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Abstract—Lattice-based cryptography (LBC) exploiting Learn-
ing with Errors (LWE) problems is a promising candidate
for post-quantum cryptography. Number theoretic transform
(NTT) is the latency- and energy- dominant process in the
computation of LWE problems. This paper presents a compact
and efficient in-MEmory NTT accelerator, named MeNTT, which
explores optimized computation in and near a 6T SRAM ar-
ray. Specifically-designed peripherals enable fast and efficient
modular operations. Moreover, a novel mapping strategy reduces
the data flow between NTT stages into a unique pattern, which
greatly simplifies the routing among processing units (i.e., SRAM
column in this work), reducing energy and area overheads. The
accelerator achieves significant latency and energy reductions
over prior arts.

Index Terms—Post-Quantum Cryptography, PQC, Learning
with Errors, LWE, Processing-in-Memory, PIM, SRAM, NTT.

I. INTRODUCTION

Most contemporary public-key cryptographic primitives like
RSA and Elliptic Curve Cryptography (ECC) rely on the
difficulty to solve integer factorization and discrete algo-
rithms. However, with the advent of quantum computers, these
problems are expected to be solvable, such as using Shor’s
algorithm [1] in polynomial time. Therefore cryptographic
algorithms that are resistant to potential attacks using quantum
computers are being studied by researchers around the globe.
Lattice-based Cryptography (LBC) has emerged as abprime
candidate among the Post-quantum protocols.

Lattice-based protocols have come to light because of
the hardness of inherent Learning with Errors (LWE) prob-
lems [2], [3]. Module LWE and Ring LWE are two primary
variants of the LWE problem. Ring LWE secures the message
using polynomial operations between secret key and public key
along with error addition (Fig. [I). Polynomial multiplication
is performed using Number theoretic transform (NTT) [4], an
FFT like structure except that the operations performed are
modular arithmetic. In a typical Homomorphic/PQC system,
sampling and NTT are the two main operations in Ring
LWE schemes and they take a similar amount of time [5].
Recent studies have significantly improved the energy and
area efficiency of random samplers, e.g., our recent work
MePLER [6] achieved 20.6-p] per sampler energy efficiency
and 85.9-MSample/s constant throughput in custom 65-nm
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Fig. 1. The basic scheme of lattice-based cryptography.

hardware. This paper thus focuses on NTT acceleration in Ring
LWE With n being power of 2, time complexity for computing
NTT is O(nlogn). Theoretically, n/2 modulo multiplications
can be performed in parallel for each NTT. However, it
requires accessing elements in parallel, which proves to be the
bottleneck. Most of the existing NTT designs in FPGA [7] or
digital ASIC have been optimizing the dataflow to enhance the
overall performance and efficiency for a certain configuration
of butterfly units and memory banks. The hardware config-
uration underlines a fundamental trade-off between area and
efficiency. For example, [8]], [9] minimize the area overhead
by sequentially accessing and sharing a butterfly unit, while
[1O] attempt to layout and operate several butterfly units in
parallel. Both approaches could not completely address the
issue of designing a compact and parallel accelerator.

Processing-in-Memory (PIM) [[11]] is an emerging technol-
ogy for memory-constrained computation, owing to its capa-
bilities of highly parallel computing with amortized energy
for memory accesses and logic operations. PIM also enables
enhanced data locality, avoiding frequent data transfers to
and from the computing units. These additional capabilities,
while retaining the compact nature of the memory, make it a
promising technology for accelerating NTT [12].

While PIM accelerators based on beyond-CMOS memory
devices, such as ReRAM or MRAM, hold great promise for
future memory-centric computing with superb density and
non-volatility. SRAM-based PIM accelerators solely based
on mainstream CMOS technologies undoubtedly represent
a clear path towards reliable mass productions and robust
operations. SRAM PIM allows low-voltage read, write, and
logic operations for energy savings, and could always take
advantage of the latest CMOS processes. Further, the larger
footprint of SRAMs is amortized by the relatively large PIM
peripherals in practical implementations.

