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Abstract

Recent deep networks are capable of memoriz-

ing the entire data even when the labels are com-

pletely random. To overcome the overfitting on

corrupted labels, we propose a novel technique

of learning another neural network, called Men-

torNet, to supervise the training of the base deep

networks, namely, StudentNet. During training,

MentorNet provides a curriculum (sample weight-

ing scheme) for StudentNet to focus on the sam-

ple the label of which is probably correct. Un-

like the existing curriculum that is usually pre-

defined by human experts, MentorNet learns a

data-driven curriculum dynamically with Student-

Net. Experimental results demonstrate that our

approach can significantly improve the general-

ization performance of deep networks trained on

corrupted training data. Notably, to the best of our

knowledge, we achieve the best-published result

on WebVision, a large benchmark containing 2.2

million images of real-world noisy labels.

1. Introduction

Zhang et al. (2017a) found that deep convolutional neural

networks (CNNs) are capable of memorizing the entire data

even with corrupted labels, where some or all true labels are

replaced with random labels. It is a consensus that deeper

CNNs usually lead to better performance. However, the abil-

ity of deep CNNs to overfit or memorize the corrupted labels

can lead to very poor generalization performance (Zhang

et al., 2017a). Recently, Neyshabur et al. (2017) and Arpit

et al. (2017) proposed deep learning generalization theories

to explain this interesting phenomenon.

This paper studies how to overcome the corrupted label for

deep CNNs, so as to improve generalization performance
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on the clean test data. Although learning models on weakly

labeled data might not be novel, improving deep CNNs on

corrupted labels is clearly an under-studied problem and

worthy of exploration, as deep CNNs are more prone to

overfitting and memorizing corrupted labels (Zhang et al.,

2017a). To address this issue, we focus on training very deep

CNNs from scratch, such as resnet-101 (He et al., 2016) or

inception-resnet (Szegedy et al., 2017) which has a few

hundred layers and orders-of-magnitude more parameters

than the number of training samples. These networks can

achieve the state-of-the-art result but perform poorly when

trained on corrupted labels.

Inspired by the recent success of Curriculum Learning (CL),

this paper tackles this problem using CL (Bengio et al.,

2009), a learning paradigm inspired by the cognitive process

of human and animals, in which a model is learned grad-

ually using samples ordered in a meaningful sequence. A

curriculum specifies a scheme under which training samples

will be gradually learned. CL has successfully improved the

performance on a variety of problems. In our problem, our

intuition is that a curriculum, similar to its role in education,

may provide meaningful supervision to help a student over-

come corrupted labels. A reasonable curriculum can help

the student focus on the samples whose labels have a high

chance of being correct.

However, for the deep CNNs, we need to address two lim-

itations of the existing CL methodology. First, existing

curriculums are usually predefined and remain fixed during

training, ignoring the feedback from the student. The learn-

ing procedure of deep CNNs is quite complicated, and may

not be accurately modeled by the predefined curriculum.

Second, the alternating minimization, commonly used in

CL and self-paced learning (Kumar et al., 2010) requires

alternative variable updates, which is difficult for training

very deep CNNs via mini-batch stochastic gradient descent.

To this end, we propose a method to learn the curriculum

from data by a network called MentorNet. MentorNet learns

a data-driven curriculum to supervise the base deep CNN,

namely StudentNet. MentorNet can be learned to approx-

imate an existing predefined curriculum or discover new

data-driven curriculums from data. The learned data-driven

curriculum can be updated a few times taking into account of
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the StudentNet’s feedback. Whenever MentorNet is learned

or updated, we fix its parameter and use it together with

StudentNet to minimize the learning objective, where Men-

torNet controls the timing and attention to learn each sample.

At the test time, StudentNet makes predictions alone without

MentorNet.

The proposed method improves existing curriculum learn-

ing in two aspects. First, our curriculum is learned from

data rather than predefined by human experts. It takes into

account of the feedback from StudentNet and can be dynam-

ically adjusted during training. Intuitively, this resembles a

“collaborative” learning paradigm, where the curriculum is

determined by the teacher and student together. Second, in

our algorithm, the learning objective is jointly minimized

using MentorNet and StudentNet via mini-batch stochastic

gradient descent. Therefore, the algorithm can be conve-

niently parallelized to train deep CNNs on big data. We

show the convergence and empirically verify it on large-

scale benchmarks.

We verify our method on four benchmarks. Results show

that it can significantly improve the performance of deep

CNNs trained on both controlled and real-world corrupted

training data. Notably, to the best of our knowledge, it

achieves the best-published result on WebVision (Li et al.,

2017a), a large benchmark containing 2.2 million images of

real-world noisy labels. To summarize, the contribution of

this paper is threefold:

• We propose a novel method to learn data-driven cur-

riculums for deep CNNs trained on corrupted labels.

• We discuss an algorithm to perform curriculum learn-

ing for deep networks via mini-batch stochastic gradi-

ent descent.

• We verify our method on 4 benchmarks and achieve

the best-published result on the WebVision benchmark.

