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The topic of mental state attribution to robots has been approached by researchers from a variety of disci-
plines, including psychology, neuroscience, computer science, and philosophy. As a consequence, the empiri-
cal studies that have been conducted so far exhibit considerable diversity in terms of how the phenomenon is
described and how it is approached from a theoretical and methodological standpoint. This literature review
addresses the need for a shared scientific understanding of mental state attribution to robots by systematically
and comprehensively collating conceptions, methods, and findings from 155 empirical studies across multiple
disciplines. The findings of the review include that: (1) the terminology used to describe mental state attribu-
tion to robots is diverse but largely homogenous in usage; (2) the tendency to attribute mental states to robots
is determined by factors such as the age and motivation of the human as well as the behavior, appearance,
and identity of the robot; (3) there is a computer < robot < human pattern in the tendency to attribute mental
states that appears to be moderated by the presence of socially interactive behavior; (4) there are conflicting
findings in the empirical literature that stem from different sources of evidence, including self-report and
non-verbal behavioral or neurological data. The review contributes toward more cumulative research on the
topic and opens up for a transdisciplinary discussion about the nature of the phenomenon and what types of
research methods are appropriate for investigation.
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1 INTRODUCTION

The term mental state attribution is used to refer to “the cognitive capacity to reflect upon one’s
own and other persons’ mental states such as beliefs, desires, feelings and intentions” [Brüne et al.
2007]. In everyday social interactions, such attributions are ubiquitous, although we are typically
not necessarily aware of the fact that they are attributions—or the fact that they are attributions
of mental states. Any pedestrian encountering a car at a crosswalk, for example, is likely to ask
themselves questions such as “Has the driver seen me?”, “Do they understand I want to cross
the road?”, or “Are they planning to stop for me?” [cf. Ziemke 2020]. Answering these questions
involves the attribution of intentional (directed) mental states to the driver, such as beliefs (e.g.,
there is a person on the crosswalk), desires (e.g., not to run over people), and intentions (e.g., to
slow down and let the pedestrian cross the road).

In the case of human-human social interactions, such attributions are relatively unproblematic,
because most people—generally speaking—know roughly what perceptual and cognitive capacities
other people have, and consequently have a rough idea of what kinds of mental states they might
or might not have. In the above example, the pedestrian and the driver are likely to understand the
perspective of the other, and therefore, to predict each other’s behavior. In the asymmetric case
of human interactions with driverless cars or robots, on the other hand, things are less clear. Any
driverless car, for example, is unlikely to have first-hand experience of being in the pedestrian’s
position. More typical robots, and humanoid robots, in particular, are maybe particularly challeng-
ing because on the one hand, they are obviously not human, but on the other hand, they can easily
be interpreted as having, in Brink et al.’s [2019] terms, self-directed mechanical minds dwelling
inside human-like bodies.

Hence, it probably does not come as a surprise that the scientific literature on how humans
interpret robots in terms of mental or quasi-mental states is complex. For example, despite a wide-
spread belief that robots do not have minds [Özdem et al. 2017], people frequently talk about and
interact with robots as if they have minds. Many people might say that their robot lawnmower
wants to avoid colliding with trees, although they would not say it has a mind, a will, or desires. In
other words, it is not uncommon to conceptualize the behavior of robots as mind-governed with-
out necessarily believing that robots really have minds, similar to how we interpret the behavior
of fictional characters, companies, and nation-states [List et al. 2011; Wendt 1999]. For example,
nations are commonly referred to as wanting to reach an agreement or as believing that a poten-
tial enemy is planning an attack, and some have even been described as “autistic” on account of
their limited interaction with other states [Buzan 1993]. It has been suggested that the attribution
of mental states and capacities helps us understand, explain, and predict behavior [Dennett 1989;
Epley et al. 2007; Heider 1958; Mithen 1998]. However, it is still largely unclear exactly how helpful
this is in the context of human-robot interaction, and we still do not know why it seems to work
in our favor. Why do we sometimes attribute the behavior of robots to underlying mental states
instead of, for example, computational or physical states? Moreover, how can we rely on attributed
mental states as predictors of others’ behavior if we are the ones doing the attributing? These and
related questions have led researchers from a variety of disciplines, including psychology, neuro-
science, computer science, and philosophy, to study mental state attribution to robots empirically.
The studies that have been conducted so far exhibit considerable diversity in terms of how the phe-
nomenon is described and how it is approached from a theoretical and methodological standpoint.
While this interdisciplinary diversity is likely to contribute to making scientific progress at this
early stage of research, there is an increasing need for researchers to develop a common language
and a shared set of basic assumptions about the phenomenon at hand to be able to access and build
cumulatively on each other’s work.
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A particularly pressing issue is that there is so far very little explicit discussion about what
kinds of data constitute evidence of mental state attribution to robots. This is a significant prob-
lem because the lack of consensus implies a risk of incommensurability between obtained research
findings and the absence of a basis for resolving apparent empirical contradictions. At this point,
the literature is rife with conflicting findings—within the procured body of self-report evidence as
well as between self-reports and non-verbal behavioral or neurological evidence—which call into
question the validity of different sources of evidence. For instance, people commonly describe the
behavior of robots in mental state terms [Duffy 2003; Hortensius and Cross 2018; Złotowski et al.
2015]. This might be interpreted as evidence that they attribute the behavior of robots to underly-
ing mental causes. By contrast, the finding that (the same) people tend to deny that robots have
minds or mental states when asked explicitly [Banks 2020; Fussell et al. 2008] might be interpreted
as evidence that they do not attribute mental states to robots. Furthermore, answers to questions
about the minds of robots have been found to vary significantly depending on how such questions

are asked and how respondents are allowed to answer (e.g., forced-choice vs. not). For example, par-
ticipants in a study by Fiala et al. [2014] refrained from describing a robot in mentalistic terms
when they were provided with an additional response alternative that allowed them not to. There
is also evidence that the ways that people talk about robots are not always indicative of how they
interact with them. For example, people have been found to treat robots as if they were alive—for
instance, hesitating to shut them off [Bartneck et al. 2007] or to hit them with a hammer [Bartneck
and Hu 2008]—and to act in accordance with them having particular mental states, such as specific
beliefs [Thellman et al. 2020], while at the same time verbally indicating that they do not think of
them as being alive or as having those mental states. Moreover, findings based on activity in brain
regions associated with mental state attribution that indicate (or not) mental state attribution may
be difficult to consolidate with self-reports that suggest otherwise. For example, a study by Cross
et al. [2019] found that study participants rated a robot appearing to be electrocuted as experi-
encing various levels of pain but could not observe any corresponding activation in participants’
pain matrix during the observation of the electrocution. All these different types of conflicting
findings motivate a broad and careful consideration of the research topic, including the nature of
the phenomenon and the research methods employed.

The present literature review addresses the need for a shared understanding of mental state attri-
bution to robots among scholars in the field by making visible different ways of thinking about the
phenomenon (Section 4) and studying it (Section 5) across a broad range of disciplines. Previous
research findings are collated to prevent unnecessary replication and inspire research questions
that build systematically on previous work (Section 6). A critical assessment of the variation in ob-
tained findings due to the types of methods employed is conducted to promote a transdisciplinary
discussion of what types of research methods are appropriate for investigation (Section 7). Finally,
open research questions on the topic are identified (Section 8). Previous reviews of smaller subsets
of the literature on mental state attribution to robots have focused on different aspects, such as
attribution of emotion [Hortensius et al. 2018] or “socialness” [Hortensius and Cross 2018], how
mind attribution to robots evolves throughout the lifespan [Marchetti et al. 2018], determinants of
anthropomorphism [Epley et al. 2007], and legal implications [Jaeger and Levin 2016]. Relatively
few articles have taken a broader outlook on the phenomenon [Perez-Osorio and Wykowska 2020;
Schellen and Wykowska 2019]. Moreover, none of the previously conducted literature reviews em-
ployed a pre-specified and auditable methodology for the purpose of systematically identifying
and appraising all available evidence (i.e., they lack the characteristics of a “systematic literature
review” [Kitchenham et al. 2007]). The systematic review presented in this article comprises 155
primary studies across multiple disciplines and addresses five specific questions:
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RQ1. How is mental state attribution to robots conceived in the scientific literature in terms of
(1A) terminology used to denote mental state attribution, (1B) reasons why people attribute
mental states to robots, and (1C) underlying mechanisms.

RQ2. What methods have been used in studies of mental state attribution to robots in terms of
(2A) stimulus materials and (2B) measures.

RQ3. What are the previous findings on mental state attribution to robots in terms of (3A) deter-
minants, (3B) consequences, and (3C) comparisons with other agents?

RQ4. Do findings on mental state attribution to robots vary as a function of the methods—(4A)
participant demography, (4B) how robots are presented, (4C) robot morphology, (4D) robot
behavior, (4E) type of measure—employed?

RQ5. What are the open research questions about mental state attribution to robots?

2 REVIEW METHODS

A systematic literature review is a means of evaluating and interpreting all available research
relevant to a particular research question, topic area, or phenomenon of interest, using a rigorous
and auditable methodology. The present review is based on guidelines by Kitchenham et al. [2007]
that have been used extensively in software engineering, human-computer interaction, and related
fields.

Prior to conducting the review, the first author (S.T.) developed a review protocol. The purpose
of a review protocol is to specify the methods that will be used to undertake a specific systematic
review in order to reduce the possibility of researcher bias [Kitchenham et al. 2007]. The review
protocol consisted of the following components: a rationale for the review, research questions, a
literature search strategy including search terms and resources to be searched, study selection cri-
teria and procedures, quality assessment procedures, a data extraction strategy specifying how the
information required from each primary study will be obtained, a data synthesis strategy clarify-
ing how the data will be analyzed, and a dissemination strategy specifying relevant publication
venues. The review protocol was revised based on piloting the search strategy and evaluation by
the other authors (M.d.G. and T.Z.). It was then accepted by all authors as the document guiding
all subsequent review activities. In the following sections (Section 2.1–2.5), we describe the five
components of the review processes.

2.1 Data Sources and Search Strategy

The aim of a systematic review is to find as many primary studies relating to the review questions
as possible using an unbiased strategy [Kitchenham et al. 2007]. The search strategy employed in
this review was developed in consultation with a librarian with expertise in the academic literature
search. Two major academic search systems, Web of Science (Core Collection) and Scopus were
used to source primary studies for the review. These search systems have been found suitable
for the purpose of conducting systematic literature reviews because of the quality of the search
functionalities they offer and the large size of the databases that they index [Gusenbauer and
Haddaway 2020]. During the time that the review was conducted, both of these search systems
indexed all journals and conference proceedings that were pre-identified by the authors as relevant
(e.g., ACM IEEE International Conference on Human-Robot Interaction, Frontiers in Robotics and AI,
International Journal of Social Robotics, Lecture Notes in Artificial Intelligence, Science Robotics, ACM

Transactions on Human-Robot Interaction).
The data sources were searched using search terms that were matched against the titles, ab-

stracts, and keywords of the indexed database records. An initial search query string was devel-
oped using various combinations of search terms derived from the review questions. Our aim at
this stage was to search broadly and inclusively for all publications that describe the phenomenon
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of interest. This means we had to identify and include all relevant terms associated with men-
tal state attribution to robots in our search string along with their various permutations. To this
end, we iteratively refined the search query string based on information from records found in
multiple pilot searches. This process resulted in two functionally equivalent search query strings
that were differently formatted to meet the requirements of the two search systems. The Web of
Science search query string was: TS = (*robot*) AND (TS = (attribution OR ascription OR theory
of mind OR mind perception OR intentional stance OR mentalizing OR anthropomorphism) OR
(TS = (mind OR minds OR mental) AND TS = (attri* OR ascri* OR interpret* OR perce* OR infer*
OR predict* OR expla* OR anthropomorph*))). The search was conducted in February of 2020 and
resulted in two lists comprising 1,392 (Web of Science) and 1,457 (Scopus) records respectively, for
a total of 2,849 records. The two lists were merged by removing duplicate items using reference
management software. The merged list consisted of 2,112 publications.

2.2 Study Selection

The 2,112 publications that were identified in the search processes were assessed for their actual
relevance based on a three-step study selection process guided by pre-defined selection criteria.
The selection criteria were to (1) include only publications that present empirical data on the topic
of mental state attribution to robots; (2) exclude publications in languages other than English;
(3) exclude publications not subjected to peer review; and (4) in cases where a study is published
in more than one journal and conference proceeding, exclude the least complete version. The study
selection processes then proceeded sequentially according to steps 1–3 below (see also Figure 1):

(1) Each publication (N = 2,112) was independently judged by all authors (S.T., M.d.G., and T.Z.)
as irrelevant, relevant, or highly relevant based on its title. Publication titles that were per-
ceived as difficult to judge were conservatively marked as “relevant”. All publications that
were judged as relevant (or highly relevant) by a majority of raters were kept for the next
step and the rest were discarded.

(2) Each of the remaining publications (N = 456) was independently judged by all authors (S.T.,
M.d.G., and T.Z.) as irrelevant, relevant, or highly relevant based on its abstract. All publica-
tions that were judged as relevant (or highly relevant) by a majority of raters were kept for
the next step and the rest were discarded.

(3) Each of the remaining publications (N = 209) was judged as irrelevant or relevant by the
first author (S.T.) based on a full read-through. Additional publications (N = 33) that were
deemed relevant by all three authors were included. The additional publications were ob-
tained through reference harvesting (N = 12) and a complementary database search con-
ducted in May 2021 (N = 21). This resulted in a final selection of 155 relevant publications.

2.3 Study Quality Assessment

Assessing the quality of the primary studies included in a systematic review can be important
and useful for several purposes, including establishing additional study selection criteria, investi-
gating whether quality differences provide an explanation for differences in results, weighing the
importance of individual studies in syntheses of reviewed findings, and for guiding the interpreta-
tion of findings and recommendations for further research [Kitchenham et al. 2007]. There is no
agreed-upon definition of “study quality”. However, according to Kitchenham et al. [2007], most
quality checklists used in the context of systematic reviews include questions aimed at assessing
the extent to which articles have addressed bias (“a tendency to produce results that depart sys-
tematically from the “true” results”), internal validity (“the extent to which the design and conduct
of the study are likely to prevent systematic error”), and external validity (“the extent to which
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Fig. 1. Schematic overview of the study selection process.

the effects observed in the study are applicable outside of the study”). Kitchenham et al. [2007]
recommend to select only quality evaluation questions that are appropriate for the specific review
questions at hand. Examples of quality evaluation questions are “Was the sample size justified?”,
“Are the measures used in the study the most appropriate relevant ones for answering the research
questions?”, and “What do the main findings mean?”.

However, the purpose of the present review was to address the lack of shared understanding
of mental state attribution to robots by charting a landscape of pre-existing ideas, methods, and
findings that exhibit considerable diversity. To discount individual studies on account of their par-
ticular approach of study would, in our judgment, be premature and risk precluding the possibility
of a systematic and unbiased review. For this reason, we decided to refrain from quality assessment
in our review. The implications of this decision are discussed in Section 10.

2.4 Data Extraction

The data extraction procedure was designed to obtain all the data necessary to answer the review
questions and was conducted by the first author (S.T.). The categories of data that were extracted
from each primary study are listed in Table 1. Some of the data were categorized (e.g., according
to a type of method or finding). We state the rationale behind each of these categorizations in the
remainder of this section.

The number of Participants: Proportion of women/female was calculated based on the number
of female and/or women participants relative to the total number of participants (also including
categories such as male, man, and other) reported in each publication. Study setting categories
(Field, Lab, Online) were pre-defined (i.e., established before the review process started). Studies
that took place in a controlled environment (e.g., a designated experiment room) were considered
as “lab studies” even if they were set up in the field (e.g., in a school or museum). Stimuli: Robot
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Table 1. Categories of Data Extracted from Each Primary Study

Data label [Data type]

Publication: Author [Textual]
Publication: Year [Numeric]
Publication: Source [Textual]
Participants: Number [Numeric]
Participants: Population [Textual]
Participants: Age [Numeric]
Participants: Proportion women/female [Numeric]
Study setting [Categorical: Field, Lab, Online]
Stimuli: Robot presentation [Categorical: e.g., Text, Image, Video, Present]
Stimuli: Robot morphology [Categorical: Anthropomorphic, Zoomorphic, Functional, Not Applicable]
Stimuli: Robot behavior [Categorical: Social—interaction with the participant, Social—interaction with
non-participant other, Non-social, No behavior]
Measure: Operationalization [Categorical: e.g., Judged possession of mind/mental states]
Measure: Tool [Categorical: e.g., Likert scale, Binary choice, Free text]
Measure: Data type [Categorical: Verbal, Behavior (non-verbal), Neurological]
Finding [Textual]
Finding: Type [Categorical: Determinant, Consequence, State Ascribed, Agent contrast]
Terms used to describe phenomenon [Textual]
Statements including definitions of terms used to describe phenomenon [Textual]
Statements about the reason why people attribute mental states to robots [Textual]
Statements about the nature of the phenomenon [Textual]

morphology categories (anthropomorphic, zoomorphic, functional, not applicable) were based on
Fong et al. [2003]. Categorization was based primarily on the authors’ own descriptions of their
stimulus. Text-based stimuli were included in the categorization. Although morphological cues are
not strictly present in text-based stimuli, representations of the cues may be involved in process-
ing text via semantic associations [Fiala et al. 2014]. Stimuli: Robot behavior categories (social—
participant interaction, social—interaction with non-participant other, non-social, no behavior)
were pre-defined. “Social behavior” was defined as behavior that (typically) occurs in the context
of social interaction (e.g., with a study participant or a person represented in stimulus materials).
Examples of “Non-social behavior” include interacting with inanimate objects and responding to
events in the environment. Text-based stimuli were included in the categorization because they
may evoke representations of behavioral cues through semantic associations (cf. above). Measure:

Data type categories (verbal, behavioral, neurological) were pre-defined. Notably, the descriptor
“verbal data” was applied to self-report measures such as Likert scales, semantic differential scales,
and other quantitative methods used to collect continuous or ordinal data with assigned seman-
tic content [Lavrakas 2008]. “Behavioral data” was applied to non-verbal behavioral data only.
Finding: Type categories (determinant, consequence, comparative finding) were pre-defined. The
distinction between determinants and consequences of mental state attribution to robots, and the
categorization of determinants into human and robot factors was inspired by Waytz et al. [2010a].
Stimuli: Robot presentation categories (i.e., categories denoting how robots were presented to par-
ticipants in studies; e.g., using text, image, video, or physically present robots), Measure: Oper-

ationalization categories (e.g., judged possession of mind, knowledge estimation), and Measure:

Tool categories (e.g., Likert scale, binary choice, free text) emerged during the review process in
a data-driven fashion based on descriptions of the methods that were employed in the primary
studies.
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2.5 Data Synthesis

The extracted data was collated and summarized in text and tabular form in a manner consis-
tent with the review questions. Tables were structured to highlight similarities and differences
between primary studies. A descriptive (narrative) synthesis of data [cf. Kitchenham et al. 2007]
was conducted by the first author (S.T.). The procedure of the descriptive synthesis involved inte-
grating studies comprising quantitative as well as natural language results and conclusions into a
cohesive narrative. The focus was on identifying homogeneity and heterogeneity across studies in
terms of conceptions (RQ1), methods (RQ2), and findings (RQ3), critically assessing how findings
vary depending on employed methods (RQ4) based on results from investigating RQ2–3, and on
identifying open research questions on the topic (RQ5) based on answers to RQ1–4. Quantitative
synthesis (i.e., meta-analysis) was deemed unfeasible due to the diversity of research questions
and methods across the primary studies.

