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When interacting with technical systems, users experience mental workload. Particularly

in multitasking scenarios (e.g., interacting with the car navigation system while driving)

it is desired to not distract the users from their primary task. For such purposes,

human-machine interfaces (HCIs) are desirable which continuously monitor the users’

workload and dynamically adapt the behavior of the interface to the measured workload.

While memory tasks have been shown to elicit hemodynamic responses in the brain when

averaging over multiple trials, a robust single trial classification is a crucial prerequisite for

the purpose of dynamically adapting HCIs to the workload of its user. The prefrontal cortex

(PFC) plays an important role in the processing of memory and the associated workload.

In this study of 10 subjects, we used functional Near-Infrared Spectroscopy (fNIRS), a

non-invasive imaging modality, to sample workload activity in the PFC. The results show

up to 78% accuracy for single-trial discrimination of three levels of workload from each

other. We use an n-back task (n ∈ {1, 2, 3}) to induce different levels of workload, forcing

subjects to continuously remember the last one, two, or three of rapidly changing items.

Our experimental results show that measuring hemodynamic responses in the PFC with

fNIRS, can be used to robustly quantify and classify mental workload. Single trial analysis

is still a young field that suffers from a general lack of standards. To increase comparability

of fNIRS methods and results, the data corpus for this study is made available online.

Keywords: fNIRS, near-infrared spectroscopy, prefrontal cortex, workload, mental states, user state monitoring,

n-back, passive BCI

1. INTRODUCTION

Functional Near-Infrared Spectroscopy (fNIRS) is an imaging

modality measuring hemodynamic processes in the brain. It pro-

vides insights into the same activation patterns as functional

Magnetic Resonance Imaging (fMRI), the de facto standard in

neuroscience research, while not confining the subject in a small

space. Thereby, it allows for measurements of large subject pop-

ulations outside of clinical environments. Besides montages cov-

ering the whole head, fNIRS sources and detector optodes can

also be placed on the subjects head to measure exactly the parts

of the cortex that contain relevant activations for the investigated

task. When the region of interest is known beforehand, this can

be used to design optode holders that can be fixed in place in less

than 1 min. Potentially, fNIRS could thus be used in real world

scenarios, as well.

Most fNIRS studies investigate differences in average activa-

tion patterns for different conditions. Only very recently has

fNIRS been used to classify single-trial activations for Brain-

Computer Interfacing (Coyle et al., 2007). A Brain-Computer

Interface is a communication channel between the brain and

a computer through interpretation of neural activation pattern

(Wolpaw et al., 2002). Nearly all existing single-trial studies dif-

ferentiate fNIRS patterns of subjects performing a cognitive task

from the rest state or no-control state. The most frequently used

paradigm is motor-imagery (Sitaram et al., 2007).

Recently, neural signals have been used to adapt and comple-

ment traditional input sources, such as keyboard and mouse, by

adapting the interface to the users’ state instead of directly con-

trolling the interface. These so called passive Brain-Computer

Interfaces (Cutrell and Tan, 2008; Zander and Kothe, 2011)

mostly use the Electroencephalogram (EEG). Passive Brain-

Computer Interfaces (BCIs) often measure a user’s state and

adapt a user interface accordingly. In fNIRS, multiple studies

investigate mental arithmetics (Ang et al., 2010a) to monitor

users’ engagement in arithmetic tasks. Power et al. (2012) inves-

tigate the consistency of mental arithmetic classification across

different sessions. Instead of recognizing mental arithmetics,

Power et al. (2010) show that mental arithmetic and music

imagery lead to distinct activation patterns that can be classi-

fied in single trial analysis. Following up on this idea, Herff et al.