2. Preliminary on Curriculum Learning

We formulate our problem based on the model in (Ku-

mar et al., 2010) and (Jiang et al., 2015). Consider

a classification problem with the training set D =
{(x1,y1), · · · , (xn,yn)}, where xi denotes the ith ob-

served sample and yi ∈ {0, 1}m is the noisy label vector

over m classes. Let gs(xi,w) denote the discriminative

function of a neural network called StudentNet, parame-

terized by w ∈ R
d. Further, let L(yi, gs(xi,w)), a m-

dimensional column vector, denote the loss over m classes.

Introduce the latent weight variable, v ∈ R
n×m, and opti-

mize the objective:

min
w∈Rd,v∈[0,1]n×m

F(w,v) =

1

n

n
∑

i=1

vT
i L(yi,gs(xi,w)) +G(v;λ) + θ‖w‖22 (1)

where ‖·‖2 is the l2 norm for weight decay, and data augmen-

tation and dropout are subsumed inside gs. vi ∈ [0, 1]m×1

is a vector to represent the latent weight variable for the i-th
sample. The function G defines a curriculum, parameterized

by λ. This paper focuses on the one-hot label. For notation

convenience, denote the loss L(yi,gs(xi,w))= ℓi, vi as a

scalar vi, and yi as an integer yi ∈ [1,m].

In the existing literature, alternating minimization (Csiszar,

1984), or its related variants, is commonly employed to min-

imize the training objective, e.g. in (Kumar et al., 2010;

Ma et al., 2017a; Jiang et al., 2014). This is an algo-

rithmic paradigm where w and v are alternatively mini-

mized, one at a time while the other is held fixed. When

v is fixed, the weighted loss is typically minimized by

stochastic gradient descent. When w is fixed, we com-

pute vk = argminv F(v
k−1,wk) using the most recently

updated wk at epoch k. For example, Kumar et al. (2010)

employed G(v) = −λ‖v‖1. When w is fixed, the optimal

v can be easily derived by:

v∗i = 1(ℓi ≤ λ), ∀i ∈ [1, n], (2)

where 1 is the indicator function. Eq. (2) intuitively explains

the predefined curriculum in (Kumar et al., 2010), known as

self-paced learning. First, when updating v with a fixed w,

a sample of smaller loss than the threshold λ is treated as

an “easy” sample, and will be selected in training (v∗i = 1).

Otherwise, it will not be selected (v∗i = 0). Second, when

updating w with a fixed v, the classifier is trained only

on the selected “easy” samples. The hyperparameter λ
controls the learning pace and corresponds to the “age” of

the model. When λ is small, only samples of small loss will

be considered. As λ grows, more samples of larger loss will

be gradually added to train a more “mature” model.

As shown, the function G specifies a curriculum, i.e., a

sequence of samples with their corresponding weights to

be used in training. When w is fixed, its optimal solution,

e.g. Eq. (2), computes the time-varying weight that controls

the timing and attention to learn every sample. Recent stud-

ies discovered multiple predefined curriculums and verified

them in many real-world applications, e.g., in (Fan et al.,

2017; Ma et al., 2017a; Sangineto et al., 2016; Fan et al.,

2017; Chang et al., 2017).

This paper studies learning curriculum from data. In the

rest of this paper, Section 3 presents an approach to learn

data-driven curriculum by MentorNet. Section 4 discusses

an algorithm to optimize Eq. (1) using MentorNet and Stu-

dentNet together via mini-batch training.

3. Learning Curriculum from Data

Existing curriculums are either predetermined as an analytic

expression of G or a function to compute sample weights.

Such predefined curriculums cannot be adjusted accordingly,

taking into account of the feedback from the student. This
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section discusses a new way to learn data-driven curriculum

by a neural network, called MentorNet. The MentorNet gm
is learned to compute time-varying weights for each training

sample. Let Θ denote the parameters in gm. Given a fixed

w, our goal is to learn an Θ∗ to compute the weight:

gm(zi; Θ
∗) = arg min

vi∈[0,1]
F(w,v), ∀i ∈ [1, n] (3)

where zi = φ(xi, yi,w) indicates the input feature to Men-

torNet about the i-th sample.

3.1. Learning Curriculum

MentorNet can be learned to 1) approximate existing cur-

riculums or 2) discover new curriculums from data.

Learning to approximate predefined curriculums. Our

first task is to learn a MentorNet to approximate a predefined

curriculum. To do so, we minimize the objective in Eq. (1):

argmin
Θ

∑

(xi,yi)∈D

gm(zi; Θ)ℓi +G(gm(zi; Θ);λ) (4)

Eq. (4) applies for both convex and non-convex G. This

paper employs the following predefined curriculum. It is

derived from (Jiang et al., 2015) and works well in our

experiments. As will be discussed later, it is also related to

robust non-convex penalties.

