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Abstract

MendelianRandomization is a software package for the R open-source software environ-

ment that performs Mendelian randomization analyses using summarized data. The core

functionality is to implement the inverse-variance weighted, MR-Egger and weighted me-

dian methods for multiple genetic variants. Several options are available to the user,

such as the use of robust regression, fixed- or random-effects models and the penaliza-

tion of weights for genetic variants with heterogeneous causal estimates. Extensions to

these methods, such as allowing for variants to be correlated, can be chosen if appropri-

ate. Graphical commands allow summarized data to be displayed in an interactive graph,

or the plotting of causal estimates from multiple methods, for comparison. Although the

main method of data entry is directly by the user, there is also an option for allowing

summarized data to be incorporated from the PhenoScanner database of genotype—

phenotype associations. We hope to develop this feature in future versions of the

package. The R software environment is available for download from [https://www.r-

project.org/]. The MendelianRandomization package can be downloaded from the

Comprehensive R Archive Network (CRAN) within R, or directly from [https://cran.

r-project.org/web/packages/MendelianRandomization/]. Both R and the MendelianRand

omization package are released under GNU General Public Licenses (GPL-2jGPL-3).
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Introduction

Mendelian randomization is the use of genetic variants as in-

strumental variables for assessing causal relationships from

observational data.1,2 Increasingly, Mendelian randomiza-

tion analyses are being performed using summarized data, in

particular the associations (beta-coefficients and standard

errors) of each genetic variant with the exposure and out-

come variables.3 Such associations are often made publicly

available by studies or consortia.4,5 The previously proposed

inverse-variance weighted method gives the same estimates

using these summarized data as the well-established two-

stage least squares method that uses individual-level data.6,7

The inverse-variance weighted (IVW) method provides

a consistent estimate of the causal effect of the exposure on

the outcome when each of the genetic variants satisfies the

assumptions of an instrumental variable.6 Two further

methods have been proposed for providing consistent

causal estimates from summarized data for multiple gen-

etic variants under weaker assumptions. These are the

MR-Egger method8 and the weighted median (or median-

based) method.9 Several publications have used some or all

of these methods,10–12 and the use of all three methods is

recommended when there are multiple genetic variants to

assess robustness of any causal finding to different sets of

assumptions.13 Additionally, several variations on these

methods have been proposed, such as the use of robust re-

gression instead of standard linear regression in the IVW

or MR-Egger methods, or the penalization of weights from

genetic variants with heterogeneous causal estimates.14

Software code is available for the implementation of each

of these methods. However, this code is currently spread

among the appendices of various manuscripts. The

MendelianRandomization package brings the code together

in a single location and makes implementation of these

methods simpler and easier to reproduce, meaning that

applied researchers can focus on the most important aspects

of a Mendelian randomization investigation, namely the

choice of genetic variants and assessment of the instrumental

variable assumptions. Code for implementing all of the

methods in the paper using the Mendelian Randomization

package is provided in the Online Appendix.

Implementation and usage

The data entry function in the MendelianRandomization

package is the mr_input() function. The required inputs for

this function are the beta-coefficients for associations with

the exposure and their standard errors, and the beta-

coefficients for associations with the outcome and their

standard errors. A minimal example is:

MRdata_HDL_CHD <- mr_input(bx¼ hdlc, bxse

¼ hdlcse, by¼ chdlodds, byse¼ chdloddsse)

The variables hdlc, hdlcse, chdlodds and chdloddsse are

provided as part of the MendelianRandomization package

as example data, and represent the associations of 28 vari-

ants with high-density lipoprotein cholesterol (HDL-c) and

their standard errors (hdlc and hdlcse), and the associ-

ations of the same 28 variants with coronary heart disease

(CHD) risk and their standard errors (chdlodds and

chdloddsse), taken from Waterworth et al.15 The mr_in-

put() function ensures that the data are formatted correctly

as an MRInput object for processing by one of the estima-

tion or graphical functions. We note that the mr_input()

function makes no attempt to align the genetic associations

to the same effect allele; this step is critically important,

but is left to the user. Genetic associations obtained from

PhenoScanner are automatically aligned to the same effect

allele.16 Special care should be taken when it is not clear

whether alleles are given for the forward or backward

strand, particularly for palindromic variants (C/G or A/T

polymorphisms).

The IVW, MR-Egger and weighted median methods are

then implemented by taking the MRInput object as an in-

put, and outputting causal estimates and related statistics.