3 OVERVIEW OF INCLUDED PUBLICATIONS

This section summarizes some information about the publications included in the review to pro-
vide an overview. For a complete list of publications, including details on participant number, pop-
ulation, age, sex/gender, and the study setting(s) reported in each publication, see Tables 2–4 in
the Appendix.

The publication year of the included publications ranges from 1996 to 2021. Within this period,
there was a growing trend in the number of publications on the topic per year (see Figure 2)—
particularly in the years 2019–2021. 63% of the included publications were published in a journal,
36% in a conference proceeding, and 1% in a book section. The most common publication outlets
for journal publications were Frontiers in Psychology (7% of all publications), International Journal

of Social Robotics (7%), and PLOS ONE (5%). The most common publication venues for conference
articles were ACM/IEEE International Conference on Human-Robot Interaction, HRI (12% of all pub-
lications), IEEE International Conference on Robot and Human Interactive Communication, RO-MAN

(12%), and International Conference on Social Robotics, ICSR (5%).
Seventy-four percent of publications reported a study conducted in a laboratory setting, 25%

reported a study conducted online, and 4% reported a study conducted in a field setting. 3% of
publications reported studies conducted in more than one type of setting. The average number of
participants per study was 68 when disregarding online studies (171 otherwise; the average N for
online studies was 473).

Taken together, the participant population that the reported studies were based on can be sum-
marized as WEIRD, i.e., Well-Educated, Industrialized, Rich, and Democratic [Henrich et al. 2010]).
25% of studies report recruiting participants from a university population. The studies were con-
ducted in over 12 countries, including Australia, Canada, Denmark, France, Germany, Italy, Japan,
New Zeeland, the Netherlands, Sweden, the United Kingdom, and the United States. 82% of the
reported studies were based on participants from the adult population (i.e., 18 years or older); 18%
were based on children (younger than 18 years) and a single study was based on an animal popu-
lation. The mean age of study participants was 24.5 years old. 52% of participants were reported
as female and/or as a woman.1

4 TERMINOLOGY AND CONCEPTIONS

In order to understand how mental state attribution to robots is conceived in the scientific literature
(RQ1), we reviewed the terminology used to denote attribution of mind to robots (Section 4.1),

1This number was calculated based on the number of women and/or female participants relative to the total number of
participants (also including categories such as male, man, and other) reported in each publication.
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Fig. 2. Included publications sorted by publication year and clustered by source.

Fig. 3. Terms used in the literature to refer to attributions of mind, mental capacities, and mental states.

stated reasons for why people attribute mind to robots (Section 4.2), and statements about the
underlying mechanisms (Section 4.3). All research is guided by preconceptions and hypotheses
about the phenomenon at hand that is not (yet) supported by evidence. We specifically targeted
the reasons for and mechanisms underlying mental state attribution to robots because, to the best
of our knowledge prior to conducting the review, relatively little empirical research has so far
been conducted on these issues compared with other aspects of the phenomenon, such as the
determinants and consequences of mental state attribution to robots.

4.1 RQ1A: How is Mental State Attribution to Robots Conceived in the Scientific
Literature in Terms of the Terminology used to Denote the Phenomenon?

We identified eight terms used in the reviewed literature to refer to attributions of mind, mental
capacities, and mental states to robots (in descending order by the number of publications in which
they occur): mental state attribution/ascription (87% of publications), anthropomorphism (37%), mind

perception (34%), theory of mind (23%), mentalizing (20%), intentional stance (17%), folk psychology

(6%), and mind reading (5%) (Figure 3)2. These terms overlap in meaning but have separate conno-
tations that stem from their uses in different theories related to the underlying phenomenon. We
discuss some of these connotations below.

The term attribution is generally understood as the processes by which “the social perceiver
uses the information to arrive at causal explanations for events” [Fiske and Taylor 1991, p. 23] and
is primarily associated with attribution theory within psychology [e.g., Heider 1958; Kelley 1967].
The term “mental state/mind attribution” is common both in the psychological and philosophi-
cal literature and refers to the attribution of events (including behavioral events) to underlying

2We note that with the exception of the two least common terms, folk psychology and mind reading, all of these terms were
included in the search query string that was part of the search strategy employed to identify the primary studies on which
the present review is based.
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mental causes. The term “mental state ascription” (and its permutations) is commonly used as a
synonym for “mental state attribution”. The term “mental state inference” is sometimes used to em-
phasize that attribution involves inference of directly unobservable (“hidden”, “internal”) mental
states based on observable evidence (e.g., behavioral cues) [for a detailed discussion, see Csibra
and Gergely 2007].

Anthropomorphism is commonly used to refer to the attribution of both mental and non-mental
states, such as human-like appearance [cf. Epley et al. 2007]. In recognizing that anthropomor-
phism is a broader concept, some authors disqualify mind-unrelated aspects of anthropomorphism
by referring to mental state attribution using terms such as “psychological anthropomorphism”
[Eyssel and Reich 2013; Kamide et al. 2013; Salem et al. 2011; Trovato and Eyssel 2017]. It might
also be worth noting that the term anthropomorphism implies that ascribed mental states are dis-
tinctively human. This assumption is dubious for at least two reasons. Firstly, many mental states
appear to be non-specific to humans. For example, Sommer et al. [2019] stated, “We initially de-
scribed our measure as “anthropomorphism.” However, upon feedback from reviewers, we noted
that anthropomorphism refers to a tendency to ascribe human traits to nonhuman entities. Pain
is not a uniquely human trait. Thus, the inclusion of pain results in anthropomorphism being
an inaccurate description of this measure”. Secondly, the question of whether robots and other
(computational) artifacts could have a mind should be treated as an empirical possibility and not
dismissed out of hand as it is the topic of an ongoing philosophical debate that has been highly
active since the 1950s [e.g., Fodor 1975; Scheutz 2002; Searle 1980; Smith 2019; Turing 1950].

Mind perception is, at least in the context of the reviewed publications, closely associated with
the work of Gray et al. [2007] who used self-report data to identify different “dimensions” of mind
perception (distinguishing between agency-related and experiential mental states). The term sug-
gests that mental state attribution is (at least partially) a perceptual process. We note that it seems
possible to rephrase all encountered statements in which the term occurs by replacing the term
“perception” with “attribution/ascription” without no apparent contradiction or loss in meaning
(i.e., “she perceived the robot as having a mental state x” can be paraphrased as “she ascribed mental
state x to the robot”), which suggest that the term “mind perception” does not differ significantly
from “mind attribution” in theoretical import, at least not in the context of the reviewed literature.

Theory of mind has traditionally been the preferred term used by developmental and experimen-
tal psychologists to describe the capacity to attribute mental states to others [e.g., Baron-Cohen
et al. 1985; Premack and Woodruff 1978]. It is often said that a person (e.g., a child) who lacks the
ability to understand the mental states or viewpoint of others lacks a theory of mind. The term has
also been used to describe the ability of robots to infer the mental states of humans [e.g., Scassellati
2002].

Mentalizing is frequently used in neuroscientific research in association to the “mentalizing
system/network” which comprises brain regions associated with mental state attribution
[Van Overwalle and Baetens 2009]. Bateman and Fonagy [2012] defined mentalizing as “the fun-
damental human capacity to “read” one’s own and others’ mental states such as thoughts and
feelings”.

Intentional stance is the central construct in a broader philosophical theory about the nature of
the mind called intentional systems theory [Dennett 1989]. This theory views the mental state at-
tribution as one of the multiple modes of attribution or “stances” that people can adopt to interpret
and interact with objects and others in their surroundings.

Folk psychology, also sometimes called belief-desire, naive, intuitive, or commonsense psychol-
ogy, refers to people’s non-scientific understanding of the minds of themselves and others [Griffin
and Baron-Cohen 2002]. This includes views about intentional, content-bearing, representational
states (beliefs, desires, intentions, hunches, etc.) as well as phenomenal states (e.g., undirected
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anxieties, feelings, and pain), traits, dispositions, and empirical generalizations such as that people
who walk with a white cane might not know what is in front of them [Griffin and Baron-Cohen
2002].

Mind reading, or the ability to “read someone’s mind”, is a term used in the philosophical and
scientific literature to describe the process by which people attribute mind, mental state and ca-
pacities [Nichols and Stich 2003].

Despite the differences in the meaning of the above terms, they were all used across the re-
viewed publications to refer to attributions of mind, mental capacities, and mental states to robots.
In several cases, more than one term was used in the same publication. Table 5 in the Appendix
provides an overview of the terms and their occurrence in the reviewed publications and Table 6
provides examples of statements that illustrate the homogenous usage of the terms. In some pub-
lications, two or more of the terms were explicitly defined as distinct in meaning. For example,
Abubshait and Wiese [2017] distinguished between mentalizing as the use of “information from
gestures, facial expression or gaze direction to make inferences about what others think, feel or
intend to do” and mind perception as “the belief that social cues originate from an entity with
a mind, capable of having internal states like emotions or intentions”. Bossi et al. [2020] wrote,
“When we adopt the intentional stance toward others, we refer to their mental states—such as be-
liefs, desires, or intentions—to explain and predict their behavior. We distinguish the concept of
intentional stance from the process of mentalizing. Mentalizing refers to predicting a very specific
and current instance of behavior with reference to a specific mental state. On the contrary, the
intentional stance is more like a general attitude toward an agent—an assumption that the agent is
an intentional entity rather than a simple mechanistic artifact”. Also in these cases, the terms were
all used to refer to attributions of mind, mental capacities, or mental states to robots. Furthermore,
explicit distinctions were not found to be stable across multiple studies included in the review, as
also demonstrated by the examples in Table 6.

Based on this finding, we conclude that the terminology employed to describe mental state attri-
bution to robots is diverse but largely homogenous in usage (i.e., terms like mind perception, [psy-

chological] anthropomorphism, intentional stance, and mental state attribution are to a significant
extent used synonymously across and within individual studies). This suggests that researchers
from various disciplines use different terms to refer to the same underlying phenomenon—a find-
ing that we hope can facilitate cross-disciplinary dissemination of future research on the topic. It
might also motivate the adoption of a standard notation to increase the accessibility of research.
We suggest using “mental state attribution/ascription” based on the prevalence and relative theory-
neutralness of the term. Standard notation can be deviated from when alternative descriptions are
theoretically motivated (e.g., when using the term “intentional stance” in the context of an inves-
tigation where the intentional stance is contrasted with the design stance or physical stance).

Finally, we note that mental state terms are to some extent treated inconsistently across studies
as either metaphorical or literal by enclosing them (or not) in quotation marks. We recommend
against the metaphorical treatment on the grounds that mental state ascriptions do not necessarily
involve any ontological commitments (i.e., they do not entail beliefs about whether ascribed states
are real or fictive; for a more detailed discussion, see Thellman and Ziemke [2019]).

4.2 RQ1B: How is Mental State Attribution to Robots Conceived in the Scientific
Literature in Terms of the Reason Why People Attribute Mental States to Robots?

We found no clear consensus in the literature about the reason(s) why people attribute mental
states to robots. Several authors stressed the importance of mental state attribution to the ability to
interact with robots. A recurrent assumption is that attributing mental states helps people predict
and explain the behavior of robots [de Graaf and Malle 2019; Epley et al. 2007; Levin et al. 2013;
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Marchesi et al. 2019; Thellman 2021]. For example, Imamura et al. [2015] stated, “Attributing mental
states to others, based on their complex behaviors, enables an agent to understand another agent’s
current behavior and predict its future behavior”. It has also been suggested that it may reduce
stress and uncertainty and increase one’s sense of control in the context of interactions with robots
[Epley et al. 2007; Eyssel et al. 2011]. We identified two studies that provide empirical support for
the claims that people ascribe mental states to robots to increase the predictability of their behavior
and that robots are perceived as more predictable when people ascribe mental states to them:
Waytz et al. [2010b] and Eyssel et al. [2011]. We also identified seven studies of how mental state
attribution affects people’s (actual) predictions of behavior: Banks [2020], Levin et al. [2012, 2013],
Rueben et al. [2021], Sciutti et al. [2013], Thellman and Ziemke [2020], and Zhang et al. [2019].

4.3 RQ1C: How is Mental State Attribution to Robots Conceived in the Scientific
Literature in Terms of the Underlying Mechanisms?

There is not yet a consensus about the underlying mechanisms that govern mental state attribu-
tion to robots, including to what extent they differ or overlap with those toward humans. There
have been multiple suggestions that the relevant cognitive processes occur at distinct levels as de-
noted using terms such as low-road vs. high-road processing [Fiala et al. 2014], implicit vs. explicit

processing [Banks 2020; Takahashi et al. 2013], first-line vs. second-line reasoning [Levin et al. 2012],
and type 1 vs. type 2 processing [Hannibal 2014; Złotowski et al. 2018]. Such dual processes theories

[Evans 2003] may help explain some of the apparent contradictions that exist between findings
from different sources of evidence (e.g., self-report and behavioral data; see Section 7).

It has also been suggested that mental state attribution to robots is a two-step process, whereby
the individual must engage in a higher-level thought process in which he or she decides to adopt
an interpretative mentalistic or intentional stance toward the robot before lower-level attribution
processes are activated [Martini et al. 2016; Wiese et al. 2017; Wykowska et al. 2014]. For example,
Wiese et al. [2017] claimed, “Reasoning about the internal states of others is referred to as mental-
izing, and presupposes that our social partners are believed to have a mind”. This claim appears in
contradiction with the observation that people frequently attribute mental states to robots (or na-
tion states and even animated geometric figures [Heider and Simmel 1944]) while simultaneously
stating that they do not believe such entities have a mind [e.g., Banks 2020; Fussell et al. 2008].

5 RESEARCH METHODS

In this section, we describe the research methods that have been used in previous studies of men-
tal state attribution to robots (RQ2). This includes stimulus materials (Section 5.1) and measures
(Section 5.2). Stimuli were classified according to how robots are presented to study participants,
the physical appearance of the presented robots, and the type of behavior that they exhibit (if
any). Measures were classified according to the type of data they were used to collect (i.e., verbal,
behavioral, or neurological), how they operationalize the measured phenomenon (e.g., the judg-
ment of mind possession, brain activity), and what type of measurement tool was used to collect
the data (e.g., Likert scale, fMRI). See Section 2.4 for the rationale behind the categorization of
research methods. For a complete list of stimulus materials and measures, see Tables 7–11 in the
Appendix. All proportions (%) mentioned in Section 5 are relative to the total number of reviewed
publications (N = 155) unless otherwise stated.

5.1 RQ2A: What Types of Stimulus Materials have been used in Studies of Mental
State Attribution to Robots?

A majority of publications (67%) reported using some kind of representation (e.g., image or text) of
a robot as part of the stimulus materials presented to participants. 43% of publications presented
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Fig. 4. Types of stimulus materials used in studies of mental state attribution to robots. Top: How robots
were presented to study participants. “Representation” is a compound category, which includes all other
categories except “Physically present”. Bottom-left: The physical appearance of robots presented to study
participants. Bottom-right: The type of behavior exhibited by robots presented to study participants.

study participants with a physically present robot. The most common type of representation was
an image (19%), followed by video (16%), a combination of image and text (14%), text-only (7%),
animation (5%), video stream (i.e., telepresence; 3%), a combination of video and text (1%), a combi-
nation of video, image, and text (1%), and audio-only (1%). 8% of publications used more than one
of these types of methods of presenting robots to study participants. See Figure 4, Top, for a visual
representation of these results.

The most common morphology of the robots presented to study participants was the anthro-

pomorphic form (71% of publications), followed by functional (23%) and zoomorphic robots (12%).
In 7% of the studies, participants were presented with robots without a manifest physical appear-
ance (e.g., verbal descriptions of robots or robot sounds). 12% of publications presented study par-
ticipants with more than one type of robot morphology. See Figure 4, Bottom-Left, for a visual
representation of these results.

A majority of publications (73%) presented study participants with a robot that exhibited behav-
ior: 39% presented a robot exhibiting social behavior in the context of a direct interaction with
the study participant, 15% presented a robot exhibiting social behavior in the context of interact-
ing with a non-participant other (e.g., the experimenter or person depicted in a video), and 28%
presented a robot exhibiting non-social behavior (e.g., interacting with physical objects). 27% of
publications presented a robot exhibiting no behavior. 8% of publications presented study partic-
ipants with more than one of these four types of stimuli. See Figure 4, Bottom-Right, for a visual
representation of these results.

