
303

Menhir: An environment for high

performance Matlab

Stéphane Chauveau and François Bodin ∗

IRISA-INRIA, Campus de Beaulieu, 35042 Rennes,

France

E-mail: {schauvea, bodin}@irisa.fr

In this paper we present MENHIR a compiler for generating

sequential or parallel code from the MATLAB language. The

compiler has been designed in the context of using MAT-

LAB as a specification language. One of the major features

of MENHIR is its retargetability to generate parallel and se-

quential C or Fortran code. We present the compilation pro-

cess and the target system description for MENHIR. Prelim-

inary performances are given and compared with MCC, the

MathWorks MATLAB compiler.

1. Introduction

Current approaches for the development of numer-

ical applications are frequently decomposed in two

phases. First a prototype or specification is written us-

ing a popular high level tool such as MATLAB [6].

Then, the application is rewritten in Fortran or C so

efficiency can be achieved. When high performance is

needed, the application is also parallelized. This man-

ual process is error prone and very time consuming

which makes MATLAB compilers very attractive, espe-

cially when the target is a parallel computer.

Automatically generating an efficient implementa-

tion from a MATLAB code encompasses two main as-

pects. First, the generated code must be efficient and

able to exploit a wide range of architectures from se-

quential computers to parallel ones. Secondly the user

must be able to change the generated code so it can be

automatically inserted or exploited in an existing de-

velopment environment. For instance, when the user

has special data structures for implementing its matri-

ces and the corresponding specific highly optimized li-

braries the compiler should be able to exploit them.

*Corresponding author.

In this paper, we present MENHIR (Matlab ENviron-
ment for HIgh peRformance) a multi-target compiler
for MATLAB 4.2.1 The main feature of MENHIR is its
target description system which allows to address se-
quential and parallel computers. The user may add its
own data structures and functions to this description,
thus enabling better code generation. To exploit paral-
lelism MENHIR relies on libraries such as ScaLapack
[3].

In Section 2, we present a short summary of related
tools. In Section 3, we overview the MENHIR’s target
system description (MTSD). In Section 4, we describe
the type analysis and the code generation method used
in MENHIR. Finally in Section 5, we present prelim-
inary performance results on a set of MATLAB pro-
grams running on sequential and parallel architectures.

2. Related works

Number of studies have already been based on the
MATLAB language. The first set of tools are interpreted
MATLAB clones such as SCILAB [10] and OCTAVE

[4]. Another class of tools proposes parallel extensions
to MATLAB such as message passing in MultiMatlab
[11] or a client-server mechanism in MathServer [8].

Two existing compilers MCC, distributed by MATH

WORKS, and Falcon are available to generate efficient
codes. The FALCON [9,5] system encompasses a com-
piler and an interactive environment for transforming
and optimizing MATLAB programs. The Falcon project
was focused on type analysis which is one of the key
points in compiling MATLAB. MENHIR differs from
this two systems by two aspects. Firstly MENHIR re-
lies on a retargetable code generator which Falcon and
MCC do not. Secondly, MENHIR is able to exploit par-
allel numerical libraries.

Ramaswamy et al. [7] have developed a compiler to
exploit simultaneously the task and data parallelism.
This is not a full MATLAB compiler; it accepts only a
small subset of the language.

1With a few restriction such as the operators eval, feval that take

MATLAB statements as input are not supported.

Scientific Programming 7 (1999) 303–312

ISSN 1058-9244 / $8.00 1999, IOS Press. All rights reserved

304 S. Chauveau and F. Bodin / Menhir: An environment for high performance Matlab

3. Menhir’s target system description (MTSD)

The MTSD is a major component of MENHIR. Its

goal is to describe the property and implementation

details of target system. The target system, in our

case, is a programming language such as Fortran, C or

other and a linear algebra library. The MTSD indicates

to MENHIR how to implement the matrix data struc-

tures as well as all the MATLAB operators and func-

tions. MENHIR code generation algorithm is indepen-

dent from the target system. In Table 1, we present the

main constructs of the MTSD. These constructs in-

dicate to MENHIR how to allocate and access matri-

ces and declare the library functions which implement

MATLAB operators and functions.

