. 2016).
Ideally, the genetic variants used as instruments
in an MR analysis will also have been replicated
in an independent sample to further minimize
risk of Winner’s curse. However, there is a clear
trade-off between maximizing sample sizes of
GWAS for discovery of genetic variants and
avoiding the problem of Winner’s curse by re-
taining a sample for replication and implemen-
tation of the MR approach. In the largest data
sets, it may be possible to perform a split-sample
(Angrist and Krueger 1995b) or jackknife anal-
ysis (Angrist et al. 1999), whereby the data set is
partitioned to avoid problems of sample overlap
and Winner’s curse.

Canalization and Time-Varying Effects

The notion of canalization or developmental
compensation is a potential limitation of MR
forwhich there is no simple empirical assessment
(Davey Smith and Ebrahim 2003). It refers to the
buffering of genetic effects during development
that may bias MR estimates and vitiate gene–
environment equivalence (i.e., that perturbations
caused by genotype have the same downstream
effects as if they were caused by modifiable expo-
sures) (Davey Smith 2012a). Canalization is a
widespread phenomenon in gene knockout stud-
ies (Davey Smith and Ebrahim 2003), although it
is currently unclear whether the generally small
phenotypic differences induced by common
functional polymorphisms are sufficient to in-
duce compensatory responses. A related consid-
eration is the often-stated assumption that genet-
ic variants have lifelong effects, which has been
used previously to explain large point estimates
obtained from MR compared with other epide-
miological approaches (Ference et al. 2012).
There are clear examples of MR in which expo-
sures are time limited, and in which canalization
is therefore less likely to be an issue. For example,
when assessing causal effects of exposures in
utero, the maternal genetic variants being used
as instruments will only have an effect on the
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offspring viamechanisms during the intrauterine
period (Lawlor et al. 2017), and when assessing
causal effects of exposures that occur predomi-
nantly in adulthood (e.g., alcohol consumption,
childbearing), the genetic variants will only have
an effect after the developmental stage in which
canalization is most likely to occur.

Although it is often difficult to model such
time-varying effects in MR, they can bias causal
estimates (Labrecque and Swanson 2019) and
may have implications for determining optimal
timing of interventions. New GWAS studies
have started to reveal genetic variants with dis-
tinct timing effects (Couto Alves et al. 2019)
that may be leveraged to investigate time
varying effects in an MR context. For example,
a recent multivariable MR study used genetic
variants with distinct effects on body size in
childhood and adulthood to separate the causal
effects of this trait at two stages of the life course
on risk of chronic disease (Richardson et al.
2020b).

FUTURE PROSPECTS

Although the scope of MR has grown massively
in recent years, there are several priority research
areas that have not yet been fully evaluated.With
increasing methodological and bioinformatic
innovation, there is great potential to make
progress in these areas. However, subject-specif-
ic knowledge, methodological insight, and im-
proved reporting of MR findings are required to
ensure the robustness and reproducibility of
findings.

Extending Clinical Applicability

Identifying Factors Underlying Disease
Progression

To date, the majority of GWAS have sought to
identify genetic variants associated with risk of
disease occurrence. Such variants are informa-
tive for disease prevention, but not necessarily
for treatment aimed at influencing disease pro-
gression because the same genetic factors will
not necessarily influence both disease onset
and progression of the disease (Davey Smith et

al. 2017; Paternoster et al. 2017). In 2017, just 8%
of genetic association hits in the GWAS Catalog
had attempted to identify variants associated
with disease progression or severity, and most
with modest sample size (Paternoster et al.
2017). Nonetheless, an increasing number of
progression GWAS are being carried out, in
studies such as the Genetics and Subsequent
Coronary Heart Disease Consortium (GE-
NIUS-CHD; CHD, n > 270 k cases) (Patel et al.
2019), the Breast Cancer Association Consor-
tium (BCAC; breast cancer, n > 47 k cases) (Es-
cala-Garcia et al. 2019), and the Prostate Cancer
Association Group to Investigate Cancer Asso-
ciated Alterations in the Genome consortium
(PRACTICAL; prostate cancer, n > 45 k cases)
(Szulkin et al. 2015), which should allow MR
studies of progression to be conducted.

