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Abstract

Background: Recent studies of cortical pathology in secondary progressive multiple sclerosis have shown that a

more severe clinical course and the presence of extended subpial grey matter lesions with significant neuronal/glial

loss and microglial activation are associated with meningeal inflammation, including the presence of lymphoid-like

structures in the subarachnoid space in a proportion of cases.

Methods: To investigate the molecular consequences of pro-inflammatory and cytotoxic molecules diffusing from

the meninges into the underlying grey matter, we carried out gene expression profiling analysis of the motor

cortex from 20 post-mortem multiple sclerosis brains with and without substantial meningeal inflammation and 10

non-neurological controls.

Results: Gene expression profiling of grey matter lesions and normal appearing grey matter not only confirmed

the substantial pathological cell changes, which were greatest in multiple sclerosis cases with increased meningeal

inflammation, but also demonstrated the upregulation of multiple genes/pathways associated with the

inflammatory response. In particular, genes involved in tumour necrosis factor (TNF) signalling were significantly

deregulated in MS cases compared with controls. Increased meningeal inflammation was found to be associated

with a shift in the balance of TNF signalling away from TNFR1/TNFR2 and NFkB-mediated anti-apoptotic pathways

towards TNFR1- and RIPK3-mediated pro-apoptotic/pro-necroptotic signalling in the grey matter, which was

confirmed by RT-PCR analysis. TNFR1 was found expressed preferentially on neurons and oligodendrocytes in MS

cortical grey matter, whereas TNFR2 was predominantly expressed by astrocytes and microglia.

Conclusions: We suggest that the inflammatory milieu generated in the subarachnoid space of the multiple

sclerosis meninges by infiltrating immune cells leads to increased demyelinating and neurodegenerative pathology

in the underlying grey matter due to changes in the balance of TNF signalling.
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Background
Multiple sclerosis (MS) has long been considered a pre-

dominantly white matter (WM) disease due to the

presence of demyelinated plaques in major WM tracts,

observable at a gross anatomical level and using classical

histology and conventional magnetic resonance imaging

(MRI). Only during the last 15 years has the true extent

and clinical impact of cortical grey matter (GM) path-

ology been documented [3, 5, 31, 47]. Both neuroimag-

ing and human tissue studies indicate that the extent of

GM pathology correlates with disease severity and rate

of progression [6, 8, 22, 51] and is initiated at the earliest

stages of MS [7, 33]. Demyelinated lesions in cortical

GM are accompanied by axonal pathology and neuronal

and neuropil loss [36, 37, 43, 47, 60, 62] and the magni-

tude of this loss is associated with a shorter time to

milestones of clinical progression [29, 37, 51].
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There is extensive evidence from numerous studies for

significant ongoing inflammation in both the WM and

GM of the progressive MS brain, both SPMS and PPMS

[10, 20, 23]. But in contrast to the WM, lesions in the

GM are generally not accompanied by significant peri-

vascular infiltrates or evidence of blood-brain barrier

leakage [3, 59]. It is suggested that rather than an abrupt

transition from the acute episodes of peripheral immune

cell influx that characterise RRMS, it is likely that there

is a progressive build-up of sequestered inflammation in

the meningeal and WM and GM perivascular spaces

that become self-sustaining as MS progresses [5, 32, 51].

However, we know relatively little about the molecular

mechanisms involved in cortical tissue damage and the

relationship between inflammation and neurodegenera-

tion. Increased cortical demyelination, neuron and

neurite loss is associated with greater meningeal inflam-

mation [10, 29, 31, 33, 36, 37, 54], including the pres-

ence of aberrant tertiary lymphoid-like structures in a

significant proportion of cases [29]. Moreover, a strong

association between meningeal inflammation and sever-

ity of pathology has also been shown in the spinal cord

([2, 11] and in brain biopsies from patients with a recent

diagnosis of MS [33]. Such lymphoid-like aggregates of

immune cells are suggested to drive chronic inflamma-

tion in target organs in many other inflammatory or

autoimmune conditions [40, 46, 55] by accelerating and/

or maintaining the disease process. However, the mo-

lecular mechanisms by which they drive chronic disease

are not well established.

Further investigation of the nature of leptomeningeal

infiltrates in MS has shown that, in addition to B-

lymphocyte aggregates, they contain both CD4+ and

CD8+ T-lymphocytes [37], many of which express IFN-γ

[53], and myeloid cells expressing TNF [24]. Gene ex-

pression for TNF and IFN-γ is increased in SPMS cases

exhibiting meningeal lymphoid-like structures, together

with increased protein levels in the cerebrospinal fluid

(CSF) [35]. TNF and IFN-γ have been shown to act

synergistically to increase apoptosis in human oligoden-

drocytes in culture [48] and to upregulate TNFR1 ex-

pression, thereby rendering oligodendrocytes responsive

to TNF [1]. These data imply a direct role for meningeal

immune infiltrates in releasing relevant inflammatory

mediators that may diffuse through the adjacent cerebral

cortex to, directly and/or indirectly, mediate demyelin-

ation and neurodegeneration [37].

Whereas soluble TNF (sTNF) signals predominantly

via TNFR1 to promote pro-inflammatory reactions,

transmembrane TNF (tmTNF) signals via both TNFR1

and TNFR2 to activate protective and homeostatic

functions. Aberrant TNF production plays a role in the

pathogenetic mechanisms of many autoimmune and

chronic inflammatory conditions, including rheumatoid

arthritis, Crohn’s disease, psoriasis, systemic lupus ery-

thematosus, type II diabetes and atherosclerosis [28, 49].

Chronic overexpression of TNF by astrocytes in mice

causes CNS inflammation, oligodendrocyte apoptosis,

demyelination and neurological dysfunction [30], even in

the absence of mature lymphocytes. Selectively blocking

the effects of soluble TNF by treating EAE mice with a

dominant negative TNF monomer improved clinical out-

come by reducing the production of pro-inflammatory

cytokines and chemokines, whilst leaving tmTNF free to

signal via TNFR2 to promote repair and neuroprotection

[4, 9, 57]. Thus, there is increasing evidence that TNF

plays a major role in the pathogenesis of MS via TNFR1

signalling.