As shown in Table 1(b), the data structures are de-

scribed in an object oriented manner. Each data struc-

ture is described in a class construct which members

specify its properties. The fields elem, shape, min-

real, maxreal, minimag and maximag respec-

tively indicate the basic type of the elements of the data

structure, the rank of the structure and a complex value

interval. The prop field is used to declare properties

about the content of the objects. These properties are

declared as shown in Table 1(a). They are associated

to classes, variables and expressions results and prop-

agated by the type analysis presented in Section 4.1.

The identifier bname indicates that the data structure

is inherited from class bname. This mechanism de-

fines new classes with different properties but which

share the same implementation. In example Table 1(b),

the class UTMatReal is declared to the compiler to

be an upper triangular matrix with element values in 0

to 216
− 1 which is implemented with the same data

structure as the real matrix (i.e., MatReal). The de-

fault data structures to be used by the code generator

are declared as shown Table 1(c).

The declaration of the accesses to data structure el-
ements is shown Table 1(g) while code generation for
memory allocation is illustrated in Table 2(j). The as-
sign and cast constructs are provided to copy and
convert data structures from one type to another. Cast
operations are necessary to ensure that the result of op-
erators/functions can be converted in a format suitable
to the routines exploiting the results. They are shown
Table 1(f).

MATLAB operators and functions are declared as
shown in Table 1(d) and 1(e). The code to gener-
ate is an expression or a sequence of statements. For
each parameter in the list an attribute (att) and a type
(classname) are given. The attribute indicates how the
parameter is used in the target code; out for a re-
sult, const for a constant variable, expr for an ex-
pression (i.e., without an address) etc. The type indi-
cates the data structure class name. Contrary to op-
erators, MATLAB functions are declared in two parts
(Table 1(e)). First some target subroutines are declared.
Then, they are gathered in the function construct.
MATLAB control statements are defined similarly as
shown in Table 1(h).

The conform statement iterators given in Table 1(i)
are used by the compiler to implement conform state-
ments, such as the point-wise addition of two matri-
ces, in an efficient manner that minimizes the number
of temporary variables. For instance, if we consider the
MATLAB expression R = B − A ∗ x, an implemen-
tation based on library function calls would imply to
generate the code in two parts, first T = A ∗ x and
then R = B − T resulting in poor performance. In-
stead, MENHIR generates the following C code using
the loop construct, see Program Code 1.

As this is illustrated on this example, the generated
code can be close to what “hand programming” would
produce. In the case of parallel code generation, a sim-
ilar principle, shown in Table 1(k), is used to describe
the scanning of a distributed matrix local elements.

...

for (tmp136 = 1; tmp136 <= tmp128; tmp136++) {

for (tmp135 = 1; tmp135 <= tmp127; tmp135++) {

(*tmp133++) = ((*tmp129++)-

((*tmp131++)*tmp94));

}

tmp129 = &tmp129[tmp130];

tmp131 = &tmp131[tmp132];

tmp133 = &tmp133[tmp134];

}

...

Program Code 1.

S. Chauveau and F. Bodin / Menhir: An environment for high performance Matlab 305

Table 1

Target system description content. Examples are given for target language C

What Syntax Example

(a) Properties property name ; property DIAG ;

property UPPERTRI ;

(b) Data Structure class name : bname class UTMatReal: MatReal

elem = id elem = Real ;

shape = scal,row,col,matrix shape = matrix;

minreal = constant ; minreal = 0 ;

maxreal = constant ; maxreal = 216;

minimag = constant ; prop = UPPERTRI;

maximag = constant ; end

prop = list of properties;

end

(c) Default Data Structure default shape, elemtype default matrix,complex = MatComplex ;

[,prop] = classname default matrix,real,DIAG = DiagMatReal;

(d) MATLAB Operators inline name (att classname var1,...) inline real @op_add(real A,int B)

=> statement 1 "(A+((double)B))" ;

=> ...