5.2 RQ2B: What Measures have been Employed in Studies of Mental State Attribution
to Robots?

A majority of publications (84%) relied on verbal measures of mental state attribution. 14% relied
on (non-verbal) behavioral data and 9% relied on neurological data. 8% relied on more than one
type of measure (see Figure 5).

Among the studies that relied on verbal data, the predominant type of measure—used in 59%
of all reported studies—was the use of Likert or semantic differential scales (i.e., questionnaire
methodology) to collect study participants’ judgments of robots’ possession of the mind, mental
capacities and/or mental states. Other types of operationalization of the phenomenon of mental
state attribution include mentalistic descriptions or explanations of robots or robot behavior (e.g.,
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Fig. 5. Types of measures employed in studies of mental state attribution to robots.

provided in the form of free-text responses) and mentalistic predictions (i.e., predictions of the
behavior of a robot that rely on assumptions about its mental states such as beliefs or desires).
The predominant tool used in studies based on a child population was spoken or written ques-
tions about the mental states of robots in combination with a binary choice response format (i.e.,
typically yes-no questions). See Table 10 in the Appendix for a complete list of verbal measures.

The selection of behavioral measures used is diverse and cannot easily be summarized. Some
studies focused on people’s tendency to treat robots in manners consistent with ascriptions of
mental states. For instance, studies by Bartneck and colleagues measured participants’ willingness
to abuse [Bartneck and Hu 2008] or turn off a robot [Bartneck et al. 2007]. Lemaignan et al. [2015]
and Straub [2016] measured people’s tendency to use social behaviors, such as gestures and polite
speech, in interactions with a robot. A few studies measured people’s tendency to help a robot
achieve a goal [Martin et al. 2020; Yamaji et al. 2010] or behave altruistically toward it [Heijnen
et al. 2019]. Other studies monitored study participants’ performance in tasks, which required
mental state ascription. Mutlu et al. [2009] measured people’s belief ascriptions based on people’s
performance in a guessing game that depended on taking into account the non-verbal leakage of a
robot opponent. Zhao et al. [2016] exploited people’s tendency to take a robot’s visual perspective
as a measure of belief ascription. Two studies relied on people’s anticipatory gazes toward end-
of-motion positions of robots performing goal-directed [Sciutti et al. 2013] and/or belief-directed
[Thellman and Ziemke 2020] actions as a non-verbal measure of people’s mentalistic predictions
of robot behavior. See Table 11 in the Appendix for a complete list of behavioral measures.

The most common neuroimaging technique used in studies relying on neurological data was
functional magnetic resonance imaging (fMRI; 12 of the 14 studies that employed a neurologi-
cal measure) followed by electroencephalography (EEG; 2 of 14 studies). Neurological measures
targeted brain regions generally associated with mental state attribution in the neuroscientific lit-
erature, such as the mPFC and TPJ (for an overview, see Van Overwalle and Baetens [2009]). See
Table 11 in the Appendix for a complete list of neurological measures.

6 RESEARCH FINDINGS

In this section, we review research findings on mental state attribution to robots (RQ3). The find-
ings were categorized into three categories (as visualized in Figure 6): determinants (Section 6.1)
and consequences (Section 6.2) of mental state attribution to robots, and comparative findings that
contrast mental state attribution to robots against mental state attribution to other agents, such
as humans and computers (Section 6.3). Determinants were further categorized into human fac-
tors and robot factors, and consequences were categorized as either psychological or behavioral.
Comparative findings were categorized according to the type of agent compared against. See Sec-
tion 2.4 for the rationale behind the categorization of research findings. See Tables 12–15 in the
Appendix for a complete list of reported findings and publication references. 71% of the reviewed
publications reported findings on determinants, 25% reported consequences, and 32% reported
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Fig. 6. Classification of research findings on mental state attribution to robots.

Fig. 7. Types of reported research findings on mental state attribution to robots.

comparative findings (see Figure 7). All proportions (%) mentioned in Section 6 are relative to the
total number of reviewed publications (N = 155) unless otherwise stated.

6.1 RQ3A: What are the Previous Findings on the Determinants of Mental State
Attribution to Robots?

A majority of the reviewed publications (71%) studied determinants of mental state attribution to
robots. 40% of publications studied human factors that determine the tendency to attribute men-
tal states to robots and 35% studied robot factors. 5% studied both human and robot factors. See
Tables 12–13 in the Appendix for a complete list of studied determinants.

6.1.1 Human-Factor Determinants. Among the human factors, the most extensively studied are
age (30 studies), followed by motivation (15 studies), cultural and socioeconomic background (eight
studies), interaction history (six studies), gender (three studies), mental disorder (three studies), and
species (one study). See Table 12 in the Appendix for a complete presentation of the studied human-
factor determinants of mental state attribution to robots.

A total of 25 studies indicate that children tend to attribute mental states to robots. Three studies
reported a generally stronger tendency compared to adults. Seven studies indicate that younger
children have a particularly strong tendency (one study reported contradictory findings). Three
studies indicate a stronger tendency in older compared with younger adults (one study reported
contradictory findings and two studies found no effect in either direction). One study observed a
tendency in infants. Based on the reported findings, we conclude that people of all ages appear
to attribute mental states to robots albeit possibly to a different extent. In particular, there is rela-
tively strong basis for concluding a stronger tendency in younger children. However, it should be
noted that most of the studies reporting these findings employed verbal measures of mental state
attribution (the implications of which are discussed in Section 8.1).

A total of 15 studies reported findings on various motivational determinants. These include a
stronger tendency to attribute mental states to robots when motivated to predict robot behavior,
when anticipating future interaction with a robot when having high expectations about a robot’s
capabilities, when a robot is perceived as being mistreated or subjected to harm, and when feel-
ing lonely. Except for the reportedly stronger tendency to attribute mental states when a robot is
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perceived as being mistreated or subjected to harm (four studies), corroborating evidence is gener-
ally lacking for these motivational determinants. However, it appears that the motivational com-
ponent is multifaceted and includes both an effectance dimension (i.e., motivation to understand
and predict robot behavior) and a sociality dimension (i.e., desire for social contact and affiliation)
[cf. Epley et al. 2007]. No study has so far reported evidence on the relative importance or strength
of different types of motivational determinants.

Eight studies reported findings on cultural and socioeconomic determinants. Japanese individ-
uals were found to exhibit a stronger tendency relative to Westerners, including Germans, Aus-
tralians, and Italians across four studies. However, two studies that compared Japanese and West-
ern individuals found no effect in either direction. One study also reported a stronger tendency in
Chinese compared with US individuals. We believe these results should be interpreted cautiously
given the contradictory findings and the fact that these studies employed self-report measures and
people of different culture have slightly different styles of ratings [Bernardi 2006]. One study also
reported a similar tendency in individuals with different socioeconomic backgrounds.

Similar attributional tendencies have been reported among men and women (three studies),
adults with and without schizophrenia (one study), and humans and non-human primates (one
study). One study reported a stronger tendency in children without autism as compared with
autism and one study reported no differences. These findings need to be corroborated by further
studies before any general conclusions can be drawn.

6.1.2 Robot-Factor Determinants. The most extensively studied robot factor is behavior

(31 studies) followed by appearance (17 studies), identity (eight studies), capability (four studies),
and presence (two studies). See Table 13 in the Appendix for a complete presentation of the reported
robot-factor determinants of mental state attribution to robots.

A total of 31 studies indicate that robot behavior determines the tendency to attribute mental
states to robots. There is corroborating evidence that people are more inclined to attribute mental
states to robots when they exhibit various types of socially interactive behavior (13 studies), such
as eye gaze (five studies), gestures (one study), cheating (one study), emotional expression (two
studies), and when behavior is unpredictable (two studies), complex (one study), intelligent (one
study), or highly variable (one study). One study found no difference when a robot exhibited social
as compared to non-social behavior. It has also been found that differences in people’s tendency
to attribute mental states to robots versus people decreases when social behavior is present as a
behavioral stimulus (see Section 6.3). These findings suggest that robot behavior might be also con-
sidered as a motivational determinant, in line with Epley et al. [2007] (i.e., that people’s attributions
are motivated by the need to make sense of and predict behavior). Moreover, six studies reported
a stronger tendency related to the movement of a robot, and three studies reported different types
of ascriptions depending on the type of behavior enacted by a robot.

A total of 11 studies reported a stronger tendency to attribute mental states to robots with (in-
creasingly) human-like appearance, including when a face is visible or human-like facial wounds
are present as compared to when they are not. Two studies found no such effect. One study indi-
cated a weaker tendency when features that suggest violent conflict were present. Three studies
reported that people ascribed different types of mental states depending on different types of phys-
ical features. These findings support the general conclusion that increasingly human-like robot
appearance gives rise to a stronger tendency to attribute mental states to robots.

Eight studies indicate that the identity of a robot affects people’s tendency to attribute mental
states. Four studies reported that people attribute different types of states depending on a robot’s
function or purpose. Two studies observed differences when robots were gendered or described
as belonging to a specific culture. Two studies observed a stronger tendency when robots were
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described using study participant in-group names, country of origin, or had an in-group gendered
voice.

Three studies indicate robot capabilities as a determining factor, including a stronger tendency to
attribute mental states when robots have similar traits of imagination as the person and difficulties
in attributing mental states to robots with different-from-human capabilities. One study a similar
tendency when a robot was described as having mental capabilities as when it was not.

Two studies reported a stronger tendency when a robot was physically present rather than
telepresent. These findings are in line with the literature review by Li [2015] that identified phys-
ical presence rather than physical embodiment as the stronger predictor of positive outcomes in
interactions with artificial agents.

6.2 RQ3B: What are the Previous Findings on the Consequences of Mental State
Attribution to Robots?

A total of 25 percent of the reviewed publications studied the consequences of mental state attribu-
tion to robots. 10% studied psychological consequences and 15% studied behavioral consequences.
No publication studied both psychological and behavioral consequences. See Table 14 in the Ap-
pendix for a complete list of reported consequences.

6.2.1 Psychological Consequences. Five studies reported findings on the effect of mental state
attribution on people’s perceptions of robots as eerie or uncanny [Mori et al. 2012]. Two studies
reported an increase in uncanniness, two studies reported a decrease, and one study found no asso-
ciation. We abstain from drawing any general conclusions about the association between mental
state attribution and the uncanny valley phenomenon based on these contradictory findings. Two
studies indicate that ascribing mental states to robots can drain cognitive resources. Two studies
reported an increase in trust in a robot. Two studies reported an increased moral concern for a ro-
bot. Isolated studies found: increased perceived predictability of a robot, increased ambivalence in
attitude toward robots, perceived threat of damage to humans and human identity, and a reduced
sense of agency on part of the human.

6.2.2 Behavioral Consequences. Seven studies observed that study participants were able to pre-
dict the behavior of robots based on ascribing mental states such as beliefs and desires. Two studies
reported difficulties in predicting robot behavior that stemmed from difficulties ascribing appro-
priate mental states (e.g., beliefs) or capabilities (e.g., perception) to robots. Four studies observed
that participants could explain robot behavior based on ascribing mental states. These findings
are consistent with the claim that one of the functions of mental state attribution is to predict and
explain behavior [e.g., Dennett 1989; Epley et al. 2007, see also Section 4.2]. Three studies reported
decreased abuse toward robots and one study found no effect of robot abuse. Isolated studies re-
ported: An increased tendency to help a robot, decreased likelihood of using a robot, unwillingness
to switch off a robot, and the absence of an effect on the tendency to mimic the facial expressions
of a robot.

6.3 RQ3D: What are the Previous Findings on the Tendency and Types of Mental
States Attributed to Robots as Compared with other Agents?

A total of 31 percent of the publications reported comparative findings on mental state attribu-
tion to robots that involved other types of agents. Among these publications, all reported compar-
isons against mental state attribution to humans. 4% of publications also reported comparisons
against computers. Taken together, the findings support the conclusion that people have a rela-
tively stronger tendency to attribute mental states to humans compared to robots and a relatively
weaker tendency to attribute mental states to computers compared to robots (i.e., supporting a
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computer < robot < human pattern). See Table 15 in the Appendix for a complete list of reported
comparative findings.

6.3.1 Human vs. Robot. A total of 33 studies indicate a generally stronger tendency to attribute
mental states to a human person compared to a robot. Seven studies reported a similar tendency. Six
studies reported a stronger tendency to attribute specifically experience-related mental states (e.g.,
pain, feelings, emotions) to a human, and a similar tendency to attribute agency-related states (e.g.,
beliefs, desires, intentions). One study reported a stronger tendency to attribute valenced (but not
unvalenced) mental states to a human. Four studies reported that people attributed similar types
of mental states to robots and humans. One study observed that participants were more proficient
in recognizing types of emotions in humans compared to robots.

Four studies reported factors that moderated differences in the tendency to attribute mental
states to humans and robots. Two studies found that the presence of gaze behavior in a robot
decreased observed differences. One study found that longer response times led to a decrease and
one study found a decrease over time.

6.3.2 Computer vs. Robot. Five studies reported a generally weaker tendency to attribute men-
tal states to a computer compared to a robot. One study reported that this difference was amplified
when gaze behavior was present in a robot.

7 METHODOLOGICAL FACTORS

In this section, we identify systematic variation in the research outcomes in studies on mental
state attribution to robots that can be directly related to the research methods employed (RQ4),
specifically the demography of study participants (Section 7.1), how robots are presented to study
participants (Section 7.2), the physical appearance of presented robots (Section 7.3), the behavior
exhibited by presented robots (Section 7.4), and the measures used (Section 7.5). All proportions
(%) mentioned in Section 7 are relative to the total number of reviewed publications (N = 155)
unless otherwise stated.

7.1 RQ4A: Do Findings on Mental State Attribution to Robots Systematically Vary as a
Function of the Demography of Study Participants?

We found no clear evidence of systematic variation in obtained findings depending on the demog-
raphy of study participants. A tendency to ascribe mental states to robots has been reported across
all demographic categories reported in the reviewed studies (e.g., age, gender and sex, cultural and
socioeconomic background, various mental disorders). Five studies found a stronger tendency in
individuals in Eastern cultures as compared with individuals in Western cultures and two studies
contradicted this finding (cf. Section 6.1.1). Notably, these studies relied primarily on self-report
measures. It has been found that people of different cultures have slightly different styles of ratings
[Bernardi 2006]. For these reasons, we believe it would be premature to conclude that Easterners
exhibit a generally stronger tendency to attribute mental states to robots than Westerners. There
is evidence of a stronger tendency in children (particularly young children) compared with adults
(cf. Section 6.1.1) which should be taken into consideration in the selection of study participants
to avoid unjustified generalizations of research findings.

7.2 RQ4B: Do Findings on Mental State Attribution to Robots Systematically Vary
Depending on how Robots are Presented to Study Participants?

We found no clear evidence of systematic variation in obtained findings depending on whether
robots were presented to participants using text, image, video, animation, audio, a combination
of these, or if the robot was physically present or telepresent. However, two studies reported a
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stronger tendency to attribute mental states to physically present robots compared with telepre-
sent robots [Kiesler et al. 2008; Straub 2016]. These findings are in line with the literature review by
Li [2015] that identified physical presence rather than physical embodiment as the stronger predic-
tor of positive outcomes in interactions with artificial agents. We also note that a majority (95%) of
the studies that did not use any behavioral stimuli employed text, image, or a combination of text
and image as stimulus materials. This should be taken into consideration when designing studies
of mental state attribution to robots given evidence (described in Section 7.4) that the presence of
behavioral stimuli affects the outcome of studies of mental state attribution to robots.

7.3 RQ4C: Do Findings on Mental State Attribution to Robots Systematically Vary
Depending on the Morphology of the Robots Presented to Study Participants?

A tendency to ascribe mental states has been reported toward robots with all kinds of physical ap-
pearance, including robots that are human-like, animal-like, insect-like, machine-like, or furniture-
like (e.g., robots in the shape of a trashcan [Yamaji et al. 2010], chair [Sirkin et al. 2015], or a shoe
rack [Rueben et al. 2021]). There is evidence of a stronger tendency to ascribe mental states to
robots with more human-like physical appearance relative to robots with less human-like appear-
ance (11 studies; cf. Section 6.1.2). Two studies found no difference toward robots with different
degrees of human-likeness. We note that all of these studies relied on verbal measures (which may
be problematic for reasons described in Section 7.5).

7.4 RQ4D: Do Findings on Mental State Attribution to Robots Systematically Vary
Depending on the type (or absence) of Behavior of the Robots Presented
to Study Participants?

There is evidence that the presence of behavioral stimuli affects the outcome of studies of men-
tal state attribution to robots. In particular, 13 studies reported a stronger tendency to attribute
mental states to robots when they exhibit various types of socially interactive behavior (cf. Sec-
tion 6.1.2). Furthermore, comparative studies indicate that difference between people’s generally
stronger tendency to attribute mental states to humans relative to robots is reduced in the presence
of behavioral stimulus (cf. Section 6.3). Based on this, we conclude that it is reasonable to expect
different research outcomes in studies on mental state attribution to robots depending on whether
the robot(s) presented to study participants as stimulus materials exhibit the behavior. Moreover,
all of the reviewed studies that used non-behavioral stimuli (28% of publications) relied on verbal
measures (which may be problematic for reasons described in Section 7.5).

7.5 RQ4E: Do Findings on Mental State Attribution to Robots Systematically Vary as a
Function of the Measure Employed?

There appears to be systematic variation in the findings produced by studies employing different
types of measures of mental state attribution to robots. This means that the selection of measures
may affect what types of research outcomes can be expected.

In our review of research methods employed in studies of mental state attribution to robots
(Section 5.2), we classified measures based on the type of data they procure: self-report (verbal) data,
behavioral (non-verbal) data, or neurological data. Hypothetically, six different types of conflicting
findings may arise in the data obtained using these different types of measures: conflicts between
data procured by similar types of measures (“A”, “B”, and “C” in Figure 8) and conflicts between
data procured by different types of measures (“D”, “E”, and “F”).

