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RESEARCH ARTICLE

Mendelian Randomization Study Shows
No Causal Relationship Between
Circulating Urate Levels and

Parkinson’s Disease
Demis A. Kia, BSc,1* Alastair J. Noyce, PhD,1,2* Jon White, PhD,3 Doug Speed, PhD,3

Aude Nicolas, PhD,4 IPDGC collaborators, Stephen Burgess, PhD,5

Debbie A. Lawlor, PhD,6,7 George Davey Smith, MD,6,7 Andrew Singleton, PhD,4

Mike A. Nalls, PhD,4,8 Reecha Sofat, MRCP,9 and Nicholas W. Wood, PhD1

Objective: Observational studies have shown that increased plasma urate is associated with lower risk of Parkinson’s
disease (PD), but these studies were not designed to test causality. If a causal relationship exists, then modulating
plasma urate levels could be a potential preventive avenue for PD. We used a large two-sample Mendelian randomiza-
tion (MR) design to assess for a causal relationship between plasma urate and PD risk.
Methods: We used a genetic instrument consisting of 31 independent loci for plasma urate on a case-control genome-
wide association study data set, which included 13,708 PD cases and 95,282 controls. Individual effect estimates for
each SNP were combined using the inverse-variance weighted (IVW) method. Two additional methods, MR-Egger and
a penalized weighted median (PWM)-based approach, were used to assess potential bias attributed to pleiotropy or
invalid instruments.
Results: We found no evidence for a causal relationship between urate and PD, with an effect estimate from the IVW
method of odds ratio (OR) 1.03 (95% confidence interval [CI], 0.88–1.20) per 1-standard-deviation increase in plasma
urate levels. MR Egger and PWM analyses yielded similar estimates (OR, 0.99 [95% CI, 0.83–1.17] and 0.99 [95% CI,
0.86−1.14], respectively).
Interpretation: We did not find evidence for a linear causal protective effect by urate on PD risk. The associations
observed in previous observational studies may be, in part, attributed to confounding or reverse causality. In the con-
text of the present findings, strategies to elevate circulating urate levels may not reduce overall PD risk.
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Parkinson’s disease (PD) is the second-most prevalent
neurodegenerative disorder,1 affecting 1.2 in 100 indi-

viduals aged >65 years in the United States.2 Observational
studies indicate that several modifiable risk factors may be

associated with PD, and, if causal, these could offer novel
therapeutic targets.3,4 However, residual confounding,
reverse causality, and regression dilution bias can limit
causal inferences drawn from observational studies.5
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Urate is a metabolite of human purine metabolism
produced by action of the enzyme, xanthine oxidoreduc-
tase, on hypoxanthine and xanthine. High plasma concen-
trations of circulating urate are associated with gout, the
deposition of monosodium urate crystals in joints, soft tis-
sues, and renal parenchyma. The causal role of urate in
gout has been previously demonstrated using Mendelian
randomization (MR).6,7

It has been suggested that high circulating urate con-
centration may protect against PD. The putative mecha-
nism is thought to be associated with the antioxidative
properties of urate, which may have a neuroprotective
effect by scavenging reactive oxygen and nitrogen species
and acting as an iron chelator, rescuing cells from oxida-
tive stress.8–11 Observational studies and meta-analyses
have tended to show a negative association between urate
and PD incidence, with some suggesting that this effect is
stronger in men compared to women, though these stud-
ies were mostly small in size and suffered from high
heterogeneity.12–14 No randomized controlled trial data
currently exist to confirm a causal relationship between
urate and PD. An ongoing clinical trial investigating ino-
sine, a urate precursor, as disease-modifying therapy for
PD, is due to report its findings in 2020.15,16 MR has
been explored as a means to investigate the relationship
between plasma urate and PD incidence, progression, and
age at onset, with some evidence to support a protective
role.17–20 Overall, the size of these studies has also tended
to be small and they had limitations inherent to observa-
tional study designs, which are minimized in a formal
instrumental variable analysis. To fully understand the
causal relationship between urate and PD, further study is
warranted.