;

inline res name (att classname var1,...)

“expression” ;

(e) MATLAB Functions inline func1(parameters) inline C_lup_real(out MatReal MATL,

=> code; out MatReal MATU, ...,MatReal MATA)

; =>lup_RRI_R(&MATL,&MATU,&MATP,&MATA);

function res = name(parameter) ;

add func1; function [L,U,P] = lu(A)

add func2; add C_lup_real(L,U,P,A) ;

end function end function

(f) Assign and Cast Operators inline @assign(out classname r, inline @assign(out MatReal DEST,

const classname i) const TranspMatReal SRC)

=> statement 1 ; => transpose_R_R(&DEST,&SRC) ;

=> ...; ;

; inline int @cast(RowInt VAR)

inline classname @cast(att "VAR.get(1)"

classname var) ;

“expression”

;

(g) Index Accesses inline @get|put|...() inline real @get(MatReal MAT)

=> statement 1 ; "get_Rii(&MAT,I1,I2)" ;

=> ...; inline @put(MatReal MAT,real VAL)

; => set_Riir(&MAT,I1,I2,VAL) ;

;

(h) MATLAB Control Statement inline @do(real CPT,real START, inline @do(real CPT,real START,

const real STEP,real END) const real STEP,real END)

=> loop code(BODY); => for(CPT=START;CPT<=END;

; => CPT+ =STEP){

=> BODY

=> }

;

306 S. Chauveau and F. Bodin / Menhir: An environment for high performance Matlab

Table 1

(Continued.)

What Syntax Example

(i) Conform Statement Iterators inline @loop(local variablelist) inline @loop(local int I1,int I2)

=> statement 1(BODY) ; => for (I1=1;I1<=DIM1;I1++)

=> ...; => for (I2=1;I2<=DIM2;I2++)

; => {

=> BODY

=> }

;

(j) Memory Management, inline @declar(classname var) inline @declar(MatReal MAT)

Declaration, Target => statement 1 ; => MatReal *MAT ;

Language Statements => ...; ;

; inline @alloc(MatReal VAR,

inline @alloc(classname var, int DIM1,int DIM2)

int DIM1,int DIM2) => alloc_R(&VAR,DIM1,DIM2) ;

=> statement 1 ; ;

=> ...;

;

(k) Local scan of defaccess matrix name ; defaccess matrix paralocal ;

distributed matrix inline @loopinit:name(classname var) inline @loopinit:paralocal(PMatReal

=> statement 1 ; MAT)

; => LOCD1 = MAT.local.dim1;

inline @loop:name(parameter list) => LOCD2 = MAT.local.dim2;

=> statement 1 ; ;

; inline @loop:paralocal(..., int LOCD1,

inline real @get:name(classname var) int LOCD2)

“(expression)” ; => STAT1

=> for (I2=1;I2<=LOCD2;I2++){

=> for (I1=1;I1<=LOCD1;I1++) {

=> BODY }

=> STAT2 }

;

inline real @get:paralocal(PMatReal

MAT)

"(*PTR++)" ;

4. Overview of Menhir’s compilation process

MENHIR’s compilation process is divided in the fol-

lowing steps:

(1) lexical and syntactic analysis: this step per-

forms the lexical and syntactic analysis of the

MATLAB M-Files.

(2) identifiers analysis: this preliminary step of

the type analysis determines the nature of each

identifier. The nature of an identifier can be a

script file (M-file), a function or a variable.

(3) function cloning and restructuring in canon-

ical form: At this step all functions are cloned

and most of the special cases of MATLAB are

reduced by expanding them in a canonical form.

At this step temporary variables are introduced

to limit code expansion for large expressions.

All runtime choices are expanded at that step.

(4) type analysis and dead code elimination: this

type analysis determines the properties of each

expression and variable according to the seman-

tic of MATLAB and the target system descrip-

tion. If an operator or a function returns spe-

cial properties of an object then they are propa-

gated. Once done, the type analysis is completed

by removing all dead codes (i.e., runtime op-

erator/function selections that have been solved

S. Chauveau and F. Bodin / Menhir: An environment for high performance Matlab 307

statically). The remaining conditionals are left

as run-time checking.