In order to identify some of the signalling pathways

that may be involved in the increase in cortical path-

ology in response to an increased inflammatory milieu

in the subarachnoid space, we have carried out a gene

expression profiling study on subpial cortical GM lesions

and nearby normal appearing GM from the motor cor-

tex of MS cases with substantial meningeal infiltration,

compared with cases with only mild meningeal inflam-

mation and non-neurological controls. In addition to

highlighting a number of the key molecular mechanisms

of cortical injury in progressive MS, our results suggest

that the degree of meningeal inflammation affects the

balance between TNFR1 pro-cell death and TNFR1/

TNFR2 pro-cell survival signalling, which then deter-

mines the severity of the pathology.

Materials and methods
Post-mortem MS and control tissues

All post-mortem tissues were obtained from the UK MS

Society Tissue Bank at Imperial College and were ob-

tained at autopsy with fully informed consent under eth-

ical approval by the National Research Ethics Committee

(08/MRE09/31), with the exception of 6 controls kindly

provided by Dr. Isidro Ferrer (Servicio Anatomia Patolo-

gica, Hospital Belvitge, Barcelona, Spain). The demo-

graphic data and clinical and neuropathological features of

the SPMS cases and controls are shown in Table 1. The

clinical diagnosis of MS was confirmed based on the

patient history (summarised by RN) and a detailed neuro-

pathological analysis (provided by FR) as described previ-

ously [51].

The current study was performed on precentral gyrus

(motor cortex, Additional file 1: Fig. S1A) snap frozen

tissue blocks (2 × 2 × 1 cm) from 10 cases of SPMS (me-

dian post-mortem delay (PMD) = 12 h; median age at

death = 42 years) previously characterised as exhibiting

lymphoid-like infiltrates in the leptomeninges (follicle-

positive SPMS), 10 cases of SPMS (median PMD = 12 h;

median age at death = 52 years) without organised men-

ingeal infiltrates (follicle-negative SPMS) and 10 non-
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neurological control cases (median PMD = 8 h; me-

dian age at death = 54 years). Clinical and neuropath-

ology details of the examined MS and control cases

are reported in Table 1. The same tissue blocks from

the same MS and control cases were previously ana-

lysed in our quantitative study of neuronal and glial

alterations in cortical pathology and the presence of

lymphoid-like immune cell aggregates was determined

as described previously [37].

Dissection of the cortical lesions and normal appearing

grey matter

For each precentral gyrus block (Additional file 1: Figure

S1A), one chronic active subpial grey matter lesion

(GML—type III; Additional file 1: Figure S1B) and one

nearby area of normal appearing grey matter (NAGM;

Additional file 1: Figure S1C) in the same tissue block

were identified by MOG and MHC class II immuno-

staining of 10-μm serial cryosections as previously

Table 1 Individual clinical, post-mortem and neuropathology details of the examined MS cases

Cases Sex/age of death (years) Post-mortem delay (hours) Age of onset (years) Disease duration (years)

Controls

C14 f/64 18

C25 m/35 22

C28 f/60 13

C41 m/51 22

A05-58 m/54 3

A05-149 m/55 5

A06-65 m/59 7

A06-189 f/47 9

A07-9 m/59 6

A07-67 m/47 4

Median 3f-7 m/54.5 8

Follicle-negative SPMS

MS003 m/55 44 34 21

MS042 m/51 8 29 22

MS056 m/63 11 24 39

MS074 f/64 7 28 36

MS100 m/46 7 38 8

MS104 m/53 12 42 11

MS114 f/53 12 37 16

MS127 m/51 21 28 23

MS163 f/45 28 39 6

MS200 m/43 20 24 19

Median 3f-7 m/52 12 31.5 20

Follicle-positive SPMS

MS079 f/49 7 25 24

MS092 f/27 26 20 7

MS121 f/49 24 35 14

MS136 m/40 10 28 12

MS153 f/50 12 18 32

MS154 f/35 12 23 12

MS160 f/44 18 28 16

MS176 m/37 12 10 27

MS180 f/44 9 26 18

MS234 f/39 15 24 15

Median 8f-2 m/42 12 24.5 15.5
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described [37]. Selection of the GML areas for dissection

was determined by the presence or absence of substan-

tial inflammatory infiltrates and tertiary lymphoid-like

structures in the immediately overlying meninges of the

individual block in the cases previously characterised as

F+ or F− SPMS [37]. Only subpial cortical lesions ex-

tending at least up to layer V were dissected (Additional

file 1: Figure S1B). The outlines of the areas of interest

were scored on the whole snap frozen tissue block with

a scalpel blade and 50–100–μm sections carefully cut on

a Leica cryostat. The dissection with the scalpel was lim-

ited to layer I to VI of the cortex and did not include

WM or meninges. Approximately 50–150 mg of tissue

was collected for each area. Fifty milligrams of tissue

yielded approximately 25 μg of total RNA, which was

sufficient for later analysis.

RNA extraction and quality assurance

RNA extractions were performed using the RNeasy Lipid

Tissue Midi Kit (Qiagen), which was designed for opti-

mal lysis of tissue rich in lipids, following procedures

previously optimised for use with human tissues [17].

The RNA concentration and quality were determined

using a Nanodrop 2000 spectrophotometer and Agilent

2100 Bioanalyser respectively. Only RNA samples of ex-

cellent quality and integrity (RIN > 7) were used for

gene expression and real-time RT-PCR analysis. The

mean RIN values (± SEM) for each of the examined

group of samples were 8.23 (1.88) for controls; 8.33

(0.72) for F+ GML; 7.79 (1.02) for F− GML; 8.36 (0.52)

for F+ NAGM; 7.69 (1.09) for F− NAGM.

