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Abstract

Recent CNN-based saliency models have achieved
excellent performance on public datasets, but most
are sensitive to distortions from noise or compres-
sion. In this paper, we propose an end-to-end
generic salient object segmentation model called
Metric Expression Network (MEnet) to overcome
this drawback. We construct a topological metric
space where the implicit metric is determined by a
deep network. In this latent space, we can group
pixels within an observed image semantically into
two regions, based on whether they are in a salien-
t region or a non-salient region in the image. We
carry out all feature extractions at the pixel level,
which makes the output boundaries of the salien-
t object finely-grained. Experimental results show
that the proposed metric can generate robust salient
maps that allow for object segmentation. By testing
the method on several public benchmarks, we show
that the performance of MEnet achieves excellen-
t results. We also demonstrate that the proposed
method outperforms previous CNN-based methods
on distorted images.

1 Introduction

Image saliency detection and segmentation is of significant
interest in the fields of computer vision and pattern recog-
nition. Recent saliency detection studies can be divided in-
to two categories: those based on hand-crafted features and
learning-based approaches. In previous literature, the ma-
jority of saliency detection methods have used hand-crafted
features. Traditional low-level features for such salien-
cy detection models mainly consist of color, intensity, tex-
ture and structure [Yang et al., 2013; Cheng et al., 2015;
Borji and Itti, 2012]. Though hand-crafted features with
heuristic priors perform well in simple scenes, they are not
robust to more challenging cases, such as when salient re-
gions have similar color to background.

Learning-based methods, in particular using convolution-
al neural networks (CNNs) [LeCun et al., 1998] have been
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proposed to address the shortcomings of using hand-crafted
features for saliency detection. For example, [Wang et al.,
2017] uses a multi-stage refinement mechanism to effective-
ly combine high-level object semantics with low-level image
features to produce high-resolution saliency maps, while [Lu-
o et al., 2017; Liu and Han, 2016; Zhang et al., 2017a] exploit
multi-level and multi-scale convolutional features for objec-
t segmentation. But even though they obtain good perfor-
mance, CNN-based approaches also have room for improve-
ment in their robustness to distorted scenes and to other com-
mon distortions such as noise [Chen et al., 2017].

Metric learning is an area receiving much attention in com-
puter vision, such for image segmentation [Fathi et al., 2017],
face recognition [Hu et al., 2014] and human identification
[Yi et al., 2014], as a way for measuring similarity between
objects. Inspired by the metric learning framework, we pro-
pose a deep metric learning architecture for image saliency
segmentation that is also robust to potential distortions with-
in an image. Our goal is to learn a metric space containing
semantic features using a deep CNN such that two homoge-
neous sections of this space are learned for the salient and
non-salient regions of the image space.

These features are learned at the pixel level and allow for
distinguishing between salient regions and background using
a distance measure. Simultaneously, we introduce a metric
loss function based on metric learning and cross entropy. We
also use multi-level information for feature extraction, similar
to other approaches, such as Hypercolumns [Hariharan et al.,
2015] and U-net [Ronneberger et al., 2015].

We experiment on several benchmark data sets and show
how our proposed approach achieves results at state-of-art
level. Moreover, we show how the proposed model is robust
to distortions within an image.

2 A Metric Expression Network (MEnet)

We illustrate our proposed model architecture MEnet in Fig-
ure 1. As shown there, an encoder-decoder CNN first gener-
ates feature maps at different scales (blocks), which through
convolution and up-sampling gives a feature vector for each
pixel of an image according to how it maps through the layers.
These extracted features are then used in a combined metric
loss and cross entropy function to learn the salient regions as
described below. We first discuss the encoder-decoder CNN
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Figure 1: The proposed framework for saliency segmentation.

followed by our loss function and finally our semantic dis-
tance measure.