We identified three of these six types of conflicting findings as present in the empirical literature
(solid arrows in Figure 8): conflicting findings within the procured body of self-report data (type
“A”), conflicting findings between verbal and behavioral data (type “D”), and conflicting findings
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Fig. 8. Confirmed (solid arrows) and unconfirmed (dashed arrows) types of conflicting findings that stem
from similar (A, B, C) or different (D, E, F) types of measures of mental state attribution to robots.

between verbal and neurological data (“E”). We did not find any clear evidence of systematic vari-
ation among the other three types of (hypothetical or unconfirmed) conflicting findings (dashed
arrows): conflicts within the body of (non-verbal) behavioral data (“B”), conflicts within the body
of neurological data (“C”), or conflicts between behavioral and neurological data (“F”).

As a conflicting finding of type “A”, there is evidence that verbal measures systematically vary
depending on whether study participants are asked directly about the minds of robots (e.g., “Does
this robot have a mind?”) or if more “indirect” or “implicit” verbal measures are employed, such as
asking participants to explain or verbally predict robot behavior. For instance, Fussell et al. [2008]
found that participants in their study described robots in mental state terms in the context of
an interview but also denied that robots have various mental capacities upon being asked more
directly in a post-interview questionnaire. Banks [2020] compared study participants’ responses
to the direct question “Do you think [the robot] has a mind”? with the outcomes of four different
types of implicit verbal measures and found no relationship between the two. Specifically, these
findings suggest that studies that employ more direct or explicit verbal measures are more likely
to observe a weaker tendency to attribute mental states to robots than studies that employ implicit
verbal measures.

Another type-A conflict was reported in a study by Fiala et al. [2014]. When allowed to choose
between non-mentalistic and mentalistic ways of describing the capabilities of a robot (e.g., the
robot “identified the location of the box” vs. “knew the location of the box”), participants in their
study preferred not to attribute mental states at all. Similarly, it was found in a series of studies
[Bossi et al. 2020; Marchesi et al. 2019, 2021; Perez-Osorio et al. 2019] that a majority of study par-
ticipants preferred non-mentalistic explanations over mentalistic explanations of robot behavior
when given the opportunity to rate the plausibility of the two types of explanations. These findings
support the generalization that studies that employ non-mentalistic verbal choice alternatives are
more likely to observe a weaker tendency to attribute mental states to robots than studies that
employ forced mentalistic verbal choice alternatives.

Conflicting findings of type D arise between self-report data that suggest that people attribute
(or do not) mind or certain mental states or capacities to robots and non-verbal behavioral data
that suggests otherwise. For instance, it has been observed in a number of studies that people
are reluctant toward describing robots as having emotions, feelings, and other mental states re-
lated to phenomenal experience (cf. Section 6.3). In contradiction with these results, studies show
that people are hesitant to inflict damage on or turn off robots [Bartneck and Hu 2008; Bartneck
et al. 2007], which can be taken as an indication that people ascribe experiential states to robots.
Other studies have shown that people’s anticipatory gaze behavior is consistent with ascriptions
of specific goals [Sciutti et al. 2013] and beliefs [Thellman and Ziemke 2020] and that these non-
verbal behaviors are not always consistent with people’s verbal self-reports [Thellman et al. 2020;
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Wiese et al. 2019]. These results are consistent with the generalization that studies that employ
non-verbal behavioral measures are more likely to observe a stronger tendency to attribute mental
states to robots than studies that employ verbal measures.

Conflicting findings of type E arise between self-report data that suggest that people attribute (or
not) mind or certain mental states or capacities to robots and neurological evidence that suggests
otherwise. For example, Cross et al. [2019] found that study participants rated a robot appearing
to be electrocuted as experiencing various levels of pain but could not observe any corresponding
activation in participants’ pain matrix during the observation of the electrocution.

We did not find any clear evidence of systematic variation among conflicting findings of type B,
C, and F. This means that these types of data—to the extent that they are comparable in the sense
that they bring to bear on the same research questions—appeared to be consistent with each other.
However, it should be noted that some types of measures have been used primarily in the service of
investigating specific aspects of mental state attribution to robots but less so for other aspects. For
example, neurological measures have so far primarily been used to assess the tendency to attribute
mental states to robots, mostly by focusing on comparisons with other types of agents, but were
only used to investigate determinants or consequences in one study. Furthermore, since behavioral
(non-verbal) measures have rarely been applied to study the relative tendency to attribute mental
states to robots as compared with other agents, there are so far very few points of contact of type
F. Hence, the prevalence or likelihood of conflicting findings of type B, C, or F, cannot be assessed
based on the presented review results.

The conflicting findings described in this section indicate that mental state attribution to robots
is a complex socio-cognitive process that, as independently suggested by several researchers, may
be operating at different “levels” (cf. Section 4.3). They also call into question the validity of the
different types of measures. Resolving or making sense of some of the conflicting findings may
imply having to adjudicate between different types of measures. Hence, it is important going for-
ward that the multidisciplinary research community as a whole engages in the question of what
research methods are appropriate for studying mental state attribution to robots.

8 OPEN QUESTIONS

Based on the review findings (Sects. 4–7), we identify four open questions about mental state
attribution to robots that are suitable targets for future research on the topic (RQ5). Note that we
have intentionally excluded research questions about the nature of the minds ascribed to robots
(e.g., “Can robots (ever) really have a mind?” and “When are mental state attributions to robots
true or justified?”) which pertain primarily to cognitive science [Thellman and Ziemke 2019] and
philosophy of mind and cannot presently be answered using empirical methods.

8.1 What Methods are Appropriate for Studying Mental State Attribution to Robots?

There is a considerable diversity of research methods employed in studies of mental state attribu-
tion to robots (cf. Section 5). The methodological choices that individual researchers make have
direct consequences on what kinds of study outcomes they can expect (cf. Section 7). Yet, there is
very little explicit discussion among scholars in the field about what methods are appropriate for
investigation.

Based on our review, a typical study on mental state attribution to robots is conducted in a lab
setting (74% of publications), is based on WEIRD participants (cf. Section 3), presents study par-
ticipants with a representation of a robot (67%), and employs a verbal measure (84%)—probably
Likert or semantic differential scale (59%)—to study one of its determinants (71%). Based on con-
cerns raised by scholars within and outside the field, we identify three potential problems with
this picture. The first issue concerns the external validity of lab studies and experimental methods,
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the second the construct validity of the heavily-relied-on verbal measures, and the third is a lack
of research on the behavioral consequences of mental state attribution to robots. We discuss each
of these issues in Sections 8.1.1–8.1.3.

8.1.1 External Validity of Laboratory Studies. It is not clear to what extent results on mental
state attribution to robots obtained in experimental lab settings that rely on potentially ecologically
invalid methods will carry over or generalize to the real world. We do not propose that results
from the lab are necessarily ecologically invalid. However, the fact that we mostly do not know to
what extent the reviewed findings generalize to situations in which interactions with robots (are
anticipated to) take place stands as an important issue in itself [Jung and Hinds 2018]. The validity
the various types of lab-based experimental methods employed to study mental state attribution to
robots cannot be easily assessed on a priori grounds. Consequently, it is useful and/or necessary to
conduct studies “in the wild” [Hutchins 1995] and compare results with those from the lab. So far,
few field studies have been conducted (only 4% of reviewed publications reported on a field study),
and they rarely compare obtained findings with similar findings from the lab. Moreover, only a few
cross-cultural studies on mental state attribution to robots have been conducted to date. Cross-
cultural studies are necessary to fully understand the generalizability of psychological research
findings [Barrett 2020] and they are instrumental in systematically assessing the universality of
the phenomenon.

8.1.2 Construct Validity of Self-Reports. Several researchers have independently raised con-
cerns about the validity of self-report measures, such as questionnaires or interviews, that rely
on study participants’ introspective access to attribution processes. For example, Caruana and
McArthur [2019] stated: “it has become necessary to assess the extent to which simulated agents
(e.g., robots) induce the adoption of an intentional stance. To date, this has largely been achieved
using subjective measures, such as asking participants to rate the likelihood of an agent having
a mind . . . A limitation of this approach is the inherent unreliability of conscious and subjective
judgments.” In a similar vein, Bossi et al. [2020] suggested: “a more detailed analysis of human atti-
tudes toward robots with objective behavioral and neural measures alongside subjective reports is
necessary.” These concerns extend to both general methodological limitations of self-report mea-
sures, such as the risks of various self-report biases [Nisbett and Wilson 1977; Paulhus and Vazire
2007], and limitations that are more specific to their application in the domain of human-robot
interaction [Bossi et al. 2020; Caruana and McArthur 2019; de Graaf and Malle 2019; Fiala et al.
2014; Short et al. 2010; Takahashi et al. 2016; Thellman and Ziemke 2019]. Among the more spe-
cific concerns, researchers have noted that the outcomes of self-report measures vary depending
on several factors that are difficult to and/or have not been controlled for in the context of the
studies in which they are used. For example, Fiala et al. [2014] stated: “When we probe people
for their explicit judgments about whether robots have mental states, responses are influenced by
a wide variety of factors. The apparent function of the robot, the nature of the question (forced-
choice vs. not), and platitudes about robots may all contribute to producing reasoned judgment
about the states of robots”. Thellman and Ziemke [2019] suggested that questions about the minds
of robots are “ambiguously open to interpretation as regarding the reality of the mental states
of robots” and that “people tend to predict and explain robot behavior with reference to mental
states without reflecting on the reality of those states”. In a similar vein, Short et al. [2010] re-
flected: “It is not easy to measure the attribution of mental state. How do we identify whether
participants think of the robot as an agent reasoning about a game, rather than a machine step-
ping through a task? Asking “How much does the robot think?” is not sufficient. Instead, we have
to rely on more subtle cues in the participants’ behavior and written responses.” Moreover, there is
a wealth of literature showing that verbal and non-verbal measures are not necessarily consistent
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[Greenwald and Banaji 1995; Nisbett and Wilson 1977] (consider, for instance, verbal responses
to the question “Are you racist?” versus behavioral measures of people’s racist tendencies). This
applies also in the human-robot interaction context [Spatola and Wudarczyk 2021; Thellman et al.
2020]. For instance, Spatola and Wudarczyk [2021] found that the non-verbal measure employed
in their study was a better predictor of a future behavior toward the robot than explicit measures.

In recognition of some of these limitations, some researchers have turned to more “subtle” or
“implicit” self-report measures that avoid direct questions about the minds of robots. For example,
Takahashi et al. [2016] proposed to use semantic differential scales in place of direct questions,
de Graaf and Malle [2019] proposed a method whereby study participants provide free-text expla-
nations of robot behavior, Levin et al. [2013] proposed to use verbal predictions of the behavior
of robots, and Banks [2020] employed the various verbal theory of mind tests that relied on more
indirect questions about robots’ mental states. The extent to which these implicit methods—which
all still rely on probing study participants’ deliberate thought processes—succeed in mitigating
the issues related to more direct self-report measures are unclear. Partly for this reason, other re-
searchers have proposed to use non-verbal behavioral measures, such as anticipatory gaze [Sciutti
et al. 2013; Thellman and Ziemke 2020] or attentional cueing [Wiese et al. 2019], or neurological
measures. For instance, Waytz et al. [2010b] stated that neuroimaging techniques were used in
their study because “the self-report measure of the dependent variables did not distinguish be-
tween whether participants were actually attributing humanlike minds to nonhuman agents or
simply using the mind as a metaphoric description of their behavior”. However, a limitation that
has been noted in the literature regarding neurological measures is that “although neuroimaging
techniques overcome some limitations of self-reported perceptions of robots’ minds, they still are
not sufficiently fine-grained as they document only an overall activation of regions involved in
mind inference rather than inferences of specific mental states.” [de Graaf and Malle 2019].

8.1.3 Behavioral Consequences of Mental State Attribution to Robots. In addition to the concerns
above, self-report measures might, at least in isolation, provide little or no insight into how mental
state attributions affect how people interact with robots. Arguably, investigating the behavioral
effects of ascribing mental states to robots requires, as a minimal criterion, empirical observations
of people’s behavior and methods to ensure that the observed behavior stems from people’s men-
tal state ascriptions, i.e., from people’s understanding or mental models of robots as agents with
particular (ascribed) mental states and capacities. Studying the relationship between people’s un-
derstanding of a robot and how they interact with it is a prerequisite for changing or improving
people’s understanding of the robot so that desirable interaction outcomes can be achieved. It is
therefore important to develop a methodology suited for the study of the behavioral effects of
ascribing particular mental states to robots in specific circumstances. Only 15% of the reviewed
publications reported on behavioral consequences of mental state attribution (see Table 14 in the
Appendix). Several of these studies employed various behavioral (non-verbal) measures of mental
state attribution in place of the more common self-report measures. However, it is still unclear
which (if any) of these methods actually accomplish to link people’s attributions with the effects
that they have on people’s behavior in a way that is scientifically sound or valid.

It has been proposed that these effects can be studied by measuring people’s predictions of
robot behavior [Levin et al. 2013, 2012; Thellman 2021; Thellman and Ziemke 2019, 2020]. For
example, Levin et al. [2013] stated, “Previous research exploring explicit beliefs about the inten-
tionality of different agents has relied upon participants to rate intentions, free will, and con-
sciousness directly [Epley, Akalis, Waytz, & Cacioppo, 2008; Gray et al., 2007; Morewedge et al.,
2007], or has reported participant comments about entities such as robots [Kanda, Hirano, Eaton, &
Ishiguro, 2003], without assessing whether these complex ideas are associated with expectations
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about specific observable behaviors that any given entity might exhibit. We, therefore, investigated
adults’ understanding of different representational systems by asking participants to make predic-
tions about the behavior of these systems.” A basic assumption underlying this approach is that
people’s predictions of robot behavior are indicative of how people interact with robots, because
deciding what actions to take in the context of interactions depends to a significant extent on the
anticipation of how others will (re)act to events that they are subjected to (including one’s own
actions) [FeldmanHall and Shenhav 2019].

8.2 What is the Scope and Limits of People’s Ability to Predict and Explain the
Behavior of Robots based on Mental State Attribution?

Upon investigating perspectives in the literature on the reason why people attribute mental states
to robots (RQ1B), we found that several researchers claimed that mental state attribution is impor-
tant to the ability to interact with robots. A recurrent assumption was that it helps people predict
and explain robot behavior. While it is generally agreed upon that people’s mental state attribu-
tions are highly predictive of human behavior [e.g., Dennett 1989; Fodor 1987; Heider 1958], it is
still largely unclear exactly how useful it is to ascribe mental states to robots. The observation that
robots have a relatively simple physical and functional constitution compared to humans might
lead to the assumption that it should be possible to predict their behavior based on our knowledge
about their underlying physical and functional (e.g., computational) states, and that mental state
ascription, therefore, should not be necessary. However, there are examples of cases where the
internal states of robots and computers can be just as inscrutable as those of humans—for experts
and laypeople alike. For instance, computer chess programmers are consistently beaten in chess
by their own programs despite having written every line of code themselves; the space of possible
internal states and legal state-transitions of the chess program is simply too vast and complex to
track [Dennett 1989]. We also see that it can be virtually impossible to predict how robotic sys-
tems that interact within stochastic environments, such as autonomous vehicles, will behave in
many real-life situations [Surden and Williams 2016]. Hence, it is certainly not the case that the
“technological experts” necessarily fully understand robots simply because they created them. Fur-
thermore, non-experts are even worse off considering that they will likely often have a relatively
poor understanding of the internal constitution and design of the robots they might encounter in
their daily life. Nevertheless, people might still be able to understand robots based on attributing
their behavior to underlying mental states and predicting that robots will generally take the kinds
of actions that are “rational” given those attributed states. The question is how far people’s folk-
psychological understanding will take them in interactions with robots (whose capabilities and
limitations are considerably different from those of humans).

8.3 How can People’s Mental State Attributions to Robots be Improved?

People’s understanding of robots affect how they interact with robots and therefore what types
of interaction outcomes can be achieved. Hence, it is important to explore ways to improve peo-
ple’s understanding of robots. This includes their understanding of robots as having particular
(ascribed) mental states, such as specific beliefs and desires. To some, this might sound as a philo-
sophical puzzle: how can one’s knowledge about a mind that is seemingly projected by oneself be
improved? However, there is a strong prima facie case for the assumption that particular mental
state attributions serve us better than others in interactions with robots, and that we can improve
our understanding of robot minds in various ways—including by learning about their perceptual
and cognitive capabilities and limitations. For example, mistakenly thinking that a self-driving car
has seen me and therefore knows where I am can arguably be detrimental to both predicting the
car’s behavior and taking appropriate action (and can have disastrous interaction outcomes as a
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consequence). It has been suggested that the attribution of a mental state (e.g., a specific belief) to
a robot can be evaluated according to whether it is behaviorally congruent, that is, whether it leads
to accurate prediction of the robot.s behavior [Thellman 2021].

The topic of identifying ways to improve human-robot interaction through design that facilitates
mental state inference that is conducive to predicting and interacting with robots has garnered
some interest [e.g., Chadalavada et al. 2015; Habibovic et al. 2018; Kaptein et al. 2017; Williams
et al. 2018] but so far remains largely unexplored. There is evidence that a person who repeat-
edly interacts with and observes the behavior of a robot is thereby able to learn to make more
appropriate mental state ascriptions and consequently improve their ability to predict its behav-
ior [Thellman and Ziemke 2020]. This suggests that people may in some circumstances be able
to gradually “tune in” to the unique perceptual and cognitive capabilities over time. In other cir-
cumstances, people may need external guidance or support to attribute the appropriate mental
states. This might include information communicated to people prior to the interaction (e.g., by
providing a “user manual”) or during the interaction itself (e.g., communicated or signaled by the
robot itself).

