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meQTLmapping in the GENOA study reveals
genetic determinants of DNA methylation in
African Americans

Lulu Shang 1, Wei Zhao 2, Yi Zhe Wang 2, Zheng Li 1, Jerome J. Choi3,
Minjung Kho2, Thomas H. Mosley4, Sharon L. R. Kardia2, Jennifer A. Smith 2 &
Xiang Zhou 1

Identifying genetic variants that are associated with variation in DNA methy-
lation, an analysis commonly referred to asmethylation quantitative trait locus
(meQTL) mapping, is an important first step towards understanding the
genetic architecture underlying epigenetic variation. Most existing meQTL
mapping studies have focused on individuals of European ancestry and are
underrepresented in other populations, with a particular absence of large
studies in populations with African ancestry.We fill this critical knowledge gap
by performing a large-scale cis-meQTL mapping study in 961 African Amer-
icans from the Genetic Epidemiology Network of Arteriopathy (GENOA) study.
We identify a total of 4,565,687 cis-actingmeQTLs in 320,965meCpGs.Wefind
that 45% of meCpGs harbor multiple independent meQTLs, suggesting
potential polygenic genetic architecture underlying methylation variation. A
large percentage of the cis-meQTLs also colocalize with cis-expression QTLs
(eQTLs) in the same population. Importantly, the identified cis-meQTLs
explain a substantial proportion (median = 24.6%) of methylation variation. In
addition, the cis-meQTL associatedCpG sitesmediate a substantial proportion
(median = 24.9%) of SNP effects underlying gene expression. Overall, our
results represent an important step toward revealing the co-regulation of
methylation and gene expression, facilitating the functional interpretation of
epigenetic and gene regulation underlying common diseases in African
Americans.

Genome-wide association studies (GWAS) have identified thousands of
genetic variants that are associated with various diseases and disease-
related complex traits. However, the majority of these disease-
associated variants reside in noncoding regions and have unknown
functions1–4. Although variants in noncoding regions cannot directly
influence the function of a gene by disrupting protein-coding

sequence4–6, they can influence gene expression through epigenetic
regulatory mechanisms or induce epigenetic changes through the
regulation of gene expression7–9. One important epigenetic change is
DNA methylation, which influences gene expression by altering tran-
scription factor binding capability, inducing conformational changes
in the chromatin via histone modifications, and regulating microRNA
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expression10,11. Therefore, identifying genetic variants that are asso-
ciated with variation in DNA methylation through methylation quan-
titative trait locus (meQTL) mapping becomes an important first step
towards understanding the epigeneticmechanisms underlying disease
associations and towards investigating the genetic architecture
underlying interindividual differences in the epigenome. In recent
years, meQTL mapping studies have successfully identified many cis-
acting genetic variants that are associated with DNA methylation
levels9,12–14. Many of these identifiedmeQTLs are colocalizedwith other
molecular QTLs such as eQTLs that influence gene expression, sup-
porting the regulatory functions of meQTLs12,15–18. Importantly, some
meQTLs are also associated with behavioral and disease-related com-
plex traits such as smoking, aging, body mass index, and type 2
diabetes19, highlighting the importance of meQTL for understanding
the genetic and epigenetic mechanisms underlying diseases20.

Most existing meQTL mapping studies have thus far focused on
individuals of European ancestry and are noticeably underrepresented
in other populations, with a particular absence of large studies in
populations with African ancestry. However, the meQTLs observed in
one population are not necessarily meQTLs in another population due
to differences in allele frequencies and linkage disequilibriumpatterns
as well as differences in the genetic architecture underlying methyla-
tion variation across ancestries. In addition, of the few existingmeQTL
mapping studies performed in African ancestry participants, most had
small sample sizes and reported weak associations. For example, one
meQTL mapping study examined lymphoblastoid cell lines from 77
HapMap Yoruba samples18. Another study collected 90 peripheral
blood samples and 87 umbilical cord blood samples from African
American participants21. A handful of studies have also evaluated
whether meQTLs identified in European ancestry populations
are replicated in African Americans. For example, results of a replica-
tion meQTL mapping study in the Framingham Heart Study (FHS)20

were investigated in 384 African Americans from the Grady Trauma
Project (GTP)22,23. Sample sizes of African ancestry populations in these
studies remain relatively small as compared to other populations. For
example, the Genetics of DNA Methylation Consortium (GoDMC)
included 27,750 individuals from European ancestry24, and Hawe et al.
included 3799 Europeans and 3195 SouthAsians25 formeQTLmapping.
Lack of large-scale, well-powered meQTL mapping studies in popula-
tions with African ancestry can impede our understanding of the epi-
genetic mechanisms underlying DNA methylation, gene expression,
and disease etiology for these populations.