2.1 Encoder-Decoder CNN for Feature Extraction

Saliency segmentation usually requires global information
about the image [Wang et al., 2015], and thus multi-scale in-
formation is beneficial for more precise image segmentation.
To learn this global information with deep learning, we use
convolutions and pooling layers to increase the receptive field
of the model and compress all feature information into feature
maps whose size are 1× 1, as shown as the white box in Fig-
ure 1. For multi-scale information, in previous approaches
such as SegNet [Badrinarayanan et al., 2017] and U-net, the
encoder-decoder is used to extract multi-scale features. Here
we use a similar structure. Through the decoder module, we
up-sample these feature maps and view the feature map at
each scale as representing information at a certain semantic
level. We propose a symmetric encoder-decoder CNN archi-
tecture to extract global and multi-scale feature maps.

The encoder-decoder network of Figure 1 uses a deep sym-
metric CNN architecture with skip connections as indicated
by black arrows. It consists of an encoder half and a decoder
half, each block of which contains one of the two basic blocks
shown in Figure 2. For encoding, at each down-sampling step
we double the number of feature channels using a convolution
with stride 2. For decoding, each step in the decoder path con-

Figure 2: Basic encoder (left) and decoder (right) blocks.

sists of an up-sampling of the feature map by a deconvolution
after concatenating the input with the skip connection, also
with stride 2. This part is similar to U-Net, but the difference
is that U-net is designed for image segmentation, which is ob-
jective and works well even with cropped feature maps. For
saliency segmentation, it is subjective and easily affected in
different scenarios. Thus, global information is of significant
importance to salient object segmentation. We maintain the
size of the feature map to make full use of all the information
in the larger receptive field. Our goal in using a symmetric C-
NN is to generate different scales of feature maps, which are
concatenated to obtain feature vectors for each corresponding
pixel in the input image that contain multi-scale information
across the channel dimension. For instance, previous work in
this direction showed that deep CNNs can learn such a feature
representation that captures local and global context informa-
tion for saliency segmentation [Zhao et al., 2015].

We ultimately want to distinguish salient objects from
background and so want to map image pixels into a feature
space where that distance across salient and background re-
gions is large, but within regions is small. Therefore, as
shown in Figure 1, we can convert the 13 different scales of
the encoder-decoder network into a set of feature vectors as
indicated by the green dashed lines. That is, in the feature
extraction part, each scale generates one output feature map
of the same size via a single convolution and up-sampling;
while the first “feature map” is simply obtained from con-
volving the original image across its RGB channels. Though
the proposed algorithm is similar to the Hypercolumns model,
one difference is that when training, the Hypercolumns mod-
el predicts heatmaps from feature maps of different scales
by stacking additional convolutional layers. Hypercolumns
is more like DHSNet [Liu and Han, 2016] which uses multi-
scale saliency labels for segmentation. Instead, MEnet up-
samples each scale of feature map to the same size during
training. Another difference is that, where Hypercolumns
classifies each category at separate layers, MEnet integrates
the multi-scale feature maps for these tasks. As these 13 fea-
tures may have unequal information value, learn this with
another convolutional filter of these 13 feature maps. After
concatenating the feature maps at each level we further use
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convolutional operations with 16 kernels to generate the final
feature maps. We incorporate cross entropy to help with this
task, as described in the following section. In this case, the
final feature vector is in R

16.

2.2 Loss Function

Many previous works on saliency detection based on deep
learning uses cross entropy (CE) to optimize the network [Li
and Yu, 2016; Luo et al., 2017]. This loss function is written
as follows:

LCE(l|θ1) = −
1

N × |Ω|
× (1)

N
∑

n=1

|Ω|
∑

i=1

1
∑

y=0

1{l
(n)
i = y} lnP (l

(n)
i = y|θ1),

where θ1 is the set of learnable parameters of network, Ω is
the pixel domain of the image, LCE denotes the loss of the
entire training set, N is the number of training data, 1{·}
is the indicator function, and y ∈ {0, 1}, where y = 1 de-
notes the salient pixel and y = 0 denotes the non-salient pix-

el. P (l
(n)
i = y|θ1) is the label probability of the i-th pixel

predicted by network. In MEnet, we generate P (l
(n)
i = y|θ1)

via a convolution with 2 kernels from feature extraction part
as shown in Figure 1.