In this paper, we present MeNTT, an in-6T-SRAM
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Fig. 2. The overall flow of Ring-LWE and polynomial multiplication (NTT).

NTT/INTT accelerator with boosted area and energy effi-
ciency. Our key contributions include:

« We develop a novel protocol to perform bit-serial mod-

ular addition/subtraction/multiplication arithmetic in 6T
SRAM array with massive parallelism and less steps.
We propose a mapping strategy to optimize the dataflow
between NTT and INTT stages and dramatically reduce
the routing overhead for large NTT/INTT.
The MeNTT accelerator is rigorously evaluated in TSMC
65nm LP process, through a combination of transistor-
level post layout simulation for the memory and post-
layout for digital logic by Design compiler

The rest of the paper is organized as follows. Section II
provides the necessary background for Ring LWE and NTT.
Section III discusses the implementation of modular arithmetic
in 6T SRAM, the data flow between the NTT/INTT stages and
routing technique. Section IV shows the evaluation results and
comparison with prior arts. Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

This section covers mathematical background of the Ring
LWE problem and the NTT/INTT algorithm based polynomial
multiplication. It also provides a brief overview on recent PIM
research, especially those for cryptographic acceleration.

A. Ring Learning with Errors (LWE)

Let the pair of vectors (a,b) be related by the equation
b=ax*s+e, where a is a randomly sampled vector from
R,, e is a error vector sampled from a Gaussian distribution.
Here R, = Z,[x]/(z™ + 1) is a ring of polynomial where n

Algorithm 1 NTT Multiplication with Cooley-Tukey Method
Require: Given polynomial a € Ry, n-th root of unity w,, in
Zy
Ensure: Polynomial ¢ = NTT'(a) such that & € R,
1: a < PolyBitRev(a)
2: for (stage =1; stage< log, n; stage = stage+1) do
3.« 2stage

4wy —wl™

5 for (k =0; k < n; k=k+m) do

6: w4+ 1

7 for (j =0; j < m/2;j=j+1) do

8 t < w.alk + j +m/2] mod q
9: u <+ alk + j]

10: alk + j) < u+tmod q

11: alk+j7+m/2] < u—tmodq
12: W — W. Wy, mod q

13: end for

14:  end for

15: end for

16: return a

is a power of 2 [13], q is a prime number. Ring LWE [14]]
states that it is difficult to find secret vector s € R, given
the pair (a,b). Here, a*s is a polynomial multiplication, and
is performed by transforming both a and b in NTT domain
(Fig. ).

B. Number Theoretic Transform (NTT)

Let a,s are two polynomials sampled from R,, whose
coefficients are in range [0,q) where q is prime number. We
denote NTT coefficients of polynomial (a = a, 12" ! +
Un—22" "%+ ...+ ap) as dn_1,0n_2,..,ag respectively.

b= INTT((NTT(a) * NTT(s)) (1)

Polynomial multiplication of b=a*s is done using eq [T} After
transforming both vectors a and s in NTT domain, NTT coeffi-
cients of b are calculated by coefficient wise multiplication of a
and s. Original coefficients are calculated back by transforming
b using Inverse NTT.

N—1
b= Z (a; * §;)x' 2)

i=0
There are two popular variants of butterfly optimizations
for the acceleration of polynomial multiplication: Cooley-
Tukey [15] and Gentleman-Sande. The former is adopted in
MeNTT and described in Algorithm [I] INTT computation is
similar to NTT except that the twiddle factors are w~" instead

of w".

C. Processing in Memory for Cryptographic Acceleration

Like many other memory-centric computation problems,
such as deep learning, NTT computing faces the “memory
walls” because of the energy and throughput bottleneck be-
tween logic and memory [[16]. To alleviate this problem, a new
computing paradigm with in- and near-memory computing
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Fig. 3. Basic bit-wise logic operations in 6T SRAM by accessing two rows
simultaneously [25].

emerged to reduce data movement, amortize memory ac-
cess energy, and energy-efficient mixed-signal logic operation
within a memory array [[L1]].