G(v;λ) =

n
∑

i=1

1

2
λ2v

2
i − (λ1 + λ2)vi, (5)

where λ1, λ2 ≥ 0 are hyper-parameters. As G is convex,

there exists a closed-form solution for the optimal value of

Eq. (3). Given a fixed w, define Fw(v) =
∑n

i=1 f(vi):

f(vi) = viℓi +
1

2
λ2v

2
i − (λ1 + λ2)vi (6)

The minima are obtained at ∇vFw(v) = 0, and can be

decoupled by setting ∂f/∂vi = 0. We then have:

gm(zi; Θ
∗) =

{

1(ℓi ≤ λ1) λ2 = 0

min(max(0, 1− ℓi−λ1

λ2

), 1) λ2 6= 0
,

(7)

where Θ∗ is the optimal MentorNet parameter obtained

by SGD. The closed-form solution in Eq. (7) gives some

intuitions about the curriculum. When λ2 = 0, it is sim-

ilar to self-paced learning (Kumar et al., 2010) i.e. only

“easy” samples of ℓi < λ1 will be selected in training

(gm(zi; Θ
∗) = 1). When λ2 6= 0, samples of loss

ℓi ≥ λ2+λ1 will not be selected in training. These samples

represent the “hard” samples of greater loss. Otherwise,

samples will be weighted linearly w.r.t. 1− (ℓi − λ1)/λ2.

As in (Kumar et al., 2010), the hyper-parameters λ1 and λ2

control the learning pace.

Learning data-driven curriculums. Our next task is

to learn a curriculum solely derived from labeled data.

To this end, Θ is learned on another dataset D′ =

{(φ(xi, yi,w), v∗i )}, where (xi, yi) is sampled from D
and |D′| ≪ |D|. v∗i is a given annotation and we as-

sume it approximates the optimal weight, i.e., v∗i ≃
argminvi∈[0,1] F(v,w). In this paper, we assign binary

labels to v∗i , where v∗i = 1 iff yi is a correct label. As

v∗i is binary, Θ is learned by minimizing the cross-entropy

loss between v∗i and g(zi; Θ). Intuitively, this process is

similar to a mock test for the teacher (MentorNet) to learn

to update her teaching strategy (curriculum). The student

(StudentNet) provides features φ(·, ·,w) for the mock test

using the latest model w. The teacher can learn an updated

curriculum from the data to better supervise the latest stu-

dent model. The learned curriculum is jointly determined

by the teacher and student together.

The information on the correct label may not always be

available on the target dataset D. In this case, we learn the

curriculum on a different small dataset where the correct

labels are available. Intuitively, it resembles first learning a

teaching strategy with the student on one topic and transfer

the strategy on a similar topic. Empirically, Section 5.1

substantiates that the learned curriculum on a small subset of

CIFAR-10 can be applied to the target CIFAR-100 dataset.

A burn-in period is introduced before learning Θ. In the first

20% training epoch of the StudentNet, MentorNet is initial-

ized and fixed as gm(zi; Θ
∗) = ri, where ri ∼ Bernoulli(p)

is the Bernoulli random variable. This is equivalent to ran-

domly dropping out p% training samples. We found that

the burn-in process helps StudentNet stabilize the prediction

and focus on learning simple and common patterns.

MentorNet architecture. We found that MentorNet can

have a simple architecture. Appendix D shows that even

MentorNet based on the two-layer perceptron can reason-

ably approximate the existing curriculum in the literature.

Nevertheless, we use a MentorNet architecture shown in

Fig. 1, which works reasonably well compared to classical

network architectures. It takes the input of a mini-batch of

samples, and outputs their corresponding sample weights.

The feature zi = φ(xi, yi,w) includes the loss, loss dif-

ference to the moving average, label and epoch percentage.

ℓpt maintains an exponential moving average on the p-th

percentile of the loss in each mini-batch. For a sample, its

loss ℓ and loss difference ℓ − ℓpt over the last few epochs

can be encoded by a bidirectional LSTM network to capture

the prediction variance (Chang et al., 2017). We verify the

LSTM encoder in the experiments in Appendix D. For sim-

plicity, we set the step size of the LSTM to 1 in Section 5.1

and only consider the loss and the loss difference of the

current epoch.

The label and the training epoch percentage are encoded

by two separate embedding layers. The epoch percentage

is represented as an integer between 0 and 99. It is used

to indicate the StudentNet’s training progress, where 0 rep-
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Figure 1. The MentorNet architecture used in experiments. emb, fc

and prob sampling stand for the embedding, fully-connected and

probabilistic sampling layer.

resents the first and 99 represents the last training epoch.

The concatenated outputs from the LSTM and the embed-

ding layers are fed into two fully-connected layers fc1, fc2,

where fc2 uses the sigmoid activation to ensure the output

weights bounded between 0 and 1. The last layer in Fig. 1

is a probabilistic sampling layer, and is used to implement

the sample dropout in the burn-in process on the already

learned MentorNet.

3.2. Discussions

MentorNet is a general framework for both predefined and

data-driven curriculum learning, where various curriculums

can be learned by the same MentorNet structure with differ-

ent parameters. This framework is conceptually general and

practically flexible as we can switch curriculums by attach-

ing different MentorNets without modifying the pipeline.