(2013) differentiate three different mental tasks, namely men-

tal arithmetics, mental rotation and word generation. Girouard

et al. (2009) distinguish between two difficulty levels in the

popular game Pac-Man, instead of discriminating from a rest

state. Ang et al. (2010b) show robust classification for three

difficulty levels in mental arithmetics using fNIRS to evalu-

ate numerical cognition class-room settings. While Ang et al.

focus on the differentiation of difficulty levels, our focus is

on the classification of mental workload induced by a mem-

ory task. Recently, Hirshfield et al. (2011) evaluated the type

of cognitive demand placed on a user by different types of

tasks. The focus of their study is on the type of workload,

while we are aiming at the quantification of workload in this

study.
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In a multi-modal study using blood volume pressure, respira-

tion measures, electrodermal activity and EEG, Jarvis et al. (2011)

measured workload in a driving simulator to adapt a driving

assistant. Workload has been of interest in the fNIRS commu-

nity, as well. Cognitive workload has been assessed for air-traffic

controllers in several studies Ayaz et al. (2010, 2012). Izzetoglu

et al. (2003) show that task load in the Warship Commander tasks

yield distinct hemodynamic responses on average. Aiming at a

usage for BCI, Ayaz et al. (2007) analyze workload induced by

the n-back tasks, but limit their results to grand averages, as well.

However, these studies look at average hemodynamic responses

and do not attempt single trial analysis. To use these findings

to adapt interfaces to the user’s current workload, the hemody-

namic responses have to be analyzed in single trial. Proving that

a cognitive task yiels hemodynamic responses on average does

not automatically mean that the activations can be robustly rec-

ognized in single trial, which is necessary if interfaces should be

adapted. In this work, we provide evidence that different levels

of workload yield hemodynamic responses that can be robustly

classified without averaging.

Findings in EEG Brouwer et al. (2012); Berka et al. (2007)

show that workload induced by the n-back task can be classified in

single trial. Baldwin and Penaranda (2012) demonstrate how the

models trained on one workload condition can be transferred to

others in EEG. In this study, we show that the workload induced

by different n-back conditions results in hemodynamic responses

that are consistent enough to be classified on a single trial basis.

We use an n-back task to induce different levels of workload, forc-

ing subjects to continuously remember the last one, two, or three

of rapidly changing items. To enable realistic passive BCIs, we not

only evaluate whether a user is engaged in a task, but quantify the

level of mental workload the user experiences during the n-back

task (n ∈ {1, 2, 3}). Thereby, we quantify workload using fNIRS.

In functional imaging studies, the prefrontal cortex (PFC) has

been identified to be among the relevant areas for memory related

tasks (Smith and Jonides, 1997). The PFC has been found to be

relevant both in PET (Smith and Jonides, 1997) and fMRI stud-

ies (Cohen et al., 1997). An in depth meta-analysis of n-back

studies using fMRI (Owen et al., 2005) confirms the importance

of the PFC for n-back. Hoshi et al. (2003) show spatio tempo-

ral changes for working memory tasks in the PFC using fNIRS.

Their analysis is based on averages and does not include single

trial analysis, but confirms that fNIRS is ideally suited for mea-

surements of the PFC. An fNIRS headset can be quickly fixed

to the forehead and enables measurements of the PFC within

minutes, while guaranteeing high data quality. In an investiga-

tion using finger tapping and fNIRS, Cui et al. (2010b) show that

the delay in fNIRS-based BCIs can be reduced to further improve

the usability of fNIRS in real-life scenarios. Workload induced by

a memory task and fNIRS-based measurement of the PFC are

thus an ideal combination for a realistic passive BCI to monitor

workload levels.

2. MATERIALS AND METHODS

2.1. n-BACK

In the n-back task, users have to continuously remember the last

n of a series of rapidly flashing letters. The n-back task requires

subjects to react when a stimulus is the same as the n-th letter

before the stimulus letter. We denote a (letter) stimulus, which

is the same as the one n previously as a target. Subjects had to

press the space key on a keyboard when they encountered a target.