In cryptographic computing, the requirement on PIM is
different from that of machine learning applications because of
its zero tolerance to compute errors. Thus, bit-parallel and bit-
serial operations are more suitable than the lossy computing
mechanisms in current, charge, or voltage domains [17],
[L8], [19], [20]. Recent Digital in-SRAM architectures [21],
[22] have been designed to compute with full precision and
high parallelism. However, these architectures are designed to
compute MAC operations and are not suitable to output mul-
tiple modular arithmetic in parallel. Bit-serial in-SRAM logic
performed by accessing two words simultaneously (Fig.
is first utilized to modern cryptography accelerators by [23],
which performs very wide word bitwise logic and finite
field arithmetic in memory. However, it does not provide the
high parallelism expected for NTT acceleration. Performing
arithmetic in bit-serial fashion was introduced in [24], which
is promising for NTT and modular arithmetic because it
achieves full accuracy computing with massive parallelism, by
spending more clock cycles in each arithmetic operation. [12]
leveraged a similar technique with projected high-performance
and high-density ReRAM devices. It employs an unfolded
architecture with straightforward control and routing schemes,
which is possible with high-density ReRAM devices and slim
peripherals, but will lead to an unacceptably large area if
implemented on SRAM. On the other hand, recent ASIC NTT
accelerator [10] has tried computing multiple butterfly opera-
tions in parallel and moving buffers closer to the computing
units. However,the extensive use of registers for local buffering
comes with a high area overhead. Thus, achieving the desired
in-memory computing performance and efficiency gains with
compact physical footprint and cost is the primary goal of this
work.

III. DATA STORAGE AND ARITHMETIC FLOW IN MENTT

MeNTT performs complete polynomial multiplication com-

putation in NTT and INTT with all the modular arithmetic
steps in and near a 6T SRAM array, as shown in Fig. {4 The
SRAM array functions both as data storage and a computing
unit. Inter-column router route data at the end of one stage into
corresponding columns for the computation of the next stage.
SRAM peripheral and controller are specifically designed for
in- and near-memory modular arithmetic. During each stage in
the radix-2 NTT, each column works like a butterfly unit, thus
enabling massively paralleled computing to support a large
number of points. The operands and intermediate results are
all stored in the same array with an allocation strategy shown
in Fig. [5] As a result, the width n of the array represents
the maximum number of points of NTT, while the number
of rows is related to the supported bit width, as shown in
Fig. 5| The modular addition, subtraction, and multiplication
are performed in a bit-serial manner, similar to the generic
bit-serial logic achieved in [24], but with significantly reduced
steps and energy-optimized for modular arithmetic. The high
parallelism enabled by the bit-serial approach improves the
overall performance and energy efficiency of NTT operations
with a large number of points. In our implementation, a single
SRAM bank with 162 by 1024 cells is designed to support
1024-point and 32-bit NTT operations. The physical layout of
the wide SRAM array can be folded as shown in Fig. 4| in
order to reduce word line and inter-column routing length, and
maintain a proper aspect ratio. 6T SRAM is desired because
of its maturity and high density.

Modular arithmetic differs from regular arithmetic as it pays
more attention to overflow and underflow issues. Most previ-
ous works take the strategy to calculate the result in an integer
field, then reduce it to the desired finite field. Barrett reduction
and Montgomery reduction (Algorithm 2] Algorithm [3) are
the two most common approaches to reduce numbers into a
finite field. MeNTT proposes a reduce-on-the-fly technique for
modular addition, subtraction, and multiplication.

A. Near-Memory Bit-serial Comparator and Reduction

We execute addition or accumulation from LSB to MSB in
our bit-serial arithmetic operation. In order to keep the final
result within field range, our reduction scheme utilizes the
bit-serial comparator (Fig. [6) to keep track of the overflow
condition of the result from the last operation. The comparison
between temporary result and field limit ‘q’ starts from LSB
to MSB cycle by cycle as bit-serial addition, subtraction or
multiplication takes place. Reduction is applied based on the
comparison result (Fig. ) by applying a subtraction logic
together with the adder. Only when reduction is required,
the subtraction of q is enabled. For addition and subtraction,
a ‘raw’ result is calculated initially to evaluate an overflow.
Then a ’real’ step is done to calculate the actual result with
reduction. For multiplication, the partial sum is compared with
g, while reduction is applied in the next round of accumulation
with proper scaling.

