
EDITORIAL

Mendelian randomization: where are we now and where are we going?

The methodology and application of Mendelian random-

ization to study causal mechanisms in health and disease

has developed dramatically over the past decade. New

methods, large-scale genome-wide analyses, molecular

epigenetics and other new -omics technologies are all

providing exceptional opportunities for the exploitation of

Mendelian randomization approaches to understand

causes of complex traits and disease outcomes. This

research has the potential to identify new approaches for

the prevention and treatment of common conditions.

The origins of what is now termed ‘Mendelian random-

ization’ (Figure 1, see caption for assumptions) can be traced

back over half a century,1 although the first extended pres-

entation of the principles was in this journal just over a dec-

ade ago,2 Since then it has become a widely utilized

methodology, with publications covering many branches of

biomarker,3–12 behavioural13–16 and infectious disease17,18

epidemiology. Mendelian randomization studies with clear

implications for pharmacotherapeutics are also becoming

commonplace,19–21 and applications to social science and to

economics (the field in which the statistical technique of in-

strumental variables analysis central to Mendelian random-

ization was initially conceived22) are being developed.23,24

Methodological advances

Over the past few years, several methodological advances

have been made. The basic assumption—that genetic variants

which can proxy for a potentially modifiable exposure are es-

sentially unrelated to confounding factors—has been demon-

strated to have widespread plausibility.25 The connection

between the standard Mendelian randomization experiment

and the theory of instrumental variables has been elaborated

upon.26,27 Extensions to use multiple genetic variants for

increasing power and investigating the influence of pleiotropy

have been theorized28 and implemented.29–32 Bidirectional

Mendelian randomization for informing the direction of

causal effects has been exemplified33,34 and extended to con-

sider more complex networks.35 Methods for the estimation

of non-linear causal effects have been proposed.36,37 Causal

effects of related phenotypes with common genetic predictors

in a multivariable analysis framework have been esti-

mated.38,39 Factorial Mendelian randomization to predict the

separate and combined effect of treatments using different

genetic proxies has been undertaken.40 Sensitivity analyses

for investigating the biasing effects of pleiotropy have been

developed.41,42 Extensions to consider gene-by-environment

interactions have been outlined and applied.43–45 The integra-

tion of epigenetic profiles as an intermediate phenotype has

been proposed46,47 and implemented.48,49 The development

of Mendelian randomization into the hypothesis-free

resolution of causal directions in correlated networks has

been outlined.50 In summary, methodological development

has been undertaken in response to the challenges of new sub-

stantive applied questions and increasingly detailed genetic

data. This development has enabled (and continues to enable)

more sophisticated questions to be answered using the frame-

work of Mendelian randomization.

Mendelian randomization in the post
genome-wide association study era

Initial applications of Mendelian randomization generally

incorporated a single genetic variant, and assessed the causal

relationship of the modifiable intermediate phenotype on the

outcome in a single sample. The proliferation of genome-wide

association study (GWAS) data, and in particular publicly

available GWAS data51 (such as summary genetic associations

with coronary artery disease in over 60000 cases and 130 000

controls from the CARDIoGRAMplusC4D consortium52) pro-

vides opportunities to extend this via the use of the following.

i. Increased sample sizes. Consortia with GWAS data on

large sample sizes are available for many phenotypic

traits and disease outcomes. This increases the power

of Mendelian randomization investigations.53

ii. Multiple genetic variants. For many intermediate

phenotypes investigated in Mendelian randomization
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studies, GWAS investigations have been able to identify

multiple genetic variants contributing to variation in

the phenotype. Again, this increases the power of

Mendelian randomization investigations.54

iii. Two-sample Mendelian randomization. The ideal con-

text for the precise estimation of genetic associations

with modifiable intermediate phenotypes is population-

based cohort studies. In contrast, the ideal context for

the precise estimation of genetic associations with dis-

ease outcomes is case-control studies. Two-sample

Mendelian randomization is a design strategy whereby

genetic associations with the phenotype and with the

outcome are taken from separate samples.55 Provided

that the samples come from the same underlying popula-

tion (for example, the same ethnicity), valid causal esti-

mates can be obtained even if concomitant data on the

genetic variants, intermediate phenotype and outcome

are not available for any individuals. Moreover, such es-

timates can be obtained from summarized data rather

than individual-level data.56,57 This allows the efficient

evaluation of causal effects in large sample sizes without

requiring sharing of individual-level data.