Therefore, we also learn MentorNets for predefined curricu-

lums. For predefined curriculums where G is unknown, we

directly minimize the error between the MentorNet’s out-

puts and desired weights. For example, the desired weight

for focal loss (Lin et al., 2017b) is computed by:

v∗i = [1− exp{−ℓi}]
γ , (8)

where γ is a hyperparameter for smoothing the distribution.

This paper tackles the problem of overcoming corrupted la-

bels. It is interesting to analyze why the learned curriculum

can improve the generalization performance. It turns out

that StudentNet, when jointly learned with MentorNet, may

optimize an underlying robust objective and the objective is

also related to the robust M-estimator (Huber, 2011).

To show this, let v∗(λ, x) represent the optimal weight func-

tion for a loss variable x, and we define:

v∗(λ, x) = argminv∈[0,1] vx+G(v, λ). (9)

As gm is an approximator to Eq. (9), its property can then

be analyzed by the function v∗(λ, x). Meng et al.(2015)

investigated the insights of self-paced objective function,

and proved that the optimization of SPL algorithm is in-

trinsically equivalent to minimizing a robust loss function.

They showed that given a fixed λ and a decreasing v∗(λ, x)
with respect to x, the underlying objective of Eq. (1) can be

obtained by:

Fλ(w) =
1

n

n
∑

i=1

∫ ℓi

0

v∗(λ, x)dx, (10)

Based on it, the underlying learning objective of the curricu-

lum in Eq. (5) can then be derived.

Remark 1. When λ1, λ2 are fixed and λ2 6= 0, the un-

derlying objective function of the curriculum in Eq. (5) is

calculated from:

Fλ(w)=
1

n

n
∑

i=1











ℓi ℓi ≤ λ1

(λ2 + 2λ1)/2 ℓi ≥ λ2 + λ1

θℓi−ℓ2i /(2λ2)−
(θ−1)2λ2

2 otherwise

(11)
where θ = (λ2 + λ1)/λ2. When θ = 1 it is equivalent to

the minimax concave penalty (Zhang, 2010).

As shown in Eq. (11), the underlying objective has a form

of Fλ(w) =
∑

i ρ(ℓi)/n, where ρ is the penalty function

in M-estimator (Candes et al., 2008). Particularly, when

θ = 1, ρ(ℓ) is equivalent to the minimax concave plus

penalty (Zhang, 2010), a popular non-convex robust loss.

The result indicates the learned MentorNet that approx-

imates our predefined curriculum in Eq. (5) leads to an

underlying robust objective of the StudentNet.

For the data-driven curriculum, if the learned MentorNet

satisfies certain conditions, we have:

Proposition 1. Suppose (x, y) denotes a training sample

and its corrupted label. For simplicity, let the MentorNet

input φ(x, y,w) = ℓ be the loss computed by the StudentNet

model parameter w. The MentorNet gm(ℓ; Θ) = v, where

v is the sample weight. If gm decreases with respect to ℓ,
then there exists an underlying robust objective F :

F (w) =
1

n

n
∑

i=1

ρ(ℓi),

where ρ(ℓi) =
∫ ℓi

0
gm(x; Θ)dx. In the special cases, ρ(ℓ)

degenerates to the robust M-estimator: Huber (Huber et al.,

1964) and the log-sum penalty (Candes et al., 2008).

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1

2

3

4

5
Huber

Log Sum

Self-Paced

Learned Curriculum

Figure 2. Visualization of sample loss and learning objective. The

learned curriculum represents the best data-driven curriculum

found in experiments.

The proposition indicates that there exist some learned Men-

torNets that are related to the robust M-estimator. On noisy
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data, the effect of the robust objective is evident, i.e., prevent-

ing StudentNet from being dominated by corrupted labels.

Fig. 2 visualizes curves of the sample loss ℓ = yi−gs(xi,w)
and the learning objective for the Huber loss (Huber et al.,

1964), log-sum penalty (Candes et al., 2008), self-paced (Ku-

mar et al., 2010), and our learned data-driven curriculum.

We use the best learned curriculum Θ∗ on CIFAR-10 in

our experiments and plot |gm(φ(x, y,w); Θ∗) × ℓ| since

the G in the objective function is unknown. As shown, all

curves are robust to great loss to different extents. The cor-

rupted labels in our problem are harmful. As the sample

loss grows bigger beyond some value, MentorNet starts

to sharply decrease the sample’s weight. The subtlety of

learned curriculum is difficult to be predefined by the ana-

lytic expression. Proposition 1 does not guarantee there is

an underlying robust objective for every learned MentorNet.

Instead, it shows MentorNet’s capability of learning such

robust objective.

4. The Algorithm

The alternating minimization algorithm (Csiszar, 1984) used

in related work is intractable for deep CNNs, especially on

big datasets, for two important reasons. First, in the sub-

routine of minimizing w when fixing v, stochastic gradient

descent often takes many steps before converging. This

means that it can take a long time before moving past this

single sub-step. However, such computation is often waste-

ful, particularly in the initial part of training, because, when

v is far away from the optimal point, there is not much

gain in finding the exact optimal w corresponding to this

v. Second, the subroutine of minimizing v when fixing w

is often difficult, because the fixed vector v may not only

consume a considerable amount of the memory but also

hinder the parallel training on multiple machines. Therefore,

optimizing the objective with deep CNNs requires some

thought on the algorithmic level.