B. In-Memory Modular Addition/Subtraction

The proposed modular addition and subtraction consist of a
regular round of addition/subtraction with overflow/underflow
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Fig. 6. Bit-serial comparator operation in column peripheral.

detection called ”Trial Add and Compare Phase”, and a round
of modular reduction called ”Modular Addition Phase”, as
depicted in (Fig. [7). The WL driver activates corresponding
bits of two operands A and B sequentially. The value on BL
will be A AND B, while the value on BLB will be A NOR
B. These values are read using traditional sense-amplifier and
given as inputs to near-memory. The peripheral maintains one
bit Carry for the addition, and acts like a full adder which
adds A and B up sequentially and writes back to the array. In
“Trial Add and Compare Phase”, in the meantime of addition,
the peripheral reads one bit of q, and makes a comparison
sequentially. An overflow bit is set if the sum of A and B is

Algorithm 2 Barrett Modular Multiplication

Require: : z,y € Z,, ¢,m and k such that m = L2k/qJ
Ensure: z = (x.y) mod q

I z+x-y

2t (z-m)> k

3z 2—(t-q)
if (z > q) then

24 2z—q

end if
return z

£

AN

larger than q. In that case, column will calculate A+B-q during
”Modular Addition Phase”. Otherwise, column only calculates
A+B to avoid timing side-channel leakage

Modular subtraction is done similar to modular addition
by transforming one of the input B into it’s 2’s complement
first. This can be done by setting the initial carry to 1 and
using the value from BLB as input. During trial add and
compare” phase after 2’s complement, an underflow bit is
recorded. Based on the underflow bit value, addition of q
is done during second-round subtraction to keep the result
value correct. Addition requires 2*(N+1) cycles while the
subtraction requires an extra N+1 cycles for 2’s complement
calculation.

C. In-Memory Bit-Serial Modular Multiplication

Modular multiplication is the most time-consuming part of
the NTT. Traditionally, modular multiplication is performed by
computing the raw product first, then going through a Barrett
or Montgomery reduction(Fig.[9). In previous PIM works [24],
this involves three normal multiplications and also takes extra
redundant cycles as well as space. Although in some special
cases [12] this reduction can be simplified, there is no general
optimization for the modular multiplication using traditional
reduction approaches.

This work proposes a fast bit-serial multiplication scheme
to complete a modular multiplication in (N+1)* cycles (Fig.
[B). The overall algorithm is described in Algorithm 5. The
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Fig. 7. Illustration of in-memory two-bit modular addition.

Algorithm 3 Montgomery Modular Multiplication

Algorithm 4 Modular Addition

q,v and k such that r >

“lmod n)—1
n

Require: : z,y € Z,,
g, ged(r,q) =1, k="

Ensure: : c =z -y mod q
I:a=a-r mod q
2b=b-7rmodq
Zx=a-b
4 s=x-kmodr
S5t=x+s-q
6: u:%

7: if (u > q) then
8: c=u—gq
9: else

10: c=1u
11: end if
12: ¢ = (¢-r~tmod n)
13: return c

multiplication is decomposed into shift and add operations.
There is a Tag bit which is similar to the approach of [24].
The shift is done by choosing a different address for rows in
each round. The addition is controlled by the Tag bit from
operand B and computed in the peripheral with carry and
borrow. We take advantage of the bit-serial computation flow
and compare every partial sum with q and 2*q. A reduction
will be performed in the next cycle to make sure the partial
sum is contained in the correct range. The reduction is enabled
by the subtraction and borrow circuits, and controlled by the
two overflow bits. In this way, the modular multiplication can
be completed in parallel with the shift-and-add itself with very
little space and time overhead. In order for the algorithm to be

Require: z,y € Z,
Ensure: z =z + y mod q
1: Trial Add and Compare Phase:
STty
cmp — 8 > q
: Modular Addition Phase:
. if (emp = 1) then
2T +Y—gq
else
ZT+Y
. end if
: return z