As it is not required for the phenotype and outcome in

two-sample Mendelian randomization to be estimated on

the same individuals, genetic associations with the pheno-

type and outcome can be taken from large consortia, thus

potentially greatly increasing power compared with a one-

sample Mendelian randomization analysis.51

Over the past decade, the heritability of many complex

traits has been explored using GWAS. In general, common

genetic variants have small effects on complex traits. In the

recently completed UK10K study [www.uk10k.org], novel

genetic variants with relatively large phenotypic effects were

observed.58 However, large effect sizes seemed to be con-

fined to the rarest detectable signals and, for the most part,

effects attributable to common genetic variants were small.

This is rather disappointing from the viewpoint of develop-

ing predictive tools for even highly heritable traits. Studies

like UK10K assessing the genetic architecture of complex

traits more thoroughly through sequencing suggest that, for

complex traits, this picture is unlikely to change. But even

variants with modest effect sizes provide opportunities for

the investigation of potential novel causal pathways using

Mendelian randomization, particularly given the develop-

ment of novel statistical tools for detecting and adjusting for

pleiotropy from multiple genetic variants.41

The promise of -omics

Mendelian randomization studies have generally focused

on a limited number of intermediate phenotypes, but

recent applications of -omic technologies into large-scale

population-based studies present new opportunities for

identifying novel predictive biomarkers and causal links

between established phenotypes and disease out-

comes.47,59–63 Both metabolomic and DNA methylation

data are increasingly being exploited.49,64

Metabolomic data, representing multiple metabolic path-

ways in systemic metabolism, can be quantified by targeted

mass spectroscopy or by proton nuclear magnetic resonance

spectroscopy. With this, it has been possible to examine the

causal role of risk factors such as body mass index (BMI) in

the formation of metabolomic profiles and thus to consider

the finer aetiology of possible disease effects.65 Furthermore,

many metabolites have substantial heritability and robust

genetic variant associations have already been identi-

fied.66,67 Metabolite profiles have proved useful in the pre-

diction of cardiometabolic disease,68,69 although their role

as modifiable targets for intervention or causal mediators of

disease risk is unclear. The availability of genetic instru-

ments for many metabolites provides opportunities to assess

the causal effects of metabolites on disease risk. Both bi-dir-

ectional (see above) and hypothesis-generating (see below)

applications of Mendelian randomization are likely to be

useful in exploiting these data.

Methylation of DNA is a partially stable mechanism for

gene regulation, occurring from the earliest stages of devel-

opment onwards, under genetic, environmental and sto-

chastic influences.70 In a similar way to metabolomic data,

the availability of large collections of genome-wide epigen-

etic data marks presents a valuable opportunity to consider

the role of gene regulation in the aetiology of complex dis-

ease. In this case, methylation-related genetic variants

(mQTLs) are used as proxy markers of DNA regulatory

variation, which maybe causally implicated in diseases.

A theoretical framework for this work has been devel-

oped46,47,71 and applied.48,49 (Figure 2).

As well as being potential targets for intervention, both

metabolomic72,73 and methylation data may serve as indi-

cators of exposure to difficult-to-measure intermediate

phenotypes. In the case of DNA methylation data in par-

ticular, these could provide proxy measures of long-term74

or critical period exposure75,76 that could otherwise not be

assessed on large population samples.

Taxonomy of Mendelian randomization
investigations

Limitations in our understanding of genetic variants used

in Mendelian randomization has led to suggestions that

evidence from Mendelian randomization studies in infor-

mal evidence synthesis should be down-weighted.77–79

However, not all applications of Mendelian randomization
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are the same in terms of their aims, procedures and quality

of evidence generated. We provide a taxonomy of

Mendelian randomization investigations into three broad

categories, based largely on the nature of the intermediate

phenotype evaluated and the biological plausibility of the

genetic variants for use in assessing causal effects. These

categories are presented separately but form a spectrum of

evidence quality, as some investigations will not fall neatly

into a single category.