Here, we used MR to determine whether there is
evidence for a causal relationship between plasma urate
concentration and risk of PD. Where genetic variants
are robustly associated with potential risk factors, an
MR approach can be used to provide an unbiased and
unconfounded effect estimate, which can provide evi-
dence of causality. This is because genotype is not modi-
fiable by disease, thus decreasing the likelihood of bias
by reverse causality, and the random allocation of alleles
at gametogenesis reduces the likelihood of confounding
by socioeconomic and lifestyle characteristics that tend
to bias conventional multivariable regression analyses.21

Here, we use two-sample MR to test the effect of plasma
urate on PD, using a multilocus instrument on a
genome-wide association study (GWAS) sample of up to
13,708 PD cases and 95,282 controls.22,23 To minimize
the possibility that results were obscured by pleiotropy
in our instrument and ensure that the results are not
biased because of violations of the MR assumptions, we

performed two additional MR analyses beyond the tradi-
tional inverse variance weighted (IVW) method: MR
Egger and a penalized weighted median (PWM)-based
approach.24,25

Subjects/Materials and Methods
We used publicly available genetic summary association
data with appropriate institutional review board (IRB) and
ethical review. Separate IRB/ethical review was not
required for this study.

Genetic Instrument Development
We used an established genetic instrument for urate, consisting
of 31 single-nucleotide polymorphisms (SNPs) that have been
associated with plasma urate levels in GWAS meta-analyses in
populations with European ancestry.26 The construction of this
instrument has been described previously.26 Briefly, 31 indepen-
dent loci (R2 < 0.3; separated by >140 kb), with an association
with urate at p < 5 × 10−8 or p < 5 × 10−7 with a clear func-
tional role in urate metabolism, were identified. The lead SNP
from each locus was picked as the instrumental variable for that
locus, and its published effect size and standard error were
noted. For SNPs where data were available from multiple inde-
pendent publications and cohorts, effect estimates were com-
bined using fixed-effects meta-analysis.27–29 Effect size
represents a standard deviation (SD) increase in plasma urate
levels per allele. A subset of 26 loci from our instrument
explained 7% of variance in urate concentrations in the Global
Urate Genetics Consortium (GUGC) GWAS, with 3.4%
explained by the SLC2A9 and ABCG2 loci alone.27 This multi-
locus approach allows us to evaluate our instrument for pleiot-
ropy and ensure that the results are not attributed to violations
of the MR assumptions. SNPs in the instrument have been
summarized in Table 1.

PD Genetic Data
Summary statistics from the discovery phase of a GWAS meta-
analysis of PD were used including 7,893,273 genotyped and
imputed variants in 13,708 PD cases and 95,282 controls of
European ancestry from 15 studies. Details on recruitment and
diagnostic assessment as well as quality-control procedures of the
GWAS are described in the original publication.23 All 31 SNPs
in the instrument were present in the PD genetic data set. For
purposes of this study, quality control included ensuring no
strand mismatches and alignment of SNP effect sizes with respect
to urate increasing allele. A palindromic SNP, rs17632159, in
the PD data set was reconciled comparing allele frequencies in
the PD and GUGC data sets to ensure that effect estimates were
recorded with respect to the same allele (C-allele had a frequency
of 0.31 in both data sets).

Instrumental Variable Analysis
Effect estimates for the association between a genetically related
1-SD increase in plasma urate level and the odds ratio (OR) for
PD were obtained for each SNP in the instrument separately
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using the Wald ratio method.30 Individual effect estimates were
then combined using the IVW method, constraining the
weighted regression line to pass through the origin. This method

yields an effect estimate that converges with the estimate
obtained from the two-stage least squares method with
individual-level data.31