Metric learning has been widely used in computer vision
tasks. For instance, in [Fathi et al., 2017; Harley et al., 2017],
the idea of metric learning is applied to segmentation. How-
ever, in [Fathi et al., 2017], only one scale of the input corre-
sponds to one corresponding size feature map, while we pro-
pose to use more feature maps from different scales to gen-
erate the final saliency map. In [Harley et al., 2017], local
attention masks are constructed by pairwise distance compu-
tations from a neighborhood around each pixel, which may
not be suitable for saliency segmentation. Therefore, we in-
stead use the triplet loss to compute the global information.
Our metric loss function (ML) is defined as in Equation 2.
In our network, the input is an RGB image whose size is
H ×W × 3, and all the images are resized to 224× 224× 3,
hence H = W = 224 here. The output is a feature metric
space which is generated by 16 kernel convolutions in Figure
1, and the size is H ×W × C (we set C = 16). Each pixel
in the H ×W image corresponds to a C-dimension vector in
the salient feature map. The metric loss function is defined as
following:

LML(f |θ2) =
1

N × |Ω|
× (2)

N
∑

n=1

|Ω|
∑

i=1

[

∑

k∈set+

‖f
(n)
i − f

(n)
k ‖22

|set+|
−

∑

k∈set−

‖f
(n)
i − f

(n)
k ‖22

|set−|

]

,

where θ2 is the set of learnable parameters of network and

f
(n)
i denotes the feature vectors corresponding to the pixel in

the n-th image of the training set. We denote k ∈ set+ (or

k ∈ set−), with Ω = set+ ∪ set−, meaning that f
(n)
k is the

positive or negative feature vector of f
(n)
i , respectively. That

is, either f
(n)
i and f

(n)
k are from the same region (salient or

non-salient), otherwise, f
(n)
k is from a different region from

f
(n)
i . We use Euclidean distance to calculate the distance

between two feature vectors.
This loss function in (2) encourages an encoder-decoder

network that enlarges the distance between any pair of feature
vectors having different saliency, and reduces the distance for
those with the same saliency. This is equivalent to

L∗
ML(f |θ2) =

1

N × |Ω|

N
∑

n=1

|Ω|
∑

i=1

(

‖f
(n)
i − f̄+

(n)
‖22

−‖f
(n)
i − f̄−

(n)
‖22
)

,

(3)

where we average all f
(n)
k in Equation 3 to get f̄+

(n)
and

f̄−
(n)

. That is f̄+
(n)

is the mean of all positive pixels from

a single image, while f̄−
(n)

corresponds to all negative pix-
els. Intuitively, Equation 3 enforces that the feature vectors
extracted from the same region be close to the center of that
region while keeping away from the center of the other region
in salient feature space. In this case, we can obtain a more ro-
bust distance evaluation between the salient object and back-
ground. We also add a second cross entropy loss function as
a constraint which shares the same network architecture with
the objective function and empirically we have observed that
the combined results were significantly better than only using
either the metric loss or the cross entropy loss alone. There-
fore, our final loss function is defined as below:

LMEnet(f, l|θ) = L∗
ML(f |θ2) + λLCE(l|θ1), (4)

where θ = θ1 ∪ θ2 and λ is set to 1 in our experiments.