(5) data structure selection: This step selects an

implementation for each variable according to

the type computed in previous step and the de-

fault given in the MTSD (Table 1(c)).

(6) operators and functions implementation se-

lection: At this step operator and function im-

plementations are selected. Data structure casts

are inserted to ensure that returned results can

be used as input parameters of the subsequent

function calls.

(7) code issue: This step gathers the selected imple-

mentations to issue the final code.

In the following we present in more details steps 4

and 6.

4.1. Type analysis

The type analysis is a major component in MEN-

HIR as it strongly influence the quality of the gener-

ated code. In MATLAB, all operators and functions are

polymorph and the default is to implement all objects

as complex matrices. Furthermore, variable types can

change during the program execution and matrices can

be resized by any assignment. An accurate analysis

reduces runtime type checking overheads and allows

to select the appropriate library methods (for instance,

operators on floats instead of complex variables).

A type in MENHIR is defined as a set of possible

shapes (scalar, row vector, column vector and matrix),

an interval of complex values, a string/integer status

and a set of properties defined by the classes in the

MTSD.

The type analysis proceeds as follow. First it ex-
pands all choices that can happened at run-time and

then, using the type analysis removes, when possible,

previously introduced tests:

1. Modifying the MATLAB abstract syntax trees

considers two cases:

(a) The checking of matrices’ ranks and dimen-

sion sizes is added. Fig. 1 shows the transfor-

mation to take into account the possible rank

of the variables for the MATLAB expression
(A+B). In the body of the conditionals the

variables ranks are known.

(b) Inlining of the possible implementation of-

fered by the MTSD is performed using the
SELECT construct. The SELECT state-

ment is similar to a classical SWITCH state-

ment but allows to have more than one case

to be verified. The SELECT construct is il-
lustrated in Fig. 2. This figure shows the

computation of the maximum of two scalar

values. If the values are integers then both

methods can be used indifferently. Because,
the compiler assumes that cases’ order reflect

the implementation’s cost (the first ones the

cheapest) it chooses the integer maximum. In

a non-retargetable compiler, the effect of the
SELECT construct would be hardwired in

the type analyzer and the code generator.

if (dim(A)==1)

if (dim(B)==1)

% scalar case

D=max(A(1×1),B(1×1))(1×1)*C ;

else

D=max(A(1×1),B(p×q))(p×q)*C ;

end

else

if (dim(B)==1)

I1 : D=max(A(m×n),B(1×1))(m×n)*C ;

else

if (dim1(A)==dim1(B) et dim2(A)==dim2(B))

D=max(A(m×n),B(p×q))(m×n)*C ;

else

error(...)

end

end

end

Fig. 1. Expansion of the expression max(A,B).

308 S. Chauveau and F. Bodin / Menhir: An environment for high performance Matlab

2. The second step propagates the variable’s types.

This information allows to remove dead code and

tests that might occur at run-time. Tests that have

not be removed at compile time are left for run-

time selection of the proper methods for imple-

menting the operators. The type propagation al-

gorithm is interprocedural and based on an iter-

ative data flow solver [1] which is closed to the

one proposed by DeRose [9].

The information on element’s value type (integer,

float or complex) does not have the same status as the

rank and sizes of the dimensions of matrices. Indeed, it

is always possible, in MATLAB, to use complex com-

putation instead of integer or float ones. We use this

possibility to reduce the code expansion. If the type

analysis finds out that a variable is either an integer or

a complex value, then only the complex computation

is used. This may, in practice, decrease the efficiency

of the generated code.

