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Abstract

Background: Results from epidemiologic studies examining polyunsaturated fatty acids 

(PUFAs) and colorectal cancer (CRC) risk are inconsistent. Mendelian randomization may 

strengthen causal inference from observational studies. Given their shared metabolic pathway, 

examining the combined effects of aspirin/NSAID use with PUFAs could help elucidate an 

association between PUFAs and CRC risk.

Methods: Information was leveraged from GWAS regarding PUFA-associated single nucleotide 

polymorphisms (SNPs) to create weighted genetic scores (wGSs) representing genetically-

predicted circulating blood PUFAs for 11,016 non-Hispanic white CRC cases and 13,732 controls 

in the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO). Associations per 

standard deviation increase in the wGS were estimated using unconditional logistic regression. 

Interactions between PUFA wGSs and aspirin/NSAID use on CRC risk were also examined.

Results: Modest CRC risk reductions were observed per standard deviation increase in 

circulating linoleic acid (ORLA=0.96; 95% CI=0.93–0.98; p=5.2×10−4), α-linolenic acid 

(ORALA=0.95; 95% CI=0.92–0.97; p=5.4×10−5); whereas modest increased risks were observed 

for arachidonic acid (ORAA=1.06; 95% CI=1.03–1.08; p=3.3×10−5), eicosapentaenoic 

(OREPA=1.04; 95% CI=1.01–1.07; p=2.5×10−3), and docosapentaenoic acids (ORDPA=1.03; 95% 

CI=1.01–1.06; p=1.2×10−2. Each of these effects were stronger among aspirin/NSAID non-users 

in the stratified analyses.

Conclusions: Our study suggests that higher circulating shorter-chain PUFAs (i.e., LA and 

ALA) were associated with reduced CRC risk, whereas longer-chain PUFAs (i.e., AA, EPA, and 

DPA) were associated with an increased CRC risk.

Impact: The interaction of PUFAs with aspirin/NSAID use indicates a shared CRC inflammatory 

pathway. Future research should continue to improve PUFA genetic instruments to elucidate the 

independent effects of PUFAs on CRC.
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INTRODUCTION

Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide with an 

estimated 746,000 males and 614,000 females diagnosed in 2012.[1] Diet has been shown to 

play an important role in CRC development.[2,3] One nutrition-related inflammatory 

metabolite, prostaglandin E2 (PGE-2), is known to influence colorectal carcinogenesis[4] 

via promotion of tumor cell proliferation[5,6] and silencing of tumor suppressor and DNA 

repair genes.[7] PGE-2 is generated via metabolism of omega-6 polyunsaturated fatty acid 

(PUFA) arachidonic acid (AA) via the cyclooxygenase-2 (COX-2) enzyme[4] and is often 

overexpressed in CRC.[8,9] While omega-3 polyunsaturated fatty acids (PUFAs) are also 

metabolized by COX-2, they produce a different array of non-inflammatory eicosanoids 

which have not been implicated in carcinogenesis. Thus, PGE-2 levels may be competitively 

reduced by increasing levels of omega-3 PUFAs in the diet, which could be a potential 

strategy for CRC prevention.

Dietary intake of PUFAs have been studied in relation to CRC incidence; however, the 

results from epidemiologic investigations have been inconsistent.[10–12] One possible 

reason for these discrepancies in the epidemiologic literature may be related to error in 

accurately assessing dietary PUFA intake. For example, differential recall of dietary intake 

in case-control studies of CRC could lead to biased effect estimates. In cohort studies, 

repeated measurements would be ideal but are not feasible, and a pre-diagnostic 

measurement of PUFAs using an objective dietary biomarker may not accurately reflect 

dietary intake since the etiologically relevant period for CRC development is unclear. The 

observed inconsistencies could also be due to biases related to inappropriate confounding 

control, selection bias, or reverse causation. In addition to these methodologic 

considerations, it is important to consider aspirin and non-steroidal anti-inflammatory drug 

(NSAID) use in tandem with PUFAs given their shared metabolic pathway via COX-2 and 

resulting PGE-2 production. A limited number of studies have examined the interaction 

between PUFAs and aspirin/NSAID use on CRC risk with inconsistent results.[13,14]

The goal of our study was to estimate potentially unbiased associations between genetically-

predicted circulating PUFAs with CRC using the Mendelian randomization approach. The 

Mendelian randomization approach uses genetic variants as instrumental variables for an 

exposure, and given alleles are randomly assorted during conception (akin to a randomized 

trial), results from such analyses are less susceptible to confounding and other biases[15]. 

Our study was conducted among non-Hispanic whites using data from two large CRC 

consortia. Given the shared metabolism via COX-2, we further assessed the combined 

effects of genetically-predicted circulating PUFAs and aspirin/NSAID use on CRC risk.
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METHODS

Study population

The current study leverages the Genetics and Epidemiology of Colorectal Cancer 

Consortium (GECCO) consortium and the Colon Cancer Family Registry (CCFR), a pooled 

dataset of 14 studies of CRC with a total of 11,018 cases and 13,735 controls, all European 

ancestry. Details regarding the characteristics of individual studies included in the 

consortium have been published.[16–18] Briefly, medical records, pathologic reports, or 

death certificates were used to confirm colorectal cancer cases. Genotyped SNPs that did not 

meet the following criteria were excluded: (1) call rate <98%; (2) lack of Hardy-Weinberg 

equilibrium in the controls (p<1×10−4); or (3) low minor allele frequencies.[16] All imputed 

SNPs had an R2>0.3. Additional details regarding genotyping are published elsewhere.[19] 

Our study used individual-level and summary statistics data from GECCO to conduct 

primary and sensitivity analyses. Additionally, summary statistics were available from the 

ColoRectal Transdisciplinary Study (CORECT) consortium, a pooled dataset comprised of 

17 studies with a total of 18,682 cases and 11,225 controls are included. Study-specific 

sample sizes and genotyping platforms are provided in Supplementary Table 1. All study 

participants provided written informed consent, and all studies included in the consortia 

were approved by their respective institutional review boards.

Instrumental variable selection

Single nucleotide polymorphisms (SNPs) identified from published omega-6 and omega-3 

PUFA GWAS conducted among individuals of European ancestry [20,21] were used as the 

genetic instruments for this Mendelian randomization analysis. The previous GWAS were 

conducted among the same individuals as part of the Cohorts for Heart and Aging Research 

in Genomic Epidemiology (i.e., CHARGE) Consortium. They reported associations between 

SNPs and plasma levels of omega-6 and omega-3 PUFAs (i.e., as a percentage of total fatty 

acids). The following nine SNPs were selected as they were all genome-wide significant 

(i.e., p<5×10−8) and independent at r2<0.1: rs10740118, rs174547, rs2727270, rs16966952, 

rs3798713, rs174538, rs780094, rs3734398, and rs2236212. The SNPs used in the six 

different genetic instruments (one instrument per PUFA) are summarized in Table 1, and 

further details are provided in Supplementary Table 2. Using the β estimates and effect allele 

frequencies (EAFs) specific to each SNP i, and the variance in PUFA levels from published 

GWAS [20,21], the percent variation explained by the n SNPs included in the six different 

genetic instruments were calculated as follows: 

∑i
n 2βi

2
MAF 1 − MAF /variance PUFA *100 [22]. In GECCO, the average imputation 

quality for imputed SNPs was r2=0.98 (range: 0.97–0.99). In CORECT, the average 

imputation quality was r2=0.99 (range: 0.98–0.99).

Construction of weighted genetic scores

Weighted genetic scores (wGSs) were created using individual-level genotyped data in 

GECCO. For each PUFA, a wGS was constructed per individual as follows: 

wGS = ∑i
n

βi*dosagei; where n is the number of independent SNPs used for each PUFA 

instrument, βi is the effect estimate (i.e., increase in percent of total plasma fatty acids) for 
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SNP i (obtained from two GWAS examining omega-3 and omega-6 PUFAs within the same 

population [20,21]), and dosagei (range from 0–2) is the number of the effect alleles (i.e., 

alleles representing increased fatty acids levels) an individual possesses for SNP i. All 

GECCO participants had six different PUFA wGSs representing genetically-predicted 

circulating PUFA levels measured as a percentage of total plasma fatty acids. Excluding 

DHA’s correlation with LA, AA, and ALA, the PUFA wGSs were highly correlated 

(Supplementary Table 3). No wGSs were simultaneously included in a single model.