With increasing n the task difficulty increases, as the subjects have

to remember more letters and continuously shift the remembered

sequence. Performance in this task can be evaluated by measuring

the amount of missed targets, when the subjects do not press the

key for a target and through the amount of wrong reactions, when

the subjects incorrectly identify a stimulus letter as a target.

2.2. NIRS DATA RECORDING

Like fMRI, fNIRS measures changes in blood oxygenation in

brain areas triggered by neural activity. Using light in the near-

infrared range of the electromagnetic spectrum (620–1000 nm),

which disperses through most biological tissue but is absorbed

by hemoglobin, the level of oxygenated and deoxygenated

hemoglobin (HbO and HbR) can be estimated using the modified

Beer-Lambert law (Sassaroli and Fantini, 2004).

We used an Oxymon Mark III by Artinis Medical Systems to

measure fNIRS signals. The system uses two wavelength of 765

and 856 nm and outputs concentration changes of HbO and HbR.

To measure hemodynamic activity in the PFC, we attached four

transmitter and four receiver optodes to the forehead. Each detec-

tor measures time-multiplexed from two sources, located at a

distance of 3.5 cm, resulting in a total of 8 channels of HbO and

HbR. Our signals were sampled at 25 Hz.

Figure 1 shows the placement of our optodes on the subjects’

forehead. The recording setup on the forehead is very simple and

needs less than 3 min to be fixed in place and to assess data quality.

2.3. EXPERIMENT DESIGN

In our experiment, we investigated 10 trials each of 1-,2-, and 3-

back tasks. Each trial contained 3 ± 1 targets. The experiment was

presented to the subjects on a screen, which was placed in front of

them in 50 cm distance.

A trial consisted of 5 s of instruction, informing the subject

which task (1-,2- or 3-back) was about to start. The trial then

presented a new letter every 2 s. Every letter was displayed for

500 ms. The screen was left blank for the remaining 1.5 s. A total

of 22 letters was presented during every trial resulting in a trial

length of 44 s. Subsequently, a cross was displayed for 15 s during

which the subjects were asked to relax to ensure that hemoglobin

levels returned to baseline. We excluded these periods from our

analysis, as they are strongly influenced by the previous hemo-

dynamic responses. After half of the trials, an additional 10 s of

the resting cross were displayed to have data periods with no

activity to be used as RELAX trials. We intentionally use peri-

ods with true relax signals for our analysis instead of periods in

which HbO and HbR returned to baseline. Figure 2 shows the

experiment protocol. The order of the different n-back conditions

was pseudo-randomized. A 150 s break during which the subjects

could drink or chat was included after 15 trials. The entire exper-

iment had a recording time of 37 min ( 30 trials of 64 s, 15 relax

trials of 10 s and 150 s in the middle).

The fNIRS data was recorded continuously during the entire

session. The trials were segmented afterwards based on the
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FIGURE 1 | Optode placement in our experiment. Transmitter optodes are marked as Tx, while Rx indicates receiver optode positions.

FIGURE 2 | Experimental design for n-back task.

time sequence induced by the described experimental setup.

In addition to the recorded fNIRS data, subjects filled out a

questionnaire regarding their age, occupation, handedness and

a series of questions about the experiment on a 6-point Likert

scale. The scale ranged from “no agreement” (1) to “complete

agreement” (6) for a given statement. We asked our subjects

how much they agreed with the statements “The n-back task

was demanding,” to evaluate subjective workload. Subjects were

asked to judge their level of concentration during the first

and second half of the experiment by indicating their agree-

ment with the statement “I was very concentrated.” Additionally,

subjects indicated their agreement with the phrase “The sys-

tem is comfortable to wear.” Lastly, we evaluated whether our

participants thought that the duration of the experiment was

appropriate. Section 3.1 contains results of the questionnaire

evaluation.