Validation of potential drug targets

Some phenotypes have a genetic aetiology dominated by a

relatively small number of key coding or functionally rele-

vant loci (such as C-reactive protein,3 interleukin-6,19,20

lipoprotein-associated phospholipase A2,80 or secretory

phospholipase A2,81 bilirubin,82 uric acid83). Mendelian

randomization investigations conducted using a small

number of genetic variants in a single gene region having

clear biological links to the intermediate phenotype pro-

vide the closest parallels to a randomized trial.84 These are

the most plausible Mendelian randomization investiga-

tions, in terms of the validity of the instrumental variable

assumptions that the variants are specific proxies for the

phenotype, as well as providing evidence to aid the priori-

tization and development of pharmacological interventions

which have a reasonable likelihood of producing health

benefits.85 This type of Mendelian randomization experi-

ment mirrors the potential effects of a drug acting on the

same pathway. Such applications have advantages for

pharmaceutical companies in prioritizing drugs for clinical

trials, and for investigating unintended consequences of

drugs (both for drug repositioning and for investigating

safety signals).

There are several examples of Mendelian randomiza-

tion investigations relevant to pharmacological investiga-

tions. Drugs to inhibit C-reactive protein were not

developed further after Mendelian randomization experi-

ments demonstrated no causal role of C-reactive protein in

cardiovascular disease.3,86 In contrast, the interleukin-6 recep-

tor can be blocked by a monoclonal antibody (tocilizumab)

which was developed for the treatment of rheumatoid arth-

ritis. A variant in the IL6R gene region shows an associ-

ation with coronary heart disease risk,87,88 so consequently

tocilizumab would be worthwhile taking forward into tri-

als for cardiovascular risk prevention.89 As another exam-

ple, statins are associated with an increased risk of type 2

diabetes. A Mendelian randomization study using genetic

variants coding for HMGCoA reductase (the protein target

that is inhibited by statins) demonstrated that these variants

were associated with an increase in type 2 diabetes.90,91 The

inference from these findings is that attempts to make statins

more specific and thereby reduce off -target effects will not

avoid the increased risk of the diabetes. Genetic variants in

the CETP gene region have been used as proxies for choles-

terylester transfer protein (CETP) inhibitors, such as dalce-

trapib.92 These drugs are developed to raise high-density

lipoprotein cholesterol levels. Variants in the CETP region

have shown null associations with coronary artery disease

risk,21 although null associations with blood pressure sug-

gest that the blood pressure-increasing effect of torcetrapib93

is an off-target effect rather than a downstream consequence

of CETP inhibition.94

A recent investigation to assess the impact ofinterleu-

kin-1 inhibition (e.g. by use of the drug anakinra, which is

beneficial in rheumatoid arthritis) on cardiometabolic dis-

orders found that genetic variants which proxy the effects

of sustained dual interleukin-1a/b inhibition were associ-

ated with an increased risk of cardiovascular diseases.95

A B

Figure 1. Mendelian randomization: using genetic variants as instrumental variables to establish whether an exposure is causally related to a disease

or trait. (A) The genotype acts as an instrumental variable if: (i) it is associated with the exposure; (ii) it is independent of measured or unmeasured

confounders; and (iii) it can only influence that outcome via the causal effect of the exposure. (B) Under the instrumental variable assumptions, the

lack of association between the C-reactive protein genotype and disease risk indicates that C-reactive protein is not a causal risk factor for ischaemic

heart disease. An association between the genotype and disease outcome would indicate a causal relationship of the exposure on the outcome.
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Two notable aspects of this investigation are the use of

positive control variables (variables that should be affected

by the phenotype according to biological knowledge) and

the consideration of multiple outcomes. Clinical trials of

anakinra show decreases in C-reactive protein and inter-

leukin-6 levels that are also predicted by the associations

of the genetic variants. The concordant associations with

these positive controls increase the plausibility that the

genetic variants are good proxies for the pharmacological

intervention. The investigation of large numbers of out-

comes, made practical by publicly available GWAS data,

enables both the search for potential causal mediators of

disease risk (in this case, proatherogenic lipids) and drug

repositioning. Here, rather than finding another disease

outcome that may be beneficially treated by anakinra, an

important safety signal was discovered.