TABLE 1. SNPs Used to Construct the Instrumental Variable

SNP Nearest Gene EA OA EAF Beta SE

rs1471633 PDZK1 A C 0.46 0.037 0.0033

rs1260326 GCKR T C 0.41 0.045 0.0032

rs12498742 SLC2A9 A G 0.77 0.236 0.0034

rs2231142 ABCG2 T G 0.11 0.124 0.0051

rs675209 RREB1 T C 0.27 0.036 0.0039

rs1165151 SLC17A1 T G 0.47 –0.051 0.0028

rs1171614 SLC16A9 T C 0.22 –0.052 0.0046

rs2078267 SLC22A11 T C 0.51 –0.048 0.0038

rs478607 NRXN2 A G 0.84 –0.017 0.0037

rs3741414 INHBC T C 0.24 –0.043 0.0045

rs11264341 TRIM46 T C 0.43 –0.033 0.0039

rs17050272 INHBB A G 0.43 0.023 0.0039

rs6770152 SFMBT1 T G 0.58 –0.029 0.0033

rs17632159 TMEM171 C G 0.31 –0.026 0.0039

rs729761 VEGFA T G 0.3 –0.031 0.0039

rs1178977 BAZ1B A G 0.81 0.031 0.0046

rs10480300 PRKAG2 T C 0.28 0.023 0.0039

rs2941484 HNF4G T C 0.44 0.029 0.0033

rs10821905 A1CF A G 0.18 0.037 0.0046

rs642803 OVOL1 T C 0.46 –0.024 0.0033

rs653178 ATXN2 T C 0.51 –0.023 0.0033

rs1394125 UBE2Q2 A G 0.34 0.028 0.0039

rs6598541 IGF1R A G 0.36 0.028 0.0039

rs7193778 NFAT5 T C 0.86 –0.030 0.0052

rs7188445 MAF A G 0.33 –0.021 0.0033

rs7224610 HLF A C 0.58 –0.028 0.0033

rs742132 LRRC16A A G 0.7 0.035 0.0060

rs2307394 ORC4L T C 0.68 –0.019 0.0033

rs17786744 STC1 A G 0.58 –0.019 0.0033

rs2079742 BCAS3 T C 0.85 0.028 0.0052

rs164009 QRICH2 A G 0.61 0.018 0.0033

SNPs = single-nucleotide polymorphisms; EA = effect allele; OA = other allele; EAF = effect allele frequency; Beta = SD change in urate per effect
allele; SE = standard error.
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A key assumption of any instrumental variable analysis,
including MR, is that the instrumental variable(s) (genetic vari-
ants in MR) are not associated with the outcome in any other
way other than through the exposure under analysis. Violation of
this assumption in MR is most commonly attributed to horizon-
tal pleiotropy (one or more genetic instruments affecting other
characteristics that are risk factors for the outcome, independent
of the main exposure of interest). We used three methods to
explore the susceptibility of our effect estimates to such bias.
First, we examined the heterogeneity between the effect estimates
from individual SNPs, through Cochran’s Q test, which is able
to detect moderate to weak pleiotropy.32

Second, we repeated the analysis using the MR Egger method
(rather than IVW method) to combine individual SNP estimates.24

This method is similar to IVW, but does not constrain the regres-
sion line of mean urate and mean PD levels for each SNP to go
through zero. A nonzero intercept with MR Egger regression implies
the presence of net directional pleiotropy which may bias the IVW
estimate, and the slope from MR Egger is the effect estimate having
relaxed the assumption of bias attributed to pleiotropy. Whereas the
assumption of no other path from the genetic instrument to out-
come, other than by the risk factor of interest, can be relaxed with
MR Egger, this method has an additional assumption. The Instru-
ment Strength Independent of the Direct Effect (InSIDE) assump-
tion of MR Egger will be violated if the genetic instrument/risk
factor association (here joint association of the 31 SNPs with urate)
is correlated with any pleiotropic associations from the SNPs to the
outcome.

Third, we used an alternative method that has different
assumptions regarding pleiotropy to both the IVW or MR Egger
estimates. The PWM-based method gives consistent effect estimates
under the assumption that no more than 50% of the weight of the
MR effect estimate, where weight is determined by the magnitude
of their association with risk factor (here urate), is from invalid (eg,
pleiotropic) SNPs.25 Given that these three MR methods have differ-
ent assumptions and therefore different key sources of bias, where
results are consistent across the three this supports that consistent
result being the true causal effect.33 To assess the possibility that the
overall effect estimate was being driven by any particular SNP in the
instrument, we iteratively removed each SNP from the instrument
and reran the MR analysis to assess whether the effect estimate is
robust to removing any individual SNP from the instrument.

To assess the power in our study to precisely detect a causal
effect, we used a published method for power calculations for MR
studies with a binary outcome.34 For this calculation, we assumed a
proportion of variance explained by our instrument of 7%, as reported
in the GUGC study for the subset of 26 SNPs in our instrument.

Statistical Analysis
All statistical analysis was performed using R software (version
3.2.4; R Foundation for Statistical Computing, Vienna, Austria).

Results
The main IVW MR analysis did not provide clear evi-
dence for a causal effect between plasma urate and PD risk

(OR per 1-SD increase in urate concentration was 1.03
[95% confidence interval {CI}, 0.88–1.20]; Fig 1). No
individual SNP produced an estimate that would be con-
sistent with a protective effect. Effect estimates from two
SNPs (rs1165151 and rs2307394) suggested an increased
risk of PD with increased plasma urate concentration. The
SNP from the SLC2A9 locus (rs12498742), which was
used as the sole locus in a previous MR study, produced
an effect estimate consistent with no effect of urate on PD
risk (OR, 1.00 [95% CI, 0.86−1.17]).17

There was weak evidence of heterogeneity among the
instrumental variable estimates from individual SNPs
(Cochran’s Q = 43.06; p = 0.07). MR Egger analysis produced
a y-intercept of 0.00 (95% CI, –0.01 to 0.02; p = 0.63), sug-
gesting that any potential pleiotropy in the instruments was
balanced and unlikely to bias the results of the analysis. The
causal effect estimate derived from MR Egger was OR 0.99
(95% CI, 0.83–1.17) per 1-SD increase in urate. The PWM
analysis yielded an almost identical effect estimate to the one
with the traditional IVW method and MR Egger (OR, 0.99
[95% CI, 0.86−1.14]). Results from the IVW, MR Egger,
and PWM analyses are illustrated in Figure 2.