2.3 Semantic Distance Expression

If we train the proposed MEnet to minimize the loss function
LMEnet(·), we will obtain a network Tθ∗ , where θ∗ is con-
verged value of θ. Given an observed input image for testing,
where the pixel domain is Ω, we usually describe pixel i ∈ Ω
by its intensities Ii across the channels. But it is difficult to

define the semantic distance by dIΩij = d(Ii, Ij), e.g., by Eu-

clidean distance dij = ‖Ii − Ij‖2. However, through trans-
formation of Tθ∗ , we will obtain the corresponding feature
vectors {fi}i∈Ω to represent the input. Then the distance can

be expressed as d′ij = d
Tθ∗ (IΩ)
ij = ‖fi − fj‖2, and finally the

saliency map S for saliency segmentation is obtained by:

Si = ‖fi − Efj∼PB(·)fj‖2 = ‖fi −
∑

j∈ΩB

PB(fj)fj‖2, (5)

where PB(·) is the probability distribution of the feature vec-
tor fj ∈ ΩB , and Ω = ΩB ∪ ΩS , where ΩB and ΩS de-
note the background region and salient region only computed
from the component of LCE in the loss function (4) within
the converged network Tθ∗ . We note that, ΩB and ΩS are not
accurate segmentations and they are to be further investigated
in the experimental section. To conclude, by network trans-

formation we can express dIΩij as d
Tθ∗ (IΩ)
ij . As illustrated in

Figure 3, we anticipate that through this space transformation,
the intra-class distance will be smaller than the inter-class dis-
tance.
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Figure 3: Idealized semantic distance expression with MEnet.

3 Experiments

We test our proposed MEnet on several public saliency
datasets and distorted images, comparing with state-of-the-
art saliency detection methods. We use the Caffe software
package to train our model [Jia et al., 2014].

3.1 Datasets

The datasets we consider are: MSRA10K [Cheng et al.,
2015], DUT-OMRON (DUT-O) [Yang et al., 2013], HKU-
IS [Li and Yu, 2015], ECSSD [Yan et al., 2013], MSRA1K
[Liu et al., 2011] and SOD [Martin et al., 2001]. MSRA10K
contains 10000 images. It is the largest dataset and cover-
s a large variety of content. HKU-IS contains 4447 images,
most images containing two salient objects or multiple ob-
jects. ECSSD dataset contains 1000 images. DUT-OMRON
contains 5168 images, which was originally designed for im-
age segmentation. This dataset is very challenging since most
of the images contain complex scenes. Existing saliency
detection models have yet to achieve high accuracy on this
dataset. MSRA1K including 1000 images, all belongs to the
MSRA10K. SOD contains 300 images.

3.2 Training

We use stochastic gradient descent (SGD) for optimization,
and the MSRA10K and HKU-IS are selected for training. For
MSRA10K, 8500 images for training, 500 images for valida-
tion and the MSRA1K for testing; HKU-IS was divided into
approximately 80/5/15 training-validation-testing splits. To
prevent overfitting, all of our models use cropping and flip-
ping images randomly as data augmentation. We use batch
normalization [Ioffe and Szegedy, 2015] to speed up conver-
gence.

All experiments are performed on a PC with Intel(R) X-
eon(R) CPU I7-6900k, 96GB RAM and GTX TITAN X Pas-
cal (12G). We use a 4 convolutional layer block in the upsam-
ple and downsample operations. Therefore the depth of our
MEnet is 52 layers. The parameter sizes are shown in Figure
1 and Figure 2. We set the learning rate to 0.1 with weight
decay of 10−8, a momentum of 0.9 and a mini-batch size of
5. We train for 110,000 iterations. Since salient pixels and
non-salient pixels are very imbalanced, network convergence
to a good local optimum is challenging. Inspired by object
detection methods such as SSD [Liu et al., 2016], we adopt
hard negative mining to address this problem. This sampling

scheme ensures salient and non-salient sample ratio equal to
1, eliminating label bias.