However, determining true causal effects on
disease progression using MR in case-only data
sets is made more challenging because of the
issue of collider bias (Paternoster et al. 2017;
Hughes et al. 2019). In particular, when a group
of participants are selected based on certain
characteristics (e.g., presence of disease), this
will introduce a spurious association between
independent risk factors influencing selection
that will then distort the relationships between
each risk factor and disease progression (Fig. 5).
This is a threat to both conventional observa-
tional associations and to studies of genetic in-
fluences, with confounding being reintroduced
that can lead to violation of the MR assump-
tions. Methods for alleviating such biases are
currently indevelopment (Dudbridge et al. 2019;
Hughes et al. 2019;Mahmoud et al. 2020). These
methods attempt to estimate the bias adjustment
factor based on estimates for the association of
genetic variants with both incidence and pro-
gression.

Drug Trials

Whereas RCTs remain the gold standard ap-
proach for testing the efficacy and safety of a
new drug, RCTs can be complemented by MR
in terms of prioritizing drug targets, predicting
the outcome of trials and optimizing trial design
(Ference et al. 2021; Schmidt et al. 2021). Hu-
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man genetic evidence is a strong predictor of
drug success (Nelson et al. 2015) andMR studies
of proteins and metabolites are becoming fun-
damental in drug discovery and development
(Ference et al. 2021; Gill et al. 2021; Holmes
et al. 2021; Schmidt et al. 2021). In particular,
cis-acting variants may serve as genetic proxies
for protein drug targets, and selection of such
variants may be optimized to evaluate the po-
tential causal relationships between those drug
targets and a range of diseases (Sun et al. 2018;
Zheng et al. 2019; Schmidt et al. 2020). A prom-
ising application ofMR is in the prioritization of
targets for disease prevention, for example, re-
vealing the role of PCKS9 inhibitors for reducing
LDL cholesterol (Ference et al. 2016), as well as
deprioritizing interventions based on null re-
sults from MR, for example, showing that CRP
concentration is unlikely to be a causal factor in
CHD (Wensley et al. 2011).MRcan also indicate
potential side effects of drugs, including the el-
evated risk of type 2 diabetes with use of some
lipid-lowering drugs (Ference et al. 2012), which
has also been shown in the case of statin trials
(Swerdlow et al. 2015). MR has also been used
to identify potential repurposing opportunities
of existing drugs (Li et al. 2020). Most recent-
ly, genetic variation in IL6R has been associ-
ated with lower risk of hospitalization from
COVID-19, which is in line with findings from
IL-6R therapeutic inhibition trials (Bovijn et al.
2020). In addition to predicting the consequenc-
es of pharmacotherapy, MR has the potential to
be used to optimize trial design, for example, in
relation to segmenting patients who are most
likely to benefit from the drug or giving insights
into the timing of drug initiation (Ference et al.
2012, 2021). However, this typically requires the
availability of prospective data sets of target pop-
ulations with genetic data available (Schmidt
et al. 2021).

Scaling up Feasibility Trials Using MR to
Robustly Infer Causal Effects on Clinical End
Points

A novel application of MR has recently been
proposed that may enhance the value of feasi-
bility studies of interventions (Sandu et al.

2019). This approach uses MR to predict causal
effect of these interventions on long-term clin-
ical outcomes via short-term intermediate bio-
markers. Feasibility trials are small-scale studies
that aim to assess the practicality and acceptabil-
ity of implementing an intervention in a clinical
setting. These are not usually powered to evalu-
ate effects on clinical outcomes and are not typ-
ically followed up for enough time to assess
long-term outcomes. However, intermediate
measures may be collected that can serve as sur-
rogate end points in such studies. These mea-
sures may lie on the causal pathway to clinical
outcomes and MR can be used in this context to
appraise the causal effect of those intermediate
measures altered by the intervention on long-
term outcomes, using a larger study base to
the feasibility study in question to bolster power.
Whereas these intermediate biomarkers serve as
surrogate end points, which are well known to
have limitations (Prentice 1989), the advantage
of using MR in this context is that it is possible
to explore both expected and unanticipated
effects of manipulating an intermediate trait
on a range of outcomes, including relatively
rare ones, and with larger sample sizes. Further-
more, the approach may be used to uncover
other causal intermediates that could validate
choice of surrogate markers for use in future
feasibility studies.