To select optimized functions, the MTDS class

properties are also propagated by the type analysis. To

illustrate this feature consider the following MATLAB

statement sequence:

A = triu(...);

...

v=b/A;

MATLAB function triu returns a matrix that is upper

triangular. To execute efficiently instruction v=b/A,

we want the generated code to call a specific solver that

does not check at runtime if matrix A is upper triangu-

lar. This is achieved in MENHIR by having the follow-

ing declarations in the MTSD:

property UPPERTRI

class UTMatReal : MatReal

prop = UPPERTRI;

end ;

inline triu_Real(out UTMatReal A,

MatReal B)

=> ... ;

;

function [A] = triu(B)

add triu_Real;

...

end function

inline @op_matdiv(MatReal RES,

MatReal PARAM1,

UTMatReal PARAM2)

=> ...;

;

SELECT

CAS (A and B are integers)

C = max_int(A,B) ;

CAS (A and B are reals)

C = max_float(A,B) ;

DEFAUT

error(...)

END

Fig. 2. SELECT statement.

This powerful feature is not restricted to MATLAB

functions and operators. User’s libraries can be ex-

ploited in a similar fashion.

4.2. Directives to improve the type analysis

However, in many cases, there is not enough infor-

mation to propagate in a MATLAB program to compute

accurately the objects’ types. Via directives, MENHIR

allows to specify information on objects that are used

by the type analysis. For instance the directive %$VAR

x : no MASK declares that the variable x is not ac-

cessed using a mask index. (A mask variable in MAT-

LAB is a matrix containing only 0 or 1 element values

used as booleans.) Others directives available in MEN-

HIR allow to indicate to the compiler the shape and el-

ement types of variables.

For instance, let us consider the following function

that computes, by a conjugate gradient algorithm, the

vector x such that A*x=b.

function [x,nb_iter]=grad(A,x,b,tol)

r=b-A*x ;

v=r ; c=norm(r)^2 ;

for k=1:500

res = norm(v) ;

if (res<tol) , break , end

z=A*v ; t=c/(v’*z) ;

x=x+t*v ; r=r-t*z ;

d=norm(r)^2 ; v=r+(d/c)*v ;

c=d ;

end

res = norm(v) ;

nb_iter=k ;

The function accepts parameters of various shapes

although it has been written for a matrix A, two col-

umn vectors x and b and a scalar tol. We can ex-

pect that the compiler is able to extract this informa-

tion from the calling code. If not (or if the code is com-

piled to be linked with a C or Fortran program), it gen-

erates many useless cases. The user can help by in-

S. Chauveau and F. Bodin / Menhir: An environment for high performance Matlab 309

serting some directives to indicate to the compiler that

the input parameters are matrices and columns differ-

ent from scalars; We use the directives Smatrix (i.e.,

2D and dimensions’sizes > 1) and Scolumn (1D with

a size > 1).

function [x,nb_iter]=grad(A,x,b,tol)

%$PRAGMA A : Smatrix ;

%$PRAGMA b : Scolumn ;

%$PRAGMA x : Scolumn ;

r=b-A*x ;

... \\

4.3. Code generation

The code generation must solve three problems:

(1) selecting the data structure for each variable and

expression according to the type analysis,

(2) selecting the implementations for MATLAB op-

erators and functions,

(3) inserting data structure cast operations (i.e., data

structure conversion).

The three problems are inter-dependent as choos-

ing variables’ implementation first influence the im-

plementation of the functions and operators and vice

versa. The cast insertion depends on the matches be-

tween the data structures and the operators implemen-

tation chosen.

Data structure choice, for a variable is performed

first according to the uses of the variable and accord-

ing to a default choice declared in the MTSD. For in-

stance, declaring matrix(real) = MatReal in-

dicates to use the MTSD class MatReal as the de-

fault implementation for the matrices of reals.

When generating the code for functions calls and
MATLAB expressions not only the implementation is
needed but also it is necessary to choose the type of
accesses (i.e., a matrix/vector as a whole, elementary
with row scanning, local, distributed, etc.) and the stor-
age nature (i.e., if the code contains expressions that
are not associated to memory addresses, if the variable
is modified or not). These data are gathered in tuples
(MTSD class, storage, access, type) call code genera-

tion contexts. For instance, in the MATLAB statement
A=B+1, the nature of the subexpression A is var (for a
modified variable);B is const (a non modified variable)
and B+1 is expr (an expression not stored in a vari-
able). The compiler can associate the nature var to B if
it can prove that B is not used after the statement. This
allows the use of optimized codes that might modify
their first parameters. For instance, if B is a matrix, its
value can be incremented and its memory is associated
to the matrix A using an efficient exchange of pointers.