—_
=

valid, operand A has to be smaller than q/2. Therefore we use
2*q instead of q as the field constant. Then MeNTT reduce the
partial sum below q with an extra cycle. A switch is controlled
by the Tag to separate the operand A from influencing the BL
readout result. It decides whether the partial sum is added by
an operand or kept the same. The reduction with q or 2q is
done in peripheral with simple digital logic shown in Fig. [6

D. NTT and INTT Dataflow

Fig. 2] shows the CT radix-2 style NTT for the acceleration
of polynomial multiplication in a ring. Each stage of NTT con-
tains groups of butterfly operation which can be decomposed
to a multiplication, an addition and a subtraction. Each stage
has own grouping of points depending on the index.

1) Intra-stage flow: In a single stage, the data arrangement
is shown in Fig. [5] The N-bit operands A and B are stored
sequentially in same column followed by the twiddle factor
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Algorithm 5 Modular Multiplication
Require: z,y € Z,, where y,, represents k-th bit of N-bit y
Ensure: z = (x.y) mod q
1: psum = 0, over flow_4q = 0, over flow_2q = 0
2for(k=N-1,k>0,k=k—1)do
33 for(j=0;j<N;j5=75+1)do

4 if (over flow_4q = 1) then

5 psumj < (psumj < 1)+ (z; * yp) — ¢j—2 +
carry — borrow

: else if (over flow_2q = 1) then

7: psum; < (psum; < 1) + (z; * yg) — qj—1 +

carry — borrow
else

psumj < (psum; < 1)+ (x; * y) + carry —
borrow

10 end if

11 write; = LSB(psum,;)

12: carry = (psum; > 1)?71:0

13: borrow = (psum; < 0)?1:0

14: cmpag = (psum; == qj_;)7cmpaq : psum;

15: cmpag = (psum; == qj_2)7cmpaq : psum;

16:  end for

17:  if (cmpsq == 1) then

18: over flow_4q + 1

19: else

20: over flow_4q < 0

21:  end if

22:  if (empyg == 1) then

23: over flow_2q + 1

24:  else

25: over flow_2q + 0

26:  end if

27: end for

28: if (psum > q) then

29:  psum < psum — q

30: end if

31: z < psum

32: return z

W. The results of addition, subtraction and multiplication
are computed and stored in the scratchpad area. Therefore
the temporary results for an NTT stage can be computed in
sequential order and updated into the operand area for follow-
up computations. All the operations addition, subtraction,
copying, inverting and multiplication required for a stage can
be completed inside a single column in a bit-serial manner. As
the algorithm for modular multiplication requires extra bits for
each column, the size of scratchpad is set to 2*N+2. This space
can be fully utilized to store the final outputs of a stage i..e,
A+W*B and A-W*B.

2) Inter-stage data movement: Once the computation of
a single stage is done, the data needs to be read out and
written into the operands area for next stage. Traditional in-
place NTT has complicated data routing, varying from stage
to stage. This makes the data movement different in different
stages of NTT and INTT. A configurable crossbar routing is
required to enable various address matching, adding to the