Statistical analysis

Unconditional logistic regression adjusted for age, sex, study, and top three principal 

components for European ancestry was conducted to estimate associations between one 

standard deviation increase in genetically-predicted circulating PUFAs and CRC risk in 

GECCO. Matching factors including age, sex, and study were included in the models to 

avoid any bias due to control selection.[23] We also adjusted for principal components of 

European ancestry to account bias due to population stratification.[24,25] We also explored 

the association between each PUFA wGS with potential confounders including education 

(highest level completed), family history (first-degree relative), regular aspirin/NSAID use 

(at any point during a participant’s lifetime), body mass index (BMI; kg/m2), ever smoking 

(yes/no), alcohol use (g/day; compared to non-drinkers), folate intake (μg/day from diet), red 

meat consumption (serving/day), fruit and vegetable intake (servings/day), and sedentary 

behavior (hours/week; Supplementary Table 4). Only education, family history, aspirin/

NSAID use, BMI, and fruit intake were found to be significantly associated (p<0.05) with 

the six different PUFA wGSs. Results from the fully-adjusted model adjusting for these 

covariates were identical to those from the minimally-adjusted models.

Analyses were stratified by potential effect measure modifiers including sex, age [i.e., <65 

years (median age), ≥65 years], smoking use, regular aspirin/NSAID use, and BMI (i.e., 

≤18.5 kg/m2, 18.5–24.9, 25–30, and >30). Statistically significant differences (p<0.05) in 

strata were assessed via the likelihood ratio test using nested models for the multiplicative 

interaction term. Polytomous regression was conducted to estimate stratum-specific 

estimates by cancer site (i.e., rectal vs. colon, and separately for proximal and distal colon 

cancer).

Additive interactions were also conducted to assess the combined effects of genetically-

predicted circulating PUFA levels and aspirin/NSAID use on CRC risk. All six PUFA-

specific wGSs were dichotomized at the median representing “low” and “high” circulating 

levels. Using a common referent category, additive interactions were assessed statistically 

via calculation of the relative excess risk due to interaction (RERI) and its corresponding 

95% confidence intervals.[26] All analyses were conducted using SAS Enterprise 7.13 

(Cary, NC, USA) and “TwoSampleMR” package curated by MR-Base [27] in R 3.5.1 (R 

Foundation for Statistical Computing; https://www.r-project.org/).

Sensitivity analyses

Several sensitivity analyses were conducted in GECCO and CORECT. A fixed-effects 

inverse-variance weighted Mendelian randomization analysis[28] was conducted using 
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summary statistics from PUFA GWAS and from the two consortia, GECCO and CORECT. 

The remaining analyses assessed the validity of the genetic instruments utilized in this study. 

Egger regression estimated a bias-reduced Mendelian randomization association in the 

presence of directional pleiotropy (i.e., when the average pleiotropic effects of all SNPs used 

in the instrument are either positive or negative), provided the effects of the instrument on 

the exposure is not correlated with any pleiotropic effects. Statistically significant intercepts 

from Egger regression indicate directional pleiotropy and was applied when three or more 

independent SNPs were included in the instrument (LA and DPA).[29] The weighted-

median approach estimated the Mendelian randomization effect assuming at least 50% of 

SNPs used in the genetic instrument are invalid.[30] Corresponding 95% confidence 

intervals for the weighted-median estimate were calculated using bootstrapped standard 

errors. The weighted-median estimate was only conducted for the PUFAs with more than 

two SNPs in the instrument, and was not conducted for AA, ALA, DPA, or DHA. The 

multivariable Mendelian randomization was adjusted for the potential pleiotropic effects of 

the SNPs included in one PUFA instrument on circulating levels of other PUFAs and utilized 

all nine GWAS-identified SNPs and their PUFA-specific beta estimates.[31,32] Finally, for 

instruments with more than two SNPs, a “leave-one-out” analysis was conducted where the 

inverse-variance MR association was re-estimated after excluding the most influential SNP 

(determined via largest magnitude change in MR estimate after exclusion).[27] All 

sensitivity analyses using summary statistics were scaled to represent one standard deviation 

increase in genetically-predicted circulating PUFA levels.

RESULTS

The variants used in the six different PUFA genetic instruments are listed in Table 1. The 

instruments for α-linolenic acid (ALA) and docosahexaenoic acid (DHA) included one SNP 

each explaining 1.0% (i.e., rs174547) and 0.7% (i.e., rs2236212) percent of variation in 

PUFA levels, respectively. The instruments for eicosapentaenoic acid (EPA) and 

docosapentaenoic acid (DPA) explained a higher proportion of variance in fatty acid levels 

with 2.1% and 11.6%, respectively. Comparatively, the SNPs associated with omega-6 

PUFAs, linoleic acid (LA) and arachidonic acid (AA), explained a higher percent variation 

in fatty acid levels. Four SNPs were significantly associated with and explained anywhere 

between 8.8 to 23.6% of the variation in circulating LA levels (reported range from studies 

included in the omega-6 GWAS [20]). For AA, two SNPs (i.e., rs174547 and rs16966952) 

together explained more than 33% of variation in AA fatty acid levels, with rs174547 

accounting for most of the variation explained.

Main effects and stratified analyses

In Table 2, a one standard deviation increase in wGSs for shorter-chain omega-6 and 

omega-3 fatty acids (i.e., LA and ALA) was associated with 4% to 5% reduced CRC risk 

(ORLA=0.96, 95% CI=0.93–0.98, p=5.2×10−4; ORALA=0.95, 95% CI=0.92–0.97, 

p=5.4×10−5). An increased CRC risk was observed per standard deviation increase in 

circulating longer-chain omega-3 fatty acids, EPA (OREPA=1.04, 95% CI=1.01–1.07, 

p=2.5×10−3) and DPA (ORDPA=1.03, 95% CI=1.01–1.06, p=1.2×10−2). No association was 

observed for DHA. The largest observed increased risk was for AA, the longer-chain 
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omega-6 PUFA, where a 6% increased CRC risk was observed (ORAA=1.06, 95% CI=1.03–

1.08, p=3.3×10−5).

Stratified analyses are also presented in Table 2. Overall, most associations showed little 

evidence for varying by strata of different effect measure modifiers. Potential exceptions 

included a statistically significant multiplicative interaction for age (<65 years vs. ≥65 years; 

pinteraction for LA=1.5×10−2 and pinteraction for ALA=0.04) and regular aspirin/NSAID use 

(pinteraction for AA=0.05, pinteraction for ALA=0.04, and pinteraction for EPA=1.4×10−2). Among 

those ≥65 years, one standard deviation increase in genetically-predicted circulating ALA 

and LA reduced CRC risk by 7% and 8%, respectively (ORLA, ≥65 years=0.93, 95% CI=0.89–

0.96, p=5.4×10−5; ORALA, ≥65 years=0.92, 95% CI=0.89–0.96, p=2.7×10−5). Whereas among 

individuals <65 years, no statistically significant associations were observed. For longer-

chain omega-3 PUFAs (i.e., EPA, DPA, and DHA), no differences across the age-stratified 

results were observed. For the longer-chain omega-6, one standard deviation increase in 

circulating AA levels was associated with an 8% increased CRC risk among those ≥65 years 

(ORAA, ≥65 years=1.08, 95% CI=1.04–1.12, p=2.7×10−5), and no association was observed 

among those <65 years (ORAA, <65 years=1.03, 95% CI=0.99–1.07, p=0.08). Among aspirin/

NSAIDs non-users, a similar 8% increased risk was observed per standard deviation increase 

in circulating AA (ORAA, aspirin/NSAID non-user=1.08, 95% CI=1.04–1.11, p=8.3×10−6), 

whereas no association was observed (ORAA, aspirin/NSAID user=1.02, 95% CI=0.98–1.07, 

p=0.34) among users. For the short-chain omega-3 PUFA ALA, those individuals who were 

aspirin/NSAID non-users were observed to have a 7% reduced CRC risk per one standard 

deviation increase in circulating ALA levels (ORALA, aspirin/NSAID non-user=0.93, 95% 

CI=0.90–0.96, p=9.7×10−6). Similar to longer-chain omega-6 AA, increased CRC risks were 

observed for higher levels of circulating longer-chain omega-3s EPA 

(OREPA, aspirin/NSAID non-user=1.07, 95% CI=1.03–1.10, p=1.7×10−4) and DPA 

(ORDPA, aspirin/NSAID non-user=1.05, 95% CI=1.02–1.09, p=2.4×10−3) among aspirin/NSAID 

non-users; however this multiplicative interaction was only statistically significant for EPA. 

Whereas among regular aspirin/NSAID users, null associations were observed for PUFAs in 

the stratified analysis.