In this work, to fill this critical gap, we pair genotyped and
methylation data from 961 African Americans from the Genetic Epi-
demiology Network of Arteriopathy (GENOA) study to perform a
comprehensive cis-meQTLmapping analysis. In addition, we integrate
the meQTL mapping results with eQTL mapping results in the same
sample26 through colocalization and mediation analysis. Overall, our
results represent an important step towards revealing the shared
regulatory roles of methylation and gene expression, facilitating the
functional interrogation of epigenetic and gene regulatory mechan-
isms underlying diseases in African Americans.

Results
meQTL mapping in African Americans
We focused on methylation measurements on 771,134 CpG sites from
961 African American (AA) samples in the GENOA study (Supplemen-
taryFig. 1). Themethylation level acrossCpG sites displays anexpected
bimodal distribution pattern. Specifically, 28.57% of CpG sites have a
beta value below 0.3 and are centered around a mode near 0.109,
representing hypomethylated CpG sites that are unmethylated in the
majority of samples. And 61.96% of CpG sites have a beta value above
0.7 and are centered around a mode near 0.96, representing hyper-
methylated CpG sites that are methylated in the majority of samples27.
The hypomethylated sites aremainly locatedwithin transcription start

sites and/or CpG islands (TSS1500: OR = 2.51, p-value < 2.23e−308;
TSS200: OR = 12.14, p-value < 2.23e−308; CpG islands: OR = 21.59, p-
value < 2.23e−308), while the hypermethylated sites are located in
other regions of the genome (intergenic region: OR = 1.78, p-value <
2.23e−308; gene body: OR = 3.04, p-value < 2.23e−308; CpG open sea:
OR = 6.54, p-value < 2.23e−308) (Supplementary Fig. 2). The results
suggest that the hypomethylation near the promoter and the tran-
scription start site may reflect accessible chromatin, binding of TFs,
and active transcription28.

In total, we identified 320,965meCpGs and 4,565,687 cis-meQTLs
(Supplementary Table 1), with a few most significant examples shown
in Supplementary Fig. 3. The results are largely similar when we used
different window sizes of cis-SNPs for cis-meQTL mapping analysis
(Supplementary Figs. 4–8 and Supplementary Table 2). The results are
also largely similar when we varied the number of permutations used
to construct the empirical significance cutoff (Supplementary Fig. 9).
The identified meCpG sites are enriched with hypermethylated CpG
sites (OR = 1.05, p-value < 2.23e−308) and are depleted with hypo-
methylated CpG sites (OR =0.56, p-value < 2.23e−308), where hyper-
methylated and hypomethylated CpG sites are defined as CpG sites
with a beta value above 0.7 or below 0.3, respectively29. The identified
meQTLs are strongly enriched near the associated CpG sites (Fig. 1a)
and can increase methylation at some CpGs while decreasing methy-
lation at others. Specifically, among the 4,565,687 uniquemeQTLs, the
number of CpGs associated with an meQTL ranges from 1 to 166
(median = 2, mean= 3.4). The number of CpGs positively associated
with an meQTL ranges from 0 to 118 (median = 1, mean= 1.7) while the
number of CpGs negatively associated with an meQTL ranges from 0
to 83 (median = 1, mean = 1.7). The median proportion of positively
associated CpGs for an meQTL is 0.5 (mean =0.49, Supplemen-
tary Fig. 10).