Choosing the implementation of the functions and
operators is performed in two steps:

(1) Possible choices are expanded according to the
chosen variable implementation. For instance,
several codes can be declared for the ∗ operator,
see Program Code 2.

(2) “Cast” operations are inserted to convert “con-
texts” between statements. These casts are need-
ed to ensure that the operators and functions pa-
rameters fulfill the requirements of their imple-
mentations. For instance, the following casts a
real matrix of size 1 × 1 into a real scalar.

inline real @cast(const MatReal MAT)

"MAT.data[0]" ;

Assignments can also be inserted to transform
expressions into variables (from the nature expr

to the nature const):

% Scalar implementation of *

inline int @op_mult(expr int A,expr int B) "(A*B)" ;

inline @op_mult(out int C,expr int A,expr int B)

=> C=(A*B)" ;

inline real @op_mult(expr real A,expr real B) "(A*B)" ;

% Optimized implementation of * for diagonal matrices

inline @op_matmult(out DiagMatReal RES, const DiagMa-

tReal PARAM1,

const DiagMatReal PARAM2,local IND)

=> alloc_Diag(RES,PARAM1.size) ;

=> for (IND=0;IND<PARAM1.size;IND++)

=> RES.diag[IND]=PARAM1.diag[IND]*PARAM2.diag[IND];

;

Program Code 2.

310 S. Chauveau and F. Bodin / Menhir: An environment for high performance Matlab

Fig. 3. Code generation graph for MATLAB code C=A+b; x=C/d;. MatComp, MatReal, ColReal, ColComp, and ScalReal, respectively

denote complex matrices, float matrices, float column vectors, complex column vectors, and float scalars data structures.

% Scalar implementation of *

inline @assign(int DEST,expr

int SRC)

=> DEST=SRC ;

These two steps are implemented by building on

the flight a directed acyclic graph. Vertices correspond

to variables, MATLAB operators/functions and data

structure conversion subroutine. An example of such a

graph is shown Fig. 3. Code generation consists then

in selecting a set of paths that covers all program state-

ments and variables (indicated in gray in Fig. 3). For

more details the reader can refer to [2].

5. Preliminary performances

In this section, we present preliminary performance

obtained using MENHIR on a single processor Sun

workstation and on a parallel computer Onyx SGI with

4 processors R10000. The sequential codes are gener-

ated using a target system description based on the La-

pack library while the parallel codes are obtained using

ScaLapack. The parallel codes are SPMD and the same

data distribution (block-cyclic) is used for all matrices.

Only a small number of directives (20 for all bench-

marks) were inserted in the MATLAB codes. Because

MENHIR relies on parallel libraries and conform op-

S. Chauveau and F. Bodin / Menhir: An environment for high performance Matlab 311

Table 2

MATLAB program code sizes and corresponding

generated C code sizes (in lines).

Benchmark Matlab code size C code size

gauss 70 200

chol 180 620

pfl 200 9000

INT 1 140 4700

INT 4 200 3100

erations but not, yet, on MATLAB loops, program that

does not exhibit coarse grain matrix operations were

not run in parallel. This is the case of the benchmarks

gauss, a MATLAB program computing a gaussian elim-

ination written in a “Fortran style”, chol, an incom-

plete Cholesky factorization, pfl, an iterative method

for eigenspace decomposition by spectral dichotomy,

and INT1, INT4 two differential equation integration

algorithms. The sizes of the MATLAB programs and

the generated codes are given in Table 2. Cloning, per-

formed at step 3 of the compilation process, can sub-

stantially generate large target codes as shown for the

program pfl.

Two programs illustrate the parallel code genera-

tion: a conjugate gradient algorithm with precondition-

ing and a Jacobi computation.