Microarray hybridisation and scanning

Hybridisation of the RNA samples onto the Illumina

whole genome HumanRef8 v2 BeadChip arrays was con-

ducted at the Genome Centre at Queen Mary College,

University of London, following the procedures previ-

ously optimised [16]. All the labelling and hybridisation

of the samples (n = 60, including technical replicates

and human reference RNAs) were carried out in a single

experiment to reduce the technical variability. RNA sam-

ples were prepared using the TotalPrep-96 RNA amplifi-

cation kit (Ambion/Applied Biosystem, Warrington, UK)

following the manufacturer’s instructions. First- and

second-strand cDNA (dsDNA) was synthesised from

0.5 μg of total RNA and then purified. Biotin-labelled

cRNA was synthesised from dsDNA and then was cap-

tured using RNA binding beads, washed twice and

stored at − 20 °C. The concentration and quality of the

cRNA were checked using ND1000 Nanodrop and Agi-

lent 2100 Bioanalyser respectively. The samples were ap-

plied to the arrays and assembled into the BeadChip

Hybr Chamber and hybridisation was carried out using

the Illumina whole genome gene expression direct assay

system at 58 °C overnight. After washes, the signal was

developed with Streptavidin-Cy3 and the BeadChips

were scanned using the Illumina BeadArray Reader.

Data analysis, normalisation and pathway analysis

The data from the Illumina BeadArray Reader were

extracted using the BeadStudio 3.2 software package

(Illumina). The lists of data obtained using BeadStudio

3.2 were converted for data normalisation using the Ro-

setta Resolver ® system software (Rosetta Biosoftware)

[63] and analysed for gene differential expression ana-

lysis using the BRB-ArrayTools, developed by the Bio-

metric Research Branch of the Division of Cancer

Treatment & Diagnosis of the National Cancer Institute

(http://linus.nci.nih.gov/BRB-ArrayTools.html). Univari-

ate principal component analysis of the data obtained

from the Illumina arrays was conducted to detect arrays

of low quality using Rosetta Resolver software. No tech-

nical outliers were detected out of the 50 arrays. We

identified genes that were differentially expressed be-

tween each pathological condition and/or the control

group using a random variance t test. Several different

stringency conditions were tested in a permutation-

based false discovery rate (FDR) assessment performed,

as previously described [19], to determine the threshold

p value and fold change providing the optimal balance of

true vs false discovery. Briefly, microarrays were divided

in two groups containing the same number of experi-

mental (MS) and control samples, randomly assigned to

one of the two groups. Ten different sample permuta-

tions underwent class comparison analysis, and the me-

dian number of differentially expressed genes obtained

from all the iterations was compared with the numbers

obtained from the real experimental dataset to deter-

mine the overall FDR in our dataset. According to the

results of this test, genes were considered statistically

significant at p < 0.01 and fold change ± 1.5 (Additional

file 1: Figure S2). Average linkage hierarchical cluster

analysis using Pearson correlation with uncentered met-

rics was performed using gene cluster and data were

visualised by Treeview. Pathway analysis was performed

by means of the Gene Set Expression Comparison Tool

available in BRB Tools, consisting of a two-sample t test

(with random variance model) performed among control

and MS samples on the basis of 300 BioCarta Pathways

gene sets. Tests used to find significant gene sets were

the LS/KS permutation test, identifying gene sets which

have more genes differentially expressed among the

phenotype classes than expected by chance, and Efron-

Tibshirani’s GSA maxmean test, to identify differentially

expressed gene sets. The threshold of determining sig-

nificant gene sets was 0.05, and only when at least 2 out

the 3 statistical tests confirmed significance the pathway

was considered as valid.
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Real-time PCR verification

To confirm individual gene microarray results, the same

RNA samples used on the Illumina microarrays were

also used for quantitative real-time RT-PCR, using both

the QuantiTech® reverse transcription kit, the Quanti-

Tech® SYBR Green kit in combination with the Quanti-

Tech® primer assays (Qiagen) or TaqMan MGB probe

assays (Applied Biosystems) using respectively the

Mx3000P™ real-time PCR system (Stratagene, La Jolla,

USA) or the 7500 Fast Real-Time PCR System (Applied

Biosystems) according to the procedures previously opti-

mised [16, 24]. For all RT-PCR assays, the expression

levels of target genes were normalised to the levels of

the GAPDH housekeeping gene, which represented one

of the most stable housekeeping genes in the complete

dataset [15]. Quantitative analysis was performed evalu-

ating the ‘delta-Ct’ value (the factor 2 delta-Ct is used to

express the ratio between the gene of interest and the

internal reference gene).

Protein extract preparation and assay

Total protein extracts were prepared from sections,

cut as described above, from other GML areas from

the same cases used for the gene expression micro-

array, and analysed using the Human TNF-RI and

TNF-RII Ultra-Sensitive kits from MesoScale Discov-

ery (MSD, Maryland, USA), according to the manu-

facturer’s instructions.

Immunohistochemistry/immunofluorescence

Serial sections from the same snap frozen tissue blocks

used for RNA extraction were used for the immunohis-

tochemical analysis. Air-dried, 10-μm-thick cryosections

were rehydrated with PBS and immunostained with the

monoclonal or polyclonal antibodies listed in Additional

file 2: Table S1, following the immunohistochemistry

and/or immunofluorescence procedures previously de-

scribed in detail [36]. Antibody binding was visualised

using peroxidase or alkaline phosphatase systems (Vec-

tor Labs, Peterborough, UK) and with Alexa 488-, Cy3-,

rhodamine- or fluorescein-conjugated secondary anti-

bodies when using immunofluorescence.

Statistical analysis

The following software packages were used: GraphPad

Prism 7 (GraphPad Software Inc, La Jolla, CA, USA) and

Microsoft® Office Excel® 2007 (Microsoft UK Headquar-

ters, Reading, UK). Statistical analysis of the data was

performed using t test and the non-parametric Mann-

Whitney test, and differences were considered statisti-

cally significant if the p value was < 0.05.