The effect estimate stayed consistent regardless of
individual SNPs being removed from the instrument (Fig
3). Notably, even leaving the SNP with the narrowest
confidence intervals (rs12498742) out of the instrument
did not dramatically alter the effect estimate.

Our study had a power of 80% to detect a true
causal effect of a relative difference of 10% per 1-SD
change in urate (ie, OR <0.9 or .>1.1).

FIGURE 1: Scatter plot of results from the instrumental
variable analysis for individual SNPs and pooled estimates.
CI = confidence interval; SD = standard deviation; SNPs =
single-nucleotide polymorphisms.
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The study was repeated using recently published PD
GWAS meta-analysis summary statistics by Chang
et al and yielded a quantitatively and qualitatively similar
result (IVW effect estimate OR, 0.99; 95% CI,
0.87–1.13).35

Discussion
In this study, we investigated the causal relationship
between urate and risk of PD, using two-sample MR. We
compared results from three MR analytical approaches,

each with different underlying assumptions, to explore the
validity of our instruments and the effect estimates they
produced. To our knowledge, this is the largest-scale MR
study of this association to date. Our results found no
causal link between plasma urate levels and risk of PD,
which suggests that the associations between urate and PD
risk reported previously could be attributed to confound-
ing or reverse causality. However, factors that cause or
protect against a disease may be different from those that
affect prognosis once a disease is established.36,37 The
results presented here are not evidence against urate being

FIGURE 2: Forest plot of the association of individual SNPs with urate and PD risk, together with pooled estimates. CI =
confidence interval; OR = odds ratio; PD = Parkinson’s disease; SD = standard deviation; SNPs = single-nucleotide
polymorphisms. [Color figure can be viewed at www.annalsofneurology.org]
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effective in slowing disease progression in people that
already have a diagnosis of PD. Thus, current trials of ino-
sine, a urate precursor, in patients with PD should not
necessarily be influenced by our findings.15,16

In terms of observational data on the relationship
between urate and PD, a meta-analysis of prevalent case-
control studies which included 1,217 cases and 1,276 con-
trols reported a standardized mean difference of −0.52
(95% CI, −0.72 to −0.31) in urate levels between PD
cases and healthy controls, but these findings cannot dis-
tinguish between urate levels protecting against PD or PD

causing a lowering of urate (reverse causality).12 A separate
meta-analysis of six observational studies of incident cases,
with 594 PD cases and 33,185 controls, reported a rela-
tive risk of PD of 0.65 (95% CI, 0.43–0.97) for “high”
(≥6.8mg/dl) versus “low” serum urate, with some sugges-
tion of a stronger effect in men compared to women.13

The results were essentially the same when analyses were
restricted to those studies that had excluded cases occur-
ring in the early years of follow-up, suggesting that the
results were unlikely to be explained by reverse causality.
However, there was significant heterogeneity between

FIGURE 3: Forest plot of the results of the leave-one-out sensitivity analysis, where each SNP in the instrument was iteratively
removed from the instrument. CI = confidence interval; OR = odds ratio; SD = standard deviation; SNP = single-nucleotide
polymorphism. [Color figure can be viewed at www.annalsofneurology.org]
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studies included in the meta-analyses (I2 = 75.6% and
43.1%, respectively). A nested prospective case-control
study, which meta-analysed results from 388 new cases
and 1,267 controls with three previously published pro-
spective studies, focused on sex differences. This study
reported an OR of 0.63 (95% CI, 0.42–0.95) in men and
0.89 (95% CI, 0.57–1.40) in women, when comparing
those in the top quarter of urate levels to those in the bot-
tom quarter.14 The primary studies included in these
meta-analyses were all adjusted at least for age and smok-
ing, but residual confounding could have been present.