First Shift-and-Add Cycle
he! Columnii[_] Column
g At
o . 5
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% E P+
8 - -
o Carry [0 [0 Carry [0] o Carry [0 ]
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_g' CMP1 [l m _ |cwpt m m cvP1 ]
E |CMP2 [ @ 2'qb11 CMP2 [O] m CMP2 [@ @
2@ ) K] 27q- qi K| Q@ o
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overflow
Columni  A=2, Psum=1,Tag(By=1 Psum' =A+Psum=3>=q overflow
Columnj A=1, Psum=0,Tag(B)=1 Psum =A+Psum=1<q
Second Shift-and-Add Cycle
g At
3 Ao
5 Shift-
SEy iy u- ey
@ P—O [ @ @ M
Cary [0 [0] Cary [@ [@ Cary @ [@
Write [0] K] Write [0] K] Write [0 o
CMP1 [0] m CMP1 [0 ] CMP1 [0] m
A§) CMP2 [ m CvMP2 [ Kl CMP2 [@ [0]
_g'. Overflow1[d] )] Overflow!d]  [@ Overflowi[l] [0
£ |Sub2q [0 0] Sub2q M [@ Suwb2q M@ [@
T vefow2@ @ Overflow2[@ [0 Overfow2[@ [0
2 |Subd4q @ [@ - Sub_4q [@ [@ Sub 4q [@ [@
Borrow @] O | op1¢ | Borow @  [@ Borrow [0 [0
o @ 2q= Q M Q [0
@q @ 3b110| (2qp [ @qp [
@) o @aqp  [@ @qp M
Columni  A=2, Psum=6,Tag(By)=1 Psum'=A+Psum-2*'q=2<q
Columnj A=1, Psum=2,Tag(By=1 Psum'=A+Psum=3>=q overflow
Fig. 8. Illustration of in-memory 2-bit modular multiplication (q is 2’b10,

Tag is 1 for two cycles).

Complexity

Meth Multiplication Cycles
Barrett 3 ~5N2
Montegomery 3 ~6N2
Proposed 1 ~N2

Fig. 9. Comparison of conventional modular multipliers and the proposed
one in MeNTT.

area and energy overheads. In MeNTT we take advantage
of unconventional data arrangement in SRAM for routing.
Instead of reading column-wise, we read in traditional row-
wise fashion i.e, one bit of each output. We switch these
output bits and write back to different addresses. We propose
a mapping strategy that makes this data movement between
stages constant. Fig. [I0] shows a complete data movement
flow in a polynomial multiplication including a stage to stage
routing in NTT, point-wise multiplication and INTT. The data
is stored in a specific column with address. The physical
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ADDR = {INDEX[0:0], INDEX[2:1]} = {010} = 2 (Column 1 data A)

Fig. 10. MeNTT dataflow (for computing b = INTT(NTT(A)-NTT(S)) = a*b) with a novel mapping strategy.

address is a function of the current stage (s) and its original
index, as described below:

addr = {index[logan — s — 1 : 0], index[msb : logan — s]}
3)

For example, data S[4] in Fig. [I0] has index ‘100’. In stage
1 of NTT, the actual address is {‘0’,°10’} according to the
mapping, which leads to address of 2, translating to Column-1,
data A. The key observation for this approach is that the actual
physical output-input address mappings are the same for each
stage. In the example of 8-point NTT, the output of address 4
(Column 2 data A) always goes to the input address 1 (Column
0 data B) in every stage. Therefore the crossbar connections
can be reduced to simple switches. This schedule make
it possible to construct a single-bank processing-in-memory
block to compute the NTT process iteratively. MeNTT takes
4*N cycles for routing between stages, where N is bit width
of the operand. In conventional digital architectures which
use traditional SRAM and read row-wise, these cycles depend
linearly on higher valued polynomial order.

INTT follows a similar mapping strategy and shares the
same physical routing. The point-wise multiplication between
NTT and INTT can be completed in place with precomputed
NTT result of another polynomial. In such a scheme, the whole
polynomial multiplication operation is performed in a single
SRAM bank with bit-wise modular arithmetic and constant
stage to stage routing. The MeNTT therefore utilizes memory
reuse for optimal area efficiency and memory bandwidth,
making it suitable for resource-constraint applications.

IV. EVALUATION AND DISCUSSION

We evaluated MeNTT in TSMC 65nm LP CMOS. We
implemented the digital circuits design using verilog followed
by synthesis, auto-place and route (APR) by Synopsys Design
Compiler. We evaluated the design using post-layout SPICE
simulation of SRAM and digital circuits to estimate the overall
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Fig. 11. MeNTT energy and clock cycles for different number of points at
N=14b.