Results
Global microarray datasets

Using a class comparison tool (p < 0.01 fold change >

1.5 vs control group), all possible comparisons between

each group of patients and tissues were made, providing

information on the total number of deregulated and

unchanged genes in each MS group compared with the

controls (Fig. 1a; Additional file 1: Figure S2A; Add-

itional file 2: Table S2). A total of 4658 transcripts

showed a significant alteration in any of the groups vs

control samples from healthy subjects. A permutation-

based false discovery rate (FDR) assessment estimated

that these stringency conditions generated, in our data-

set, a false discovery rate of 5.7% (Additional file 1:

Figure S2B, C), thus indicating that approximately 94%

of the observed alterations reflected true biological dif-

ferences between samples and not casual variations. The

complete data files are available at Gene Expression

Omnibus (accession number GSE135511).

Analysis of all individual gene changes in the different

MS groups compared with controls provided a general

picture of the transcriptional modulations specifically

observed in one group or shared among different groups.

A higher number of deregulated genes was found in F−

SPMS cases (GML—2366 genes (1148 up, 1218 down)

and NAGM—2176 genes (1058 up, 1118 down)) when

compared with those deregulated in the F+ SPMS group

(GML—522 genes (231 up, 291 down) and NAGM—555

genes (194 up, 361 down)) (Fig. 1a). This difference be-

tween the F+ SPMS and F− SPMS cases is also clearly

seen in the heatmap of the total gene expression profiles

(Additional file 1: Figure S2A). Of the genes that were

significantly altered in GML, 130 genes were found only

in F+ GML, 460 only in F− GML and only 15 genes

were changed in the GMLs of both F+ and F− SPMS

cases (Fig. 1a). In the NAWM, 86 genes were found sig-

nificantly deregulated only in F+ NAGM, 299 only in F−

NAGM, whilst only 12 genes changed in the NAGM of

both F+ and F− cases (Fig. 1a).

Analysis at an individual gene level

Of the 10 most upregulated genes in each group (Fig. 1b),

the immunoglobulin genes (IGLL1) and MHC class II

genes (HLA-DRB1) were upregulated to the greatest ex-

tent in all groups. As expected, the immunoglobulin genes

were upregulated to a greater extent in F+ SPMS cases

and to a similar extent in GML compared with NAGM

tissue. Of the other 10 most upregulated genes, there was

a significant representation of various proteases (e.g. SER-

PIN A3/A5). Of the 10 most downregulated genes in each

group (Fig. 1b), the greatest representation was of proteins

involved in neuronal function (PVALB, SCN1B, CTXN3,

TAC1, NMU, SST, MAP1B), in particular neuropeptide

synthesis.
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In agreement with our previous data showing

significant neuronal loss in all cortical layers [37], among

the genes with the greatest decrease in expression in the

MS group compared with controls were the neuronal

genes for parvalbumin (PVALB), glutamate decarboxyl-

ase 1 (GAD-1), NMDA glutamate receptor subunit 2A

(GRIN2A), the large, medium and low molecular weight

neurofilament proteins (NEFL, NEFM NEFH),

microtubule-associated protein 1B (MAP1B), voltage-

gated sodium channels sub-units (SCN1B) and synapto-

brevin (VAMP1), in addition to downregulation of other

neurotransmitter receptors, ion channels and growth

factors, such as FGF14 (table in Additional file 1: Figure

S3A). Most of the gene expression changes associated

with neuronal/axonal alterations, such as PARV, NEFL,

NEFM and NEFH, were also verified by real-time RT-

PCR and were found to be greater in F+ SPMS com-

pared with F− SPMS cases and controls (Additional file

1: Figure S3B-E). Upregulation of specific markers of

microglial activity, such as CD68 and inducible nitric

oxide synthase (iNOS), was also further validated by

real-time RT-PCR (Additional file 1: Figure S3F, G).

Gene ontology pathway analysis

In order to identify common biological functions attrib-

uted to the deregulated genes, we conducted a gene

ontology analysis at the BioCarta pathway level. When

controls were compared with all MS samples, we found

Fig. 1 a Venn diagram illustrating the relations among the genes differentially expressed in the precentral gyrus in control healthy donor tissue

compared with grey matter lesion (GML) and normal appearing grey matter (NAGM) of both F+ SPMS and of F− SPMS cases. Each oval

represents the list of genes differentially expressed between one condition and control group (p < 0.05 fold change > 1.5). Numbers in each

overlapped area indicate the numbers of differently expression genes shared by two or more conditions. Numbers in non-overlapping portion of

each oval show the number of transcripts uniquely deregulated in one condition. The brown intersection in the middle represents genes which

are significantly differentially expressed in all different conditions vs controls consistently. b Table reporting the list of the ten most regulated

upregulated and downregulated genes in each examined condition: grey matter lesion and normal appearing grey matter in follicle-positive or

follicle-negative MS cases respect to healthy controls. For each listed gene, the fold change of gene expression respect to controls and the p

value of the univariate test is expressed
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numerous gene-enriched pathways significantly deregu-

lated in the MS cases (p < 0.05 for LS/KS permutation

and Efron-Tibshirani’s GSA maxmean test), many of

which were associated with inflammatory responses and

cell death/cell survival signalling. Out of the 17 most sig-

nificantly deregulated gene pathways in the MS cortical

grey matter (shown in Fig. 2a), 2 are directly involved in

TNFR1/death receptor signalling and 8 are involved in

cell death/cell survival signalling (Fig. 2a). The complete

lists of deregulated pathways are available as Additional

file 2: Tables S3–S5.

When F+ SPMS cases were compared with F− SPMS

cases, we found 16 gene-enriched sets out of 63 differen-

tially regulated in the F+ cases (Additional file 1: Table

S4). Interestingly, dysregulation of gene pathways

involved in pro-inflammatory and cell death signalling,

such as TNFR1, TRAILR, IL-17, IL-3 and IL-4 signalling,

was observed. When the GML was compared with

NAGM for all the examined MS cases, we found only 12

(out of 42 detected) gene-enriched pathways significantly

deregulated in the GMLs. Two of these functional

groups were related to cytokine expression (Additional

file 2: Table S4) and included TNF, IFN alpha 1, IFN

beta 1, IL-17A, IL-4, IL-10 and IL-2.