2.4. PARTICIPANTS

In this study, we recorded 10 subjects (4 females) with a mean age

of 22 years. Using the Edinburgh handedness inventory Oldfield

(1971), we evaluated the handedness of our subjects. In total, we

had 8 right-handed and 2 left-handed participants. All subjects

had normal or corrected to normal vision. The participants were

informed prior to the experiment and gave written consent. None

of the subjects had ever taken part in an n-back study before to

ensure that no training effects are present.

To increase comparability between fNIRS methods and results,

the complete data collected in this study will be shared with the

community (see Section 4.1).

2.5. SIGNAL PROCESSING AND ARTIFACT REMOVAL

The signals measured by fNIRS are subject to biological and tech-

nical artifacts. Cardiovascular effects like heart-beat, respiration

and slow waves (e.g., Mayer Waves) influence the recorded data.

Movement artifacts which alter the position of the optodes and

lift them off the scalp, causing spikes in the recordings, are present

in most fNIRS datasets, as well. A general overview of fNIRS arti-

facts and artifact removal techniques can be found in Cooper et al.

(2012).

To attenuate trends and Mayer Wave like effects, we used a

moving average filter, which subtracted the mean of the 120 s

before and after every sample from every HbO and HbR data-

point. Moving average filters have been used successfully before to

remove slow trends in experiments with long trials (Heger et al.,

2013). Heart-beat and faster frequency signals are attenuate using

an elliptical IIR low-pass filter with cutoff frequency of 0.5 Hz

and filter order of 6, which robustly reduces heart-beat influences

in the data. Finally, we used a wavelet artifact removal method

(Molavi and Dumont, 2010) to reduce the effect of movement

artifacts.

The trials were then extracted based on the experiment tim-

ings and associated with a label according to the n-back condition
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or RELAX. Each trial of any of the n-back conditions is 44 s long,

while the relax trials are 10 s long.

2.6. FEATURE EXTRACTION AND SELECTION

Typical hemodynamic responses increase for HbO with neural

activity in a specific region and return to baseline afterward. In

HbR, signals typically behave opposite and decrease upon stim-

ulus onset and increase back to baseline after the end of the

stimulus. This typical behavior is often used in the feature extrac-

tion. The mean value of the signal (Heger et al., 2013) in a specific

window or the increase in mean value between different windows

(Herff et al., 2012) is often used as a simple, but effective feature.

In this study, we use the slope of a straight line fitted to the data

in a window as the feature. The line was fitted using linear regres-

sion with a least-square approach. Window sizes were varied in

the experiments. Even though HbO and HbR signals of every

channel are strongly negatively correlated (Cui et al., 2010a), we

extract the slope feature for HbO and HbR of every channel.

Including both HbO and HbR signals often yields more robust

classification results. This results in 16 features per window, as we

extract one feature for HbO and one for HbR for each of the 8

channels.

To reduce the feature set size, we only include features with

a high relevance for classification in the feature set. We calcu-

late the Mutual Information between each continuous feature

and the discrete labels on the training data using non-parametric

probability density functions. These were estimated using ker-

nel methods (Parzen windows). See Ang et al. (2008) for a more

detailed description of feature selection methods using Mutual

Information. In this study, we limit our feature set to the 8 fea-

tures containing the highest Mutual Information with the labels,

as the remaining half of the features only contained little to no

relevance.

2.7. EVALUATION

To classify the data, we used a Linear Discriminant Analysis (LDA)

classifier. For the multi-class experiments, we used a one-vs-one

multi-class classifying approach (Duda et al., 2012). To evalu-

ate classification accuracy in our experiment, we used a 10-fold

cross-validation. For this, the data of one subject is divided into

10 equally sized parts and in a round-robin manner, 9 parts are

used for feature selection and training, while the last part is used

for evaluation. Presented accuracies are then averaged over all 10

folds. We only evaluate subject dependend systems in this paper.

As we use a 10-fold approach and have 10 trials per class, we never

use any data shortly before or after the testing data, which could

be problematic given the high auto-correlation of fNIRS signals.