The identified meQTLs in the present study replicate a large
proportion of the meQTLs identified in previous studies of different
genetic ancestries, regardless of significance thresholds used (Sup-
plementary Table 3). Specifically, we calculated the replication rate
(π1), which effectively represents the proportion of signals detected in
the previous study that are replicated in the present study. The repli-
cation rate in GENOA ranges from0.9 to 0.93 at different cutoffs when
compared to the Hawe et al. study with European and South Asian
ancestries25. The meQTLs detected in either European or South Asian
ancestry of the Hawe et al. study but not replicated in GENOA tend to
have lower absolute effect sizes (median = 0.208 in comparison with
EU and 0.198 with SA) than those detected in both studies (median =
0.558 in comparison with EU and 0.538 with SA, Supplementary
Fig. 11). The meQTLs detected in European or South Asian but not in
GENOA also tend to have a lower allele frequency (median = 0.166 in
comparison with EU, 0.17 with SA) to those detected in both studies
(median = 0.244 in comparisonwith EU, 0.247with SA, Supplementary
Fig. 11). In addition, the replication rate of GENOA ranges from 0.9 to
0.93 at different significant p-value cutoffs when compared to the
BEST study of South Asian ancestry15. The meQTLs detected in BEST
but not in GENOA tend to have lower absolute effect sizes (median =
0.214) in GENOA than those detected in both studies (median = 0.633,
Supplementary Fig. 12). The meQTLs detected in South Asian indivi-
duals in BEST but not in GENOA tend to have a lower allele frequency
(median = 0.223) to those detected in both studies (median = 0.274,
Supplementary Fig. 12). The replication rate of GENOA ranges from
0.76 to 0.77 at different significant p-value cutoffs when compared to
the GoDMC study of European ancestry24 (Supplementary Table 3).
ThemeQTLs detected in GoDMCbut not in GENOA tend to have lower
absolute effect sizes (median =0.149) inGENOA than thosedetected in
both studies (median = 0.541, Supplementary Fig. 13). The allele fre-
quencies in European individuals for the SNPs in SNP-CpG pairs
detected in GoDMC but not in GENOA tend to have a lower allele
frequency (median = 0.171) to those detected in both studies
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(median = 0.245, Supplementary Fig. 13). Certainly, a lack of complete
replication among different studies is expected, given that statistical
power is unlikely to be fully achieved in any study and that different
studies differ in terms of genetic ancestry, methylation measurement
platform (27K21, 450K15,20, or EPIC BeadChip), cis window size (1Mb20,
500 kb15, or 50 kb21), types of tissue used (whole blood15,20, peripheral
blood21, or cord blood21), sample sizes, as well as the applied FDR
methods (permutation based15,20 or Holm correction21).

SNP heritability underlying methylation
We examined the genetic architecture underlying methylation level
variation through heritability estimation and partitioning. First, for
eachCpG site in turn, we estimated the proportion of variance (PVE) in
methylation levels that are accounted for by all SNPs, a quantity

commonly referred to as SNP heritability, using the Bayesian sparse
linear mixedmodel (BSLMM). We found that the median PVE estimate
across all CpG sites is 11.24% (mean estimate = 18.97%, sd = 18.8%). As
one might expect, meCpGs tend to have a higher PVE than non-
meCpGs (p-value < 2.23e−308): the median PVE is 24.64% across
meCpGs (mean = 30.58%, sd = 21.14%) and is 6.57% across non-meCpGs
(mean = 9.72%, sd = 9.19%) (Supplementary Fig. 14). Next, we used
BSLMM to partition the PVE of each CpG site into two parts: one that is
explained by cis-SNPs (i.e., cis-PVE) and the other that is explained by
trans-SNPs (i.e., trans-PVE). Consistent with refs. 30,31, we found that
the majority of PVE in methylation level is explained by trans-SNPs,
with only a fraction explained by cis-SNPs. Specifically, the median
proportion of PVE explained by cis-SNPs is only 1.47% (mean= 6.33%;
sd = 11.48%) across all CpG sites, with the remaining explained by trans-
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SNPs (median = 7.91%; mean = 12.64%; sd = 12.14%). As one might
expect, cis-SNPs explain a higher proportion of cis-PVE in meCpGs
(median = 7.29%) than in non-meCpGs (median =0.697%) (Fig. 1b).