system accurately. Different configurations of bit width and
polynomial order are evaluated to compare our work with
prior arts for different protocols. Evaluation results are shown
in Fig. [T1] Fig. [12] and Fig. [[3}] MeNTT is configurable for
different bit width and polynomial order. Column-wise power-
gating makes it possible to accommodate NTT of smaller
polynomial order with energy saving. The read/write address
and peripheral instructions are sent from the control block.
Thanks to the routing schedule, the 6-T SRAM for PIM can
process arbitrary polynomial order within the size constraint.
Good scalability is maintained as SRAM can be extended
to more columns in MeNTT. Table [] compares MeNTT
with software, FPGA, ASIC, and previous PIM designs for
NTT computation. For FPGA works, the energy and area
are normalized to 65nm technology based on the gate count
reported in the original paper combined with our SRAM area
and energy model in 65nm node. For ASIC works, the area and
energy are normalized to 65nm technology by scaling from
the original technology node. For software works, the energy
consumption is evaluated by the corresponding processor’s
reported latency, frequency, and power.
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Fig. 12. MeNTT energy and clock cycles for different bit widths at a
polynomial order of 1024.

A. Comparisons with software solutions

As discussed in previous sections, traditional software im-
plementation has an obvious bottleneck for Ring-LWE com-
putations with the increase of polynomial order and coeffi-
cient’s bit width. The energy cost and latency are higher than
hardware approaches by several orders. Under current Von-
Neumann architecture, the highly parallel butterfly operations
in NTT can only be executed in a serially. While modular
arithmetic usually takes only one or few cycles each, the
data transfer between memory and processor involves, cache
and main memory read/write, which can cost 10s of cycles,
making the whole process extremely expensive. From Table I}
one can observe the significant energy and latency overhead
in X86 based software approach. Despite the fact that a
CPU can run at a higher speed than custom hardware, it is
not the perfect solution for low-power and high-performance
security applications. Also, software solutions are not well
guarded against side-channel attacks. Since all operations are
executed in ALU in serial, it is relatively easy for an attacker
to retrieve power and timing information leaks for a side-
channel attack. Due to the low efficiency of memory access in
software approaches, hardware acceleration is widely desired
and adopted for FFT and NTT applications.

B. Comparison with FPGA solutions

FPGA-based hardware approaches exhibit improved perfor-
mance, thanks to the customized architecture and datapath to
elevate parallelism and efficiency for NTT computation. To
support the modular arithmetic in NTT flow, DSP blocks [[7] or
custom multipliers are required to provide sufficient computing
capability. Optimized datapaths are designed to accommodate
the stage by stage NTT and INTT in a pipelined [26] approach
which achieved higher throughput with a considerable area
overhead. As shown in Table [, FPGA solutions outperform
the software approach in throughput and latency, but their
energy and area costs are significantly higher than custom
hardware. Therefore FPGA is more generally more suitable
for prototyping and deployment in the cloud.

C. Comparison with ASIC solutions
The disadvantages of software and FPGA approaches in-

spired exploration in custom hardware solutions. ASIC im-
plementations make use of standard SRAM or registers and

Control and Route(2.5%) Control and Route(5.4%)

30%

Near Memory Near Memory

Logic Logic

(a) area (b) energy

Fig. 13. MeNTT area and energy values breakdown for different modules at
n=1024,N=32b.

compute modular arithmetic in digital circuits [8]. Although
ASICs usually perform better than FPGAs in terms of speed,
energy, and area, they come with much higher costs. An-
other major drawback for this approach is the amortized BL
energy spent on reading data from SRAM. The processing
speed is also limited by traditional memory bandwidth. While
embedding registers for local storage in each computing unit
increases throughput by increasing parallelism as in [[10],
the area overhead and limited scaling potential are the main
drawbacks.

In terms of scalability to larger bit width and q, MeNTT ex-
ecutes modular arithmetic in bit-serial and word-parallel order
while traditional software, FPGA, and ASIC approaches carry
out butterfly unit operations word by word. Thus, MeNTT will
achieve even higher throughput and energy efficiency than the
other solutions, when the polynomial order gets higher.