Additive interaction with aspirin/NSAID use

In Table 3, additive interaction between PUFA-specific wGSs and regular use of aspirin/

NSAID via a common referent category (i.e., “low” circulating PUFA levels and aspirin/

NSAID non-users) are presented. Among those who were not regular aspirin/NSAID users 

(i.e., aspirin/NSAID non-users), high levels of circulating shorter-chain PUFAs (i.e., 

omega-6 LA and omega-3 ALA) was associated with an 11–13% reduction in CRC risk 

(ORhigh LA, aspirin/NSAID non-user=0.89, 95% CI=0.84–0.95, p=7.8×10−4; ORhigh ALA, 

aspirin/NSAID non-user=0.87, 95% CI=0.81–0.93, p=4.1×10−5). A 15% increased CRC risk was 

observed for higher levels of genetically-predicted circulating longer-chain omega-6 AA 

among aspirin/NSAID non-users (ORAA, aspirin/NSAID non-user=1.15, 95% CI=1.07–1.23, 

p=4.4×10−5). Similar increased CRC risks were observed for higher circulating levels of 

longer-chain omega-3 PUFAs EPA (OREPA, aspirin/NSAID non-user=1.12, 95% CI=1.05–1.20, 

p=7.6×10−4) and DPA (ORDPA, aspirin/NSAID non-user=1.07, 95% CI=1.00–1.15, p=3.9×10−2), 

among aspirin/NSAID non-users.
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Among those with lower levels of genetically-predicted circulating PUFAs, use of aspirin/

NSAIDs was associated with reduced CRC risk, with CRC risk reductions ranging from 

24% (ORlow AA, aspirin/NSAID user=0.76, 95% CI=0.70–0.82, p=8.4×10−12) to 29% 

(ORlow LA, aspirin/NSAID user=0.71, 95% CI=0.65–0.77, p=3.3×10−17). Generally, among 

aspirin/NSAID users, higher levels of genetically-predicted PUFAs (namely LA and ALA) 

did not further reduce CRC risk compared to lower levels of PUFAs 

(ORhigh LA, aspirin/NSAID user=0.68, 95% CI=0.63–0.73, p=2.0×10−20; 

ORhigh ALA, aspirin/NSAID user=0.65, 95% CI=0.65, 95% CI=0.60–0.71, p=3.2×10−25). For 

longer-chain PUFAs (i.e., omega-6: AA, and omega-3s: EPA, DPA, and DHA), among 

aspirin/NSAID users, the effect of higher circulating levels of these PUFAs modestly 

attenuated the CRC risk reductions observed compared to lower levels of AA, EPA, DPA, 

and DHA. However, the additive interactions presented did not significantly deviate from an 

additive model as measured via the RERI and corresponding 95% CIs. Overall, CRC risk 

reductions (likely driven by aspirin/NSAID use) were still observed in this subgroup 

(ORhigh AA, aspirin/NSAID user=0.82, 95% CI=0.76–0.89, p=1.9×10−6; 

ORhigh EPA, aspirin/NSAID user=0.80, 95% CI=0.74–0.87, p=4.4×10−8; 

ORhigh DPA, aspirin/NSAID user=0.77, 95% CI=0.71–0.83, p=8.1×10−11; 

ORhigh DHA, aspirin/NSAID user=0.80, 95% CI=0.73–0.87, p=2.5×10−7).

Summary statistics and sensitivity analyses results

The inverse-variance weighted fixed-effects Mendelian randomization results 

(Supplementary Table 5) using summary statistics were identical to those from the 

individual-level wGS results. For PUFAs with more than one SNP included in the 

instrument, statistically significant heterogeneity was observed for the inverse-variance 

weighted fixed-effects MR estimates for DPA (pheterogeneity=3.6×10−4), indicating possibility 

for directional pleiotropy (i.e., when the effect on the outcome for each SNP included in the 

instrument is in the same direction).[15] The results in CORECT were identical to GECCO. 

Results from the weighted-median analyses were identical to the inverse-variance weighted 

fixed-effects MR, indicating that our estimates are robust when assuming half the variants 

included in the instrument are invalid.[30] No estimates from the multivariable MR 

approaches were statistically significant, which evaluated potential pleiotropy of SNPs 

included in one instrument on other PUFAs.[31,32] Results from the “leave-one-out” 

analysis (only possible for LA and DPA) indicated that rs174547 was the most influential 

SNP in these two instruments, and removal of rs174547 from the PUFA instruments did not 

affect the overall results. The one exception being for DPA in the CORECT consortium 

where removal of rs174547 resulted in a 7% reduced CRC risk (ORDPA=0.93, 95% 

CI=0.88–0.97, p=2.1×10−3).

DISCUSSION

In our study conducted among over 24,000 non-Hispanic white individuals from the 

GECCO consortium, we observed a 6% increased CRC risk among those with higher 

genetically-predicted circulating levels of omega-6 PUFA AA. Modest increased risks were 

observed for EPA and DPA. Modest risk reductions were observed for longer-chain omega-6 

PUFA LA, and longer-chain omega-3 PUFAs ALA. These associations remained statistically 
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significant among those ≥65 years and among aspirin/NSAID non-users. When stratified by 

aspirin/NSAID use, one standard deviation increase in circulating AA increased risk of CRC 

by 8% (pinteraction=0.05), and reduced risk by 7% for ALA (pinteraction=0.04). Regular users 

of aspirin/NSAIDs were observed to have 18–35% reduced risk of CRC regardless of their 

genetically-predicted levels of PUFAs. Our main effects results were confirmed using the 

summary statistics Mendelian randomization approach.

Not all the associations observed were consistent with our biologic hypothesis regarding 

omega-6 and omega-3 PUFAs. For example, a modest 4% reduction in CRC risk was 

observed for increases in genetically-predicted short-chain omega-6 LA levels, which is a 

pre-cursor to AA levels and subsequently PGE-2. One potential explanation for the risk 

reduction observed for the LA may be related to two variants included in the instrument that 

are part of the FADS1 and FADS2 genes (i.e., rs174547 and rs2727270, respectively) and 

are responsible for the conversion of LA to AA. When incorporating these SNPs in the 

instrument, increased genetically-predicted levels of LA will result in lower downstream 

levels of AA and PGE-2, which could potentially reduce CRC risk. We also observed 

modest increased risks for higher genetically-predicted levels of potentially anti-

inflammatory omega-3 PUFAs EPA and DPA. However, the risk reduction is consistent with 

a previous meta-analysis of LA intake on CRC risk[33], and with a previous Mendelian 

randomization study (also included data from the CCFR) conducted by May-Wilson et al. 

among 7 European cohorts (ORLA=0.95, 95% CI= 0.93–0.98).[34] Furthermore, results for 

AA from May-Wilson et al. (ORAA=1.05, 95% CI=1.02–1.07) are nearly identical to those 

presented in our study. Results for EPA, DPA, and DHA were in the same direction (except 

for EPA); however, the effect sizes reported in May-Wilson et al. have larger magnitudes but 

are less precise. We also observed slightly stronger associations among older (i.e., ≥65 

years) compared to younger individuals for many of the PUFAs, which could be an 

indication of the cumulative effects of being genetically-predisposed to higher PUFA levels 

on CRC risk.

The benefits of taking aspirin/NSAID on CRC risk has been studied extensively.[35,36] 

GECCO has also reported risk reductions with aspirin/NSAID use (OR=0.71, 95% CI=0.66–

0.77),[37] and the magnitude of the risk reduction was similar to the associations reported 

among the subgroup of aspirin/NSAID users when considering the interactions with 

circulating PUFAs. Notably, in the Nurses’ Health Study, long-term aspirin use (i.e., >10 

years) and NSAID use reduced CRC risk by 32%, and risk was reduced by over 50% 

(OR=0.47, 95% CI=0.31–0.71) among women taking more than 14 (325-mg) tablets per 

week.[35] The benefits of long-term aspirin use were corroborated in randomized and 

observational studies.[36] The recommendation to the United States Preventive Task Force 

for long-term aspirin use as a preventive strategy for CRC was indicated for 10 years post-

initiation.[38] In our study, aspirin/NSAID use was defined as regular use over an 

individual’s lifetime and this definition varied according to study. Thus, it is possible that 

heterogeneity in assessment of aspirin intake may affect the association between long-term 

aspirin use and CRC risk in our study; however, the associations observed are consistent 

with previous investigations.
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Hall and colleagues examined the interaction between PUFA levels and aspirin use on CRC 

risk among men in the Physicians’ Health Study.[14] They reported reduced CRC risk with 

higher intake of long-chain omega-3 PUFAs (i.e., Quartile 4 vs. Quartile 1, ORQ4vs.Q1=0.34, 

95% CI=0.15–0.82) among non-aspirin users. Similar to our results, the potential added 

benefit of increasing long-chain omega-3 intake among aspirin users was minimal when 

compared to non-aspirin users with low omega-3 intake.[14] Among the Nurses’ Health 

Study and Health Professionals Follow-up Study participants, the potential modification of 

marine omega-3 dietary intake by aspirin/NSAID use on CRC risk was evaluated but no 

significant heterogeneity was reported.[13] Another study examined pre-diagnostic levels of 

the urinary PGE-2 metabolite (PGE-M) on colorectal adenoma risk stratified by aspirin use 

(>2 tablets per week) in the Nurses’ Health Study.[39] Aspirin use was only beneficial 

among individuals with high levels of PGE-M. Arachidonic acid uptake by COX-2 is 

reduced in the presence of NSAIDs in colon cancer cells.[40] Similarly, reduced binding of 

DHA to COX-2 was observed when combined with a selective COX-2 inhibitor celecoxib.