Investigation of complex intermediate

phenotypes

Many intermediate phenotypes are not regulated by single

metabolic pathways but are influenced by multiple genetic

variants. Examples of multifactorial and polygenic risk fac-

tors include body mass index,96 height97 and blood pres-

sure.56 In these situations, Mendelian randomization

investigations often proceed in a different manner, and on

the basis of a large number of genetic variants in different

gene regions. These variants may be discovered in GWAS

investigations and the biological pathways linking each

variant to the intermediate phenotype may be unknown.

Clearly, the formal instrumental variable assumptions that

the only causal pathway from the genetic variants to the

outcome passes via the phenotype of interest are rarely sat-

isfied.98 Plausibility of a causal effect can be increased by

empirical evidence that the genetic variants are not associ-

ated with measured confounders, as well as by demonstrat-

ing consistency and directional concordance of the causal

estimate across genetic variants in multiple gene regions

with different biological effects on the same phenotype. If

many different independent genetic variants all suggest the

same direction of causal effect, and if the overall statistical

result is not dependent on one or two variants, then a

causal conclusion is most plausible.50 However, the associ-

ations of genetic variants with unmeasured or unknown

confounders cannot be assessed, and so the instrumental

variable assumptions are not fully testable. Additionally,

even if a genetic variant is associated with a measured

covariate, it is not possible to tell empirically whether this

association is a (horizontally) pleiotropic effect of the gen-

etic variant (hence a violation of the assumptions), or an

A

B

s - -

-

Figure 2. Two-step and integrated two-step/two-sample approaches in the application of Mendelian randomization to methylation data. (A) Two-step

Mendelian randomization: genetic variants can be used as instrumental variables in a two-step framework to establish whether methylation is on

the causal pathway between exposure and disease. First, a genetic variant (SNP 1) associated with the exposure of interest to assess the causal

impact of the exposure on an intermediate trait (in this case tissue-specific methylation). Second, a different genetic variant (SNP 2) associated with

the intermediate trait (and not associated with the exposure) is used to assess the causal impact of the intermediate trait on the outcome. (B) Two-

sample/two-step Mendelian randomization: we consider tissue-specific DNA methylation as a potentially causal intermediate phenotype. In a poten-

tially smaller first sample, the association of the exposure to tissue-specific DNA methylation is established using a Mendelian randomization ap-

proach (with the exposure-related SNP 1). A genetic variant associated with the same methylation difference but not related to the exposure is

identified (SNP 2). In a potentially larger second sample, the exposure is shown to influence the outcome through the use of SNP 1, and the expos-

ure-related methylation is shown to influence the outcome through the use of SNP 2. (Adapted with permission.71).
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effect of the intermediate phenotype (a mediated, or verti-

cally pleiotropic effect). In the latter case, provided that the

only causal pathway from the genetic variant to the out-

come is via the intermediate phenotype, the instrumental

variable assumptions are not violated.

In these cases, the aim of a Mendelian randomization

investigation is not only to give a more definitive answer as

to whether the intermediate phenotype is causal or not, but

also to investigate mechanisms linking the phenotype to

the outcome. Particularly for phenotypes such as adult

height, which is not readily modifiable, the findings of the

analysis usually go beyond a simple instrumental variable

analysis and investigate potential causal pathways.