8.4 What are the Underlying Mechanisms that Govern Mental State Attribution
to Robots?

Psychological science has been accused of being preoccupied with “effects” [van Rooij and Baggio
2020]. All the findings on mental state attribution reviewed in this article, including determinants,
consequences, and comparisons, can be described as behavioral effects of underlying human social-
cognitive capabilities. Effects are explananda (things to explain), not explanations. In discovering
an effect (e.g., that people exhibit a stronger tendency to ascribe mental states to robots than com-
puters), we do not thereby explain it. Ultimately, it might be possible to explain observed effects
with reference to underlying mechanisms (e.g., cognitive, neurological), including the extent to
which the mechanisms that underly mental state attribution to robots overlap or differ from the
case of humans or computers. It has been suggested that the underlying mechanisms might op-
erate at distinct processing levels (see Section 4.3). This suggestion is compelling given empirical
contradictions in the literature (cf. Section 7). However, there is so far very little knowledge of
the underlying mechanisms that govern mental state attribution to robots, and it remains to be
seen how such knowledge can be put to use for the practical purpose of improving human-robot
interactions.

9 SUMMARY OF PRINCIPAL FINDINGS

This section highlights the most important findings related to each review question (RQ1–RQ5).

9.1 RQ1: How is Mental State Attribution to Robots conceived

in the Scientific Literature?

In our review of the literature, we found the terminology used to describe mental state attribution
to robots to be diverse but largely homogenous in usage (i.e., terms like mind perception, [psy-

chological] anthropomorphism, intentional stance, and mental state attribution are to a significant
extent used synonymously across individual studies). This suggests that researchers from various
disciplines use different terms to refer to the same underlying phenomenon—a finding that we
hope can facilitate cross-disciplinary dissemination of future research on the topic. We found no
clear consensus among researchers regarding the reason(s) why people attribute mental states to
robots or what the underlying mechanisms might be. However, a common conception is that men-
tal state attribution helps people interact with robots by providing an interpretative framework
for predicting and explaining robot behavior. Several researchers also independently suggested
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that the underlying mechanisms might operate on distinct cognitive levels (in parallel and/or in
sequence).

9.2 RQ2: What methods have been used in Studies of Mental State Attribution
to Robots?

The methodological landscape is considerably diverse (cf. Tables 7–11 in the Appendix). How-
ever, a majority of studies are experimental, conducted in a laboratory setting, and employ verbal
measures (76% of studies rely on questionnaire methodology) and representations of robots (as
opposed to physically present robots) as a stimulus. The robots presented to study participants
are most commonly anthropomorphic (i.e., humanoid) and exhibit some kind of behavior (social
or non-social). Study participants can be described as mostly WEIRD (i.e., from western, educated,
industrialized, rich, and democratic societies). Some of the potential limitations of the various re-
search methods are discussed in Section 8.1.

9.3 RQ3: What are the Previous findings on Mental State Attribution to Robots?

Our review supports three general conclusions. Firstly, people’s tendency to attribute mental states
to robots is determined by multiple factors, including (but not necessarily limited to) age and
motivation as well as robot behavior, appearance, and identity. Secondly, mental state attribution
to robots has psychological as well as behavioral effects, and appears to facilitate prediction and
explanation in interaction with robots. The consequences are so far not as well-documented as the
determinants. Thirdly, people’s tendency to attribute mental states to robots versus other agents
follows a computer < robot < human pattern and appears to be moderated by the presence of socially
interactive behavior. These conclusions should be considered as tentative as they are made on the
basis of findings that depend on different sources of evidence (including self-report data) which
may or may not be valid (cf. Section 8.1).

9.4 RQ4: Do Findings on Mental State Attribution to Robots vary as a Function of the
Methods Employed?

We found that studies relying on different types of methodological approaches to the study of
mental state attribution to robots (e.g., verbal vs. non-verbal measures) give rise to different and
sometimes seemingly contradictory research findings (see Section 7). This means that the method-
ological choices that individual researchers make have direct consequences for what kinds of study
outcomes they can expect. We hope that this finding, along with the breakdown of research meth-
ods and findings provided in Sections 5–6 and Tables 7–15 in the Appendix, can help researchers
make more well-informed methodological decisions in the context of their own work. The finding
also calls for a broader, interdisciplinary discussion of what research methods are appropriate for
investigating mental state attribution to robots (see Section 8.1).

9.5 RQ5: What are the open research questions about Mental State Attribution
to Robots?

We identified four open research questions: (1) What methods are appropriate for studying mental
state attribution to robots? (2) What are the scope and limits of people’s ability to predict and ex-
plain the behavior of robots based on mental state attribution? (3) How can people’s mental state
attributions to robots be improved? (4) What are the underlying mechanisms that govern mental
state attribution to robots? Among these, we consider the first question to be the most pressing
because it precludes the possibility to confidently assess the remaining questions. Assessing what
methods are appropriate for studying mental state attribution to robots might involve adjudicating
between different, contradictory sources of evidence. Alternatively, it might be possible to account
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for conflicting findings in reference to the theory that can accommodate different, seemingly con-
tradictory types of evidence simultaneously. Dual-process theories (see Section 4.3) might be a
contender for such a solution as they may help explain why evidence that stems from higher
cognitive processes (e.g., self-reports) may seem in contradiction with evidence that stem from
lower or introspectively inaccessible cognitive processes (e.g., non-verbal behavior or neurological
activity).

10 STRENGTHS AND LIMITATIONS

One of the main strengths of the reported literature review is that it employs a comprehensive and
systematic method for the purpose of identifying and reviewing all available evidence relevant to
the review questions (Section 2). It should be noted, as a general methodological limitation, that
this method does not guarantee full coverage of all relevant primary studies (this is practically
unattainable under most circumstances [Kitchenham et al. 2007]). However, the transparent and
complete description of the review methods facilitates replication and a fair assessment of the basis
for the conclusions drawn in the review. It should also be noted that the review was delimited to
publications that described robotic systems using the term “robot”. As a consequence, the review
may have excluded research on mental state attribution to autonomous vehicles, drones, and other
types of robotic systems that are not typically described using the term, as well as research that tar-
geted computers, virtual characters, or animals—all of which might provide methods and insights
that are relevant to and applicable in the study of mental state attribution to robots. Moreover, the
review was delimited to empirical publications only. While we hope to have identified most find-
ings and empirical methods, this means that some of the conceptions of the phenomenon that are
present in the non-empirical literature might shed additional insights to the discussion presented
in this review.

Another methodological limitation is that we decided not to conduct a quality assessment of the
primary studies included in the review (cf. Section 2.3). Aside from the practical infeasibility due to
the large variety of methods, we think that in this case, such assessment would risk to prematurely
discounting individual studies based on their particular approach of study, and thereby limit the
possibility of a systematic and unbiased review. Whereas most of the primary studies were sourced
from well-established scientific journals and conference proceedings, the lack of a detailed quality
assessment means that these studies are presented in the review as if they all are of equal quality,
and that therefore the general conclusions drawn from them might be biased. Consequently, the
burden is placed on the reader to judge the validity of included primary studies as well as the
general review conclusions drawn from them. This emphasizes the importance of a transparent
and detailed description of the review methods so that the reader can easily trace and understand
the rationale behind the review conclusions.

The review also contributes comprehensive lookup tables (included in the Appendix) that can
be used by researchers interested in specific types of methods or findings about mental state attri-
bution to robots to find related research. This can potentially lead to better-informed methodolog-
ical choices and promote appropriate (and demote redundant) replication of research findings—in
short, to a more cumulative science.

11 CONCLUSION

What prompted us to conduct this comprehensive review of conceptions, methods, and findings
regarding human mental state attribution to robots is the need for a shared scientific understanding
of this complex phenomenon within the interdisciplinary HRI community. Among other things, we
found that the terminology used is diverse, but also to some degree homogeneous or convergent in
the sense that “mental state attribution/ascription” is the by far most used term. This term has the
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advantage, in our opinion [cf. Thellman and Ziemke 2021], that—unlike terms like “mind reading”
or “mind perception”—it makes it relatively clear that the mental states in question are ascribed
by people, and not necessarily real. We hope that this article contributes to facilitating a broader
dissemination among researchers in different disciplines as well as further convergence among
different strands of research.

Our systematic review found that the literature abounds with conflicting research findings that
stem from different sources of evidence, including self-reports, non-verbal behavioral and neu-
rological data. This means that the methodological choices that individual researchers make—
including the selection of stimulus materials (e.g., behavioral vs. non-behavioral) and measures
(e.g., verbal vs. non-verbal behavioral or neurological)—have direct consequences for what re-
search outcomes can be expected. This indicates a clear need for an inter- and transdisciplinary
discussion about the nature of the phenomenon and what research methods are appropriate. In
particular, we believe that there is a need for researchers to develop a common language and a
shared set of basic assumptions about the phenomenon at hand, in order to be able to access and
build cumulatively on each other’s work. We hope that our review findings can inform or at least
inspire a broader discussion about these issues.

It should be noted that there are significant practical incentives for studying how people’s men-
tal state attributions affect how they interact with robots. Researchers have begun to explore ways
of improving human-robot interaction through design that facilitates mental state inference that
is conducive to achieving desirable outcomes in human-robot interactions (e.g., collaboration, acci-
dent prevention). At the present, the largest obstacle is the lack of appropriate research methods for
obtaining such knowledge. We believe the best way to advance the field in terms of methodology
is through scientific discussions that transcend disciplinary boundaries.

Last, but not least, we conclude that the role of mental state attribution in interactions with
robots is actually still surprisingly unclear. The scope and limits of people’s capability to interact
(socially) with robots based on attributions of their behavior to underlying mental states, such
as beliefs, feelings, and intentions, are still largely unknown. As a consequence, possible ways to
improve human-robot interactions by guiding people’s mental state attributions—and managing
their expectations [cf. Ziemke 2020]—remain largely unexplored so far. These issues are bound
to become increasingly relevant as robots become more ubiquitous in the daily lives of people
and, as illustrated with the pedestrian example in the introduction, need to be understandable and
interactable for a very broad range of people.
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APPENDIX

Table 2. Publications Included in the Review (N = 155)

Author (study #) Year N Population Age* % fem/wom Setting

[Abubshait and Wiese 2017] 2017 63 US students 21 75 Lab
[Abubshait and Wykowska 2020] 2020 27 24.4 63 Lab
[Abubshait et al. 2020] 2020 109 University students 18–37 63 Lab
[Akechi et al. 2018] 2018 78 Children with and without autism 7–24 26 Lab
[Alimardani and Qurashi 2019] 2019 53 Young and elderly Dutch natives Lab
[Appel et al. 2020] (1) 2020 44 US and German adult residents 44 Online
[Appel et al. 2016] 2016 93 US residents 34.6 52 Online
[Banks 2020] 2020 469 White/caucasian majority 22.3 57 Online
[Bartneck and Hu 2008] (2) 2008 25 Dutch students 19–25 40 Lab
[Bartneck et al. 2007] 2007 49 Dutch 24.6 33 Lab
[Beran and Ramirez-Serrano 2010] 2010 184 Canadian children 8.2 53 Lab
[Bernotat and Eyssel 2018] 2018 102 German and Japanese adults 54 Online
[Bernstein and Crowley 2008] 2008 60 Children 4–7 48 Lab
[Bossi et al. 2020] 2020 52 Adults Lab
[Brink et al. 2019] 2019 240 Children 3–18 49 Field, Lab
[Broadbent et al. 2013] 2013 30 University students and staff 22.5 47 Lab
[Buckwalter and Phelan 2013] 2013 253 US Online
[Carter and Pelphrey 2006] 2006 9 Children 9.2 40 Lab
[Carter et al. 2011] 2011 17 Adults 27.5 47 Lab
[Chaminade et al. 2018] 2018 21 French speakers Lab
[Chaminade et al. 2012] 2012 19 University students 21.5 0 Lab
[Ciardo et al. 2020] 2020 90 25.9 65 Lab
[Cross et al. 2019] 2019 26 UK university students 19.9 68 Lab
[Dang and Liu 2021] 2021 379 Chinese, US 41 Online
[de Graaf and Malle 2019] 2019 121 38.5 51 Online
[Desideri et al. 2021] 2020 94 Primary school children 47 Lab
[Di Dio et al. 2018] 2018 37 Italian children 7 43 Lab
[Di Dio et al. 2020] 2020 31 Italian children 5.9 42 Lab
[Eimler et al. 2011] 2011 211 US university students, German 40 Online
[Eyssel and Pfundmair 2015] 2015 68 German 23.7 49 Lab
[Eyssel and Kuchenbrandt 2012] 2012 78 German university students 23.3 51 Lab
[Eyssel and Reich 2013] 2013 34 German university students 29.1 Lab
[Eyssel et al. 2012] 2012 58 Students 23 53 Lab
[Eyssel et al. 2010] 2010 31 German 22.6 Lab
[Eyssel et al. 2011] 2011 58 German university students 25.2 52 Lab
[Eyssel et al. 2017] 2017 81 German 25.6 49 Lab
[Fiala et al. 2014] 2014 52
[Fiore et al. 2013] 2013 74 US 19.2 50 Lab
[Fraune et al. 2020] 2020 599 US and Japanese 35 Online, Lab
[Fu et al. 2021] 2020 24 University students 25.3 Lab
[Giusti and Marti 2006] 2006 5 Elderly 74.8 80 Field
[Gobbini et al. 2011] 2011 12 26 67 Lab
[Gray et al. 2007] 2007 2399 Majority white 30.5 66 Online
[Gray and Wegner 2012] 2012 120 US 25 36 Lab
[Hannibal 2014] 2014 14 Danish schoolchildren Field
[Haring et al. 2015] 2015 42 Australian and Japanese 43 Lab
[Haring et al. 2019] 2019 35 US 17–24 Lab
[Heijnen et al. 2019] 2019 54 Dutch university student majority 22.3 65 Lab
[Henkel et al. 2017] 2017 30 US 8–12 60 Lab
[Hoenen et al. 2016] 2016 57 23.2 74 Lab
[Hofree et al. 2014] 2014 595 US 75 Lab
[Holbrook 2018] 2018 855 US 18–74 50 Online
[Huebner 2010] 2010 2014 US university students Lab
[Imamura et al. 2015] 2015 22 31 55 Lab
[Ishii and Watanabe 2019] 2019 392 Japanese university students 19.5 53 Lab
[Itakura et al. 2008] 2008 50 Toddlers 2.6 52 Lab
[Ito et al. 2004] 2004 Lab
[Jipson and Gelman 2007] 2007 72 Children and adults 50 Lab
[Kahn Jr et al. 2012] 2012 40 University students 20.3 52 Lab
[Kamewari et al. 2005] 2005 32 Infants 0.5 52 Lab
[Kamide et al. 2013] 2013 1200 Japanese 38.4 50 Online

*Numbers in column “Age” are means unless marked as age span.
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Table 3. Publications Included in the Review (N = 155) (Continued)

Author (study #) Year N Population Age* % fem/wom Setting

[Keijsers and Bartneck 2018] 2018 302 Majority US residents 38 57 Lab
[Keijsers et al. 2021] 2019 217 Majority US residents 59 Online, Lab
[Kiesler et al. 2008] 2008 113 US 26 48 Lab
[Konijn and Hoorn 2020] 2020 265 31.5 53 Online, Lab
[Korman et al. 2019] 2019 82 Online
[Krach et al. 2008] 2008 20 24.5 0 Lab
[Kupferberg et al. 2013] 2013 43 Monkeys (common marmosets) 1–11 Lab
[Kupferberg et al. 2018] 2018 20 German 26.6 50 Lab
[Küster and Swiderska 2021] 2021 253 38.4 64 Online
[Lakatos et al. 2014] (1) 2014 48 24.5 46 Lab
[Law et al. 2021] 2020 84 University students Lab
[Lee et al. 2021] 2021 428 US resident majority 37 Online
[Lee et al. 2005] 2005 108 Chinese university students 69 Lab
[Lefkeli et al. 2021] 2020 245 University population 22.4 62 Lab
[Lemaignan et al. 2015] 2015 26 Children 4.5 Lab
[Levin et al. 2013] 2013 102 US university students, hospital staff 64 Lab
[Levin et al. 2012] 2012 81 US university students 62 Lab
[Mahzoon et al. 2019] 2019 32 Japanese university students 47 Lab
[Mandell et al. 2017] 2017 160 English speakers 18–77 53 Online
[Manzi et al. 2020] 2020 144 Italian children 5–9 49 Lab
[Marchesi et al. 2019] 2019 106 33.3 68 Online
[Marchesi et al. 2021] 2020 41 24.8 61 Lab
[Martin et al. 2020] 2020 40 Children, anglo-australian majority 3.6 43 Lab
[Martini et al. 2016] 2016 318 English speakers, white majority 56 Online
[Martini et al. 2015] 2015 7 US university students 22.1 86 Lab
[Melson et al. 2009] 2009 152 Children 3–15 Lab
[Miyake et al. 2019] 2019 25 Japanese 21.4 25 Lab
[Morewedge et al. 2007] (2) 2007 63 University students 29.8 25 Lab
[Mou et al. 2020] 2020 32 University population 53 Lab
[Müller et al. 2020] 2020 127 17-24 86 Lab
[Mutlu et al. 2009] 2009 26 Japanese university students 20.4 65 Lab
[Nigam and Klahr 2000] 2000 39 Children Lab
[Nijssen et al. 2019] 2019 135 Dutch university students 88 Lab
[Okanda et al. 2019] 2019 48 Japanese university students 54 Lab
[Okanda et al. 2021] 2021 95 Children and adults 3–62 Lab
[Okita et al. 2005] 2005 93 Children 3–5 Lab
[Özdem et al. 2017] 2017 21 18–28 Lab
[Paetzel et al. 2018] 2018 46 University students 26.2 24 Lab
[Peressini 2014] 2014 73 University students 53 Lab
[Perez-Osorio et al. 2019] 2019 44 24.8 55 Lab
[Powers et al. 2005] 2005 33 Native English speakers 21 48 Lab
[Quadflieg et al. 2016] 2016 265 University students and staff 18–54 54 Online
[Raffard et al. 2016] 2016 38 Adults with and without schizophrenia 18–55 Lab
[Rueben et al. 2021] 2021 6 University population 50 Field
[Saerbeck and Bartneck 2010] 2010 18 Adult 44 Lab
[Salem et al. 2011] 2011 62 German native speakers 30.9 52 Lab
[Saylor and Levin 2005] 2005 11 Children 4.6 64 Lab
[Sciutti et al. 2013] 2013 10 31 20 Lab
[Severson and Lemm 2016] 2016 90 Children 5–9 50 Lab
[Short et al. 2010] 2010 60 US student majority 53 Lab
[Sirkin et al. 2015] 2015 20 US university students 20.8 60 Lab
[Somanader et al. 2011] 2011 66 Children 4–5 52 Lab
[Sommer et al. 2019] 2019 126 Children, caucasian majority 7.6 50 Lab
[Spektor-Precel and Mioduser 2015] 2015 24 Children 4–6 Lab
[Stafford et al. 2014] 2014 25 Older adults 86.1 72 Field
[Straub 2016] 2016 Café visitors Field
[Sturgeon et al. 2019] 2019 60 College educated majority 20–79 40 Online
[Subrahmanyam et al. 2002] 2002 48 Children and adults Lab
[Swiderska and Küster 2018] 2018 217 22.3 62 Online
[Sytsma and Machery 2010] 2010 1135 Adults 18–75 Online
[Takahashi et al. 2016] 2016 500 Japanese 45 50 Online
[Takahashi et al. 2013] 2013 46 Adults 18–36 41 Lab
[Takahashi et al. 2014] 2014 16 18–25 69 Lab