To minimize Eq. (1), we propose an algorithm called SPADE

(Scholastic gradient PArtial DEscent). The algorithm op-

timizes the StudentNet model parameter w jointly with a

given MentorNet. It provides a simple and elegant way to

minimize w and v stochastically over mini-batches. As

a general approach, it can also take an input of G. Let

Ξt = {(xj , yj)}
b
j=1 denotes a mini-batch of b samples,

fetched uniformly at random and vt
Ξ = [vt1, ..., v

t
b] represent

the sample weights in Ξt. The MentorNet computes:

vt
Ξ=gm(φ(Ξt,w

t−1))=argmin
vΞ

F(wt−1,vt−1), (12)

where φ is the feature extraction function defined in Eq. (3).

Θ denotes the learned MentorNet discussed in Section 3.1.

As shown in Algorithm 1, for w, a stochastic gradient is

computed (via a mini-batch) and applied (Step 12), where

αt is the learning rate. For the latent weight variables v,

gradient descent is only applied to a small subset thereof

parameters corresponding only to the mini-batch (Step 9 or

11). The partial gradient update on weight parameters is

performed when G is used (Step 9). Otherwise, we directly

apply the weights computed by the learned MentorNet (Step

11). In both cases, the weights are computed on-the-fly

within a mini-batch and thus do not need to be fixed. As a

result, the algorithm can be conveniently parallelized across

multiple machines.

Algorithm 1 SPADE for minimizing Eq. (1)

Input :Dataset D, a predefined G or a learned gm(·; Θ)
Output :The model parameter w of StudentNet.

1 Initialize w
0,v0, t = 0

2 while Not Converged do
3 Fetch a mini-batch Ξt uniformly at random

4 For every (xi, yi) in Ξt compute φ(xi, yi,w
t)

5 if update curriculum then
6 Θ← Θ∗, where Θ∗ is learned in Sec. 3.1
7 end
8 if G is used then

9 v
t

Ξ ← v
t−1

Ξ
− αt∇vF(w

t−1,vt−1)|Ξt

10 end

11 else v
t

Ξ ← gm(φ(Ξt,w
t−1); Θ) ;

12 w
t ← w

t−1 − αt∇wF(wt−1,vt)|Ξt

13 t← t+ 1
14 end

15 return w
t

The curriculum can change during training. MentorNet is

updated a few times in Algorithm 1. In Step 6, the Men-

torNet parameter Θ is updated to adapt to the most recent

model parameters of StudentNet. In experiments, we update

Θ twice after the learning rate is changed. Each time, a data-

driven curriculum is learned from the data generated by the

most recent w using the method discussed in Section 3.1.

The update is consistent with existing curriculum learning

methodology (Bengio et al., 2009; Kumar et al., 2010) and

the difference here is that for each update, the curriculum is

learned rather than specified by human experts.

Under standard assumptions, Theorem 1 shows that the algo-

rithm stabilizes and converges to a stationary point (conver-

gence to global/local minima cannot be guaranteed unless

in specially structured non-convex objectives (Chen et al.,

2018; Zhou et al., 2017b;a)). The proof is in Appendix B.

The theorem is a characterization of stability of the model

parameters w. For the weight parameters v, as it is re-

stricted in a compact set, convergence to a stationary point

is not always guaranteed. As the model parameters is more

important, we only provide a detailed characterization of

the model parameter.

Theorem 1. Let the objective F(w,v) defined in Eq. (1)

be differentiable, L(·) be Lipschitz continuous in w and

∇vG(·) be Lipschitz continuous in v. Let wt,vt be iterates

from Algorithm 1 and
∑∞

t=0 αt = ∞,
∑∞

t=0 α
2
t < ∞ .

Then, limt→∞ E[‖∇wF(wt,vt)‖22] = 0.

For the manually designed curriculums, it may be unclear
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where or even whether such predefined curriculum would

converge via mini-batch training. Theorem 1 shows that

the learned curriculum can converge and produce a stable

StudentNet model. The algorithm can be used to replace the

alternating minimization method in related work.

5. Experiments

This section empirically verifies the proposed method on

four benchmarks of controlled corrupted labels in Sec-

tion 5.1 and real-world noisy labels in Section 5.2.

5.1. Experiments on controlled corrupted labels

This section validates MentorNet on the controlled corrupted

label. We follow a common setting in (Zhang et al., 2017a)

to train deep CNNs, where the label of each image is inde-

pendently changed to a uniform random class with probabil-

ity p, where p is noise fraction and is set to 0.2, 0.4 and 0.8.

The labels of validation data remain clean for evaluation.