TNF signalling pathways

Because the pathway analysis of all MS cases vs controls

indicated an overrepresentation of pathways involving

TNF/TNF receptor interaction and its many down-

stream signalling pathways (Fig. 2a), including cell death

Fig. 2 a Gene set enrichment analysis comparing controls vs MS samples at the Biocarta pathway level. The table reports the 17 pathways

showing the strongest modulation, selected for having a significant p value in at least 2 of the 3 different statistical approaches utilised (LS/KS

permutation and Efron-Tibshirani’s GSA test). b Heatmap showing the level of expression of TNF-related genes clustered into two distinct groups

of genes, pro-cell death and pro-survival signalling, preferentially expressed in the cortical lesions (GML) of follicle-positive secondary progressive

MS case (F+ SPMS) and of follicle-negative secondary progressive MS case (F− SPMS) respect to the cortex in healthy controls. Asterisks define

the gene validated by real-time RT-PCR
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signalling, we decided to further analyse the expression

of genes involved in TNF/TNFR1 and TNF/TNFR2 in-

teractions, in preference to other significantly deregu-

lated pathways. The data clearly indicated that when the

genes involved in TNF signalling were segregated ac-

cording to TNFR1/RIP1-mediated cell death pathways vs

TNFR1/TNFR2/NFkB-mediated cell survival signalling

(Fig. 2b), there was a clear difference between the F+

SPMS and F− SPMS cases. Whereas F+ SPMS cases

showed enrichment for upregulated genes involved in

TNFR1 cell death signalling, F− SPMS cases showed en-

richment for TNFR1/TNFR2 cell survival signalling.

Therefore, we further investigated differential expression

of individual genes in these pathways.

TNF receptor expression in the motor cortex of secondary

progressive MS cases

Among the TNF-related genes differentially deregulated

in F+ and F− SPMS cases compared with controls, sig-

nificant and different changes were seen for the two

TNF receptors. In order to verify these data, TNFR1 and

TNFR2 gene expression was analysed using qRT-PCR.

This confirmed significant increases in TNFR1 gene ex-

pression in GML (4.50-fold, p < 0.001) and NAGM

(2.53-fold, p < 0.001) of F+ SPMS cases and smaller in-

creases in GML (3.17-fold, p < 0.001) and NAGM (2.30-

fold, p < 0.001) of F− SPMS cases (Fig. 3a). Moreover,

the expression of TNFR1 was 1.78-fold higher (p < 0.05)

in GML of F+ SPMS compared with GML of F− SPMS

cases. In contrast, significant increases in TNFR2 gene

expression were detected only in the GML (fold change

= 4.61, p < 0.001) and NAGM (fold change = 4.03, p <

0.001) of F− SPMS cases, but not in F+ SPMS cases

(Fig. 3b). Electrochemiluminescence-based protein ana-

lysis (MesoScale Discovery V-Plex plates) on extracts from

dissected chronic active subpial GM lesions from 10 F+

SPMS, 10 F− SPMS and normal GM from 5 controls

demonstrated a significant increase in TNFR1 protein ex-

pression (1.90-fold, p ≤ 0.01) only in F+ SPMS cases with

respect to controls (Fig. 3c), whereas significantly in-

creased TNFR2 protein expression (1.80-fold, p ≤ 0.01)

was present only in F− SPMS cases with respect to

Fig. 3 Real-time RT-PCR gene expression of TNFR1 (a) and TNFR2 (b) in the precentral gyrus, both grey matter lesion (GML) and normal

appearing grey matter (NAGM), of 10 F+ and 10 F− SPMS cases compared with 10 controls (***p < 0.001, **p < 0.01, *p < 0.05). Protein expression

of TNFR1 (c) and TNFR2 (d) in precentral gyrus, both grey matter lesion (GML) of 10 F+ and 10 F− SPMS cases compared with 5 controls (**p <

0.01, *p < 0.05). For each statistical comparison, the p value, obtained by non-parametric Mann-Whitney test, has been reported
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controls (Fig. 3d). However, we did not find a significant

difference between the F+ SPMS and F− SPMS cases at

the protein level for either receptor.

In order to better understand the cortical cell expres-

sion of the two TNF receptors, immunohistochemistry

and double immunofluorescence were performed using

TNFR1- and TNFR2-specific antibodies. TNFR1 was

predominantly detected on cells morphologically resem-

bling oligodendrocytes and neurons (Fig. 4a, e). Double

immunofluorescence demonstrated that TNFR1 was

predominantly expressed by Olig2+ oligodendrocytes

(Fig. 4b–d), in particular in the most inner cortical layers

V and VI, close to the WM, and by small numbers of

NeuN+ neurons (Fig. 4f, g) in the most external cortical

layers I–III. TNFR2 was predominantly detected in the

most external cortical layers I and II on cells with rami-

fied astrocyte-like morphology, in particular in layer I in

close association with the pial membrane (Fig. 4h), or in

adjacent layer II (Fig. 4 j). Double immunofluorescence

confirmed that TNFR2 was expressed by GFAP+ astro-

cytes (Fig. 4i, k), both on the cell body and processes.

TNFR2 was also detected on CD68+ microglia close to

the pial surface and in the most external cortical layers

I–II (Fig. 4l), occasionally with a macrophage-like

morphology (Fig. 4m–o).

Increased meningeal inflammation is associated with a

change in the balance of TNF signalling

In order to verify changes to the different TNF signalling

pathways in GMLs in F+ SPMS compared with F−

SPMS cases seen in the microarray analysis, we carried

out RT-PCR for key genes in these pathways. Although

gene expression for a number of different caspases

(CASP3, CASP7) involved in the apoptotic cascade was

upregulated in F+ SPMS by 60% and 66% compared with

controls (Fig. 5a, b), the key regulator gene, CASP8, was

non-significantly decreased by 50% (Fig. 6a), suggesting

that there was not an increase in apoptotic signalling in

the F+ SPMS GMLs. However, a number of genes in-

volved in TNF/TNFR1-stimulated necroptotic signalling

were significantly upregulated in the F+ SPMS cortex,

including the key kinases RIPK1 (88%), RIPK3 (160%)

and MLKL (135%) (Fig. 5a), which together upon phos-

phorylation induce necroptosis in conditions of caspase

8 and FADD deficiency via a number of different path-

ways. RIPK1 ubiquitinylation inhibits the necroptotic

Fig. 4 Localisation of TNFR expression in the precentral gyrus of SPMS cases. TNFR1 was found expressed by cells with morphology resembling

oligodendrocytes (a) as validated by double immunohistochemistry (b) and double immunofluorescence (c, d) with the olig2 oligodendrocyte

marker. Furthermore, TNFR1 was found expressed by cells with neuronal morphology (e) as validated by double immunofluorescence (f, g) with