To evaluate our data set, we first classified the three n-back classes

from RELAX. The RELAX trials are only 10 s long, while the n-back

trials last 44 s. We only extracted 10 s long windows from n-back

classes for this task, as well. Therefore, we evaluated the effect on

classification accuracy resulting from different offsets from the

start of a trial.

To really quantify mental workload we evaluate classification

between the three n-back classes. We evaluate classification accu-

racy depending on window length in which we extract the slope

feature.

3. RESULTS

3.1. USER PERFORMANCE AND SUBJECTIVE RATING

To confirm that our subjects perceived the different n-back

conditions as different, we analyzed the user performance.

Figure 3 shows user performance and subjective evaluation of the

experiment.

We evaluated the amount of missed targets, when a sub-

ject failed to press the key when a target stimulus was pre-

sented. A One-Way ANOVA shows significant differences between

the three n-back levels in the amount of missed targets (F =

16.3151; p < 0.001). The percentage of targets missed by the sub-

jects increased from 5.7% on average for the 1-back condition to

16.7% for 2-back to 33.7% for the 3-back task. This clearly shows

that the three tasks have significantly different difficulty levels

(tested by one-sided t-tests, p < 0.01 after Bonferroni correction

all three comparisons). Additionally, this clarifies that even in the

3-back tasks our subjects identified two thirds of the targets. Next,

we evaluated the amount of wrong reactions, when subjects incor-

rectly identified a letter as a target and pressed the space key. The

amount of wrong reactions is significantly influenced by the n-

back level (tested by ANOVA, F = 9.613; p < 0.001). Again, the

number of wrong reactions increases from 1.4 on average to 1.9 to

4.5. The differences in wrong reactions between 1 and 3-back and

2 and 3-back are significant (tested by one-sided t-test p < 0.01

after Bonferrroni correction), while the difference between 1 and

2-back is not statistically significant. The subjective evaluation

of the subjects agreeing with the phrase “The n-back task was

demanding,” clearly shows the different mental workload levels of

the three conditions (statistically significant as tested by One-Way

ANOVA, F = 25.8540; p < 0.001). While the average agreement

was 1.6 (1 meaning no agreement) for 1-back, subjects answered

3.1 for 2-back and 5.1 on average for 3-back (6 being total agree-

ment). All differences between the three classes are significant

(tested by one-sided t-tests p < 0.01 after Bonferroni correction).

This clearly shows the different levels of workload induced by the

three n-back conditions.

Subjects stated that they were highly concentrated during the

first half of the experiment, answering that they agreed with

4.9 with the phrase “I was concentrated during this half of the

experiment.” This decreased slightly to 4.0 for the second half.

The fNIRS system was judged as being comfortable to wear

(3.9 in agreement to a comfortable system) in the first half,

which decreased to a medium 2.7 for the second half. Our sub-

jects evaluated the duration of the experiment as appropriate

(agreement of 4.7).

3.2. HEMODYNAMIC RESPONSES

To see whether the Hemodynamic responses for the three n-back

conditions yield any differences, we first analyze the grand aver-

ages of all subjects. For this analysis, we baseline every trial by

subtracting the mean of the 10 s prior to the trial for HbO and

HbR of every channel. The trials are not baseline normalized

for the remaining classification analyses. Figure 4 shows grand

averages for all channels and all n-back conditions.

Gray lines show grand averages for individual channels, while

the black line shows the mean over all channels. In the HbO chan-

nels, there is little activity for 1- and 2-back, but a clear increase
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FIGURE 3 | User performance and subjective evaluation in the n-back

task (A) average number of missed targets (B) average number of wrong

reactions (C) average subjective evaluation of task difficulty. Whiskers

show standard deviations between subjects. All differences between the

conditions are significant (tested by one-sided t-tests, p < 0.05 after

Bonferroni correction), except for the difference between 1 and 2-back in (B).