3.3 Performance Comparison

We compare MEnet with 10 state-of-the-art models for
saliency detection: MC [Zhao et al., 2015], ELD [Wang et
al., 2015], DCL [Li and Yu, 2016], DHSNet [Liu and Han,
2016], DS [Li et al., 2016], UCF [Zhang et al., 2017b], A-
mulet [Zhang et al., 2017a], SRM [Wang et al., 2017], NLDF
[Luo et al., 2017], MSRNet [Li et al., 2017] and 2 tradition-
al metric learning methods: AML [Li et al., 2015] and Lu’s
method [You et al., 2016].

A visual comparison is shown in Figure 4 along with oth-
er state-of-the-art methods. MEnet performs better in these
challenging scenes, e.g., when the salient region is similar
to background. In addition, F-measure scores and MAE are
shown in Table 1. We note that the better models (e.g.,
DHSNet, NLDF, Amulet, SRM, MSRNet and etc.) need
pre-training and the conditional random field (CRF) method
[Krähenbühl and Koltun, 2011] is used as post-processing
in DCL and MSRNet. MEnet is trained from scratch and
does not require pre/post-processing. It is still competitive
with state-of-the-art models, particularly on the challenging
datasets DUT-O and HKU-IS.

Table 2 shows the running times of the compared method-
s. For fair evaluation, the time efficiency of all models are
performed on the same PC described above. It takes 86ms for
our model to generate each saliency map with a GPU. Though
our model is deeper, our test time is comparable with the fast
models.

Evaluation on Distorted Images

We also test the models on distorted images. We note that
MEnet does not train on distorted images for this case, as sim-
ilar to previous works. During testing, the trained models are
then directly tested on distorted images. To show the robust-
ness of MEnet in this setting, we work with public datasets
corrupted by Additive White Gaussian Noise (AWGN) and
JPEG compression (with random strengths). For AWGN, we
let the variance vary from 0.07 to 0.29, while for JPEG com-
pression, we vary the quality factor from 3 to 6. We com-
pare F-measure scores in Table 3. We can see that MEnet
clearly outperforms other methods. Additionally, we show
PR curves of our approach in Figure 5. Since the saliency
maps generated by metric loss prediction tend to be binary, it
is difficult to draw PR curves which need continuous salient
values. Therefore, we select saliency maps generated by CE
prediction to draw PR curves. In Figure 5, we observe that
the performance of the proposed method is a little better than
others on distorted datasets. As shown in Figure 7, the per-
formance of other methods degrade rapidly with increasing
noise, while MEnet still achieves robust performance. We
believe reason for the robustness of MEnet owes to the fac-
t that multi-scale features and metric loss are integrated into
this structure, where features from either low or high levels
can be fully utilized. In particular, we can see some evidence
in [Du et al., 2017] for denoising which uses an auto-encoder
(similar to our Encoder-Decoder module) to obtain more ro-
bust features. A similar metric loss idea was shown to be ro-
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DUT-O HKU-IS ECSSD MSRA1K SOD
F β ↑ MAE ↓ F β ↑ MAE ↓ F β ↑ MAE ↓ F β ↑ MAE ↓ F β ↑ MAE ↓

Ours 0.732 0.074 0.879 0.044 0.880 0.060 0.928 0.028 0.594 0.139
SRM 0.718 0.071 0.877 0.046 0.892 0.056 0.894 0.045 0.617 0.120

MSRNet 0.695 0.074 – – 0.868 0.056 0.903 0.036 0.579 0.124
NLDF 0.691 0.080 0.873 0.048 0.880 0.063 – – 0.591 0.130
Amulet 0.654 0.098 0.841 0.052 0.873 0.060 – – 0.550 0.160

UCF 0.645 0.132 0.820 0.072 0.854 0.078 – – 0.557 0.186
DCL 0.660 0.095 0.844 0.063 0.857 0.078 0.922 0.035 0.573 0.147
DS 0.646 0.084 0.790 0.079 0.834 0.079 0.858 0.059 0.552 0.141

DHSNet – – 0.859 0.053 0.877 0.060 – – 0.594 0.124
ELD 0.618 0.092 0.779 0.072 0.810 0.080 0.882 0.037 0.540 0.150
MC 0.622 0.094 0.733 0.099 0.779 0.106 0.885 0.044 0.497 0.160

Table 1: Comparison of quantitative results including F-measure (lager is better) and MAE (smaller is better). The top two results are
indicated by • and ◦, respectively. DHSNet is trained on MSRA-B and DUT-O, MSRNet is trained on HKU-IS and MSRA-B, and UCF,
Amulet and NLDF are all trained on MSRA-B dataset which contains MSRA1K. Therefore, we do not compare our model with these four
models on these datasets.