Hypothesis-generating investigations

A final category of analyses (which some may feel are not

true Mendelian randomization analyses) are termed

‘hypothesis-generating investigations’. As with GWAS

studies, these are undertaken particularly for intermediate

phenotypes that do not have strong known genetic deter-

minants, such as educational attainment.99,100 Automated

analyses of associations between a range of risk factors and

outcomes have been undertaken using whole-genome

scores101 and summarized data from across the whole gen-

ome,102 to investigate whether common genetic predictors

correlate with phenotypic and outcome traits. Such investi-

gations have given mixed results, and should be regarded

as hypothesis-generating rather than assessments of caus-

ation. Nonetheless, they represent a natural extension to

the methods of Mendelian randomization. Findings will be

more speculative, but the statistical power to detect a

causal effect may be greater. To this end, the application of

automated two-sample Mendelian randomization in a

hypothesis-generating approach is likely to expand rapidly

the capacity of conventional epidemiology to generate

plausible hypotheses. In this case, derived genetic instru-

ments may be exported to existing large GWAS collections

of any disease or outcome and employed to give estimates

of the causal implications of exposure to novel modifiable

risk factors. This would yield a potential return on the

large collections of genetic variant data in the GWAS com-

munity which are, as yet, underutilised.

In this themed issue of the journal we have published

both methodological developments and substantive find-

ings from many research groups. Methodology for improv-

ing quality of reporting,103 bias detection due to invalid

instruments41 and mediation in causal pathways35 are cov-

ered. The effects of a wide range of intermediate pheno-

types on disease outcomes using genetic instruments are

also examined. These range from sex-hormone binding

globulin64, tobacco (smoking does lower body weight),104

coffee,105 milk106 and alcohol107 intakes, obesity,108,109

vitamin D110 and testosterone.111,112 These analyses using

genetic instruments provide a means of interrogating

potential causal associations, particularly in circumstances

where associations are likely to be heavily confounded and

randomized experiments are not feasible.

Caution and conclusion

Potential limitations of the Mendelian randomization strat-

egy were discussed extensively in its initial formal presenta-

tion2 and have been reiterated elsewhere.113–116 Largely as

a function of the potentially overwhelming collection of

genetic variants available to the epidemiologist looking to

practise Mendelian randomization, the potential to fall

into one of a series of analytical traps has been increased.

Power, linkage disequilibrium, pleiotropy, canalization

and population stratification have all been recognized as

potential flaws in the Mendelian randomization approach

as methods have been developed. While avoidance strat-

egies for these limitations are now really beginning to

appear, further limitations are being realized. In circum-

stances where we are less likely to have well-characterized

and biologically understood genetic variants as instru-

ments, it is tempting to use the totality of available variants

in an analysis, for example in a genetic risk score ap-

proach.117 Although it is attractive at the outset to amal-

gamate genetic variants into comprehensive genetic scores

which have the potential to increase variance in the pheno-

type explained (and thus increase power),118 it is increas-

ingly clear that where these scores are not understood

completely, the potential for inferential complication is

greater now than ever.

Using the example of educational attainment, large-

scale GWAS meta-analysis has successfully identified gen-

etic variants reliably correlated with education.99

However, these signals represent a small fraction of the

total variability in educational attainment.100 Genome-

wide predictors will enhance the power of a Mendelian

randomization analysis, with genetic scores including all

variants (even those not associated at a conventional level

of significance) explaining around 3% of the variance (see

Figure 3). However, as a result of the combined impact of

linkage disequilibrium, genetic contributions from many

different biological pathways and the possible biasing

effects of pleiotropy, the use of such a genome-wide esti-

mator may sadly produce effect estimates which suffer the

similar limitations as a more conventional, observational

estimates.

The next decade will see a deeper understanding of the

properties of genetic variants which will be crucial to the ap-

propriate implementation and interpretation of Mendelian
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randomization analyses. Over the past decade, Mendelian

randomization has provided a novel and flexible paradigm

to understand the causal nature of associations between

modifiable risk factors and common diseases. Mendelian

randomization has made use of the massive investment in

human genetic research, focusing on causal mechanisms

that have the promise of identifying worthwhile targets for

pharmacological research and for preventive public health

interventions that are already making a difference and will

continue to do so in the coming decade.
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