For the IVW method, an example is:

mr_ivw(MRdata_HDL_CHD)

where MRdata_HDL_CHD is as defined above. By de-

fault, the mr_ivw() function reports the causal estimate

and its standard error, a 95% confidence interval based on

a normal approximation, and the residual standard error

and associated heterogeneity test statistic, indicating

whether the causal estimates from the individual genetic

variants are similar to each other or not.17

Key messages

• The MendelianRandomization software package enables Mendelian randomization analyses to be undertaken using

summarized data on genetic associations for a variety of previously published methods.

• The use of this package should lead to more reproducible and more credible causal inferences, due to the range of

robust methods included in the package.

• However, a critical and principled approach to Mendelian randomization investigations is required for causal claims to be

justified; robust methods can reveal inconsistencies in the analyses, but conclusions that rely on statistical approaches in

the absence of biological understanding of the variants included in the analysis will always be speculative.
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Similar output is provided by the mr_egger() and

mr_median() functions, except that the MR-Egger method

additionally reports an intercept parameter, representing

the average pleiotropic effect of a genetic variant.8 Several

options are available to the user in the ability: to use robust

regression instead of standard linear regression in the IVW

and MR-Egger methods;14 to penalize the contribution to

the analysis of genetic variants with heterogeneous causal

estimates;14 to use an unweighted rather than a weighted

analysis in the median-based method;9 to make inferences

based on a t-distribution rather than a normal distribution;

and to report a confidence interval at a different alpha level

(for example, a 99% confidence interval). A maximum

likelihood method mr_maxlik() that fits a likelihood model

to the summarized data, allowing for uncertainty in genetic

associations with both the exposure and the outcome,6 is

also implemented in the package.

A further option is the possibility of accounting for cor-

relation between genetic variants in either the IVW or the

MR-Egger method. This illustrates one benefit of the pack-

age–although the use of generalized weighted linear regres-

sion has been proposed for performing the IVW method

with correlated variants,18 it has not been formally pro-

posed for the MR-Egger method,despite the extension

being relatively straightforward. The package means that if

a methodological advance is made for one method, it can

be implemented for multiple methods, and if two methodo-

logical advances are made that can interact, their inter-

action can be explored by setting both options in the

package.

The mr_allmethods() function can be used to implement

several of the methods offered in this package at once. An

example is:

mr_allmethods(MRdata_HDL_CHD,

method¼”main”)

This implements the IVW, MR-Egger, weighted and simple

median methods, and puts the estimates, standard errors

and confidence intervals into a table for easy comparison

(Figure 1A).

There are two options for providing graphical output

from this package. Both of these are implemented by the

mr_plot() function. If the argument for the mr_plot() func-

tion is an MRAll object created using the mr_allmethods()

function:

mr_plot(mr_allmethods(MRdata_HDL_CHD,

method¼”main”))

then the result is a static graph illustrating the various

causal estimates (Figure 1B). As can be seen in this ex-

ample, the MR-Egger estimate differs substantially from

the IVW and median-based estimates, suggesting some

inconsistencies in the instrumental variable assumptions.

Although the IVW method suggests that HDL-c is a caus-

ally protective risk factor for CHD, the MR-Egger estimate

is compatible with the null, which is more in line with ex-

perimental findings.19

If the argument for the mr_plot() function is an

MRInput object, for example:

mr_plot(MRdata_HDL_CHD)

then the result is an interactive graph of the genetic associ-

ations with the outcome against associations with the ex-

posure. By default, error bars for the associations and the

IVW estimate are also plotted. By mousing over a data-

point, an infobox appears with the name of the genetic

variant and its associations with the exposure and with the

outcome. This can be used for identifying genetic variants

having heterogeneous associations with the outcome com-

pared with other variants, and may be helpful in detecting

variants to check for pleiotropy and possible violation of

the instrumental variable assumptions.

As an example, the output from the mr_egger() function

applied to the HDL-c and CHD data provided as part of

the package is presented in Figure 2A. The estimates of the

slope and intercept parameters from the regression model

are displayed, as well as their standard errors, 95% confi-

dence intervals and associated P-values. The residual

standard error from the weighted regression is substan-

tially greater than 1, and the null hypothesis of the hetero-

geneity test is rejected, indicating that the genetic variants

are not all estimating the same causal effect and suggesting

the presence of pleiotropy for one or more variants. The I2

statistic quoted is a measure of weak instrument bias, and

is described elsewhere.20 The mr_plot() command is then

applied to the same data, and the MR-Egger estimate is

illustrated using the code:

mr_plot(MRdata_HDL_CHD, orientate¼TRUE, line

¼ ”egger”)

A screenshot of the resulting interactive graph shows the

possibility of identifying individual variants from the

graph. The orientate¼TRUE option ensures that all vari-

ants are plotted after orientation to the exposure-

increasing allele, as this re-orientation is undertaken in the

MR-Egger method.