(a) Images (b) GT (c) Ours (d) SRM (e) MSRNet (f) NLDF (g) Amulet (h) UCF (i) DHSNet (j) DCL (k) DS (l) ELD (m) MC

Figure 4: Visual comparisons with nine methods. MEnet can obtain detailed and accurate saliency maps.

Figure 5: Comparison of precision-recall curves of other CNN-based methods on four datasets corrupted by AWGN (with random strengths).

Ours SRM MSRNet NLDF Amulet UCF DCL DS DHSNet ELD MC

s/img 0.086 0.091 4.678 0.071 0.061 0.111 0.53 0.104 0.019 0.78 1.8

Table 2: Running time of the compared methods.

bust to lighting conditions, deformation, and angle for human
re-identification [Yi et al., 2014], all of which can be regard-
ed as “noise.” Also, for vehicle re-identification, the distance
similarity has been shown to provide vital information for ro-

bustly estimating the similarity among objects [Shen et al.,
2017]. In real-world scenes, images are easily impacted by
noise and compression. Therefore, we consider the proposed
work to be a more robust model.
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DUT-O HKU-IS ECSSD MSRA1K SOD
AWGN JPEG AWGN JPEG AWGN JPEG AWGN JPEG AWGN JPEG

Ours 0.586 0.649 0.710 0.801 0.716 0.792 0.867 0.910 0.466 0.485
SRM 0.200 0.543 0.221 0.658 0.215 0.663 0.504 0.819 0.136 0.415

MSRNet 0.561 0.590 – – 0.711 0.752 – – 0.459 0.470
NLDF 0.402 0.561 0.531 0.700 0.565 0.693 – – 0.352 0.433
Amulet 0.534 0.529 0.677 0.686 0.695 0.708 – – 0.420 0.420

UCF 0.519 0.524 0.656 0.682 0.668 0.698 – – 0.381 0.418
DCL 0.374 0.523 0.477 0.677 0.505 0.657 0.664 0.832 0.286 0.386
DS 0.368 0.497 0.477 0.611 0.532 0.649 0.619 0.771 0.313 0.405

DHSNet – – 0.605 0.735 0.622 0.753 – – 0.394 0.461
ELD 0.454 0.548 0.531 0.686 0.603 0.730 0.737 0.841 0.376 0.444
MC 0.415 0.496 0.475 0.539 0.509 0.648 0.747 0.787 0.305 0.392

Table 3: Quantitative comparison with recent deep methods based on deep learning methods in difference distorted scenes via F-measure
(lager is better). The top two results are indicated by • and ◦, respectively. DHSNet is trained on MSRA-B and DUT-O, MSRNet is trained
on HKU-IS and MSRA-B, and UCF, Amulet and NLDF are all trained on MSRA-B dataset which contains MSRA1K. Therefore, we do not
compare our model with these four models on these datasets. JPEG denotes JPEG Compression method.

(a) Image (b) GT (c) MEnet (d) Scale0-or

(e) Scale0-en (f) Scale1-en (g) Scale2-en (h) Scale3-en

(i) Scale4-en (j) Scale5-en (k) Scale5-de (l) Scale4-de

(m) Scale3-de (n) Scale2-de (o) Scale1-de (p) Scale0-de

Figure 6: Feature maps visualization, where (d)-(p) denote the dif-
ferent scale features as shown in Figure 1 (Feature Extraction Part).