NeuN marker of neuronal nuclei. TNFR2 was found expressed by cells with astrocyte morphology (h, j), in particular in the external cortical layer I

(h) and II (j). Double immunofluorescence (i, k) with GFAP-specific astrocyte marker confirmed that TNFR2 was mainly expressed by cortical

astrocytes. TNFR2 was found expressed also by rare activated microglia/macrophages CD68+ cells (l–o) in the external cortical layers of grey

matter lesions. Original magnifications: × 100 (l), × 200 (g, h, j); × 400 (a–f, i, k, m–o)
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pathway, but upregulation of the RNF11 (121%) and

CYLD (126%) genes only in the F+ SPMS cortex would

act to de-ubiquitinylate RIPK1 and thereby promote

necroptosis (Fig. 5a). The LOX (lipid hydroperoxidase)

pathway involved in oxidative stress-mediated mitochon-

drial dysfunction and consequent necroptosis [14] was

also found significantly upregulated (57%) only in F+

SPMS cases. Increased expression of the HSP70 (151%)

and TNFAIP3 (55%) genes, which would inhibit activa-

tion of NFkB [14, 27], was found only in the GML of F+

SPMS cases (Fig. 5a). The combined results suggest that

TNF/TNFR1-stimulated necroptotic signalling is upreg-

ulated in the MS cortex in conditions of increased men-

ingeal inflammation (Fig. 5b).

Fig. 5 a Real-time RT-PCR expression of genes related to TNF/TNFR1 pathway overexpressed in the precentral gyrus grey matter lesions (GML) of

10 F+ SPMS cases compared with both controls and to 10 F− SPMS cases (***p < 0.001, **p < 0.01, *p < 0.05). For each statistical comparison, the

p value, obtained by non-parametric Mann-Whitney test, has been reported. b Schematic diagram of molecular changes involved in TNF/TNFR1

stimulated necroptotic/apoptotic signalling significantly upregulated in particular in the F+ SPMS cortex (red boxes). Pink boxes represent genes

that were downregulated in F+ SPMS cases. Changes in both GML and NAGM in each group have been pooled
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Fig. 6 a Real-time RT-PCR expression of genes related to TNF/TNFR2 pathway overexpressed in the precentral gyrus grey matter lesion (GML) of

10 F− SPMS cases compared with both controls and 10 F+ SPMS cases. For each statistical comparison, the p value, obtained by non-parametric

Mann-Whitney test, has been reported (***p < 0.001, **p < 0.01, *p < 0.05). b Schematic diagram of molecular changes involved in TNF/TNFR2

stimulated cell survival signalling significantly upregulated in the F− SPMS cortex (dark green boxes). Light green boxes represent genes that

were upregulated in F− SPMS cases but to a lesser extent than in F+ SPMS cases. Changes in both GML and NAGM in each group have

been pooled
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In contrast to F+ SPMS cases, in F− SPMS cases, there

was a significant upregulation of genes involved in

TNFR1/TNFR2-mediated signalling via NFkB (Fig. 6a,

b). Increased gene expression of RIPK1 (70%), FADD

(96%), TRADD (173%) and cFLAR (130% increase) was

seen in the F− SPMS GMLs (Fig. 6a), which would direct

signalling towards NFkB activation. Increased expression

of IKκB (98%) and NFkB (250%), together with increased

expression of genes for anti-apoptotic molecules and

survival factors, such as cFLAR (125%), RELA (85%),

AKT (125%) and XIAP (47%), was detected only in F−

SPMS and not in F+ SPMS (Fig. 6a). The increased gene

expression of CASP8 in the F− SPMS cortex would also

inhibit necroptotic signalling (Fig. 6a). Collectively, these

results would suggest that TNF signalling via both

TNFR1 and TNFR2 is directed more towards increasing

cell survival in F− SPMS (Fig. 6b).

Discussion
Chronic inflammation that is sequestered within the

CNS is suggested to be one of the main drivers of the

accumulation of neurological deficit during the progres-

sive stages of MS [5, 13] and is manifest in the cerebral

cortical grey matter as a build-up of meningeal immune

cell infiltrates [29, 36], subpial demyelination [3, 31, 36]

and neuronal and axonal damage [8, 25, 37, 43, 47, 62].

We show here, using gene expression profiling of

demyelinated and normal appearing grey matter from

the motor cortex of secondary progressive MS cases with

high and low levels of meningeal immune cell infiltrates,

that at the RNA transcript level, there is a change in the

balance of TNF signalling pathways from TNFR1/2-acti-

vated NFκB-dependent cell survival towards TNFR1 ac-

tivated RIPK3 dependent necroptotic cell death with

increasing levels and organisation of meningeal infiltra-

tion. Such an altered balance, varying in its extent be-

tween different MS cases, may help explain the

heterogeneity seen in the degree of cortical pathology

and its contribution to disease progression.

Previous studies of gene expression changes in MS

cortical grey matter have studied MS cases that have not

been stratified in any way and have considered relatively

small numbers [19, 58]. When the present data from the

study of 20 SPMS cases are considered without any prior

stratification, the results are largely in agreement with

previous studies and identify changes to individual genes

and gene networks involved in activated microglial func-

tion, inflammatory processes, oxidative stress [20] im-

munoglobulin synthesis [58], neuronal damage and

mitochondrial dysfunction [19]. The finding of Ig-related

genes as one of the group of genes with the highest level

of upregulation is consistent with a previous finding [58]

and may be explained not only by the presence of con-

taminating RNA from the adjacent meninges containing

B cells and plasma cells but also by the increased fre-

quency of perivascular B cell infiltrates previously identi-

fied in cortical grey matter from MS cases with

increased meningeal inflammation [38]. Previous studies

have also highlighted the presence of neuronal and

axonal degeneration in the NAGM [19] and have sug-

gested their role in the accumulation of irreversible dis-

ability in progressive MS. Our finding of significant

decreases in gene expression for multiple neuronal and

synaptic proteins confirms and extends this to show that

similar changes occur in both GMLs and NAGM, sug-

gesting that the mechanisms leading to neuronal degen-

eration may be largely independent of demyelination.