Conditional analysis revealed additional cis-meQTLs
Because the primary meQTL only explains a median of 68.62% of the
cis-PVE in the meCpGs, we performed conditional analysis with
forward-backward stepwise regression to identify additional meQTLs
that are independent of the primary ones. In total, we identified a total
of 609,992 independent meQTLs through conditional analysis (Fig. 2a
and Supplementary Table 4), which include 289,027 conditional
meQTLs on top of the primary meQTLs previously identified. We
found that most meCpGs (54.97%) contain only one independent
meQTL (i.e., primary meQTL). A substantial proportion (23.21%) of
meCpGs contain two independent meQTLs, and the remaining
meCpGs contain three or more independent meQTLs (21.82%). The
conditional meQTLs reside further away from the CpG site compared
to the primary meQTLs, though they are still enriched around the CpG
site when compared with non-meQTLs (i.e., SNPs that are not sig-
nificant for any SNP-CpGpairs tested) (Fig. 2b). Thenumber ofmeQTLs
in the standard and conditional analyses are positively correlated with
each other (Pearson’s correlation coefficient = 0.347, p-value < 2.23e
−308). The number of independent meQTLs across meCpGs is also

positively correlated with the cis-PVE of each meCpGs (Pearson’s cor-
relation coefficient = 0.593, p-value < 2.23e−308; Fig. 2c). By using
conditional meQTLs in addition to primary meQTLs, a higher pro-
portion of cis-PVE (87.35%) is explained compared to that explained by
using primary meQTLs alone (Supplementary Figs. 15–17).

Functional characterization of meCpGs and meQTLs
We performed enrichment analysis to examine the functional char-
acteristics of the meCpG sites and their enrichment in specific func-
tional genomic regions. In the analysis, we found that meCpG sites are
significantly enriched in the intergenic regions (OR = 1.46, p-value <
2.23e−308). They are also significantly depleted in TSS1500 (OR =
0.97, p-value = 3.97e−7), TSS200 (OR=0.55, p-value < 2.23e−308),
5’UTR (OR =0.87, p-value = 7.58e−77), 1st exon (OR =0.57, p-value =
2.34e−154) and 3'UTR (OR =0.87, p-value = 8.41e−17) (Fig. 1e). In
addition, the meCpG sites are enriched in the open sea (OR = 1.48, p-
value < 2.23e−308), the north and south shores (OR = 1.14, p-value =
51.8e−106), different sets of enhancer regions characterized by
chromHMM (EnhG: OR = 1.21, p-value = 5.76e−103; Enh: OR = 1.89, p-
value < 2.23e−308; EnhBiv: OR = 1.17, p-value = 8.0e−111), as well as in
weakly transcribed regions (TxWk: OR = 1.09, p-value = 2.62e−71). The
meCpG sites are depleted in the CpG island (OR =0.45, p-value<2.23e
−308) (Fig. 1e), as well as in different sets of promoter regions (TssA:
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Fig. 2 | Characterization of the conditional meQTLs. a Histogram shows the
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detailed number of meQTLs listed above each bar. A large fraction of meCpGs
harbor a small number of independent meQTLs. b Density plot shows the distance
from meQTL to the corresponding meCpG. The density plot is stratified by the
number of meQTLs: meCpGs with one, two, three, four, five or more, and 10 or
more independent meQTLs. Dashed lines represent the median distance between
meQTL and meCpG in the six stratified groups. c The proportion of variance (PVE)
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range, respectively. d–g Left: Histograms of mean beta value distribution stratified
by locations relative toCpG islands (d: CpG islands; e: CpGshores; f: CpG shelves;g:
Open sea). Right: Enrichment odds ratios of CpG sites in different functional
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least 100CpGs. Error bars show95%confidence intervals. Statistics were computed
based on a sample size of n = 961 and for 728,578 CpG sites.
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OR=0.54, p-value < 2.23e−308; TssAFlnk: OR =0.92, p-value = 1.23e
−70; TxFlnk: OR =0.43, p-value < 2.23e−308; TssBiv: OR= 0.75, p-
value = 5.08e−182) and strongly transcribed regions (Tx: OR =0.75, p-
value < 2.23e−308, Fig. 1f). The over-representation and under-
representation results of the identified cis-meCpG sites in distinct
genomic regions in African Americans in the present studies are con-
sistent with the results on individuals fromAfrican ancestry32 as well as
European ancestry24,33–36 in prior studies. We performed meQTL
enrichment analysis with either Fisher’s exact test or Torus37 and found
the meQTLs are enriched for active chromatin states, such as active
transcription start site (TSS)-proximal promoter states (TssA,
TssAFlnk), and enhancer states (Enh, EnhG) (Supplementary Fig. 18).