*Numbers in column “Age” are means unless marked as age span.
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Table 4. Publications Included in the Review (N = 155) (Continued)

Author (study #) Year N Population Age* % fem/wom Setting

[Tan et al. 2018] 2018 775 US and Chinese adults 45 Online
[Tanibe et al. 2017] 2017 129 Japanese speakers 21.8 50 Online
[Tatsukawa et al. 2019] 2019 84 Japanese Lab
[Terada and Yamada 2017] 2017 110 Japanese university students 19–25 41 Online
[Terada et al. 2007] 2007 32 University students and staff 20–27 Lab
[Thellman and Ziemke 2020] 2020 155 Swedish university students 25 Lab
[Thellman et al. 2017] 2017 90 Swedish university students 24 52 Lab
[Trovato and Eyssel 2017] 2017 66 Italian and Japanese students 40 Lab
[van den Berghe et al. 2021] 2021 104 Children 5.7 48 Lab
[van der Woerdt and Haselager 2019] 2019 63 University population 33 Online
[van Duuren and Scaife 1996] 1996 80 Children and adults 5–45 Lab
[van Straten et al. 2020] 2020 144 Primary school children 8.9 50 Lab
[Van Straten et al. 2021] 2021 168 Primary school children 9 56 Lab
[Wallkötter et al. 2020] 2020 62 38.7 Online
[Wang and Krumhuber 2018] 2018 443 45 Lab, Online
[Wang and Quadflieg 2015] 2015 26 English speakers 18–35 54 Lab
[Ward et al. 2013] 2013 121 34.9 66 Online
[Waytz et al. 2010b] (2–6) 2010 215 Adults 46 Lab
[Weisman et al. 2017] 2017 1442 US adults Online
[Wiese et al. 2019] (1) 2019 114 University students 68 Lab
[Wiese et al. 2021] 2021 142 English speakers 35.3 49 Online
[Wiese et al. 2012] 2012 70 18–32 70 Lab
[Wykowska et al. 2014] 2014 44 19–34 55 Lab
[Xie et al. 2019] 2019 400 39 48 Online
[Xu and Sar 2018] 2018 522 44 Online
[Yamaji et al. 2010] 2010 108 Children 4–11 Field
[Zhang et al. 2019] 2019 40 Children with and without autism 5–8 13 Lab
[Zhao et al. 2016] 2016 1648 57 Online
[Złotowski et al. 2014] 2014 35 Majority university population 26.7 54 Lab
[Złotowski et al. 2017] 2017 52 Japanese-speaking university students 21.5 35 Lab
[Złotowski et al. 2018] 2018 40 Japanese-speaking university population 21.5 35 Lab

*Numbers in column “Age” are means unless marked as age span.
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Table 5. Terms used in Reviewed Studies to Denote Mental State Attribution to Robots

Term Study

Anthropo-
morphism

[Alimardani and Qurashi 2019; Banks 2020; Bernotat and Eyssel 2018; Bossi et al. 2020; Broadbent et al. 2013;
Chaminade et al. 2012; Desideri et al. 2021; Di Dio et al. 2018; Eyssel et al. 2012, 2010; Eyssel and Kuchenbrandt 2012;
Eyssel et al. 2011; Eyssel and Reich 2013; Eyssel et al. 2017; Eyssel and Pfundmair 2015; Fraune et al. 2020; Hannibal
2014; Heijnen et al. 2019; Hofree et al. 2014; Holbrook 2018; Huebner 2010; Kamide et al. 2013; Keijsers and Bartneck
2018; Keijsers et al. 2021; Kiesler et al. 2008; Krach et al. 2008; Küster and Swiderska 2021; Lakatos et al. 2014; Law
et al. 2021; Lemaignan et al. 2015; Levin et al. 2013; Manzi et al. 2020; Marchesi et al. 2019, 2021; Melson et al. 2009;
Müller et al. 2020; Nijssen et al. 2019; Okanda et al. 2021; Salem et al. 2011; Severson and Lemm 2016; Short et al.
2010; Sommer et al. 2019; Stafford et al. 2014; Takahashi et al. 2014; Tan et al. 2018; Terada et al. 2007; Trovato and
Eyssel 2017; van den Berghe et al. 2021; van der Woerdt and Haselager 2019; van Straten et al. 2020; Van Straten et al.
2021; Wallkötter et al. 2020; Wang and Krumhuber 2018; Waytz et al. 2010b; Zhao et al. 2016; Złotowski et al. 2014,
2017, 2018]

Folk
psychology

[Carter et al. 2011; de Graaf and Malle 2019; Fiala et al. 2014; Huebner 2010; Kiesler et al. 2008; Peressini 2014; Sytsma
and Machery 2010; Thellman et al. 2017; Thellman and Ziemke 2020; Weisman et al. 2017]

Intentional
stance

[Abubshait and Wykowska 2020; Bossi et al. 2020; Carter and Pelphrey 2006; Chaminade et al. 2018, 2012; Ciardo
et al. 2020; Desideri et al. 2021; Huebner 2010; Krach et al. 2008; Lee et al. 2021; Mandell et al. 2017; Marchesi et al.
2019, 2021; Martini et al. 2016, 2015; Özdem et al. 2017; Perez-Osorio et al. 2019; Rueben et al. 2021; Terada et al. 2007;
Terada and Yamada 2017; Thellman et al. 2017; Thellman and Ziemke 2020; Wallkötter et al. 2020; Wiese et al. 2019,
2012; Wykowska et al. 2014; Yamaji et al. 2010]

Mental state
attribution/
ascription

[Abubshait et al. 2020; Abubshait and Wiese 2017; Abubshait and Wykowska 2020; Akechi et al. 2018; Alimardani
and Qurashi 2019; Appel et al. 2020; Banks 2020; Beran and Ramirez-Serrano 2010; Bernotat and Eyssel 2018;
Bernstein and Crowley 2008; Bossi et al. 2020; Brink et al. 2019; Buckwalter and Phelan 2013; Carter et al. 2011;
Carter and Pelphrey 2006; Cross et al. 2019; Dang and Liu 2021; de Graaf and Malle 2019; Di Dio et al. 2018, 2020;
Eimler et al. 2011; Eyssel et al. 2012, 2010; Eyssel and Kuchenbrandt 2012; Eyssel et al. 2011; Eyssel and Reich 2013;
Eyssel et al. 2017; Eyssel and Pfundmair 2015; Fiala et al. 2014; Fiore et al. 2013; Fu et al. 2021; Giusti and Marti 2006;
Gobbini et al. 2011; Gray and Wegner 2012; Hannibal 2014; Haring et al. 2019; Heijnen et al. 2019; Hoenen et al. 2016;
Holbrook 2018; Huebner 2010; Imamura et al. 2015; Ishii and Watanabe 2019; Itakura et al. 2008; Ito et al. 2004; Jipson
and Gelman 2007; Kahn Jr et al. 2012; Kamewari et al. 2005; Kamide et al. 2013; Keijsers and Bartneck 2018; Keijsers
et al. 2021; Konijn and Hoorn 2020; Korman et al. 2019; Krach et al. 2008; Kupferberg et al. 2013, 2018; Küster and
Swiderska 2021; Lakatos et al. 2014; Law et al. 2021; Lee et al. 2021, 2005; Lefkeli et al. 2021; Lemaignan et al. 2015;
Levin et al. 2013; Mahzoon et al. 2019; Mandell et al. 2017; Marchesi et al. 2019, 2021; Martin et al. 2020; Martini et al.
2016, 2015; Melson et al. 2009; Miyake et al. 2019; Mou et al. 2020; Müller et al. 2020; Mutlu et al. 2009; Nigam and
Klahr 2000; Nijssen et al. 2019; Okanda et al. 2019, 2021; Okita et al. 2005; Özdem et al. 2017; Paetzel et al. 2018;
Peressini 2014; Perez-Osorio et al. 2019; Quadflieg et al. 2016; Rueben et al. 2021; Saerbeck and Bartneck 2010; Salem
et al. 2011; Saylor and Levin 2005; Sciutti et al. 2013; Severson and Lemm 2016; Short et al. 2010; Sirkin et al. 2015;
Somanader et al. 2011; Sommer et al. 2019; Spektor-Precel and Mioduser 2015; Stafford et al. 2014; Straub 2016;
Subrahmanyam et al. 2002; Swiderska and Küster 2018; Sytsma and Machery 2010; Takahashi et al. 2016, 2013, 2014;
Tan et al. 2018; Tanibe et al. 2017; Tatsukawa et al. 2019; Terada et al. 2007; Terada and Yamada 2017; Thellman et al.
2017; Thellman and Ziemke 2020; Trovato and Eyssel 2017; van den Berghe et al. 2021; van der Woerdt and
Haselager 2019; van Duuren and Scaife 1996; van Straten et al. 2020; Van Straten et al. 2021; Wallkötter et al. 2020;
Wang and Krumhuber 2018; Wang and Quadflieg 2015; Ward et al. 2013; Waytz et al. 2010b; Weisman et al. 2017;
Wiese et al. 2019, 2021, 2012; Wykowska et al. 2014; Xie et al. 2019; Xu and Sar 2018; Yamaji et al. 2010; Zhang et al.
2019; Zhao et al. 2016; Złotowski et al. 2014, 2017, 2018]

Mentalizing [Abubshait et al. 2020; Abubshait and Wiese 2017; Abubshait and Wykowska 2020; Banks 2020; Bossi et al. 2020;
Carter et al. 2011; Carter and Pelphrey 2006; Chaminade et al. 2012; Ciardo et al. 2020; Cross et al. 2019; Desideri et al.
2021; Di Dio et al. 2018; Fiore et al. 2013; Gobbini et al. 2011; Kamewari et al. 2005; Krach et al. 2008; Mandell et al.
2017; Marchesi et al. 2021; Martini et al. 2016, 2015; Okanda et al. 2021; Özdem et al. 2017; Sturgeon et al. 2019;
Takahashi et al. 2013, 2014; Wang and Quadflieg 2015; Waytz et al. 2010b; Wiese et al. 2019, 2012; Wykowska et al.
2014; Zhao et al. 2016]

Mind
perception

[Abubshait et al. 2020; Abubshait and Wiese 2017; Akechi et al. 2018; Alimardani and Qurashi 2019; Appel et al. 2020;
Bernotat and Eyssel 2018; Brink et al. 2019; Broadbent et al. 2013; Dang and Liu 2021; Desideri et al. 2021; Di Dio
et al. 2018; Eyssel and Kuchenbrandt 2012; Eyssel and Reich 2013; Eyssel et al. 2017; Eyssel and Pfundmair 2015;
Fiore et al. 2013; Fu et al. 2021; Gray et al. 2007; Gray and Wegner 2012; Haring et al. 2015; Holbrook 2018; Ishii and
Watanabe 2019; Kamide et al. 2013; Keijsers and Bartneck 2018; Küster and Swiderska 2021; Lee et al. 2021; Lefkeli
et al. 2021; Mahzoon et al. 2019; Mandell et al. 2017; Manzi et al. 2020; Martini et al. 2016; Miyake et al. 2019; Müller
et al. 2020; Okanda et al. 2021; Quadflieg et al. 2016; Raffard et al. 2016; Stafford et al. 2014; Swiderska and Küster
2018; Sytsma and Machery 2010; Takahashi et al. 2016; Tanibe et al. 2017; Tatsukawa et al. 2019; Trovato and Eyssel
2017; van der Woerdt and Haselager 2019; Wallkötter et al. 2020; Wang and Krumhuber 2018; Ward et al. 2013; Waytz
et al. 2010b; Weisman et al. 2017; Wiese et al. 2019, 2021; Xu and Sar 2018]

Mind
reading

[Carter and Pelphrey 2006; Imamura et al. 2015; Ito et al. 2004; Kupferberg et al. 2018; Lee et al. 2021; Takahashi et al.
2014; Terada and Yamada 2017]

Theory of
mind

[Akechi et al. 2018; Alimardani and Qurashi 2019; Banks 2020; Broadbent et al. 2013; Carter and Pelphrey 2006;
de Graaf and Malle 2019; Di Dio et al. 2018, 2020; Fiore et al. 2013; Gobbini et al. 2011; Holbrook 2018; Ishii and
Watanabe 2019; Itakura et al. 2008; Kamide et al. 2013; Keijsers and Bartneck 2018; Korman et al. 2019; Krach et al.
2008; Law et al. 2021; Lee et al. 2021; Lefkeli et al. 2021; Levin et al. 2012; Mandell et al. 2017; Marchesi et al. 2019;
Martini et al. 2015; Mou et al. 2020; Mutlu et al. 2009; Spektor-Precel and Mioduser 2015; Stafford et al. 2014;
Sturgeon et al. 2019; Terada et al. 2007; Terada and Yamada 2017; Waytz et al. 2010b; Weisman et al. 2017; Wiese et al.
2012; Zhang et al. 2019]
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Table 6. Examples of Statements in Which Various Terms (boldfaced)
are used to Denote Mental State Attribution to Robots

Statement Study

“From mundane conversations across dinner tables to strategic negotiations in poker games and first
dates, people automatically and purposefully mentalize other agents. That is, they engage in
meta-representational sense-making associated with inferring others’ mental states, and those
processes are core to human social interaction [1]. These processes are collectively known as theory
of mind (ToM), a system by which one ascribes mental states to self and other and then uses that
comparative ascription to make predictions about others’ behaviors”.

[Banks 2020]

“In this way, the NMSPI prompts participants to make mental state attributions, that is, to engage
in theory of mind mentalizing”

[Fiore et al. 2013]

“One of the biases that intriguing cognitive scientist and psychologist most would be Theory of
Mind, the cognitive capacity to ascribe mental states to others, animals, and even non-living
entities”

[Ishii and Watanabe 2019]

“Emery [21] suggests that people combine information from gaze cues with “higher-order cognitive
strategies (including experience and empathy) to determine that an individual is attending to a
particular stimulus because they intend to do something with the object, or believe something about
the object”—an ability called “mental state attribution” or “theory of mind”.”

[Mutlu et al. 2009]

“Research in social cognitive neuroscience has demonstrated that when we interact with others we
often make inferences about the others’ internal states (i.e., intentions, beliefs) in order to explain,
understand, and predict their behavior—a process commonly referred to as mentalizing ... The belief
that an agent has a mind intuitively or consciously triggers the adoption of the intentional stance
(Dennett, 2003), which involves treating the agent as a rational being with beliefs, desires, and action
goals ...”

[Özdem et al. 2017]

“... two mechanisms have been proposed to underlie intention understanding. One of these is a folk
psychology or ‘theory theory of mind’ that has been advanced as an alternate method of intention
understanding that uses mental state information.”

[Carter et al. 2011]

The human capability to mentalize, also defined as “Theory of Mind” (ToM), has been studied for
40 years as a socio-cognitive function that enables individuals to think about others’ mental states,
such as thoughts, intentions, motivations, desires, and emotions underlying behavior (Tomasello,
1999; see also, Frith & Frith, 1999). Through the attribution of states of mind, humans can predict
and eventually manipulate others’ thoughts and actions (for a review, see Waytz, Gray, Epley, &
Wegner, 2010)

[Di Dio et al. 2018]

The MPFC, the TPJ, and the anterior temporal cortex are the major components of the mentalizing
or ToM system

[Gobbini et al. 2011]

“The theory of mind perception is related to anthropomorphism, in that people attribute
capacities of mind to non- human characters.”