Although previous studies have illuminated a number

of downstream pathogenetic mechanisms involved in

cortical damage [18–20, 26], they have not been able to

identify possible initial inflammatory and/or neurode-

generative triggers for the subsequent cascade of patho-

logical events [5, 12]. In light of our previous findings

suggesting a link between meningeal inflammation and

increased demyelinating and neurodegenerative path-

ology, we have specifically sought to understand the mo-

lecular mechanisms by which increasing cortical

pathology occurs by stratifying well-characterised MS

cases into those with high levels of meningeal infiltrates

with lymphoid-like tissue formation and those with

lower levels of diffuse meningeal infiltrates. The pres-

ence of lymphoid-like structures in the meninges of a

substantial proportion of cases with secondary progres-

sive MS (SPMS), that associates with more extensive

subpial cortical damage, early disease onset and rapid

clinical progression [29, 37, 51], suggests that diffusion

of cytotoxic and myelinotoxic factors from the inflamed

meninges across the compromised glia limitans might

have a major role in causing injury in the adjacent cor-

tical GM. Furthermore, increased levels of gene and pro-

tein expression for TNF and IFN-γ are found when

increased meningeal infiltration is seen [35]. Therefore,

it is not unexpected that there would be an upregulation

of TNF signalling pathways in the MS cortical grey

matter.

Substantial evidence exists for a role for TNF in the

pathogenesis of MS [28, 52], both in the relapsing-

remitting stage that is driven by the peripheral immune

response, and also in the progressive stage when a com-

partmentalised inflammatory response may predominate.

Our finding that an unbiased pathway analysis of cortical

grey matter tissue revealed changes to multiple pathways

and processes involving TNF/TNFR interaction extends

this evidence to include a role in the pathogenesis of

cortical injury. The finding of significant changes to

TNF/TNFR signalling pathways at the bulk transcript

level when comparing all MS cases to controls, which

then were shown to vary according to the level of
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meningeal inflammation, provides further confirmation

of a major role for TNF in the genesis of cortical path-

ology in MS. Local delivery of TNF into the CNS by in-

traventricular injection exacerbates EAE clinical disease

[56] and local transgenic production in the CNS by as-

trocytes results in an inflammatory demyelinating path-

ology [30, 50]. The different responses to binding of

sTNF and tmTNF to TNFR1 and TNFR2 in the in-

flamed CNS have recently been elucidated in EAE mice

[4, 34, 57, 64] and demonstrate that, whereas binding of

sTNF to TNFR1 results in the production of pro-

inflammatory cytokines and increased pathology, binding

of tmTNF to TNFR2 promotes remyelination and neu-

roprotection. TNFR1-mediated signalling in the absence

of TNFR2 expression results in exacerbated chronic EAE

disease [34]. The change in the balance of TNFR1- vs

TNFR2-mediated signalling pathways at the gene expres-

sion level in the MS cortical GM in response to the de-

gree of meningeal inflammation supports these animal

studies. However, it needs to be emphasised that our

data suggests that there is a change in the balance of

TNFR2 to TNFR1 signalling, not a complete shift. Al-

though we have separated the MS cases into those with

organised lymphoid-like structures in the meninges (i.e.

high levels of inflammation) and those without (lower

levels of inflammation), in reality it is a biological con-

tinuum. Therefore, follicle-negative cases also have a

variable level of cortical demyelination, neurodegenera-

tion and diffuse meningeal infiltrates, but at a lower level

than the follicle-positive cases.

Although the levels of TNFR1 and TNFR2 protein

were not significantly different between F+ SPMS and F

− SPMS cases, our further analysis of the downstream

pathways suggests that the increased pro-inflammatory

reactions in the MS meninges, indicated by increased

levels in patient CSF [35], direct soluble TNF/TNFR1

interaction towards RIPK1/RIPK3/MLKL-mediated

necroptosis, rather than caspase 8-dependent apoptosis

or IKK/NFkB-dependent cell survival. This is in agree-

ment with a recent study in which RIPK3-mediated

necroptosis was demonstrated in oligodendrocytes in the

MS brain under caspase 8-deficient conditions [42].

Similar to this study, we found that reduced CASP8 and

c-FLIP gene expression was accompanied by increased

expression of genes, such as CYLD and RNF11, involved

in de-ubiquitination of RIPK1, that in combination with

increased RIPK3 expression would direct TNF signalling

towards necroptosis [14, 41, 44]. Our data adds to this

finding by suggesting that this signalling/cell fate may be

directed by soluble mediators originating from the in-

flamed meninges and may also be involved in neuronal

damage in MS, although this will require confirmation

via single-cell RNA analysis and further protein localisa-

tion studies. However, in keeping with this idea, the

predominant localisation of TNFR1 in the MS cortical

grey matter was in neurons and oligodendrocytes and a

recent study of the topography of demyelination and

neurodegeneration in MS highlighted the association of

oxidative injury to neurons with an increased inflamma-

tory process in the meninges [25]. The shift away from

apoptosis agrees with a number of studies showing that

only rarely could apoptotic neurons be observed in the

MS cortical layers [37, 47]. However, definitive evidence

for this change in the balance of cell death pathways in

the MS cortex must await specific and reliable histo-

logical and molecular markers of necroptosis [44], which

are currently not available. It is also not possible to say

whether such changes in TNF signalling leading to neur-

onal cell death are specific to MS or may occur in other

chronic CNS inflammatory conditions characterised by

meningeal inflammation [20]. Tuberculous meningitis

(TBM) is probably the most studied of the non-MS con-

ditions that can give rise to a more long-term meningeal

inflammation. Whilst elevated TNF levels are seen in the

CSF of some TBM patients, there is no consistent pat-

tern and the levels are not related to severity or clinical

course of disease [39, 45]. No detailed molecular study

of TNF signalling in brain tissue from TBM has been

carried out and elevated meningeal inflammation is

present for a much shorter time than is the case in MS.