Uncovering Molecular Mechanisms

Building on the success of GWAS and the avail-
ability of cost-effective and robust technologies
is the scaling up of other -omic technologies
within population health. This is largely con-
cerned with understanding how gene regulatory
mechanisms or gene products influence health-
related outcomes and is useful for investigating
themolecular pathways thatmay underpin caus-
al effects. In particular, such -omic measures are
influenced by many environmental and endog-
enous factors and so can be considered as inter-
mediate phenotypes through which causal ef-
fects may be investigated (Davey Smith and
Hemani 2014).

Of particular utility are large-scale -omic
scans for formulating novel hypotheses on bio-
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logical processes underpinning complex traits
and diseases. However, in contrast to germline
genetic variation, -omic signatures are largely
phenotypic, and are therefore subject to the
same potential problems of confounding and
reverse causation that afflict conventional epide-
miology (Relton and Davey Smith 2010). MR is
being increasingly applied to elucidate causality
for a range of molecular data, including epige-
netics, transcriptomics, gene expression, metab-
olomics, and proteomics (Porcu et al. 2021). For
this, approaches such as two-step, network, and
multivariable MR are of particular utility for
determining whether these markers lie on the
causal pathway between risk factors and disease
(Table 4). Such approaches are being applied in
increasingly complex and innovative ways, to
consider the causal nature of a large number of
molecular markers (Wahl et al. 2017), integrat-
ing several types of -omics data to evaluate mo-
lecular pathways (Mendelson et al. 2017), as well
as considering the tissue-specific nature of caus-
al effects (Taylor et al. 2019; Richardson et al.
2020c).

Increasing Ethnic Diversity in MR Studies

Approximately two-thirds of all previous
GWAS have been performed in individuals of
European ancestry (Duncan et al. 2019). Dif-
ferences in allele frequencies and LD patterns
between populations threaten the validity of
identified genetic variants and therefore trans-
ferability of MR findings to other populations
(Martin et al. 2017; Duncan et al. 2019). Al-
though restricting GWAS and MR analysis to
more homogeneous ancestries can help to re-
duce the threat of population stratification, oth-
er approaches such as Bayesian mixture model
analysis can be taken to overcome this limita-
tion while ensuring greater diversity in genetic
studies (Loh et al. 2015). Greater diversity is
important as it allows for improved causal in-
ference of risk factors and the clinical transla-
tion of genetic findings in other ethnic groups.
Furthermore, allowing for diversity in MR stud-
ies can help to identify genetic variants that are
typically rare in Europeans, where more com-
mon variation in other ethnic groups can bol-

ster the power of MR for determining causal
effects (Kang et al. 2013; Millwood et al.
2019). Some large-scale, non-European bio-
banks are available for genetic analysis (Table
2), with a recent GWAS of∼200,000 individuals
in Biobank Japan identifying a number of novel
loci important for elucidating biology in East
Asian populations (Ishigaki et al. 2020).

Methodological Innovations

A number of methodological extensions of the
original MR approach have been discussed
throughout this review and an increasing num-
ber are being developed. In particular, several
recently developed whole-genome-based ap-
proaches, including Genetic Instrumental Vari-
able regression (GIV) (DiPrete et al. 2018) and
Causal Analysis Using Summary Effect esti-
mates (CAUSE) (Morrison et al. 2020), are
seemingly less vulnerable to environmental con-
founders that are correlated with genes than
many of the methods already described (Figs. 3
and 4). Whereas the previously outlined meth-
ods are specifically designed to account for
horizontal pleiotropy of the genetic instru-
ments, GIV and CAUSE make use of full
GWAS data to also account for other sources
of bias. For example, if the primary phenotype
has been misspecified, the Instrument Strength
Independent of Direct Effect (InSIDE) assump-
tion of theMR-Egger sensitivity analysis is likely
to be violated, and so the CAUSE method may
be used as an additional test to determine the
presence of correlated pleiotropy in this in-
stance.