FIGURE 4 | Grand averages of all 10 subjects in the three n-back conditions. Gray lines indicate single channels. The black line presents the mean of all

channels.

for most channels in the 3-back conditions. It is obvious that

a feature derived from the slope of those grand averages could

discriminate the 3-back trials from the others. In HbR the typi-

cal decrease can be seen for all three conditions. While the slope

is negative for all three tasks, it is clearly steeper in the 2-back

grand average than in the 1-back and steepest for the 3-back aver-

ages. These grand averages show that we have different activation
patterns for the three conditions and visualize the basis of our

classification.

3.3. n-BACK vs. RELAX

To evaluate the data set we first classified our n-back trials

from the RELAX trials collected after the signals returned to

baseline. Since our relax trials are only 10 s long, while our

n-back trials are 44 s in length, we evaluated the effect the offset

from the beginning of the trial has on classification accuracies.
Figure 5 shows the classification accuracies depending on the
offset from the beginning of the trial when extracting the 10 s long

windows.
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Extracting the 10 s long window directly after the beginning

of the trial yields the worst results for all conditions. This can be

explained by the fact that subjects are only beginning to memorize

the stimuli and are not experiencing workload yet. After an offset

of 10 s the results remain relatively stable. All results are signif-

icantly better than chance level (tested by Wilcoxon rank-sum).

Even in the four-class classification task we could achieve accu-

racies up to 45% (chance 25%). As expected, classifying 3-back

against RELAX yielded the best results of up to 81% accuracy. For

2-back, we could achieve 80% accuracy for classification against

RELAX and 72% for 1-back, respectively. These results show that

the single trial data can be robustly discriminated from a relax

state.

Table 1 summarizes classification accuracies of each of the

conditions against relax and for the four class experiment with an

offset of 10 s. These results can be used to compare with previous

studies which focus on discriminating from the RELAX state.

3.4. QUANTIFYING MENTAL WORKLOAD

To quantify workload it is necessary to discriminate different lev-

els of workload from each other and not only from a RELAX state.

We investigate the three n-back conditions against each other in

two class and three class scenarios. To evaluate the window length

necessary for robust classification of mental workload, we show

classification accuracies depending on window length in Figure 6.

Part (A) of Figure 6, shows accuracies for the two class dis-

crimination between two levels of workload, while part (B) shows

the three class accuracies of all three workload levels. Note that

with increasing window size, the amount of instances reduces.

While we can extract 80 instances for a window length of 5 s, this

amount reduces to 10 for window lengths larger than 25 s. The

little amount of training and testing data sets explains the unstable

results for window lengths longer than 25 s.

Results increase for increasing window lengths and peak for

the length of 25 s. The discrimination between 1- and 3-back

works best, which can easily be explained as the degree of dif-

ficulty is most different in those two conditions. Classification

between 1- and 2-back and 3- and 2-back yield comparable results

as the difference in difficulty level across these conditions is sim-

ilar. For longer window lengths, these results are significantly

better than chance level. The three class experiment is above

chance for all window lengths and peaks at 50% accuracy for 25 s

window length. The detailed results for every subject for window

length of 25 s can be found in Figure 7. It can be seen that all sub-

jects yield good results for the discrimination between 1-3 back,

while only roughly half of the subjects work well for the other two

scenarios. The results across subjects are significantly better than

chance level for all classification scenarios (tested by Wilcoxon

rank-sum tests).

Table 2 summarizes the mean results across all subjects for

window lengths of 25 s and 15 s. We present the results for window

length of 15 s as well, as this length has been used for work-

load evaluation with EEG before (Kothe and Makeig, 2011). The

results for 25 s long windows clearly show that fNIRS signals can

be used to robustly quantify different levels of workload. This

is a large step toward passive BCIs using fNIRS for workload

monitoring.