However, it is possible that there are effects of chronic

TNF cytotoxicity in the TBM brain. Although it has

been shown that subpial cortical demyelination is not a

feature of TBM [20, 37], it is not known whether there

is a significant loss of cortical neurons similar to that

seen in MS. To date, it has not been possible to procure

suitable frozen tissue samples from non-MS chronic in-

flammatory CNS conditions that have a similar disease

duration.

When the level of inflammation was lower in the MS

meninges, TNF/TNFR1 and TNF/TNFR2 signalling ap-

peared to be directed more towards IKK/NFkB-mediated

cell survival. The upregulation of CASP8, TRADD,

FADD and RIPK1 in the presence of increased c-FLIP

expression, as seen in the F− SPMS cortex, would be ex-

pected to inhibit both necroptotic and apoptotic signal-

ling and lead to IKK complex formation and NFκB

activation and translocation [14]. Our finding of TNFR2

expression predominantly in cortical astrocytes and

microglia, in particular in the most external cortical

layers, and the concomitant evidence of significant up-

regulation of TNFR2 gene expression only in F− SPMS

but not in F+ SPMS cases, suggests that this mechanism

may protect both oligodendrocytes and neurons via in-

direct pathways. Selective stimulation of human-TNFR2

on astrocytes in culture has been shown to lead to leu-

kaemia inhibitory factor secretion, which promotes

oligodendrocyte survival and differentiation [21] and
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stimulation of TNFR2 on mouse microglia leads to the

upregulation of anti-inflammatory cytokines [61]. Thus,

the lack of activation of TNFR2-mediated pathways in

the MS cortex in the presence of increased meningeal

inflammation would have a deleterious effect not only by

exacerbating cell loss/damage but also by inhibiting tis-

sue repair. Again, it needs to be noted that the degree in

shift in the balance of these competing TNF signalling

pathways is variable from case to case. Single-cell RNA

sequencing approaches will be needed to verify the cellu-

lar compartments in which these changes in TNF signal-

ling are taking place.

Conclusions
This study suggests that inflammatory and cytotoxic

molecules released in the subarachnoid space by menin-

geal infiltrates could induce a substantial shift in the

TNF receptor balance in the cortex and of the associated

molecular pathways, resulting in the exacerbation of cor-

tical pathology via increased pro-necroptotic signalling.

Further studies are necessary in order to demonstrate

this at a protein and functional level. A changing balance

of TNF signalling depending on the degree of inflamma-

tion also helps to explain the large heterogeneity in the

extent of the cortical pathology seen across the spectrum

of MS cases. All of the MS patients in the high menin-

geal inflammation group were characterised as still hav-

ing active inflammatory activity and progressive disease

when they died, exemplified by the earlier age at death

in this group. Therefore, we suggest that the current

study informs us about the ongoing inflammatory dis-

ease processes during the progressive stage of MS and

will help design new therapeutic approaches.
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Additional file 1: Figure S1. Tissue blocks were taken from the

precentral gyrus of 1 cm thick coronal slices of post-mortem MS brains

that had been dissected into 2cmx2cm blocks and snap frozen. Sections

from the bocks were then subjected to anti-MOG immunohistochemistry

to identify areas of subpial demyelination and NAGM. The areas of tissue

were then dissected out and processed as shown in the flow diagram.

Figure S2. A. Supervised hierarchical clustering of 4658 transcripts show-

ing a significant alteration in any of the groups vs control samples from

healthy subjects (p<0.01 Fold Change>1.5 vs Control group). A false dis-

covery rate (FDR) assessment was performed by permutating MS and

control samples according to the table shown in B. 5 MS and 5 control

samples were included in each of two groups and FDR analysis was con-

ducted by comparing the statistically different genes between the two

groups. Different stringency conditions were tested. The table in panel C.

shows for each tested condition (p<0.05-0.01; fold change 1.5-2), the

resulting numbers of real differentially expressed transcripts (Experimen-

tal), the median number of probe sets derived from the permutation ana-

lysis (FRD#) and the percentage of FDR with respect to the real values

(FDR%). A plot of the results showing p-value/fold cutoff on the x axis,

FDR% on the left axis and Experimental values on the right axis is also

shown (D). Figure S3. A: List of several genes of neuronal/axonal

components downregulated in the GML of SPMS respect to healthy con-

trols as revealed by microarray gene expression analysis. B-G: Real-time

RT-PCR using the same RNA samples employed in the microarray analysis

was performed in order to validate the greatest deregulated gene expres-

sion in the motor cortex of MS group compared to controls including:

decreased expression of neuronal genes, as the neuronal genes for par-

valbumin (PVALB, B) and the large (C), medium (D) and low (E) molecular

weight neurofilament proteins (NEFL, NEFM NEFH); increased expression

of activated microglia markers, CD68 (F) and inducible NO synthase

(iNOS, G) was measured by Real-time RT-PCR. For each statistical compari-

son the p-value, obtained by non-parametric Mann-Whitney test, has

been reported (***p<0.001, **p<0.01, *p<0.05).

Additional file 2: Table S1. Primary antibodies used for

immunohistochemistry/immunofluorescence. Table S2. Complete list of

genes differentially expressed between each MS group and CTR samples

2. Table S3. Complete list of 89 Gene Sets significantly modulated in MS

samples vs CTR, according to Biocarta Pathway analysis (p<0.05)

(significant p-values are in red). Table S4. Complete list of 63 Gene Sets

significantly modulated in F+SPMS samples vs F-SPMS, according to Bio-

carta Pathway analysis (p<0.05) (significant p-values are in red). Table S5.

Complete list of 42 Gene Sets significantly modulated in GML vs NAGM

samples, according to Biocarta Pathway analysis (p<0.05) (significant p-

values are in red).
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