Dataset and StudentNet: We use the same benchmarks

in (Zhang et al., 2017a): CIFAR-10, CIFAR-100 and Im-

ageNet. CIFAR-10 and CIFAR-100 (Krizhevsky & Hin-

ton, 2009) consist of 32 × 32 color images arranged in 10

and 100 classes. Both datasets contain 50,000 training and

10,000 validation images. ImageNet ILSVRC2012 (Deng

et al., 2009) contain about 1.2 million training and 50k

validation images, split into 1,000 classes. Each image is

resized to 299x299 with 3 color channels.

We employ 3 recent deep CNNs as our StudentNets: incep-

tion (Szegedy et al., 2016), resnet-101 (He et al., 2016) with

wide filters (Zagoruyko & Komodakis, 2016) and inception-

resnet v2 (Szegedy et al., 2017). Table 1 shows their #model

parameters, training, and validation accuracy when we train

them on the clean training data (noise= 0). As shown, they

achieve reasonable accuracy on each task.

Table 1. StudentNet and their accuracies on the clean training data.

Dataset Model #para train acc val acc

CIFAR10
inception 1.7M 0.83 0.81
resnet101 84M 1.00 0.96

CIFAR100
inception 1.7M 0.64 0.49
resnet101 84M 1.00 0.79

ImageNet inception resnet 59M 0.88 0.77

Baselines: MentorNet is compared against the following

baselines: FullMode is the standard StudentNet trained us-

ing l2 weight decay, dropout (Srivastava et al., 2014) and

data augmentation (Krizhevsky et al., 2012). The hyper-

parameters are set to the best ones found on the clean

training data. Unless specified otherwise, for a fair com-

parison, the StudentNet with the same hyperparameters is

used in all baseline and our model. Forgetting was intro-

duced in (Arpit et al., 2017), in which the dropout parameter

is searched in the range of (0.2-0.9). Self-paced (Kumar

et al., 2010) and Focal Loss (Lin et al., 2017b) represent

well-known predefined curriculums in the literature. We

implemented Reed (2014) and Goldberger (Goldberger &

Ben-Reuven, 2017) as the recent weakly-supervised learn-

ing methods. The above baseline methods are a mixture of

the curriculum learning and the recent methods dealing with

corrupted labels.

Our Model: MentorNet PD is the network learned using

our predefined curriculum in Eq. (5) using no additional

clean labels. MentorNet DD is the learned data-driven

curriculum. It is trained on 5,000 images of true labels, ran-

domly sampled from the CIFAR-10 training set. The same

data are used to learn MentorNet DD on CIFAR-100. Note

CIFAR-10 and CIFAR-100 are two different datasets that

have not only different classes but also the different num-

ber of classes. Therefore, it is fair to compare MentorNet

DD with other methods using no true labels on CIFAR-100.

Algorithm 1 is used to optimize the StudentNet. The de-

cay factor in computing the loss moving average is set to

0.95. The loss percentile in the moving average is set by the

cross-validation. As mentioned, a burn-in process is used

in the first 20% training epoch for both MentorNet DD and

MentorNet PD. More details are discussed in Appendix E.

We first show the comparison to the baseline method on

CIFAR-10 and CIFAR-100 in Table 2. On both datasets,

each method is verified with two StudentNets (resnet-101

and inception) under the noise fraction of 0.2, 0.4, and 0.8.

As we see on both datasets, MentorNet improves FullModel

across different noise fractions, and the learned data-driven

curriculum (MentorNet DD) achieves the best results. The

improvement is more significant for the deeper CNN model

resnet-101. For example, on the CIFAR-10 of 40% noise,

MentorNet DD (with resnet-101) yields an absolute 20%

gain over FullModel. After inspecting the result, we found

that it may be because Mentor DD learns a more appropriate

curriculum to give high weights to samples of correct labels.

As a result, it helps the StudentNet focus on samples of

correct labels. The results indicate that the learned Mentor-

Net can improve the generalization performance of recent

deep CNNs, and outperform the predefined curriculums

(Self-paced and Focal Loss).

Fig. 3 plots the training and test error on the clean validation

data, under a representative setting: resnet-101 on CIFAR-

100 of 40% noise, where the x-axis denotes the training

iteration. The y-axis is the validation error on the clean

validation in Fig. 3(a) and the mini-batch training error on

corrupted labels in Fig. 3(b). For MentorNet, the training

error is computed by
∑

i viℓi. The figure shows two insights.

First, the training error of MentorNet approaches zero. This

empirically verifies the convergence of the model. Second,

MentorNet can overcome the overfitting to the corrupted

label. While the training error is decreasing, the test error

does not increase in Fig. 3(a). It suggests that the learned

curriculum is beneficial for StudentNet. The sharp change
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Table 2. Comparison of validation accuracy on CIFAR-10 and CIFAR-100 under different noise fractions.