[41] Inhibition of PUFA metabolism via the COX-2 enzyme in the presence of aspirin may 

help to explain the potential antagonism observed for the interaction between PUFAs and 

aspirin on CRC risk.

Our study has several strengths. First, we utilized data from two large consortia of 

approximately 25,000 and 30,000 subjects (for GECCO and CORECT, respectively) to 

estimate potentially unbiased association between PUFAs and CRC risk using the Mendelian 

randomization approach. The availability of individual-level GECCO data and several 

covariates was helpful for assessing the association between the PUFA-specific wGSs with 

CRC risk factors. This is one way to assess the validity of the genetic instrument in a 

Mendelian randomization analysis (i.e., the instrument should not be associated with 

confounders of the exposure-disease association).[15] We adjusted for additional covariates 

that were found to be associated with the six different PUFA wGS; however, the results from 

the adjusted models were identical to the minimally-adjusted models. We also conducted 

stratified analyses to estimate the association between genetically-predicted PUFAs among 

different subgroups. Several Mendelian randomization sensitivity analyses were conducted 

to assess the robustness of the results in the presence of pleiotropy, but these analyses are 

likely underpowered due to the limited number of independent SNPs included. Finally, we 

are one of the few studies to assess the additive interaction between genetically-predicted 

circulating PUFAs along with aspirin/NSAID use on CRC risk.

While our study has many strengths, there are several opportunities for improvement in 

future investigations. There was indication of directional pleiotropy in the Mendelian 

randomization sensitivity analyses (for DPA), and for some of the PUFAs, we were unable to 

estimate an effect for sensitivity analyses using summary statistics (i.e., Egger regression, 

weighted-median approach, leave-one-out analysis) due to the limited number of SNPs used 

in the genetic instrument. Several of the wGSs were highly correlated with one another in 

the individual-level analysis, which would affect the estimation of independent PUFA 

effects. However, incorporating additional SNPs as part of the genetic instrument in the 

future will increase the percent variation explained and subsequently increase the strength of 

the genetic instrument. Stronger genetic instruments will ultimately help to further elucidate 

independent PUFA effects and provide a better opportunity to assess influence of pleiotropy 
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on the Mendelian randomization estimates. Furthermore, using new weights from future 

GWAS that examine associations with longer-term PUFA biomarkers (e.g., adipose tissue 

and red blood cell) will help to clarify the potential causal role of PUFAs on CRC risk. The 

power to detect an OR at least 1.05 at an α=0.05 in our study ranged from approximately 

5% (for DHA) to 62% (for AA), and is dependent upon the strength of the instrument.[42] 

Further, increasing the percent variation explained may allow for the detection of even 

smaller effects due to increased power. The associations derived from a Mendelian 

randomization analysis could help to identify the presence of a potential causal association 

between exposure and outcome. Many comparisons were made in this analysis and thus the 

potential for false-positive associations exists. However, most associations in our analysis 

remain statistically significant even after Bonferroni correction for multiple comparisons. 

Furthermore, our genetic instruments utilized SNPs previously reported to be associated 

with circulating PUFAs that have previously shown to have influence on carcinogenesis in 

experimental studies, and thus the analyses undertaken in this paper are based on an a priori 

biologic hypothesis. Finally, it would be worthwhile to conduct similar analyses in different 

populations to better understand the influence of PUFAs on CRC risk in populations where 

the ratio of omega-6 to omega-3 PUFAs may differ (e.g., Asians), and among populations 

where CRC risk is high (e.g., African Americans). Future investigations should consider 

identifying additional genetic variants associated with PUFA levels among different races 

which would facilitate conducting Mendelian randomization analyses in these populations.

Due to substantial amount of missing data for continuous measures of aspirin/NSAID use, 

we were unable examine the interaction between long-term aspirin/NSAID use and 

circulating PUFAs on CRC risk. However, since selective COX-2 inhibitors may increase 

risk of cardiovascular disease with long-term use,[43] examining the potential added benefit 

of omega-3 PUFA intake with long-term use of selective COX-2 inhibitors may be futile 

realistically (unless among high-risk population subgroups). Finally, it is possible that the 

results from the additive interaction are subject to residual confounding given aspirin/

NSAID use was self-reported.[44] Thus, future investigations with better long-term 

measures of aspirin/NSAID use should further examine the interaction with PUFAs, and also 

consider other potential biologic pathways.

In conclusion, we observed a 6% increased risk for CRC among those with higher 

genetically-predicted circulating levels of omega-6 PUFA AA, and similarly modest 

increased risks for longer-chain omega-3 PUFAs EPA and DPA. Risk reductions were 

observed among those with higher genetically-predicted circulating levels of short-chain 

omega-6 PUFA LA, and short-chain omega-3 PUFA ALA. Our study results indicate that 

among aspirin/NSAID users, the potential benefit of increasing long-chain omega-3 PUFAs 

may be minimal in terms of further reducing CRC risk. Results from the Mendelian 

randomization analysis using summary statistics corroborate our main effect findings. 

However, due to the limited number of variants used in some genetic instruments, an 

assessment of the influence of pleiotropy on our estimates could not be evaluated for all 

PUFAs. Given the small effects observed and the limited number of SNPs used in our 

genetic instruments, the clinical significance of our results is limited, and our results may 

only indicate a shared CRC inflammatory pathway for PUFAs and aspirin/NSAID use. 
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Future Mendelian randomization studies should continue to improve the genetic instruments 

used which will help to further elucidate the effects of specific PUFAs on CRC risk.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Authors 

Nikhil K. Khankari1, Barbara L. Banbury2, Maria C. Borges3,4, Philip C. Haycock3,4, 
Demetrius Albanes5, Volker Arndt6, Sonja I. Berndt5, Stéphane Bézieau7, Hermann 
Brenner6,8,9, Peter T. Campbell10, Graham Casey11, Andrew T. Chan12,13,14,15,16,17, 
Jenny Chang-Claude18,19, David V. Conti20, Michelle Cotterchio21, Dallas R. 
English22,23, Jane C. Figueiredo20,24, Graham G. Giles22,23, Edward L. 
Giovannucci13,16,25, Marc J. Gunter26, Jochen Hampe27, Michael Hoffmeister6, 
John L. Hopper22, Mark A. Jenkins22, Amit D. Joshi14,16, Loic Le Marchand28, 
Mathieu Lemire29, Christopher I. Li2, Li Li30, Annika Lindblom31,32, Vicente 
Martín33, Victor Moreno34,35,36, Polly A. Newcomb2,37, Kenneth Offit38,39, Paul D. P. 
Pharoah40, Gad Rennert41,42,43, Lori C. Sakoda2,44, Clemens Schafmayer45, 
Stephanie L. Schmit20,46, Martha L. Slattery47, Mingyang Song12,14,16,25, Stephen 
N. Thibodeau48, Cornelia M. Ulrich49, Stephanie J. Weinstein5, Emily White2,37, 
Aung Ko Win22, Alicja Wolk50, Michael O. Woods51, Anna H. Wu20, Qiuyin Cai1, 
Joshua C. Denny52,53, Todd L. Edwards1,52, Harvey J. Murff1, Stephen B. Gruber54, 
Ulrike Peters2,37, Wei Zheng1

Affiliations
1.Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer 
Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

2.Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 
Seattle, Washington, USA.

3.Medical Research Council (MRC) Integrative Epidemiology Unit, University of 
Bristol, Bristol, UK.

4.Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, 
UK.

5.Division of Cancer Epidemiology and Genetics, National Cancer Institute, National 
Institutes of Health, Bethesda, Maryland, USA.

6.Division of Clinical Epidemiology and Aging Research, German Cancer Research 
Center (DKFZ), Heidelberg, Germany.

7.Service de Génétique Médicale, Centre Hospitalier Universitaire (CHU) Nantes, 
Nantes, France.

8.Division of Preventive Oncology, German Cancer Research Center (DKFZ) and 
National Center for Tumor Diseases (NCT), Heidelberg, Germany.

Khankari et al. Page 11

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



9.German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 
Heidelberg, Germany.