ASIC solutions require higher design and fabrication cost,
and need extra overhead to handle different schemes with
different polynomial order, q and bit width. MeNTT pro-
vides higher degree of configurability by providing general
modular arithmetic in a highly parallel computing approach.
The computation and data movement can be reprogrammed
with minimal effort by changing WL accessing sequence
and peripheral configurations. The SRAM rows and columns
can be gated in different cryptography schemes for higher
throughput and energy savings. MeNTT also provides higher
normalized energy and area efficiency, as shown in Table [I]
mainly benefiting from in- and near-memory computation.

D. Comparisons with existing PIM solutions

Compared to previous PIM studies that focus on leveraging
parallel word-serial or bit-serial operation for general-purpose
arithmetic in SRAM and ReRAM [12]], [24]], optimized
modular arithmetic and dataflow help MeNTT outperforms
prior PIM works in energy and area efficiency as well as
latency. MeNTT masks the inherent modular reduction cycles
in the modular multiplication operation itself, whereas other
designs use Barret or Montgomery reduction techniques which
cause an extra area and latency overheads.

While [12] achieved higher throughput by introducing mul-
tiple pipelines to break the data path into shorter pieces, our
approach focuses on designing ultra-compact single SRAM
bank implementation, which is more applicable to resource-
constrained applications. Note that the reported latency for
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TABLE I
COMPARISON TABLE WITH STATE-OF-THE-ART NTT ACCELERATORS.
CICC 2018 DAC 2020 ICASSP 2020 DAC 2020
This Work ISSCC 2019 [8]
[10] [12] [26] [12]
. . . Parallel Bit-serial
Method Bit-serial 6T SRAM Serial Butterfly Butterfly RRAM FPGA Software
Technology 65nm 40nm 40nm RRAM (45nm) Virtex-6 (40nm) X86 (gem5)
Frequency (MHz) 151 72 300 909 184 2000
Bitwidth 14 14 14 16 13 13 14 13 14 16 16 16 16 16 16 16 16 16
Polynomial Order 256 | 512 1024 | 1024 | 256 | 512 | 1024 | 256 | 512 | 256 | 512 | 1024 | 256 | 512 | 1024 | 256 | 512 | 1024
S ted Bitwidth and
D n <32K,N <32 n<IK,N<24 |n<2K,N<32| n<32K,N<32 n<IK,N<I6 ;
Polynomial orders
Latency (us) 23 26 29 | 343|179 392|855 (0533 1.6 | 687|759 | 83 216|476 102 | 85 | 169 | 349
Throughput
42k | 38k | 35k | 29k | 56k | 25k | 12k [ 1.8M | 609k | 553k | 553k | 553k | 46k | 21k | 10k | 12k | 5.9k | 2.9k
(NTT/sec)
Energy (nJ/NTT) 144 | 324 | 720 | 868 | 166 | 411 | 894 | 31 96 | 2580 | 5020 [10040| 2150 | 5280 |12520| 570k | 1179k 2483k
Normalized Energy mJ/NTT)* | 144 | 324 | 720 | 868 | 780 | 1932|4202 | 146 | 451 | 2580 | 5020 (10040 2150 | 5280 |12520| - - -
Area (mm?) 0.36 0.28 14 - - -
Normalized Area (mm?2)? 0.36 0.74 3.7 - - -

a. Normalized to 65nm LP Process (nominal VDD at 1.2V), assuming ideal scaling of transistor capacitance and area
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Fig. 14. Comparison of latency and energy values for MeNTT vs Cryptopim
for different polynomial orders at 32 bit width.

[12] is for specially selected q with very small hamming
weight. The latency varies a lot with different choices of
schemes and q. Other generic choices of q will incur high
latency overhead. Last but not least, while the MeNTT
design is implemented and evaluated with CMOS devices
and SRAMs, the proposed modular arithmetic protocol and
dataflow techniques are generic to any bit-serial PIM fabrics
and can be easily adopted in PIM with emerging memories.

V. CONCLUSION

In conclusion, this paper presents MeNTT, a novel PIM
architecture for NTT acceleration. With the proposed bit-serial
modular arithmetic protocol and mapping strategy, it achieves
superior efficiency and throughput with a compact footprint.
A fully functional mixed-signal implementation of the system

verifies its feasibility in physical design, and provides realistic
estimation of its performance for comparison.
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