Advantages of MEnet

In previous work, multi-scale features have been applied to
produce saliency maps [Liu and Han, 2016; Zhang et al.,
2017a]. Although this is similar to our approach, there ex-
ist some differences in that these mentioned works predict
saliency maps at each scale and so feature maps from the last
layer of each scale may be similar. We propose to integrate
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Figure 7: The curves of difference methods on DUT-O dataset under
various noise variances.

multi-scale feature maps for classification and distance pre-
diction. We only concatenate the feature maps to generate the
final saliency maps.

To intuitively illustrate the advantage of MEnet, we select
several feature maps for visualization. As we move to deeper
layers, the receptive field of each neuron becomes larger. As
shown in Figure 6, we observe that each convolutional layer
contains different semantic information, and moving deeper
allows the models to capture richer structures. Within the de-
coding part, Scale2-de, 3-de, 4-de are sensitive to the salient
region, while Scale1-de has higher response against the back-
ground region. Other layers like Scale0-de can distinguish
the boundary of salient objects.

Also, in [Liu and Han, 2016; Zhang et al., 2017a], a con-
volutional layer with 1× 1 kernels is used to fuse multi-scale
features, which may lead to the receptive field being restrict-
ed. Instead of using 1 × 1 convolutions in the last layer, we
instead use an n× n convolution in the last layer, containing
more units to capture information from its neighborhood.
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Data Indexes CE-plain CE-only MEnet

DUT-O
F β ↑ 0.631 0.678 0.732

MAE ↓ 0.098 0.084 0.074

HKU-IS
F β ↑ 0.803 0.872 0.879

MAE ↓ 0.064 0.056 0.044

ECSSD
F β ↑ 0.794 0.855 0.880

MAE ↓ 0.093 0.072 0.060

MSRA1K
F β ↑ 0.884 0.915 0.928

MAE ↓ 0.037 0.034 0.028

SOD
F β ↑ 0.525 0.555 0.594

MAE ↓ 0.156 0.159 0.139

Table 4: The performance of different strategies.

Data Indexs AML Lu’s MEnet

ECSSD
F β ↑ 0.667 0.715 0.880

MAE ↓ 0.165 0.136 0.060

MSRA1K
F β ↑ 0.794 0.806 0.928

MAE ↓ 0.089 0.080 0.028

Table 5: Comparison with two traditional methods based on metric
learning with F-measure and MAE scores.

To show the effectiveness of our proposed multi-scale fea-
ture extraction and loss function, we use different strategies
for semantic saliency detection/segmentation as shown in Ta-
ble 4. CE-only uses the cross entropy as its loss function,
while CE-plain omits the feature extraction part and metric
loss layer, and the loss layer is added directly to the decoder
module in the framework. Therefore, the difference between
CE-only and CE-plain is that CE-plain does not use multi-
scale information which will lead to performance degrada-
tion. We also note that the performance of MEnet improves
after introducing the metric loss. The multi-scale framework
(encoder-decoder) and metric loss help make it feasible to
distinguish saliency from background during training.

We compare MEnet with two other traditional metric learn-
ing methods for saliency segmentation, AML [Li et al., 2015]

and Lu [You et al., 2016]. The results in Table 5 demonstrates
the potential superiority of deep metric learning over tradi-
tional metric learning for semantic saliency segmentation.

4 Conclusion

In this paper, we present an end-to-end deep metric learn-
ing architecture called MEnet for salient object segmenta-
tion. We use multi-scale features extraction to obtain se-
mantic information and combine with deep metric learning
for mapping pixels into a “saliency space” where Euclidean
distances can be used. The resulting mapping distinguishes
salient image elements (pixels) from background efficient-
ly. The proposed model is trained from scratch and does
not require pre/post-processing. Experiments on benchmark
datasets clearly demonstrate the effectiveness of our model,
and robustness when handling distorted images.
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