10.Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, 
Georgia, USA.

11.Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, 
USA.

12.Division of Gastroenterology, Massachusetts General Hospital and Harvard 
Medical School, Boston, Massachusetts, USA.

13.Channing Division of Network Medicine, Brigham and Women’s Hospital and 
Harvard Medical School, Boston, Massachusetts, USA.

14.Clinical and Translational Epidemiology Unit, Massachusetts General Hospital 
and Harvard Medical School, Boston, Massachusetts, USA.

15.Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.

16.Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard 
University, Boston, Massachusetts, USA.

17.Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of 
Public Health, Harvard University, Boston, Massachusetts, USA.

18.University Medical Centre Hamburg-Eppendorf, University Cancer Centre 
Hamburg (UCCH), Hamburg, Germany.

19.Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 
Heidelberg, Germany.

20.Department of Preventive Medicine, Keck School of Medicine, University of 
Southern California, Los Angeles, California, USA.

21.Prevention and Cancer Control, Cancer Care Ontario, Toronto, Ontario.

22.Centre for Epidemiology and Biostatistics, Melbourne School of Population and 
Global Health, The University of Melbourne, Melbourne, Victoria, Australia.

23.Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, 
Melbourne, Victoria, Australia.

24.Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, 
Cedars-Sinai Medical Center, Los Angeles, California, USA.

25.Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard 
University, Boston, Massachusetts, USA.

26.Nutrition and Metabolism Section, International Agency for Research on Cancer, 
World Health Organization, Lyon, France.

27.Department of Medicine, University Hospital Dresden, Technische Universität 
Dresden (TU Dresden), Dresden, Germany.

28.University of Hawaii Cancer Center, Honolulu, Hawaii, USA.

Khankari et al. Page 12

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



29.PanCuRx Translational Research Initiative, Ontario, Institute for Cancer Research, 
Toronto, Ontario, Canada.

30.Department of Family Medicine, University of Virginia, Charlottesville, Virginia, 
USA.

31.Department of Clinical Genetics, Karolinska University Hospital, Stockholm, 
Sweden.

32.Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, 
Sweden.

33.Área de Medicina Preventiva y Salud Publica, Universidad de León, Spain.

34.Cancer Prevention and Control Program, Catalan Institute of Oncology-IDIBELL, 
L’Hospitalet de Llobregat, Barcelona, Spain.

35.CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.

36.Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, 
Barcelona, Spain.

37.Department of Epidemiology, University of Washington School of Public Health 
and Community Medicine, Seattle, Washington, USA.

38.Clinical Genetics Service, Department of Medicine, Memorial Sloan-Kettering 
Cancer Center, New York, New York, USA.

39.Department of Medicine, Weill Cornell Medical College, New York, New York, 
USA.

40.Department of Public Health and Primary Care, University of Cambridge, 
Cambridge, UK.

41.Department of Community Medicine and Epidemiology, Lady Davis Carmel 
Medical Center, Haifa, Israel.

42.Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of 
Technology, Haifa, Israel.

43.Clalit National Cancer Control Center, Haifa, Israel.

44.Division of Research, Kaiser Permanente Northern California, Oakland, 
California, USA.

45.Department of General and Thoracic Surgery, University Hospital Schleswig-
Holstein, Campus Kiel, Kiel, Germany.

46.Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research 
Institute, Tampa, Florida, USA.

47.Division of Epidemiology, Department of Internal Medicine, University of Utah, 
Salt Lake City, Utah, USA.

48.Division of Laboratory Genetics, Department of Laboratory Medicine and 
Pathology, Mayo Clinic, Rochester, Minnesota, USA.

Khankari et al. Page 13

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



49.Huntsman Cancer Institute and Department of Population Health Sciences, 
University of Utah, Salt Lake City, Utah, USA.

50.Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.

51.Memorial University of Newfoundland, Discipline of Genetics, St. John’s, Canada.

52.Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, 
Tennessee, USA.

53.Department of Biomedical Informatics, Vanderbilt University Medical Center, 
Nashville, Tennessee, USA.

54.Department of Medical Oncology, City of Hope National Medical Center, Duarte, 
California, USA.

ACKNOWLEDGEMENTS

The following acknowledgements are for GECCO:

ASTERISK: We are very grateful to Dr. Bruno Buecher without whom this project would not have existed. We also 

thank all those who agreed to participate in this study, including the patients and the healthy control persons, as well 

as all the physicians, technicians and students.

DACHS: We thank all participants and cooperating clinicians, and Ute Handte-Daub, Utz Benscheid, Muhabbet 

Celik and Ursula Eilber for excellent technical assistance.

Harvard cohorts: The study protocol was approved by the institutional review boards of the Brigham and 

Women’s Hospital and Harvard T.H. Chan School of Public Health, and those of participating registries as required. 

We would like to thank the participants and staff of the HPFS, NHS and PHS for their valuable contributions as 

well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, 

KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY. The 

authors assume full responsibility for analyses and interpretation of these data.

PLCO: The authors thank the PLCO Cancer Screening Trial screening center investigators and the staff from 

Information Management Services Inc and Westat Inc. Most importantly, we thank the study participants for their 

contributions that made this study possible.

PMH: The authors would like to thank the study participants and staff of the Hormones and Colon Cancer study.

WHI: The authors thank the WHI investigators and staff for their dedication, and the study participants for making 

the program possible. A full listing of WHI investigators can be found at: http://www.whi.org/researchers/

Documents%20%20Write%20a%20Paper/WHI%20Investigator%20Short%20List.pdf

The following acknowledgements are for CORECT:

ColoCare: Biospecimens were provided by the ColoCare Consortium, funded by the Fred Hutchinson Cancer 

Research Center. Other investigators may have received specimens from the same subjects.

CPS-II: The authors thank the CPS-II participants and Study Management Group for their invaluable contributions 

to this research. The authors would also like to acknowledge the contribution to this study from central cancer 

registries supported through the Centers for Disease Control and Prevention National Program of Cancer Registries, 

and cancer registries supported by the National Cancer Institute Surveillance Epidemiology and End Results 

program.

MCCS: This study was made possible by the contribution of many people, including the original investigators and 

the diligent team who recruited participants and continue to work on follow-up. We would also like to express our 

gratitude to the many thousands of Melbourne residents who took part in the study and provided blood samples.

SEARCH: We acknowledge the contributions of Mitul Shah, Val Rhenius, Sue Irvine, Craig Luccarini, Patricia 

Harrington, Don Conroy, Rebecca Mayes, and Caroline Baynes.

Khankari et al. Page 14

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.whi.org/researchers/Documents%20%20Write%20a%20Paper/WHI%20Investigator%20Short%20List.pdf
http://www.whi.org/researchers/Documents%20%20Write%20a%20Paper/WHI%20Investigator%20Short%20List.pdf


The Swedish low-risk colorectal cancer study: We thank Berith Wejderot and the Swedish low-risk colorectal 

cancer study group.

FUNDING

N.K. Khankari is supported by National Institutes of Health NCI K99 CA215360. M.C. Borges is supported by a 

Skills Development Fellowship from the UK Medical Research Council (Grant number MR/P014054/1). P.C. 

Haycock is supported by CRUK Population Research Postdoctoral Fellowship C52724/A20138. M. Song is 

supported by the American Cancer Society (Grant number MRSG-17-220-01 - NEC), and the US NIH grants (K99 

CA215314, R00 CA215314).

The following funding information is for GECCO:

ASTERISK: a Hospital Clinical Research Program (PHRC-BRD09/C) from the University Hospital Center of 

Nantes (CHU de Nantes) and supported by the Regional Council of Pays de la Loire, the Groupement des 

Entreprises Françaises dans la Lutte contre le Cancer (GEFLUC), the Association Anne de Bretagne Génétique and 

the Ligue Régionale Contre le Cancer (LRCC).

COLO2&3: National Institutes of Health (R01 CA60987).

The Colon Cancer Family Registry (CFR) Illumina GWAS was supported by funding from the National Cancer 

Institute, National Institutes of Health (grant numbers U01 CA122839, R01 CA143247 to G Casey). The Colon 

CFR/CORECT Affymetrix Axiom GWAS and OncoArray GWAS were supported by funding from National Cancer 

Institute, National Institutes of Health (grant number U19 CA148107 to S Gruber). The Colon CFR participant 

recruitment and collection of data and biospecimens used in this study were supported by the National Cancer 

Institute, National Institutes of Health (grant number U01 CA167551) and through cooperative agreements with the 

following Colon CFR centers: Australasian Colorectal Cancer Family Registry (NCI/NIH grant numbers U01 

CA074778 and U01/U24 CA097735), USC Consortium Colorectal Cancer Family Registry (NCI/NIH grant 

numbers U01/U24 CA074799), Mayo Clinic Cooperative Family Registry for Colon Cancer Studies (NCI/NIH 

grant number U01/U24 CA074800), Ontario Familial Colorectal Cancer Registry (NCI/NIH grant number U01/U24 

CA074783), Seattle Colorectal Cancer Family Registry (NCI/NIH grant number U01/U24 CA074794), and 

University of Hawaii Colorectal Cancer Family Registry (NCI/NIH grant number U01/U24 CA074806), Additional 

support for case ascertainment was provided from the Surveillance, Epidemiology and End Results (SEER) 

Program of the National Cancer Institute to Fred Hutchinson Cancer Research Center (Control Nos. N01-CN-67009 

and N01-PC-35142, and Contract No. HHSN2612013000121), the Hawai’i Department of Health (Control Nos. 