[Stafford et al. 2014]

“Theory of Mind (ToM) or mentalizing refers to the ability to make inferences about the thoughts,
beliefs, or intentions of another individual”

[Sturgeon et al. 2019]

“Taken together, the present activity modulation observed in this set of brain regions likely reflects
the participants’ mentalizing processes employed to read opponents’ mental states”

[Takahashi et al. 2014]

“The optimal way to cope with this type of intelligent agent, which has behavioral variability in both
competitive and cooperative situations, is to attribute abstract mental states to it as the causes of
its behavior, as in mind-reading (Whiten, 1996), a theory of mind (Premack and Woodruff, 1978),
or an intentional stance (Dennett, 1987)”

[Terada and Yamada 2017]
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Table 7. Stimuli Employed in Reviewed Studies of Mental State Attribution to Robots

Stimulus Study

Robot presentation
Text [Appel et al. 2020, 2016; Dang and Liu 2021; de Graaf and Malle 2019; Fiala et al. 2014; Peressini 2014;

Takahashi et al. 2016; Tanibe et al. 2017; Ward et al. 2013; Waytz et al. 2010b]
Image [Abubshait et al. 2020; Abubshait and Wiese 2017; Bernotat and Eyssel 2018; Bernstein and Crowley

2008; Di Dio et al. 2018, 2020; Eimler et al. 2011; Eyssel and Kuchenbrandt 2012; Eyssel and Reich
2013; Mandell et al. 2017; Manzi et al. 2020; Martin et al. 2020; Martini et al. 2016, 2015; Müller et al.
2020; Nigam and Klahr 2000; Nijssen et al. 2019; Okanda et al. 2019; Quadflieg et al. 2016; Raffard et al.
2016; Saylor and Levin 2005; Subrahmanyam et al. 2002; Swiderska and Küster 2018; Trovato and
Eyssel 2017; Wiese et al. 2019, 2021, 2012; Wykowska et al. 2014; Zhao et al. 2016]

Video [Brink et al. 2019; Cross et al. 2019; Eyssel et al. 2012; Fraune et al. 2020; Gobbini et al. 2011; Gray and
Wegner 2012; Hoenen et al. 2016; Hofree et al. 2014; Holbrook 2018; Itakura et al. 2008; Jipson and
Gelman 2007; Kamewari et al. 2005; Konijn and Hoorn 2020; Korman et al. 2019; Kupferberg et al.
2013; Lefkeli et al. 2021; Morewedge et al. 2007; Mou et al. 2020; Sommer et al. 2019; Sturgeon et al.
2019; Tan et al. 2018; Terada and Yamada 2017; Thellman and Ziemke 2020; van der Woerdt and
Haselager 2019; Xu and Sar 2018; Zhao et al. 2016]

Animation [Carter et al. 2011; Carter and Pelphrey 2006; Keijsers and Bartneck 2018; Keijsers et al. 2021; Kiesler
et al. 2008; Özdem et al. 2017; Paetzel et al. 2018]

Audio [Banks 2020]
Image + Text [Akechi et al. 2018; Banks 2020; Bossi et al. 2020; Buckwalter and Phelan 2013; Gray et al. 2007;

Huebner 2010; Ishii and Watanabe 2019; Kamide et al. 2013; Küster and Swiderska 2021; Lee et al.
2021; Levin et al. 2013, 2012; Mahzoon et al. 2019; Marchesi et al. 2019, 2021; Miyake et al. 2019;
Perez-Osorio et al. 2019; Sytsma and Machery 2010; Thellman et al. 2017; Wang and Krumhuber 2018;
Wang and Quadflieg 2015; Weisman et al. 2017; Xie et al. 2019]

Video + Text [Eyssel et al. 2011; Lee et al. 2005]
Video + Image + Text [Levin et al. 2013]
Telepresent [Chaminade et al. 2018, 2012; Kiesler et al. 2008; Krach et al. 2008; Takahashi et al. 2014]
Physically present [Abubshait and Wykowska 2020; Alimardani and Qurashi 2019; Bartneck and Hu 2008; Bartneck et al.

2007; Beran and Ramirez-Serrano 2010; Broadbent et al. 2013; Ciardo et al. 2020; Cross et al. 2019;
Desideri et al. 2021; Eyssel et al. 2010, 2017; Eyssel and Pfundmair 2015; Fiore et al. 2013; Fraune et al.
2020; Fu et al. 2021; Giusti and Marti 2006; Hannibal 2014; Haring et al. 2019, 2015; Heijnen et al. 2019;
Henkel et al. 2017; Hofree et al. 2014; Imamura et al. 2015; Ito et al. 2004; Kahn Jr et al. 2012; Keijsers
et al. 2021; Kiesler et al. 2008; Kupferberg et al. 2018; Lakatos et al. 2014; Law et al. 2021; Lemaignan
et al. 2015; Martin et al. 2020; Melson et al. 2009; Mou et al. 2020; Mutlu et al. 2009; Okanda et al. 2021;
Okita et al. 2005; Powers et al. 2005; Rueben et al. 2021; Saerbeck and Bartneck 2010; Salem et al. 2011;
Sciutti et al. 2013; Severson and Lemm 2016; Short et al. 2010; Sirkin et al. 2015; Somanader et al. 2011;
Spektor-Precel and Mioduser 2015; Stafford et al. 2014; Straub 2016; Takahashi et al. 2013, 2014;
Tatsukawa et al. 2019; Terada et al. 2007; van den Berghe et al. 2021; van Duuren and Scaife 1996; van
Straten et al. 2020; Van Straten et al. 2021; Wallkötter et al. 2020; Yamaji et al. 2010; Zhang et al. 2019;
Złotowski et al. 2014, 2017, 2018]

Note: Studies that employ multiple types of stimuli may be placed in more than one category.
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Table 8. Stimuli Employed in Reviewed Studies of Mental State Attribution to Robots (Continued)

Stimulus Study

Robot morphology
Anthropomorphic [Abubshait et al. 2020; Abubshait and Wiese 2017; Abubshait and Wykowska 2020; Akechi et al. 2018;

Alimardani and Qurashi 2019; Banks 2020; Bernotat and Eyssel 2018; Bernstein and Crowley 2008;
Bossi et al. 2020; Brink et al. 2019; Broadbent et al. 2013; Buckwalter and Phelan 2013; Carter et al.
2011; Carter and Pelphrey 2006; Chaminade et al. 2018; Desideri et al. 2021; Di Dio et al. 2018, 2020;
Eyssel et al. 2012; Eyssel and Kuchenbrandt 2012; Eyssel et al. 2011; Eyssel and Reich 2013; Eyssel
et al. 2017; Eyssel and Pfundmair 2015; Fu et al. 2021; Gobbini et al. 2011; Gray et al. 2007; Gray and
Wegner 2012; Hannibal 2014; Haring et al. 2019, 2015; Heijnen et al. 2019; Henkel et al. 2017; Hofree
et al. 2014; Holbrook 2018; Ishii and Watanabe 2019; Itakura et al. 2008; Ito et al. 2004; Kahn Jr et al.
2012; Kamewari et al. 2005; Kamide et al. 2013; Keijsers and Bartneck 2018; Keijsers et al. 2021; Kiesler
et al. 2008; Konijn and Hoorn 2020; Korman et al. 2019; Krach et al. 2008; Kupferberg et al. 2018;
Küster and Swiderska 2021; Lee et al. 2021, 2005; Levin et al. 2013, 2012; Mandell et al. 2017; Manzi
et al. 2020; Marchesi et al. 2019, 2021; Martin et al. 2020; Martini et al. 2016, 2015; Miyake et al. 2019;
Morewedge et al. 2007; Mou et al. 2020; Müller et al. 2020; Mutlu et al. 2009; Nijssen et al. 2019;
Okanda et al. 2019, 2021; Özdem et al. 2017; Paetzel et al. 2018; Peressini 2014; Perez-Osorio et al. 2019;
Powers et al. 2005; Quadflieg et al. 2016; Raffard et al. 2016; Salem et al. 2011; Saylor and Levin 2005;
Sciutti et al. 2013; Short et al. 2010; Somanader et al. 2011; Sommer et al. 2019; Straub 2016; Sturgeon
et al. 2019; Swiderska and Küster 2018; Takahashi et al. 2013, 2014; Tan et al. 2018; Tatsukawa et al.
2019; Terada and Yamada 2017; Thellman et al. 2017; Thellman and Ziemke 2020; Trovato and Eyssel
2017; van den Berghe et al. 2021; van der Woerdt and Haselager 2019; van Duuren and Scaife 1996;
van Straten et al. 2020; Van Straten et al. 2021; Wallkötter et al. 2020; Wang and Krumhuber 2018;
Wang and Quadflieg 2015; Weisman et al. 2017; Wiese et al. 2019, 2021, 2012; Wykowska et al. 2014;
Xu and Sar 2018; Zhang et al. 2019; Zhao et al. 2016; Złotowski et al. 2014, 2017, 2018]

Functional [Banks 2020; Bartneck and Hu 2008; Beran and Ramirez-Serrano 2010; Bernstein and Crowley 2008;
Brink et al. 2019; Broadbent et al. 2013; Ciardo et al. 2020; Cross et al. 2019; Fiore et al. 2013; Fraune
et al. 2020; Hoenen et al. 2016; Imamura et al. 2015; Kamide et al. 2013; Krach et al. 2008; Law et al.
2021; Lefkeli et al. 2021; Lemaignan et al. 2015; Mahzoon et al. 2019; Martini et al. 2015; Müller et al.
2020; Nijssen et al. 2019; Peressini 2014; Rueben et al. 2021; Saerbeck and Bartneck 2010; Sirkin et al.
2015; Stafford et al. 2014; Sytsma and Machery 2010; Takahashi et al. 2014; Tan et al. 2018; Terada et al.
2007; Terada and Yamada 2017; Xie et al. 2019; Xu and Sar 2018; Yamaji et al. 2010]

Zoomorphic [Bartneck et al. 2007; Eimler et al. 2011; Eyssel et al. 2010; Giusti and Marti 2006; Jipson and Gelman
2007; Kupferberg et al. 2013; Lakatos et al. 2014; Melson et al. 2009; Okanda et al. 2019; Okita et al.
2005; Saerbeck and Bartneck 2010; Saylor and Levin 2005; Severson and Lemm 2016; Sommer et al.
2019; Tan et al. 2018; Terada and Yamada 2017; Xu and Sar 2018]

Not applicable [Appel et al. 2020, 2016; Dang and Liu 2021; de Graaf and Malle 2019; Fiala et al. 2014; Takahashi et al.
2016; Tanibe et al. 2017; Wang and Krumhuber 2018; Ward et al. 2013; Waytz et al. 2010b]

Note: Studies that employ multiple types of stimuli may be placed in more than one category.
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Table 9. Stimuli Employed in Reviewed Studies of Mental State Attribution to Robots (Continued)

Stimulus Study

Robot behavior
Social (participant
interacton)

[Bartneck and Hu 2008; Bartneck et al. 2007; Broadbent et al. 2013; Chaminade et al. 2018, 2012;
Ciardo et al. 2020; Cross et al. 2019; Desideri et al. 2021; Eyssel et al. 2010, 2017; Eyssel and Pfundmair
2015; Fiore et al. 2013; Fraune et al. 2020; Giusti and Marti 2006; Hannibal 2014; Haring et al. 2019,
2015; Heijnen et al. 2019; Henkel et al. 2017; Imamura et al. 2015; Ito et al. 2004; Kahn Jr et al. 2012;
Keijsers and Bartneck 2018; Keijsers et al. 2021; Kiesler et al. 2008; Krach et al. 2008; Lakatos et al.
2014; Law et al. 2021; Lefkeli et al. 2021; Lemaignan et al. 2015; Mahzoon et al. 2019; Martin et al. 2020;
Melson et al. 2009; Miyake et al. 2019; Mou et al. 2020; Mutlu et al. 2009; Okanda et al. 2021; Okita
et al. 2005; Powers et al. 2005; Rueben et al. 2021; Salem et al. 2011; Severson and Lemm 2016; Short
et al. 2010; Sirkin et al. 2015; Stafford et al. 2014; Straub 2016; Takahashi et al. 2013, 2014; Terada et al.
2007; Terada and Yamada 2017; van den Berghe et al. 2021; van Straten et al. 2020; Van Straten et al.
2021; Wallkötter et al. 2020; Waytz et al. 2010b; Yamaji et al. 2010; Złotowski et al. 2014, 2017, 2018]

Social (interaction with
non-participant other)

[Alimardani and Qurashi 2019; Banks 2020; Bossi et al. 2020; de Graaf and Malle 2019; Fraune et al.
2020; Fu et al. 2021; Haring et al. 2015; Holbrook 2018; Jipson and Gelman 2007; Konijn and Hoorn
2020; Korman et al. 2019; Lee et al. 2021, 2005; Marchesi et al. 2019, 2021; Morewedge et al. 2007; Okita
et al. 2005; Paetzel et al. 2018; Perez-Osorio et al. 2019; Quadflieg et al. 2016; Sturgeon et al. 2019; Tan
et al. 2018; Thellman et al. 2017; Wang and Quadflieg 2015; Waytz et al. 2010b]

Non-social [Abubshait and Wykowska 2020; Beran and Ramirez-Serrano 2010; Bossi et al. 2020; Brink et al. 2019;
Buckwalter and Phelan 2013; Carter et al. 2011; Carter and Pelphrey 2006; Cross et al. 2019; de Graaf
and Malle 2019; Eimler et al. 2011; Eyssel et al. 2012, 2011; Fraune et al. 2020; Gobbini et al. 2011; Gray
and Wegner 2012; Hoenen et al. 2016; Hofree et al. 2014; Itakura et al. 2008; Kamewari et al. 2005;
Kupferberg et al. 2013, 2018; Levin et al. 2013, 2012; Marchesi et al. 2019; Özdem et al. 2017;
Perez-Osorio et al. 2019; Saerbeck and Bartneck 2010; Sciutti et al. 2013; Somanader et al. 2011;
Spektor-Precel and Mioduser 2015; Tan et al. 2018; Tatsukawa et al. 2019; Thellman et al. 2017;
Thellman and Ziemke 2020; van der Woerdt and Haselager 2019; van Duuren and Scaife 1996; Waytz
et al. 2010b; Wiese et al. 2019, 2021, 2012; Wykowska et al. 2014; Zhang et al. 2019; Zhao et al. 2016]

No behavior [Abubshait et al. 2020; Abubshait and Wiese 2017; Akechi et al. 2018; Appel et al. 2020, 2016; Bernotat
and Eyssel 2018; Bernstein and Crowley 2008; Dang and Liu 2021; Di Dio et al. 2018, 2020; Eyssel and
Kuchenbrandt 2012; Eyssel and Reich 2013; Fiala et al. 2014; Gray et al. 2007; Huebner 2010; Ishii and
Watanabe 2019; Kamide et al. 2013; Küster and Swiderska 2021; Mandell et al. 2017; Manzi et al. 2020;
Martin et al. 2020; Martini et al. 2016, 2015; Müller et al. 2020; Nigam and Klahr 2000; Nijssen et al.
2019; Okanda et al. 2019; Peressini 2014; Raffard et al. 2016; Saylor and Levin 2005; Sommer et al. 2019;
Subrahmanyam et al. 2002; Swiderska and Küster 2018; Sytsma and Machery 2010; Takahashi et al.
2016; Tanibe et al. 2017; Trovato and Eyssel 2017; Wang and Krumhuber 2018; Ward et al. 2013;
Weisman et al. 2017; Xie et al. 2019]

Note: Studies that employ multiple types of stimuli may be placed in more than one category.
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Table 10. Measures Employed in Studies of Mental State Attribution to Robots

Data type, Operationalization, Measurement
tool

Study

Verbal
Judged possession of mind/mental
capacities/mental states
Likert/semantic differential scale [Abubshait et al. 2020; Abubshait and Wiese 2017; Abubshait and Wykowska

2020; Akechi et al. 2018; Alimardani and Qurashi 2019; Appel et al. 2020, 2016;
Banks 2020; Bernotat and Eyssel 2018; Bossi et al. 2020; Brink et al. 2019;
Broadbent et al. 2013; Buckwalter and Phelan 2013; Cross et al. 2019; Dang and
Liu 2021; Eimler et al. 2011; Eyssel et al. 2012, 2010; Eyssel and Kuchenbrandt
2012; Eyssel et al. 2011; Eyssel and Reich 2013; Eyssel et al. 2017; Eyssel and
Pfundmair 2015; Fraune et al. 2020; Fu et al. 2021; Gray et al. 2007; Gray and
Wegner 2012; Haring et al. 2019; Heijnen et al. 2019; Hofree et al. 2014; Holbrook
2018; Huebner 2010; Imamura et al. 2015; Ishii and Watanabe 2019; Kamide et al.
2013; Keijsers and Bartneck 2018; Keijsers et al. 2021; Kiesler et al. 2008; Konijn
and Hoorn 2020; Korman et al. 2019; Krach et al. 2008; Küster and Swiderska 2021;
Lakatos et al. 2014; Law et al. 2021; Lee et al. 2021, 2005; Lefkeli et al. 2021;
Mahzoon et al. 2019; Mandell et al. 2017; Manzi et al. 2020; Marchesi et al. 2019,
2021; Martin et al. 2020; Martini et al. 2016, 2015; Miyake et al. 2019; Morewedge
et al. 2007; Mou et al. 2020; Müller et al. 2020; Mutlu et al. 2009; Nijssen et al. 2019;
Okanda et al. 2021; Peressini 2014; Perez-Osorio et al. 2019; Quadflieg et al. 2016;
Raffard et al. 2016; Salem et al. 2011; Severson and Lemm 2016; Stafford et al. 2014;
Sturgeon et al. 2019; Swiderska and Küster 2018; Sytsma and Machery 2010;
Takahashi et al. 2016, 2014; Tan et al. 2018; Tanibe et al. 2017; Tatsukawa et al.
2019; Terada and Yamada 2017; Thellman et al. 2017; Trovato and Eyssel 2017;
van der Woerdt and Haselager 2019; van Straten et al. 2020; Van Straten et al.
2021; Wallkötter et al. 2020; Wang and Krumhuber 2018; Ward et al. 2013; Waytz
et al. 2010b; Weisman et al. 2017; Wiese et al. 2019; Xie et al. 2019; Xu and Sar
2018; Złotowski et al. 2014, 2017, 2018]

Binary choice [Banks 2020; Bernstein and Crowley 2008; Brink et al. 2019; Di Dio et al. 2018,
2020; Kahn Jr et al. 2012; Mandell et al. 2017; Melson et al. 2009; Nigam and Klahr
2000; Okanda et al. 2019; Okita et al. 2005; Saylor and Levin 2005; Somanader et al.
2011; Spektor-Precel and Mioduser 2015; Subrahmanyam et al. 2002; Terada et al.
2007; van den Berghe et al. 2021; van Duuren and Scaife 1996]

Multiple choice [Fiala et al. 2014; Lakatos et al. 2014; Paetzel et al. 2018]
Graphic scale [Fiore et al. 2013; Saerbeck and Bartneck 2010; Sommer et al. 2019]
Free text/speech [Henkel et al. 2017]
Interview [Beran and Ramirez-Serrano 2010; Jipson and Gelman 2007; Lemaignan et al.