4. DISCUSSION

In this study of 10 subjects, we show that fNIRS signals mea-

sured from the PFC with an easy to setup montage can be used

to robustly quantify users’ workload. The analysis of user per-

formance show significant differences in the amount of missed

targets and wrong reactions depending of the n-back level.

Additionally, the subjective evaluation of the users show big dif-

ferences in perceived difficulty level between the n-back levels,

as well.

Using 8 channels on the forehead, we were able to classify

the different levels of workload induced by n-back tasks from a

relax state with accuracies up to 81%. As expected, 3-back could

be discriminated best from the relax state (81% accuracy), as

the mental workload induced by this condition is the largest.

Table 1 | Classification accuracies of the conditions against a relax

state.

1-back 2-back 3-back 1-2-3-relax

Mean 71.5% 80.3% 80.5% 44.5%

Standard deviation 17.7 10.5 13.8 10.0

Chance level 50% 50% 50% 25%

FIGURE 5 | Classification accuracies for n-back tasks depending on the offset from trial start (A) two class problems of classification accuracy of

1-,2-,3-back against Relax (B) four class classification between all three n-back and RELAX.
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FIGURE 6 | Classification accuracies depending on window length (A) two class problems between different workload levels (B) three class

classification of all three workload levels.

FIGURE 7 | Classification accuracies for each subject with window length of 25 s (A) two class problems (B) three class classification. Each bar

represents classification accuracies of one subject. The dotted line denotes naive classification accuracy. Whiskers show standard error in the cross-validation.

Table 2 | Classification accuracies of the conditions against each

other.

Window length 1-2 1-3 2-3 1-2-3

15 s 58.5% 63.5% 56.3 % 44.0%

25 s 58.5% 78.0% 61.0% 50.3%

Chance level 50% 50% 50% 33.3%

However, classification of 2-back and 1-back against relax still

yielded mean accuracies of 80 and 72%, respectively. These results

show that even the workload induced by relatively simple tasks

can be robustly discriminated from a resting state.

More importantly, the hemodynamic responses measured in

the PFC are consistent enough to be used to discriminate between

three levels of workload. While the classification of high vs. low

workload (1 vs. 3-back) worked well for all 10 subjects and yielded

an average of 78% accuracy, the discrimination between 1 and

2-back only resulted in usable results for half of the subjects

(average of 58.5%). Classification between the workload induced

by 2 and 3-back tasks resulted in an average of 61% accuracy.

These results mirror the subjective and user performance eval-

uation, as the difference between 1 and 3-back is largest and the

difference in workload induced by 1 and 2-back seems to be small-

est (no significant difference in the amount of errors between

those two conditions).

We thereby show the potential of fNIRS as a modality for pas-

sive BCI and user state monitoring, despite the fact that further

investigation is necessary to differentiate between more levels of

workload with higher accuracies. The simple optode montage and

the robust results encourage fNIRS to be used in real-life scenar-

ios like car navigation and class-room settings. In this study, the

data was analyzed in an offline manner and especially the moving

average filter needs to be adapted for usage in an online system.

Instead of only classifying whether a subject was engaged in a

task or not, we were able to reliably show the degree of workload

a subject was experiencing. The presented results thus show the

feasibility of using fNIRS to quantify workload in single trial.
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4.1. DATA SHARING

Single-trial analysis of fNIRS data is still a very young field and

to the best of our knowledge, there are only very few publicly

available data sets of single trial fNIRS experiments. To increase

comparability of single trial fNIRS methods and allow for bench-

marking, the data corpus used in this study will be publicly

available on the authors’ website 1. The fNIRS time courses for

all 10 subjects and for all n-back conditions and RELAX can

be downloaded in both MATLAB™and Comma-Separated-Value

(CSV) file formats. The questionnaire and behavior results will be

included, as well. Thereby, we hope to provide a common data set

for evaluation and testing of fNIRS methods and algorithms.
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