N01-PC-67001 and N01-PC-35137, and Contract No. HHSN26120100037C, and the California Department of 

Public Health (contracts HHSN261201000035C awarded to the University of Southern California, and the 

following state cancer registries: AZ, CO, MN, NC, NH, and by the Victoria Cancer Registry and Ontario Cancer 

Registry.

DACHS: This work was supported by the German Research Council (BR 1704/6-1, BR 1704/6-3, BR 1704/6-4, 

CH 117/1-1, HO 5117/2-1, HE 5998/2-1, KL 2354/3-1, RO 2270/8-1 and BR 1704/17-1), the Interdisciplinary 

Research Program of the National Center for Tumor Diseases (NCT), Germany, and the German Federal Ministry 

of Education and Research (01KH0404, 01ER0814, 01ER0815, 01ER1505A and 01ER1505B).

DALS: National Institutes of Health (R01 CA48998 to M. L. Slattery).

Harvard cohorts (HPFS, NHS, PHS): HPFS is supported by the National Institutes of Health (P01 CA055075, 

UM1 CA167552, U01 CA167552, R01 CA137178, R01 CA151993, R35 CA197735, K07 CA190673, and P50 

CA127003), NHS by the National Institutes of Health (R01 CA137178, P01 CA087969, UM1 CA186107, R01 

CA151993, R35 CA197735, K07 CA190673, and P50 CA127003) and PHS by the National Institutes of Health 

(R01 CA042182).

Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO): National Cancer Institute, National 

Institutes of Health, U.S. Department of Health and Human Services (U01 CA164930, U01 CA137088, R01 

CA059045.This research was funded in part through the NIH/NCI Cancer Center Support Grant P30 CA015704.

MEC: National Institutes of Health (R37 CA54281, P01 CA033619, R01 CA063464, U01 CA164973). Also part 

of CORECT funding acknowledgements.

OFCCR: National Institutes of Health, through funding allocated to the Ontario Registry for Studies of Familial 

Colorectal Cancer (U01 CA074783); see CCFR section above. Additional funding toward genetic analyses of 

OFCCR includes the Ontario Research Fund, the Canadian Institutes of Health Research, and the Ontario Institute 

for Cancer Research, through generous support from the Ontario Ministry of Research and Innovation.

Khankari et al. Page 15

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PLCO: Intramural Research Program of the Division of Cancer Epidemiology and Genetics and supported by 

contracts from the Division of Cancer Prevention, National Cancer Institute, NIH, DHHS. Funding was provided by 

National Institutes of Health (NIH), Genes, Environment and Health Initiative (GEI) Z01 CP 010200, NIH U01 

HG004446, and NIH GEI U01 HG 004438.

PMH: National Institutes of Health (R01 CA076366 to P.A. Newcomb).

VITAL: National Institutes of Health (K05 CA154337).

WHI: The WHI program is funded by the National Heart, Lung, and Blood Institute, National Institutes of Health, 

U.S. Department of Health and Human Services through contracts HHSN268201100046C, HHSN268201100001C, 

HHSN268201100002C, HHSN268201100003C, HHSN268201100004C, and HHSN271201100004C.

The following funding information is for studies included in CORECT:

ATBC: The ATBC Study was supported by the US Public Health Service contracts (N01-CN-45165, N01-

RC-45035, N01-RC-37004, and HHSN261201000006C) from the National Cancer Institute.

ColoCare: This work was supported by the National Institutes of Health (grant numbers R01 CA189184 (Li/

Ulrich), U01 CA206110 (Ulrich/Li/Siegel/Figueireido/Colditz, 2P30CA015704-40 (Gilliland), R01 CA207371 

(Ulrich/Li)), the Matthias Lackas-Foundation, the German Consortium for Translational Cancer Research, and the 

EU TRANSCAN initiative.

Colorectal Cancer Transdisciplinary (CORECT) Study: The CORECT Study was supported by the National 

Cancer Institute, National Institutes of Health (NCI/NIH), U.S. Department of Health and Human Services (grant 

numbers U19 CA148107, R01 CA81488, P30 CA014089, R01 CA197350; P01 CA196569; R01 CA201407) and 

National Institutes of Environmental Health Sciences, National Institutes of Health (grant number T32 ES013678).

CPS-II: The American Cancer Society funds the creation, maintenance, and updating of the Cancer Prevention 

Study-II (CPS-II) cohort. This study was conducted with Institutional Review Board approval.

ESTHER/VERDI: This work was supported by grants from the Baden-Württemberg Ministry of Science, 

Research and Arts and the German Cancer Aid.

Kentucky: This work was supported by the following grant support: 1) Clinical Investigator Award from Damon 

Runyon Cancer Research Foundation (CI-8) and 2) NCI R01CA136726; and, we would like to acknowledge the 

staff at the Kentucky Cancer Registry

MCCS cohort recruitment was funded by VicHealth and Cancer Council Victoria. The MCCS was further 

supported by Australian NHMRC grants 509348, 209057, 251553 and 504711 and by infrastructure provided by 

Cancer Council Victoria. Cases and their vital status were ascertained through the Victorian Cancer Registry (VCR) 

and the Australian Institute of Health and Welfare (AIHW), including the National Death Index and the Australian 

Cancer Database.

MECC: This work was supported by the National Institutes of Health, U.S. Department of Health and Human 

Services (R01 CA81488 to SBG and GR).

MSKCC: The work at Sloan Kettering in New York was supported by the Robert and Kate Niehaus Center for 

Inherited Cancer Genomics and the Romeo Milio Foundation. Moffitt: This work was supported by funding from 

the National Institutes of Health (grant numbers R01 CA189184, P30 CA076292), Florida Department of Health 

Bankhead-Coley Grant 09BN-13, and the University of South Florida Oehler Foundation. Moffitt contributions 

were supported in part by the Total Cancer Care Initiative, Collaborative Data Services Core, and Tissue Core at the 

H. Lee Moffitt Cancer Center & Research Institute, a National Cancer Institute-designated Comprehensive Cancer 

Center (grant number P30 CA076292).

NFCCR: This work was supported by an Interdisciplinary Health Research Team award from the Canadian 

Institutes of Health Research (CRT 43821); the National Institutes of Health, U.S. Department of Health and 

Human Serivces (U01 CA74783); and National Cancer Institute of Canada grants (18223 and 18226). The authors 

wish to acknowledge the contribution of Alexandre Belisle and the genotyping team of the McGill University and 

Génome Québec Innovation Centre, Montréal, Canada, for genotyping the Sequenom panel in the NFCCR samples. 

Funding was provided to Michael O. Woods by the Canadian Cancer Society Research Institute.

SEARCH: The University of Cambridge has received salary support in respect of PDPP from the NHS in the East 

of England through the Clinical Academic Reserve. Cancer Research UK (C490/A16561); the UK National 

Institute for Health Research Biomedical Research Centres at the University of Cambridge.

Khankari et al. Page 16

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SPAIN: The Spanish study was supported by Instituto de Salud Carlos III, co-funded by FEDER funds -a way to 

build Europe- (grants PI14-613 and PI09-1286), Agency for Management of University and Research Grants 

(AGAUR) of the Catalan Government (grant 2017SGR723), and Junta de Castilla y León (grant LE22A10-2). 

Sample collection of this work was supported by the Xarxa de Bancs de Tumors de Catalunya sponsored by Pla 

Director d’Oncología de Catalunya (XBTC), Plataforma Biobancos PT13/0010/0013 and ICOBIOBANC, 

sponsored by the Catalan Institute of Oncology.

The Swedish Low-risk Colorectal Cancer Study: The study was supported by grants from the Swedish research 

council; K2015-55X-22674-01-4, K2008-55X-20157-03-3, K2006-72X-20157-01-2 and the Stockholm County 

Council (ALF project).