Resnet-101 StudentNet Inception StudentNet

CIFAR-100 CIFAR-10 CIFAR-100 CIFAR-10

Method 0.2 0.4 0.8 0.2 0.4 0.8 0.2 0.4 0.8 0.2 0.4 0.8

FullModel 0.60 0.45 0.08 0.82 0.69 0.18 0.43 0.38 0.15 0.76 0.73 0.42

Forgetting 0.61 0.44 0.16 0.78 0.63 0.35 0.42 0.37 0.17 0.76 0.71 0.44

Self-paced 0.70 0.55 0.13 0.89 0.85 0.28 0.44 0.38 0.14 0.80 0.74 0.33

Focal Loss 0.59 0.44 0.09 0.79 0.65 0.28 0.43 0.38 0.15 0.77 0.74 0.40

Reed Soft 0.62 0.46 0.08 0.81 0.63 0.18 0.42 0.39 0.12 0.78 0.73 0.39

MentorNet PD 0.72 0.56 0.14 0.91 0.77 0.33 0.44 0.39 0.16 0.79 0.74 0.44

MentorNet DD 0.73 0.68 0.35 0.92 0.89 0.49 0.46 0.41 0.20 0.79 0.76 0.46
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Figure 3. Error of resnet trained on CIFAR-100 of 40% noise.

round the 20k iteration in Fig. 3 is due to the learning rate

change. Besides, our result is consistent with (Zhang et al.,

2017a) that deep CNNS is able to get 0 training error on

the corrupted training data. Forgetting (the dashed curve)

is the only one that does not converge within 30k steps.

As indicated in (Arpit et al., 2017), it is because forgetting

reduces the speed at which DNNs memorize. As suggested

in (Zhang et al., 2017b), a not converged model might yield

a better result, e.g., stop the model at 20K in Fig. 3. However,

as it is hard to predetermine the time for early stopping, our

focus is comparing the converged model.

Fig. 4 illustrates the best learned data-driven curriculum

in our experiments, where the z-axis denotes the weights

computed by gm; the y and x axes denote the sample loss

and the loss difference to the moving average, where λ is

the loss moving average. Two observations can be found

in Fig. 4. First, the learned curriculum changes during the

training of the StudentNet. Fig. 4 (a) and (b) are MentorNet

learned at different epochs. As shown, (a) assigns greater

weights to samples of big loss more aggressively. Second,

the learned curriculums in Fig. 4 generally satisfy the con-

dition in Proposition 1, i.e., the weight generally decreases

with the loss. It suggests that joint learning of StudentNet

and MentorNet optimizes an underlying robust objective.

Table 3 compares to recent published results under the set-

w
e
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h
t
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e
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h
t

(a) epoch percentage=21 (b) epoch percentage=76

Figure 4. The data-driven curriculums learned by MentorNet with

the resnet-101 at epoch 21 in (a) and 76 in (b).

ting: CIFAR of 40% noise fraction. We cite the number

in (Azadi et al., 2016), and implement other methods using

the same resnet-101 StudentNet. The results show that our

result is comparable and even better than the state-of-the-art.

Table 3. Validation accuracy comparison to representative pub-

lished results on CIFAR of 40% noise.

ID Method CIFAR-10 CIFAR-100

1 Reed Hard (Resnet) 0.62 0.47
2 Reed Soft (Resnet) 0.61 0.46
3 Goldberger (Resnet) 0.70 0.46
4 Azadi (AlexNet) (2016) 0.75 -
5 MentorNet (Resnet) 0.89 0.68

To verify MentorNet for large-scale training, we apply our

method on the ImageNet ILSVRC12 (Deng et al., 2009)

benchmark to improve the inception-resnet v2 (Szegedy

et al., 2017) model. We train the model on the ImageNet

of 40% noise. Inspired by (Zhang et al., 2017a), we start

with an inception-resnet (NoReg) with no regularization

(NoReg) and add weight decay, dropout, and data augmen-

tation to the model. Table 4 shows the comparison. As

shown, MentorNet improves the performance of both the

inception-resnet without regularization (NoReg) and with

full regularization (FullModel). It also outperforms the

forgetting baseline (dropout keep probability = 0.2). The

results suggest that MentorNet can improve deep CNNs on

the large-scale training on corrupted labels.

5.2. Experiments on real-world noisy labels

To verify MentorNet on real-world noisy labels, we conduct

experiments on the large WebVision benchmark (Li et al.,

2017a). It contains 2.4 million images of real-world noisy

labels, crawled from the web using the 1,000 concepts in Im-

ageNet ILSVRC12. We download the resized images from



MentorNet: Learning Data-Driven Curriculum for Deep Neural Networks

Table 4. Accuracy on the clean ImageNet ImageNet validation set.

Models are trained on the ImageNet training data of 40% noise.

Method P@1 P@5

NoReg 0.538 0.770
NoReg+WeDecay 0.560 0.809
NoReg+Dropout 0.575 0.807
NoReg+DataAug 0.522 0.772
NoReg+MentorNet 0.590 0.814

FullModel 0.612 0.844
Forgetting(FullModel) 0.628 0.845
MentorNet(FullModel) 0.651 0.859

the official website1. The inception-resenet v2 (Szegedy

et al., 2017) is used as our StudentNet, trained using a dis-

tributed asynchronized momentum optimizer on 50 GPUs.