Finally, although the primary method for inputting data

into the package is directly by the user, it is possible to in-

corporate data from PhenoScanner, a database of

genotype—phenotype associations that can be queried

using a web browser.16 Two .csv files from PhenoScanner

(v1.1, Little Miss Sunshine) are distributed as part of this

package, representing the output from PhenoScanner for

four genetic variants with proxies turned on and off. The

user can then choose the exposure and outcome from those
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reported by PhenoScanner, and an MRInput object is cre-

ated. For example:

path.proxies <- system.file(“extdata”, “vitD_snps_

PhenoScanner_proxies.csv”,

package¼ “MendelianRandomization”)

# this file has been downloaded from PhenoScanner

(v1.1)

extract.pheno.csv(

exposure¼“log(eGFR creatinine)”, pmidE¼26831199

, ancestryE¼“European”,

outcome¼“Asthma”, pmidO¼ 20860503, ancestryO

¼ “European”,

rsq.proxy¼0.6, file¼path.proxies, snps¼ “all”)

This code takes the file provided by PhenoScanner, and

outputs an MRInput object consisting of the genetic associ-

ations with the exposure “log(eGFR creatinine)” estimated

Figure 1. A. Code and output from implementation of various Mendelian randomization analysis methods using mr_allmethods() function for ana-

lysis of causal effect of high-density lipoprotein-cholesterol (HDL-c) on coronary heart disease (CHD) risk. B. Output from mr_plot() function applied to

mr_allmethods() object. Static graph illustrating genetic associations with CHD risk (log odds ratios) against genetic associations with HDL-c (in stand-

ard deviation units). Lines represent causal estimates from the different methods. STD, standard.
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in Europeans and reported by the study with PubMed ID

26831199,21 and genetic associations with the outcome

“Asthma” estimated in Europeans and reported by the

study with PubMed ID 20860503.22 If genetic associations

for one or the other of the exposure and outcome are not

reported for a particular variant, the function searches for

a proxy variant with correlation measure r2 greater than

the threshold of 0.6 provided. Correlation estimates are

provided by PhenoScanner, and can be calculated either

for 1000 Genomes or HapMap participants of European

descent. In this example, associations with asthma are not

available for two variants; they are replaced by associ-

ations with suitable proxies. The output from the ex-

tract.pheno.csv() function can then be used in the mr_ivw()

or similar functions for estimating a causal effect.

The eventual aim is to make this functionality seamless,

so that PhenoScanner can be called directly from R as part

of the MendelianRandomization package, or as a depend-

ency to the package. Both this package and the

PhenoScanner tool are still under development, and we

hope that this aim will be achieved in the near future.

Discussion

The MendelianRandomization package makes performing

Mendelian randomization analyses using summarized data

relatively straightforward. The package is still under devel-

opment: future additions will include greater integration

with the PhenoScanner and MR-Base [www.mr-base.org]

platforms to enable increased automation of Mendelian

randomization analyses, as well as a wider range of meth-

ods such as methods for multivariable Mendelian random-

ization.23 The package will also be updated as additional

robust methods for performing Mendelian randomization

using summarized data are developed.

As a final note of caution, the increasing automation of

Mendelian randomization analyses is welcome for reduc-

ing the burden on investigators and the capacity for human

errors to influence results, but there is a danger that the

tools provided may facilitate large numbers of speculative

Mendelian randomization analyses to be performed in an

unprincipled way [see references 24–26 for some critical

comments on Mendelian randomization]. It is important

that Mendelian randomization is not performed in a way

Figure 2. A. Code and output from implementation of MR-Egger method using mr_egger() function for analysis of causal effect of high-density lipo-

protein-cholesterol (HDL-c) on coronary heart disease (CHD) risk. B. Output from mr_plot() function applied to mr_input() object. Screenshot of inter-

active graph illustrating genetic associations with CHD risk (log odds ratios) against genetic associations with HDL-c (in standard deviation units) with

error bars representing 95% confidence intervals for the associations. The variants are all orientated to the HDL-c-increasing allele. The line repre-

sents the MR-Egger causal estimate. One of the genetic variants is highlighted by mousing over. The infobox gives the name of the variant (snp_16),

and its associations with the exposure and with the outcome. STD, standard.
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that avoids critical thought. In releasing this package, the

hope is that it will lead to more comprehensive and more

reproducible causal inferences from Mendelian randomiza-

tion, and not simply add more noise to the literature.

Supplementary Data

The appendix is available as Supplementary data at IJE online.
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