Swedish Mammography Cohort and Cohort of Swedish Men: This work is supported by the Swedish Research 

Council /Infrastructure grant, the Swedish Cancer Foundation, and the Karolinska Institutés Distinguished Professor 

Award to Alicja Wolk.

REFERENCES

1. Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin 2015;65:87–

108. doi:10.3322/caac.21262 [PubMed: 25651787] 

2. Lippi G, Mattiuzzi C, Cervellin G. Meat consumption and cancer risk: a critical review of published 

meta-analyses. Crit Rev Oncol Hematol 2016;97:1–14. doi:10.1016/j.critrevonc.2015.11.008 

[PubMed: 26633248] 

3. Theodoratou E, Timofeeva M, Li X, et al. Nature, Nurture, and Cancer Risks: Genetic and 

Nutritional Contributions to Cancer. Annu Rev Nutr 2017;37:293–320. doi:10.1146/annurev-

nutr-071715-051004 [PubMed: 28826375] 

4. Wang D, DuBois RN. An inflammatory mediator, prostaglandin E2, in colorectal cancer. Cancer J 

Sudbury Mass 2013;19:502–10. doi:10.1097/PPO.0000000000000003

5. Kawamori T. Enhancement of colon carcinogenesis by prostaglandin E2 administration. 

Carcinogenesis 2003;24:985–90. doi:10.1093/carcin/bgg033 [PubMed: 12771044] 

6. Wang D, Wang H, Shi Q, et al. Prostaglandin E(2) promotes colorectal adenoma growth via 

transactivation of the nuclear peroxisome proliferator-activated receptor delta. Cancer Cell 

2004;6:285–95. doi:10.1016/j.ccr.2004.08.011 [PubMed: 15380519] 

7. Xia D, Wang D, Kim S-H, et al. Prostaglandin E2 promotes intestinal tumor growth via DNA 

methylation. Nat Med 2012;18:224–6. doi:10.1038/nm.2608 [PubMed: 22270723] 

8. Eberhart CE, Coffey RJ, Radhika A, et al. Up-regulation of cyclooxygenase 2 gene expression in 

human colorectal adenomas and adenocarcinomas. Gastroenterology 1994;107:1183–8. [PubMed: 

7926468] 

9. Zhang H, Sun X-F. Overexpression of cyclooxygenase-2 correlates with advanced stages of 

colorectal cancer. Am J Gastroenterol 2002;97:1037–41. doi:10.1111/j.1572-0241.2002.05625.x 

[PubMed: 12003384] 

10. Gerber M. Omega-3 fatty acids and cancers: a systematic update review of epidemiological studies. 

Br J Nutr 2012;107:S228–39. doi:10.1017/S0007114512001614 [PubMed: 22591896] 

11. Shen X-J, Zhou J-D, Dong J-Y, et al. Dietary intake of n-3 fatty acids and colorectal cancer risk: a 

meta-analysis of data from 489 000 individuals. Br J Nutr 2012;108:1550–6. doi:10.1017/

S0007114512003546 [PubMed: 22906228] 

12. Sakai M, Kakutani S, Horikawa C, et al. Arachidonic acid and cancer risk: a systematic review of 

observational studies. BMC Cancer 2012;12:606-2407-12-606.

13. Song M, Chan AT, Fuchs CS, et al. Dietary intake of fish, ω−3 and ω−6 fatty acids and risk of 

colorectal cancer: A prospective study in U.S. men and women: Fish, ω−3 and ω−6 fatty acids and 

risk of CRC. Int J Cancer 2014;135:2413–23. doi:10.1002/ijc.28878 [PubMed: 24706410] 

14. Hall MN, Campos H, Li H, et al. Blood Levels of Long-Chain Polyunsaturated Fatty Acids, 

Aspirin, and the Risk of Colorectal Cancer. Cancer Epidemiol Biomarkers Prev 2007;16:314–21. 

doi:10.1158/1055-9965.EPI-06-0346 [PubMed: 17301265] 

15. Haycock PC, Burgess S, Wade KH, et al. Best (but oft-forgotten) practices: the design, analysis, 

and interpretation of Mendelian randomization studies. Am J Clin Nutr 2016;103:965–78. 

doi:10.3945/ajcn.115.118216 [PubMed: 26961927] 

Khankari et al. Page 17

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



16. Peters U, Jiao S, Schumacher FR, et al. Identification of Genetic Susceptibility Loci for Colorectal 

Tumors in a Genome-Wide Meta-analysis. Gastroenterology 2013;144:799–807.e24. doi:10.1053/

j.gastro.2012.12.020 [PubMed: 23266556] 

17. Hutter CM, Chang-Claude J, Slattery ML, et al. Characterization of Gene-Environment 

Interactions for Colorectal Cancer Susceptibility Loci. Cancer Res 2012;72:2036–44. 

doi:10.1158/0008-5472.CAN-11-4067 [PubMed: 22367214] 

18. Newcomb PA, Baron J, Cotterchio M, et al. Colon Cancer Family Registry: An International 

Resource for Studies of the Genetic Epidemiology of Colon Cancer. Cancer Epidemiol Biomarkers 

Prev 2007;16:2331–43. doi:10.1158/1055-9965.EPI-07-0648 [PubMed: 17982118] 

19. Zanke BW, Greenwood CM, Rangrej J, et al. Genome-wide association scan identifies a colorectal 

cancer susceptibility locus on chromosome 8q24. Nat Genet 2007;39:989–94. doi:10.1038/ng2089 

[PubMed: 17618283] 

20. Guan W, Steffen BT, Lemaitre RN, et al. Genome-wide association study of plasma N6 

polyunsaturated fatty acids within the cohorts for heart and aging research in genomic 

epidemiology consortium. Circ Cardiovasc Genet 2014;7:321–31. doi:10.1161/

CIRCGENETICS.113.000208 [PubMed: 24823311] 

21. Lemaitre RN, Tanaka T, Tang W, et al. Genetic loci associated with plasma phospholipid n-3 fatty 

acids: a meta-analysis of genome-wide association studies from the CHARGE Consortium. PLoS 

Genet 2011;7:e1002193. doi:10.1371/journal.pgen.1002193 [PubMed: 21829377] 

22. Shim H, Chasman DI, Smith JD, et al. A Multivariate Genome-Wide Association Analysis of 10 

LDL Subfractions, and Their Response to Statin Treatment, in 1868 Caucasians. PLOS ONE 

2015;10:e0120758. doi:10.1371/journal.pone.0120758 [PubMed: 25898129] 

23. Rothman KJ, Greenland S, Lash TL. Modern epidemiology. 3 , [thoroughly rev a updat. 

Philadelphia: : Wolters Kluwer Health/Lippincott Williams & Wilkins 2008 http://www.loc.gov/

catdir/enhancements/fy0828/2007036316-t.html

24. Campbell CD, Ogburn EL, Lunetta KL, et al. Demonstrating stratification in a European American 

population. Nat Genet 2005;37:868–72. doi:10.1038/ng1607 [PubMed: 16041375] 

25. Price AL, Patterson NJ, Plenge RM, et al. Principal components analysis corrects for stratification 

in genome-wide association studies. Nat Genet 2006;38:904–9. doi:10.1038/ng1847 [PubMed: 

16862161] 

26. Hosmer DW, Lemeshow S. Confidence interval estimation of interaction. Epidemiol Camb Mass 

1992;3:452–6.

27. Hemani G, Zheng J, Elsworth B, et al. The MR-Base platform supports systematic causal inference 

across the human phenome. eLife 2018;7. doi:10.7554/eLife.34408

28. Burgess S, Butterworth A, Thompson SG. Mendelian Randomization Analysis With Multiple 

Genetic Variants Using Summarized Data: Mendelian Randomization Using Summarized Data. 