Although the range of methods now avail-
able allows for rigorous analysis and robust
causal inference to be made, it can be difficult
to navigate the various approaches and appraise
their relative strengths and limitations. Howev-
er, it has been emphasized that the best choice of
method can often be context specific (Koellinger
and de Vlaming 2019).More generally, applying
a number of approaches each with orthogonal
biases can be helpful in “triangulating” evidence
if the estimates obtained from the approaches
converge on a similar causal estimate (Munafo
et al. 2020).
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Automation

The development of bioinformatic platforms
and software supports the systematic application
of MR (Hemani et al. 2018b; Richardson et al.
2020a). There is scope to automate MR analyses
to evaluate a multitude of causal relationships in
a time-efficient manner. This can aid in the ac-
celerated identification, prioritization, and eval-
uation of intervention targets, for example,
through phenome-wide association studies
(MR-PhEWAS) (Millard et al. 2015; Richardson
et al. 2019), and the examination of causality in
increasingly complex networks with the integra-
tion of molecular data (Hemani et al. 2017a).
However, limitations of these agnostic ap-
proaches include the multiple testing burden
imposed as well as the possibility of false posi-
tives, which require careful follow-up in terms of
evaluating patterns of bias and ensuring robust-
ness of findings to the various assumptions. Al-
though machine learning and Bayesian model
algorithms have been developed to help select
the most appropriate model for evaluation (He-
mani et al. 2017a; Dudbridge 2020; Howey et al.
2020; Shapland et al. 2020; Zuber et al. 2020),
users should be careful that the use of automa-
tion and data repositories do not trivialize the
analysis being conducted and interpretation of
results (Burgess and Davey Smith 2019).

Improving Reproducibility and Reporting
of MR Results

The relative ease at which MR analysis can now
be performed can also threaten the design, con-
duct, and reporting of the approach. This may
lead to spurious and/or nonreproducible results
and may encourage data fishing or the selective
cherry-picking of findings, which can lead to
study bias in the literature. Guidelines that de-
scribe and emphasize the importance of analyti-
cal choice considerations and appraise the trans-
parencyofMR reporting should help tomaintain
and improve the quality of MR studies being per-
formed (Davies et al. 2018; Burgess et al. 2019;
Davey Smith et al. 2019). Code sharing and im-
proved reproducibility of findings, for example,
emulating recommendations in GWAS to pro-

vide independent replication before publication,
should also be encouraged.

CONCLUSIONS

This paper provides an overarching summary of
the Mendelian randomization approach, which
uses genetic variants reliably related to modifi-
able exposures to provide a more robust under-
standing of the influence of these exposures on
disease-relevant outcomes. The development of
computational tools and availability of large
GWAS data sets has enabled the automation of
MR analyses for evaluating amultitude of causal
relationships in a time-efficient manner, pre-
dominantly via the two-sample MR approach.
This has led to the rapid expansion of MR pub-
lications and is accelerating the identification,
prioritization, and evaluation of intervention
targets, the detection of novel causal relation-
ships and the integration of molecular data to
examine causality in increasingly complex net-
works. However, as MR is increasingly easy to
implement, it may lead to the proliferation of
poorly thought-out and conducted studies. It
is therefore important that anyone applying
the approach is well versed in its assumptions
and limitations. We have discussed the current
state of the field, highlighting current best prac-
tice methodology, methods of assessing the MR
assumptions, attempts to overcome potential
pitfalls, and some exciting future prospects. Sev-
eral of the other papers in this collection elabo-
rate on some of the novel methodological ap-
proaches, including multivariable MR and
the use of MR for assessing mediation (Sander-
son 2021), polygenic MR methods for assessing
pleiotropy (Dudbridge 2020), as well as within-
family MR methods (Hwang et al. 2020). Other
papers describe the application of the approach
for extending clinical applicability (Ference et al.
2021; Schmidt et al. 2021) and uncovering mo-
lecular mechanisms (Porcu et al. 2021).
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