2015; Sirkin et al. 2015; Subrahmanyam et al. 2002]
Mentalistic description of robot
Free speech [Giusti and Marti 2006; Short et al. 2010; Straub 2016]
Interview [Hannibal 2014; Rueben et al. 2021]
Mentalistic explanation of robot behavior
Likert/semantic differential scale [Banks 2020]
Free text [Banks 2020; de Graaf and Malle 2019; Korman et al. 2019]
Interview [Rueben et al. 2021]
Mentalistic prediction of robot behavior
Likert/semantic differential scale [Banks 2020]
Binary choice [Banks 2020; Levin et al. 2013, 2012; Zhang et al. 2019]
Interview [Rueben et al. 2021]
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Table 11. Measures Employed in Studies of Mental State Attribution to Robots (Continued)

Data type, Operationalization, Measurement tool Study

Behavioral (non-verbal)
Level of robot abuse [Bartneck and Hu 2008]
Tendency to switch off robot [Bartneck et al. 2007]
Sense of agency in interaction with robot [Ciardo et al. 2020]
Tendency to avoid eye contact with robot [Desideri et al. 2021]
Presence of joint Simon effect [Heijnen et al. 2019]
Altruistic behavior in competition against a robot in the dictator game [Heijnen et al. 2019]
Imitation of goal-directed robot behavior [Itakura et al. 2008]
Teaching task completion time [Ito et al. 2004]
Level of attention toward robot [Ito et al. 2004]
Tendency to respond to robot questions [Ito et al. 2004]
Violation of expectations about robot behavior [Kamewari et al. 2005]
Preferential looking time [Kupferberg et al. 2013]
Tendency to address robot using polite speech [Lemaignan et al. 2015]
Tendency to communicate with robot using social gestures [Lemaignan et al. 2015]
Time taken to accept mentalistic description of behavior [Marchesi et al. 2021]
Task performance in a guessing game where a robot exhibited non-verbal leakage [Mutlu et al. 2009]
Anticipatory gaze toward end-of-motion-position of robot performing a goal-directed action [Sciutti et al. 2013]
Presence of non-verbal social behavior in interaction with robot [Straub 2016]
Randomness of decision making in a competitive game played against a robot [Takahashi et al. 2013]
Anticipatory gaze toward end-of-motion-position of robot performing a belief-directed action [Thellman and Ziemke 2020]
Use of mixed or exploitative strategies in a competitive game against a robot [Terada and Yamada 2017]
Tendency to take the visual perspective of a robot [Zhao et al. 2016]
Response in visual priming task [Złotowski et al. 2018]
Tendency to help robot achieve a goal [Martin et al. 2020; Yamaji et al. 2010]

Neurological*
Activation in the inferior parietal lobule (IPL) [Kupferberg et al. 2018]
Activation in the pain matrix [Cross et al. 2019]
Activation in the posterior paracingulate cortex (PCC) [Takahashi et al. 2014]
Activation in the premotor cortex (PMC) [Kupferberg et al. 2018]
Activation in the precuneus (PrC) [Wang and Quadflieg 2015]
Activation in the superior temporal gyrus (STG) [Chaminade et al. 2018]
Activation in the superior temporal sulcus (STS) [Carter et al. 2011; Carter and

Pelphrey 2006; Chaminade et al. 2018]
Activation in the temporoparietal junction (TPJ) [Chaminade et al. 2012; Gobbini et al.

2011; Krach et al. 2008; Özdem et al.
2017; Takahashi et al. 2014; Wang and
Quadflieg 2015]

Activation in the medial prefrontal cortex (mPFC) [Chaminade et al. 2012; Gobbini et al.
2011; Krach et al. 2008; Takahashi
et al. 2014; Wang and Quadflieg 2015;
Waytz et al. 2010b]

Mu-activation in the mirror neuron system (MNS) [Hoenen et al. 2016]
Resting state gamma activation [Bossi et al. 2020]

*All reported neurological data were collected using functional magnetic resonance imaging (fMRI) as measurement tool except
electroencephalographic (EGG) data reported in Bossi et al. [2020] and Hoenen et al. [2016].
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Table 12. Reported Findings on Human-Factor Determinants of Mental State
Attribution to Robots (+, effect; –, no effect)

Determinant Study

Human factors
Age
(+) Observed tendency in children [Beran and Ramirez-Serrano 2010; Bernstein and

Crowley 2008; Brink et al. 2019; Cross et al. 2019;
Di Dio et al. 2018, 2020; Hannibal 2014; Henkel et al.
2017; Itakura et al. 2008; Jipson and Gelman 2007;
Lemaignan et al. 2015; Levin et al. 2013; Manzi et al.
2020; Martin et al. 2020; Melson et al. 2009; Nigam
and Klahr 2000; Okanda et al. 2021; Okita et al.
2005; Saylor and Levin 2005; Severson and Lemm
2016; Somanader et al. 2011; Spektor-Precel and
Mioduser 2015; Subrahmanyam et al. 2002; van den
Berghe et al. 2021; van Duuren and Scaife 1996]

(+) Stronger tendency in younger than older children [Di Dio et al. 2018, 2020; Manzi et al. 2020; Okanda
et al. 2021; Okita et al. 2005; Severson and Lemm
2016; Somanader et al. 2011]

(+) Stronger tendency in older than younger children [van Duuren and Scaife 1996]
(+) Stronger tendency in children than adults [Jipson and Gelman 2007; Okanda et al. 2021;

Subrahmanyam et al. 2002]
(+) Observed tendency in infants [Kamewari et al. 2005]
(+) Observed tendency in older adults [Giusti and Marti 2006; Stafford et al. 2014;

Subrahmanyam et al. 2002]
(+) Stronger tendency in older than younger adults [Levin et al. 2013]
(–) Similar tendency in younger and older adults [Alimardani and Qurashi 2019; Tan et al. 2018]
Cultural and socioeconomic background
(+) Stronger tendency in Chinese than US [Tan et al. 2018]
(+) Stronger tendency in Japanese than Germans [Bernotat and Eyssel 2018]
(+) Stronger tendency in Japanese than Australians [Haring et al. 2015]
(+) Stronger tendency in Japanese than Westerners [Takahashi et al. 2016]
(+) Stronger tendency in Japanese than Italians [Trovato and Eyssel 2017]
(–) Similar tendency in Japanese and Westerners [Ishii and Watanabe 2019; Kamide et al. 2013]
(–) Similar tendency in people with different socioeconomic background [Marchesi et al. 2019]
Gender
(–) Similar tendency in men and women [Raffard et al. 2016; Saerbeck and Bartneck 2010;

Tan et al. 2018]
Interaction history
(+) Stronger tendency when informed about a robot’s interaction history [Fu et al. 2021; Mahzoon et al. 2019]
(+) Stronger tendency with repeated interactions [Fiore et al. 2013]
(+) Weaker tendency with reapeated interactions [Abubshait and Wykowska 2020]
(–) No effect of interacting with robot [Cross et al. 2019; van den Berghe et al. 2021]
Mental disorder
(+) Stronger tendency in children without autism as compared with autism [Zhang et al. 2019]
(–) Similar tendency in children with and without autism [Akechi et al. 2018]
(–) Similar tendency in adults with and without schizophrenia [Raffard et al. 2016]
Motivation
(+) Stronger tendency when motivated to predict robot behavior [Waytz et al. 2010b]
(+) Stronger tendency when anticipating future interaction with robot [Eyssel et al. 2011]
(+) Stronger tendency when lonely [Eyssel and Reich 2013]
(+) Stronger tendency when believing that robot is controlled by human [Özdem et al. 2017]
(+) Stronger tendency when having high expectations about robot capabilities [Perez-Osorio et al. 2019]
(+) Weaker tendency when informed about robot’s capabilities [van Straten et al. 2020; Van Straten et al. 2021]
(+) Stronger tendency when robot is perceived as being mistreated or subjected

to harm
[Hoenen et al. 2016; Konijn and Hoorn 2020; Küster
and Swiderska 2021; Ward et al. 2013]

(+) Stronger tendency when robot is perceived as being helped as opposed to
treated neutrally

[Tanibe et al. 2017]

(+) Stronger tendency when loosing as compared to winning in a cooperative
task with a robot

[Lefkeli et al. 2021]

(+) Stronger tendency when winning as compared to loosing against a robot [Lefkeli et al. 2021]
(–) Similar tendency when motivated to reason about robot as when not [Złotowski et al. 2018]
(–) Similar tendency when socially excluded or included [Eyssel and Pfundmair 2015]
Species
(–) Similar tendency in monkeys as in humans [Kupferberg et al. 2013]
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Table 13. Reported Findings on Robot-Factor Determinants of Mental State
Attribution to Robots (+, effect; –, no effect)

Determinant Study

Robot factors
Appearance
(+) Stronger tendency with (increasingly) human-like appearance [Abubshait et al. 2020; Banks

2020; Broadbent et al. 2013;
Krach et al. 2008; Manzi et al.
2020; Martini et al. 2016, 2015;
Takahashi et al. 2014; Xu and
Sar 2018]

(–) Similar tendency with (increasingly) human-like appearance [Saerbeck and Bartneck 2010;
Złotowski et al. 2017]

(+) Stronger tendency with increased amount of physical features [Martini et al. 2015]
(+) Observed differences in states attributed depending on physical features [Eimler et al. 2011; Paetzel et al.

2018; Terada et al. 2007]
(+) Stronger tendency when face visible [Gray and Wegner 2012]
(+) Stronger tendency with facial wounds [Swiderska and Küster 2018]
(+) Weaker tendency with cues of violent conflict present [Holbrook 2018]
Behavior
(+) Stronger tendency when exhibiting gaze behavior [Abubshait and Wiese 2017; Ito

et al. 2004; Levin et al. 2013;
Takahashi et al. 2013; Zhao et al.
2016]

(+) Stronger tendency when exhibiting intelligent behavior [Sturgeon et al. 2019]
(+) Stronger tendency when exhibiting unpredictable behavior [Eyssel et al. 2011; Waytz et al.

2010b]
(+) Observed differences in states attributed depending on type of behavior [Lakatos et al. 2014; Mutlu et al.

2009; Thellman and Ziemke
2020]

(+) Stronger tendency when exhibiting reactive behavior [Terada et al. 2007]
(+) Stronger tendency when exhibiting complex behavior [Imamura et al. 2015]
(+) Stronger tendency when exhibiting higher behavioral variability [Terada and Yamada 2017]
(+) Stronger when exhibiting emotional behavior [Złotowski et al. 2014, 2018]
(+) Stronger tendency when exhibiting social behavior [Fraune et al. 2020; Straub 2016]
(–) Similar tendency when exhibiting social and non-social behavior [Wallkötter et al. 2020]
(+) Stronger tendency when exhibiting cheating behavior [Short et al. 2010]
(+) Stronger tendency when exhibiting gestures [Salem et al. 2011]
(+) Stronger tendency when responding to user behavior with emotional facial expressions [Eyssel et al. 2010]
(+) Stronger tendency when exhibiting reaching behavior [Zhao et al. 2016]
(+) Weaker tendency when exhibiting norm-violating behavior [Korman et al. 2019]
(+) Stronger tendency when moving [Sirkin et al. 2015]
(+) Stronger tendency when moving with human-like speed [Morewedge et al. 2007]
(+) Stronger tendency when moving toward displaced object [Yamaji et al. 2010]
(+) Stronger tendency when moving fast [Saerbeck and Bartneck 2010]
(+) Stronger tendency when moving slowly [Fiore et al. 2013]
(+) Stronger tendency when exhibiting positively velenced movement [Law et al. 2021]
(–) Similar tendency when disclosing personal information, thoughts, and feelings as when not [Eyssel et al. 2017]
(–) Similar tendency when moving in synchrony with person [Heijnen et al. 2019]
Capability
(+) Stronger tendency with human-like traits of imagination [Tatsukawa et al. 2019]
(+) Stronger tendency when a robot fails due to lack of effort relative to lack of ability [van der Woerdt and Haselager

2019]
(+) Observed difficulties in attributing states to robots with different-from-human capabilities [Thellman and Ziemke 2020]
(–) Similar tendency when described as having mental capabilities as when not [Wallkötter et al. 2020]
Identity
(+) Observed differences in attributed states depending on robot function or purpose [Buckwalter and Phelan 2013;

Dang and Liu 2021; Terada et al.
2007; Wang and Krumhuber
2018]

(+) Observed differences in attributed states depending on robot language and described country
of origin

[Lee et al. 2005]

(+) Observed differences in attributed states depending on perceived robot gender [Powers et al. 2005]
(+) Stronger tendency with in-group robot name and country of origin [Eyssel and Kuchenbrandt

2012]
(+) Stronger tendency with in-group gendered robot voice [Eyssel et al. 2012]
Presence
(+) Stronger tendency when physically present than telepresent [Kiesler et al. 2008; Straub 2016]
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Table 14. Reported Findings on Consequences of Mental State
Attribution to Robots (+, effect; −, no effect)

Consequence Study

Psychological
(+) Increased eeriness/uncanniness of robot [Appel et al. 2020, 2016; Gray and Wegner 2012]
(+) Decreased eeriness/uncanniness of robot [Brink et al. 2019; Quadflieg et al. 2016]
(–) No effect on uncanniness of robot [Wang and Quadflieg 2015]
(+) Increased perceived predictability [Waytz et al. 2010b]
(+) Increased trust in robot [Mou et al. 2020; Xie et al. 2019]
(+) Increased drainage of cognitive resources [Mandell et al. 2017; Wiese et al. 2019]
(+) Increased perceived threat of damage to humans and human identity [Müller et al. 2020]
(+) Increased moral concern for robot [Nijssen et al. 2019; Sommer et al. 2019]
(+) Increased ambivalence in attitudes toward robots [Dang and Liu 2021]
(+) Reduced sense of agency [Ciardo et al. 2020]
Behavioral
(+) Observed ability to predict robot behavior [Banks 2020; Levin et al. 2013, 2012; Rueben et al.

2021; Sciutti et al. 2013; Thellman and Ziemke 2020;
Zhang et al. 2019]

(+) Observed difficulty to predict robot behavior [Rueben et al. 2021; Thellman and Ziemke 2020]
(+) Observed ability to explain robot behavior [Banks 2020; de Graaf and Malle 2019; Korman et al.

2019; Rueben et al. 2021]
(+) Observed difficulty to explain robot behavior [Rueben et al. 2021]
(+) Stronger tendency to attend to robot gaze behavior [Abubshait and Wykowska 2020; Wiese et al. 2012;

Wykowska et al. 2014]
(+) Stronger tendency to avert from eye contact with a robot [Desideri et al. 2021]
(+) Observed differences in the tendency to attend to robot gaze behavior [Abubshait et al. 2020]
(+) Observed differences in the task assigned to a robot depending on ascribed

mental capability
[Wiese et al. 2021]

(+) Decreased abuse against robot [Bartneck and Hu 2008; Keijsers and Bartneck 2018;
Keijsers et al. 2021]

(–) No effect on abuse against robot [Keijsers et al. 2021]
(+) Hesitation to switch off robot [Bartneck et al. 2007]
(+) Increased tendency to help robot [Martin et al. 2020]
(+) Less likely to use robot [Stafford et al. 2014]
(+) Observed differences in actions taken when negotiating with a robot [Lee et al. 2021]
(–) No effect on the tendency to mimic robot facial expressions [Hofree et al. 2014]
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Table 15. Reported Findings from Comparative Studies of Mental State Attribution
to Robots and Other Types of Agents (+, effect; −, no effect)

Contrast Study

Human vs. robot
(+) Stronger tendency toward human [Abubshait and Wiese 2017; Banks 2020; Bernstein

and Crowley 2008; Chaminade et al. 2018, 2012;
Cross et al. 2019; de Graaf and Malle 2019; Di Dio
et al. 2018, 2020; Fiala et al. 2014; Gobbini et al.
2011; Haring et al. 2019; Kahn Jr et al. 2012; Konijn
and Hoorn 2020; Krach et al. 2008; Küster and
Swiderska 2021; Levin et al. 2013; Mandell et al.
2017; Manzi et al. 2020; Marchesi et al. 2021; Miyake
et al. 2019; Nijssen et al. 2019; Saylor and Levin
2005; Somanader et al. 2011; Swiderska and Küster
2018; Takahashi et al. 2013, 2014; Terada and
Yamada 2017; van Duuren and Scaife 1996; Wang
and Quadflieg 2015; Weisman et al. 2017; Xu and
Sar 2018; Zhao et al. 2016]

(–) Similar tendency [Carter et al. 2011; Carter and Pelphrey 2006;
Kamewari et al. 2005; Kupferberg et al. 2018;
Quadflieg et al. 2016; Sciutti et al. 2013; Thellman
et al. 2017]

(+) Stronger tendency to attribute experience-related mental states to human [Gray et al. 2007; Gray and Wegner 2012; Huebner
2010; Ishii and Watanabe 2019; Okanda et al. 2019;
Peressini 2014]

(–) Similar tendency to attribute agency-related mental states [Gray et al. 2007; Gray and Wegner 2012; Huebner
2010; Ishii and Watanabe 2019; Okanda et al. 2019;
Peressini 2014]

(–) Similar types of attributed mental states [Banks 2020; de Graaf and Malle 2019; Lee et al.
2005; Thellman et al. 2017]

(+) Stronger tendency to attribute valenced mental states to humans [Sytsma and Machery 2010]
(+) Stronger performance in recognizing emotions in humans than robots [Paetzel et al. 2018]
Human vs. robot (moderator)
(+) Presence of gaze behavior increased tendency toward robot relative

to human
[Abubshait and Wiese 2017; Levin et al. 2013]

(+) Longer response time increased tendency toward robot relative to human [Levin et al. 2012]
(+) Tendency toward robot relative to human increased over time [Abubshait and Wiese 2017]

Computer vs. robot
(+) Weaker tendency toward computer [Bernstein and Crowley 2008; Krach et al. 2008;

Miyake et al. 2019; Takahashi et al. 2014; van
Duuren and Scaife 1996]

Computer vs. robot (moderator)
(+) Presence of gaze behavior increased tendency toward robot relative

to computer
[Levin et al. 2013]
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