Genet Epidemiol 2013;37:658–65. doi:10.1002/gepi.21758 [PubMed: 24114802] 

29. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect 

estimation and bias detection through Egger regression. Int J Epidemiol 2015;44:512–25. 

doi:10.1093/ije/dyv080 [PubMed: 26050253] 

30. Bowden J, Davey Smith G, Haycock PC, et al. Consistent Estimation in Mendelian Randomization 

with Some Invalid Instruments Using a Weighted Median Estimator. Genet Epidemiol 

2016;40:304–14. doi:10.1002/gepi.21965 [PubMed: 27061298] 

31. Burgess S, Thompson SG. Multivariable Mendelian randomization: the use of pleiotropic genetic 

variants to estimate causal effects. Am J Epidemiol 2015;181:251–60. doi:10.1093/aje/kwu283 

[PubMed: 25632051] 

32. Burgess S, Dudbridge F, Thompson SG. Re: “Multivariable Mendelian randomization: the use of 

pleiotropic genetic variants to estimate causal effects.” Am J Epidemiol 2015;181:290–1. 

doi:10.1093/aje/kwv017 [PubMed: 25660081] 

33. Zock PL, Katan MB. Linoleic acid intake and cancer risk: a review and meta-analysis. Am J Clin 

Nutr 1998;68:142–53. [PubMed: 9665108] 

34. May-Wilson S, Sud A, Law PJ, et al. Pro-inflammatory fatty acid profile and colorectal cancer risk: 

A Mendelian randomisation analysis. Eur J Cancer 2017;84:228–38. doi:10.1016/

j.ejca.2017.07.034 [PubMed: 28829991] 

Khankari et al. Page 18

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.loc.gov/catdir/enhancements/fy0828/2007036316-t.html
http://www.loc.gov/catdir/enhancements/fy0828/2007036316-t.html


35. Chan AT, Giovannucci EL, Meyerhardt JA, et al. Long-term use of aspirin and nonsteroidal anti-

inflammatory drugs and risk of colorectal cancer. JAMA 2005;294:914–23. doi:10.1001/

jama.294.8.914 [PubMed: 16118381] 

36. Flossmann E, Rothwell PM, British Doctors Aspirin Trial and the UK-TIA Aspirin Trial. Effect of 

aspirin on long-term risk of colorectal cancer: consistent evidence from randomised and 

observational studies. Lancet Lond Engl 2007;369:1603–13. doi:10.1016/S0140-6736(07)60747-8

37. Nan H, Hutter CM, Lin Y, et al. Association of Aspirin and NSAID Use With Risk of Colorectal 

Cancer According to Genetic Variants. JAMA 2015;313:1133. doi:10.1001/jama.2015.1815 

[PubMed: 25781442] 

38. Chubak J, Whitlock EP, Williams SB, et al. Aspirin for the Prevention of Cancer Incidence and 

Mortality: Systematic Evidence Reviews for the U.S. Preventive Services Task Force. Ann Intern 

Med 2016;164:814. doi:10.7326/M15-2117 [PubMed: 27064482] 

39. Bezawada N, Song M, Wu K, et al. Urinary PGE-M Levels Are Associated with Risk of Colorectal 

Adenomas and Chemopreventive Response to Anti-Inflammatory Drugs. Cancer Prev Res (Phila 

Pa) 2014;7:758–65. doi:10.1158/1940-6207.CAPR-14-0120

40. Orido T, Fujino H, Kawashima T, et al. Decrease in uptake of arachidonic acid by indomethacin in 

LS174T human colon cancer cells; a novel cyclooxygenase-2-inhibition-independent effect. Arch 

Biochem Biophys 2010;494:78–85. doi:10.1016/j.abb.2009.11.025 [PubMed: 19944063] 

41. Swamy MV, Cooma I, Patlolla JMR, et al. Modulation of cyclooxygenase-2 activities by the 

combined action of celecoxib and decosahexaenoic acid: novel strategies for colon cancer 

prevention and treatment. Mol Cancer Ther 2004;3:215–21. [PubMed: 14985462] 

42. Burgess S. Sample size and power calculations in Mendelian randomization with a single 

instrumental variable and a binary outcome. Int J Epidemiol 2014;43:922–9. doi:10.1093/ije/

dyu005 [PubMed: 24608958] 

43. Gunter BR, Butler KA, Wallace RL, et al. Non-steroidal anti-inflammatory drug-induced 

cardiovascular adverse events: a meta-analysis. J Clin Pharm Ther 2017;42:27–38. doi:10.1111/

jcpt.12484 [PubMed: 28019014] 

44. Knol MJ, VanderWeele TJ. Recommendations for presenting analyses of effect modification and 

interaction. Int J Epidemiol 2012;41:514–20. doi:10.1093/ije/dyr218 [PubMed: 22253321] 

Khankari et al. Page 19

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Khankari et al. Page 20

Table 1.

Single nucleotide polymorphisms (SNPs) identified from published genome-wide association studies (GWAS) 

used to construct genetic instruments for polyunsaturated fatty acids (PUFA)

Polyunsaturated fatty acids (chain length)
Number of SNPs 

used in instrument

% variation 

Explained
a

1 SD Increase in 

wGS
b
 (%)

Independent SNPs 

included in instrument
c

Omega-6

 Linoleic acid (LA; 18:2) 4 8.8 – 23.6 1.18
rs10740118, rs174547, 
rs2727270, rs16966952

 Arachidonic acid (AA; 20:2) 2 33.1 1.11 rs174547, rs16966952

Omega-3

 α-linolenic acid (ALA; 18:3) 1 1.0 0.01 rs174547

 Eicosapentaenoic acid (EPA; 20:5) 2 2.1 0.06 rs3798713, rs174538

 Docosapentaenoic acid (DPA; 22:5) 3 11.6 0.06
rs780094, rs3734398, 
rs174547

 Docosahexaenoic acid (DHA; 22:6) 1 0.7 0.08 rs2236212

a
Percent variation explained per instrument calculated as follows: ∑i

n 2βi
2

MAF 1 − MAF /variance PUFA *100, where n is the 

number of independent SNPs, β is effect estimate from GWAS, MAF is the minor allele frequency, and variance is PUFA-specific.[22]

b
Each PUFA-specific weighted-genetic score (wGS) represents a genetically-predicted level of PUFAs, which represent an increase in total percent 

of plasma fatty acids. Weights used to create the wGS were obtained from previous genome-wide association studies (GWAS).[20,21]

c
SNPs used in each instrument are independent with linkage disequilibrium (LD; as measured using the correlation coefficient, r2) less than 0.1.
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Table 3.

Additive interaction between genetically-predicted polyunsaturated fatty acid (PUFA) intake and regular 

aspirin/NSAID use in the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO)

Polyunsaturated fatty acid 

levels
a

Aspirin/NSAID 
use

Cases / Controls OR
b 95% CI p RERI

c
95% CI

d

Linoleic acid (LA)

 Low No 3,590 / 3,722 1.00

 High No 3,329 / 3,950 0.89 0.84–0.95 7.8×10−4

 Low Yes 1,545 / 2,505 0.71 0.65–0.77 3.3×10−17

 High Yes 1,513 / 2,559 0.68 0.63–0.74 2.0×10−20 0.083
−0.004 – 

0.170

Arachidonic acid (AA)

 Low No 3,321 / 4,002 1.00

 High No 3,598 / 3,670 1.15 1.07–1.23 4.4×10−5

 Low Yes 1,505 / 2,619 0.76 0.70–0.82 8.4×10−12

 High Yes 1,553 / 2,442 0.82 0.76–0.89 1.9×10−6 −0.082
−0.185 – 

0.021

α-linolenic acid (ALA)

 Low No 3,603 / 3,667 1.00

 High No 3,316 / 4,005 0.87 0.81–0.93 4.1×10−5

 Low Yes 1,566 / 2,437 0.72 0.67–0.78 2.4×10−15

 High Yes 1,492 / 2,624 0.65 0.60–0.71 3.2×10−25 0.059
−0.028 – 

0.146

Eicosapentaenoic acid (EPA)

 Low No 4,046 / 4,476 1.00

 High No 2,873 / 3,196 1.12 1.05–1.20 7.6×10−4

 Low Yes 1,807 / 3,111 0.76 0.70–0.82 1.9×10−11

 High Yes 1,251 / 1,950 0.80 0.74–0.87 4.4×10−8 −0.081
−0.182 – 

0.021

Docosapentaenoic acid (DPA)

 Low No 3,848 / 4,105 1.00

 High No 3,071 / 3,567 1.07 1.00–1.15 3.9×10−2

 Low Yes 1,665 / 2,706 0.76 0.70–0.82 8.2×10−12

 High Yes 1,393 / 2,355 0.77 0.71–0.83 8.1×10−11 −0.063
−0.161 – 

0.035

Docosahexaenoic acid (DHA)

 Low No 4,052 / 4,627 1.00

 High No 2,867 / 3,045 1.05 0.98–1.13 0.13

 Low Yes 1,806 / 3,140 0.72 0.67–0.78 5.1×10−18

 High Yes 1,252 / 1,921 0.80 0.73–0.87 2.5×10−7 0.024
−0.075 – 

0.124

a
Genetically-predicted polyunsaturated fatty acid intake dichotomized at the median (i.e., wGS < median = “Low” and wGS ≥ median = “High”).

b
All models adjusted for age, sex, study, and top principal components for European ancestry.
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c
Additive interaction assessed using the Relative Excess Risk due to Interaction (RERI) = OR11 – OR10 – OR01 + 1 (e.g., Linoleic acid RERI = 

0.68 – 0.71 – 0.89 + 1 = 0.08).

d
95% CI for RERI estimated using method of Hosmer & Lemeshow.[26]
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