The meCpGs with different numbers of independent meQTLs
from the conditional analysis also exhibit distinct enrichment patterns
in the shores of CpG islands (Supplementary Fig. 19). Specifically, the
meCpGswith only one independentmeQTL are depleted in the shores,
but the meCpGs with two or more independent meQTLs are enriched
in the shores. The number of independent meQTLs and the odds ratio
enrichment of the corresponding meCpGs in the shores are positively
correlated (Pearson’s correlation coefficient = 0.724, p-value = 0.018,
Fig. 2e). In addition,we found the number of independentmeQTLs and
the odds ratio of meCpGs are positively correlated in CpG islands
(Pearson’s correlation coefficient = 0.79, p-value = 0.02, Fig. 2d),
negatively correlated in open sea (Pearson’s correlation coefficient =
−0.929, p-value = 0.0001, Fig. 2g).

We carefully explored a molecular mechanism through which
genetic variants may influence methylation. If a SNP disrupts a tran-
scription factor binding site, then it has a potential to influence
methylation of a neighboring CpG site either directly or indirectly

through signaling cascades9,28,32,38. Among the 4,565,687 unique
meQTLs, 43,115 (0.944%) disrupt TF binding motifs. Among the
609,992 independent meQTLs obtained from conditional analysis,
7445 (1.22%) disrupt TF binding motifs. Consequently, we would
expectmeQTL enrichment in the set of SNPs thatdirectlydisruptmotif
binding, as is indeed observed in the present study (OR = 1.16, p-
value = 2.52e−91).

Co-localization of eQTLs, meQTLs, and GWAS variants
We explored whether a common/shared genetic variant may influence
both gene expression levels and methylation levels. To so do, we first
obtained a list of 5475 primary eQTLs previously identified in the
GENOAAAgene expression study26.We identified the associated genes
and CpG sites with each of these eQTLs to form 4854 eGene-meCpG
pairs. For each eGene-meCpGpair in turn,we estimated theprobability
that a common SNP is associated with both gene expression and
methylation through co-localization analysis with coloc39. We found
that a substantial proportion of the tested eGene-meCpG pairs (46.3%)
share a common SNP that influences both gene expression and
methylation (Supplementary Table 5), with the top examples shown in
Fig. 3. The SNP effects on methylation and expression are often in the
opposite directions (53%) in the tested eGene-meCpG pairs, and
slightly more so (55.4%) in the colocalized pairs (Fig. 4). The CpG sites
in the colocalized pairs where the common SNP displays opposite
effects on expression and methylation are enriched in promoter
regions (OR = 1.46, p-value = 9.17e−7), more so than those with the
same direction of effects (OR = 1.08, p-value = 0.35), as compared to
the CpG sites in all tested eGene-meCpG pairs used for colocalization
analysis.
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Fig. 3 | Examples of top six colocalized eGene-meCpG pairs. a–f P-values for the
colocalizing eQTL (blue) and meQTL (red) are plotted against physical position.
The genes in the tested eGene and meCpG pairs are plotted under the p-value

figures. The first row is the test gene location, and the second row are other genes
inside the given range. Associations were tested by two-sidedWald tests based on a
sample size of n = 961 for cis-meQTLs and n = 1032 for cis-eQTLs.
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Weobtained summary statistics fromGWAS conducted in African
Americans for six traits (SBP, DBP, PP, HTN, T2D, and BMI)40–42 and
performed multi-trait colocalization analysis on the tested eGene-
meCpG pairs. Multi-trait colocalization examines one GWAS trait at a
time and investigates whether the same SNP is associated with gene
expression, methylation, and the GWAS trait. A positive multi-trait
colocalization signal would suggest a potentially causal SNP associa-
tion underlying all three phenotypes as opposed to genetic con-
founding such as LD between the molecular QTLs and the GWAS
association. In the analysis, we identified fourmulti-trait colocalization
signals for four GWAS traits (1 for SBP, 1 for PP, and 2 for DBP, Sup-
plementary Tables 6–7), a number similar to previous studies of other
traits43–46. As an example,we identified a commonSNP, rs2272007, that
is associated with the methylation level of cg05589743 (coefficient =
−0.375, p-value = 5.97e−15), the expression level of ULK4 (coeffi-
cient = −0.994, p-value = 1.48e−115), and DBP (coefficient = 0.328, p-
value = 4e−12, obtained from ref. 47). rs2272007 is known to be asso-
ciated with ULK4 in lymphoblastoid cell lines and with DBP48. The CpG
site cg05589743 is also located in the 5’ UTR region of ULK4, which is
associated with DBP in African Americans49. ULK4 is a well-known
autophagy associated gene50. Excessive autophagy can eliminate cel-
lular elements and may cause cell death, and contribute to
hypertension-related heart disease51. As another example, we found
that a commonSNP, rs6717671, is associatedwith themethylation level
of the CpG site cg22495460 (coefficient = −0.329, p-value = 5.22e−8)
located in the gene body, the expression level of ADCY3 (coeffi-
cient = 0.339, p-value = 7.65e−9), and the risk of BMI (coefficient =