A recent umbrella review of observational studies of
environmental risk factors for PD judged the evidence for
urate to be Class II. Despite consistent evidence for an
association with PD, there was significant between-study
heterogeneity, small-study effects, and the 95% prediction
interval, a measure of the expected uncertainty in a future
study on the same association, included the null value.4 In
combination, these observations raise some doubts about
the potential neuroprotective benefits of increasing circu-
lating urate. Furthermore, in a large-scale hospital database
study, no long-term protective effect was observed
between gout and PD, whereas a diagnosis of PD was
associated with a significant decrease in the subsequent
risk of gout, suggesting that decreased urate levels are a
feature of PD rather than a protective factor.38 Recently,
changes in microbiota have been proposed as affecting
both circulating urate levels and PD risk, and may possi-
bly confound previous observational study associations.39

To our knowledge, there have been four previous
studies examining the relationship between urate and PD
using an MR-like approach; two have looked at the associ-
ation with PD risk, one with PD progression and one
with age at onset. Gao et al examined the association of
12 SNPs in the SLC2A9 locus with PD in a case-control
study in individuals of European descent, consisting of
788 self-reported cases and 911 controls.20 SNPs were all
in linkage disequilibrium (R2 > 0.7), and the study found
that for one SNP, the allele associated with lower plasma
urate, was nominally associated with a higher risk of PD
(95% CI, 1.48 (1.01–2.16); p = 0.04). This association
did not survive multiple testing correction. González-
Aramburu et al constructed an unweighted allele score
using SNPs from eight independent loci in 1,061 Spanish
cases and 754 controls and found that those with 10 to
15 urate-decreasing alleles (compared to those with seven
or fewer) had increased odds of PD (95% CI, 1.55
[1.10–2.18]).19

Simon et al used MR to explore the effect of urate
on PD progression; they used three SNPs in linkage dis-
equilibrium in the SLC2A9 locus to stratify PD patients
into three groups based on the number of risk alleles, and

used time to initiation of levodopa treatment as the out-
come in 735 PD patients of European descent.17 They
observed a protective effect of urate on PD progression
with a hazard ratio of 1.27 (95% CI = 1.00–1.61;
p = 0.0497) for a 0.5-mg/dl genetically conferred decrease
in serum urate. In a further study of prognosis, Facheris
et al looked at four SNPs in the SLC2A9 locus, and their
association with age at onset in 664 PD patients of
European ancestry, and found one SNP to be associated
with a mean difference in age at onset of −4.56 (95% CI,
−8.13 to −1.00) per urate-decreasing allele.18 These stud-
ies, undertaken in patients that already have PD, may not
be directly comparable with our research findings because,
as already mentioned, risk factors for disease may differ
from those that affect timing of disease diagnosis and its
progression. Thus, whereas these studies are relatively
small and need further replication, it is possible that urate
protects against a more-rapid progression, but that it has
no effect on whether one gets PD or not (as indicated by
our study).

Using only the SLC2A9 locus as the instrument, as
some previous studies have done, makes it impossible to
differentiate whether the MR effect estimate is for changes
in urate, or some other mechanism in which the SLC2A9
transporter is involved. With a multilocus instrument,
although the individual loci in the instrument may act
through different, possibly pleiotropic, mechanisms, their
shared effect is through altered circulating urate concentra-
tion. Furthermore, in our study, when using only the
SNP from the SLC2A9 locus (rs12498742) as the instru-
mental variable for the association between urate and PD,
the causal effect estimate is still a clear null (OR, 1.00
[95% CI, 0.86−1.17]).

Strengths and Limitations
Key strengths of our study are its large sample size with
13,708 PD cases and the use of SNPs from 31 indepen-
dent loci, which increases statistical power and allows the
use of different methods for assessing potential bias attrib-
uted to pleiotropy. By using genetic instrumental variables
that have been shown to be robustly associated with urate
and replicate across studies, we are unlikely to have vio-
lated the first assumption of instrumental variable analysis.
Although the use of aggregate data precludes us from
examining whether the SNPs we have used associate with
confounders of the urate-PD association, there is empirical
evidence that in general genetic variants are less likely to
be associated with common confounders than (nonge-
netic) risk factors.21,38 Last, the consistency of findings
across three different MR methods, each with different
assumptions regarding pleiotropy, suggests that bias was
unlikely.
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Limitations of our study include those related to the
use of aggregate data, which means we cannot explore any
potential nonlinear effects or whether there might be dif-
ferences in effect between different groups (eg, between
females and males, which has been suggested previ-
ously14). There is some evidence that the relationship
between urate and PD may be more complex than previ-
ously reported, such as a U-shaped association.39 Finally,
given that we have used a case-control study, our results
might be influenced by survival bias if plasma urate con-
centrations affect mortality before patients are diagnosed
with PD.

In conclusion, we do not find clear evidence for a
linear causal protective effect of urate on PD risk. These
findings should help in understanding PD pathogenesis
and prioritizing potential disease-modifying treatments.
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