Fig. 5 gives the execution times. On the x axis, MAT-

LAB 4.2 and 5 correspond to the MATLAB interpreters

execution time, MCC is the execution time of the code

produced by the MathWorks compiler, MENHIR is the

...

m=size(A,1) ;

n=size(A,2) ;

[M, N] = split(A , b, 1.0, 1) ;

for iter = 1:max_it,

x_1 = x;

y = N*x + b ;

x = M /y ;

error = norm(x-x_1)/ norm(x);

if (error <= tol), break, end

end

...

Fig. 4. Main loop of the Jacobi benchmark.

time for the sequential code generated by our compiler

and ONYX n×m are the execution times on the Onyx

parallel computer (n×m is the size of the logical pro-

cessor grid). As it can be seen, MENHIR performs bet-

ter than the interpreter and MCC except in one case,

chol. In this case MENHIR’s code contains float to in-

teger conversions that slow down the algorithm. MCC

uses the integer arithmetic provided by the architec-

ture. This is more efficient but some overflow errors

can appear.

In general, the code produced by MENHIR is close,

for most of the benchmarks to the “hand coded” ver-

sions of the algorithms. However, these “hand coded”

versions were not aggressively tuned.

Parallel codes reach good speedups thanks to the

ScaLapack library but also to the type analysis. Indeed,

Fig. 5. Execution time in seconds of the sequential and parallel generated C codes.

312 S. Chauveau and F. Bodin / Menhir: An environment for high performance Matlab

in the case of Jacobi, good performance is obtained

by propagating the information that the precondition-

ing matrix M, shown Fig. 4, is diagonal, avoiding the

run-time checking of this property.

6. Conclusion

In this paper we briefly presented MENHIR, a com-

piler for MATLAB. The strength of MENHIR is its orig-

inal target system description that allows to generate

code that exploits optimized sequential and parallel li-

braries. Performance shows that the generated code is

in most of the cases more efficient than the one ob-

tained by the Mathworks compiler MCC on sequential

workstation. Future work will focus on exploiting more

aggressively parallelism by also considering MATLAB

loops.

References

[1] A. Aho, R. Sethi and J. Ullman, Compilers: Principles, Tech-

niques and Tools, Addisson-Wesley, 1985.

[2] S. Chauveau, MENHIR. Un environnement pour l’exécution

efficace des codes Matlab (in French), PhD thesis, Université

de Rennes 1, February 1998.

[3] J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov,

A. Petitet, K. Stanley, D. Walker and R.C. Whaley, ScaLA-

PACK: A portable linear algebra library for distributed memory

computers – design issues and performance, Technical Report

CS-95-283, Computer Science Dept., University of Tennesse,

Knoxville, 1995. (LAPACK Working Note 95.)

[4] J.W. Eaton, ftp.che.utexas.edu/pub/octave.

[5] B.A. Marsolf, Techniches for the interactive development of

numerical linear algebra libraries for scientific computation,

PhD thesis, University of Illinois at Urbana-Champaign, 1997.

[6] The Mathworks, Inc., MATLAB, High-Performance Numeric

Computation and Visualization Software. Reference Guide, Au-

gust 1992.

[7] S. Ramaswamy, E.W. Hodges and P. Banerjee, Polaris: A new

generation parallelizing compiler for MPP, year = 1994 com-

piling MATLAB programs to ScaLAPACK: Exploiting task

and data parallelism, in: IEEE Symposium on Parallel and Dis-

tributed processing, 1996, pp. 613–619.

[8] M. Rezny, MATHSERVER: A client-server approach to scien-

tific computation, Department of Mathematics, The University

of Queensland, Australia.

[9] L. DeRose, Compiler techniques for MATLAB programs, PhD

thesis, University of Illinois at Urbana-Champain, 1996.

[10] Scilab, http://www-rocq.inria.fr/scilab.

[11] A.E. Trefethen, V.S. Menon, C.-C. Chang, G.J. Czajkowski,

C. Myers and L.N. Trefethen, MultiMATLAB: MATLAB on

multiple processors, Technical Report 239, Cornel Theory Cen-

ter, 1996.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