Since the dataset is very big, for quick experiments, we com-

pare baseline methods using the Google image subset on the

first 50 classes. We use Mini to denote this subset and Entire

for the entire WebVision. All the models are evaluated on

the clean ILSVRC12 and WebVision validation set.

Table 5 lists the comparison result. As we see, the pro-

posed MentorNet significantly improves baseline methods

on real-world noisy labels. The method marked by the

start indicates it uses a pre-trained ImageNet model to ob-

tain additional 30k labels for 118 classes. Following the

same protocol, MentorNet* is trained using the additional

labels. The results show that our method outperforms the

baseline methods on real-world noisy labels. To the best of

our knowledge, it achieves the best-published result on the

WebVision (Li et al., 2017a) benchmark.

Table 5. Validation accuracy on the ImageNet ILSVRC12 and Web-

Vision validation set. The number outside (inside) the parentheses

denotes top-1 (top-5) classification accuracy (%). * marks the

method trained using additional verification labels.

Dataset Method ILSVRC12 WebVision

Entire Li et al. (2017a) 0.476 (0.704) 0.570 (0.779)
Entire Forgetting 0.590 (0.808) 0.666 (0.856)
Entire Lee et al. (2017)* 0.602 (0.811) 0.685 (0.865)
Entire MentorNet 0.625 (0.830) 0.708 (0.880)
Entire MentorNet* 0.642 (0.848) 0.726 (0.889)

Mini FullModel 0.585 (0.818) -
Mini Forgetting 0.562 (0.816) -
Mini Reed Soft 0.565 (0.827) -
Mini Self-paced 0.576 (0.822) -
Mini MentorNet 0.638 (0.858) -

6. Related Work

Curriculum learning (CL), proposed by Bengio et al. (2009),

is a learning paradigm in which a model is learned by grad-

ually including from easy to complex samples in training

so as to increase the learning entropy (Bengio et al., 2009).

From the human behavioral perspective, Khan et al. (2011)

have shown that CL is consistent with the principle of hu-

man teaching. CL has been empirically verified in a va-

riety of problems, such as computer vision (Supancic &

Ramanan, 2013; Chen & Gupta, 2015), natural language

1https://www.vision.ee.ethz.ch/webvision/download.html

processing (Turian et al., 2010), multitask learning (Graves

et al., 2017). A common CL approach is to predefine a

curriculum. For example, Kumar et al. (2010) proposed a

curriculum called self-paced learning which favors training

samples of smaller loss. After that, many predefined curricu-

lums were proposed, e.g., in (Supancic & Ramanan, 2013;

Jiang et al., 2014; 2015; Sangineto et al., 2016; Chang et al.,

2017; Ma et al., 2017a;b). For example, Jiang et al. (2014)

introduced a curriculum of using easy and diverse sam-

ples. Fan et al. (2017) proposed to use predefined sample

weighting schemes as an implicit way to define a curriculum.

Previous work has shown that predefined curriculums are

useful in overcoming noisy labels (Chen & Gupta, 2015;

Liang et al., 2016; Lin et al., 2017a). In parallel to CL, the

sample weighting schemes were also studied in (Lin et al.,

2017a; Wang et al., 2017; Fan et al., 2018; Dehghani et al.,

2018). Compared to the existing work, our paper presents

a new way of learning data-driven curriculums for deep

networks trained on corrupted labels.

Our work is related to the weakly-supervised learning meth-

ods. Among recent contributions, Reed et al. (2014) de-

veloped a robust loss to model “prediction consistency”.

Menon et al. (2015) used class-probability estimation to

study the corruption process. Sukhbaatar et al. (2014) pro-

posed a noise transformation to estimate the noise distribu-

tion. The transformation matrix needs to be periodically

updated and is non-trivial to learn. To address the issue,

Goldberger et al. (2017) proposed to add an additional

softmax layer end-to-end with the base model. Azadi et

al. (2016) tackled this problem by a regularizer called AIR.

This method was shown to be effective but it relied on addi-

tional clean labels to train the representation. More recently,

methods utilized additional labels for label cleaning (Veit

et al., 2017), knowledge distillation (Li et al., 2017b) or

semi-supervised learning (Vahdat, 2017; Dehghani et al.,

2017). Different from previous work, we focus on learn-

ing curriculum to train very deep CNNs on corrupted labels

from scratch. In addition, clean labels are not always needed

for our method. In Section 5.1, the MentorNet is learned on

a small subset of CIFAR-10 and applied to CIFAR-100

7. Conclusions

In this paper, we presented a novel method for training deep

CNNs on corrupted labels. Our work was built on curricu-

lum learning and advanced the methodology by proposing

to learn data-driven curriculum via a neural network called

MentorNet. We proposed an algorithm for jointly optimiz-

ing deep CNNs with MentorNet on large-scale data. We

conducted comprehensive experiments on datasets of con-

trolled and real-world noise. Our empirical results showed

that generalization performance of deep CNNs trained on

corrupted labels can be effectively improved by the learned

data-driven curriculum.
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