−0.036, p-value = 5.35e−5, obtained from ref. 41). Genetic variation in
ADCY3 is associated with BMI in African Americans41. The ADCY3 gene
encodes an enzyme that converts the ATP to cAMP, is involved in a
large number of physiologicalmetabolic processes52, and is anobesity-
risk gene reported by previous GWAS in the African Americans53.

We identified four meQTL-GWAS colocalization signals using
coloc (Supplementary Tables 6–7). One of them is also identified in the
eQTL-GWAS colocalization analysis and another one is also identified
in the GWAS-eQTL-meQTL colocalization analysis. We also identified
six meQTL-GWAS colocalization signals using Susie. Five of them are
also identified in the eQTL-GWAS colocalization analysis while none of
them is supported by multi-colocalization between GWAS-eQTL-
meQTL. We further expanded our analysis to using genome-wide
meQTLs and identified 0, 8, 1, 4, 1, and 0 colocalized GWAS-meQTL
signals for SBP, BMI, DBP, HTN, PP, and T2D, respectively. None of
these co-localized meQTLs are associated with gene expression levels.
In the ancestry matching colocalization analysis, we identified one
multi-trait colocalization with the European ancestry GWAS for BMI.
We also identified five GWAS-meQTL colocalization signals with the
European Ancestry GWAS (2 for BMI and 3 for DBP). However, the
number of identified signals was quite small, suggesting that much
larger GWAS of African ancestry are needed in the future to arrive at
any definitive conclusions (Supplementary Table 8).

Mediation analysis
We performed mediation analysis on the 2,246 colocalized eGene-
meCpGpairs to further examine the extent towhich the sharedgenetic
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Fig. 4 | Direction of QTL effects and associations between expression and
methylation for co-localized eGene-meCpG pairs. Results for 4854 eGene-
meCpG pairs tested for colocalization using a p12 value of 6.3e−04 are presented.
Results are stratified according to promoter region and non-promoter region, as
well as posterior probability for a shared eSNP in the pairs greater than 0.8, 0.9,
0.95, 0.99, and 0.999. a, bHistograms of the percentage of eGene-meCpGpairs for

which the direction of association between gene expression and DNA methylation
is positive or negative in promoter region (a) or non-promoter region (b).
c, d Histograms of the percentage of eGene-meCpG pairs showing the same or
different direction of association in promoter region (c) or non-promoter
region (d).
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variant influences one molecular trait via the other. To do so, we per-
formed two types of mediation analyses to assess evidence that (1)
DNA methylation mediates the effect of the genetic variant on gene
expression (SNP-Methylation-Expression analysis or “SME”) and/or (2)
gene expression mediates the effect of the genetic variant on DNA
methylation (SNP-Expression-Methylation analysis or “SEM”). At an
FDR of 0.05, we identified a total of 111 pairs with significant evidence
of mediation in at least one direction (Fig. 5). Among the detected
pairs, 103 of them are significant in the SME analysis, 93 are significant
in the SEM analysis (Fig. 5), and 85 are significant in both analyses
(Supplementary Fig. 20). Among the 103 significant pairs detected in
the SME analysis, 95 have a positive mediation proportion, with a
median mediation proportion estimate of 0.249 (mean = 0.296)
(Fig. 5d). Among the 93 significant pairs of SEM analysis, 89 have
positive mediation proportion, with a median mediation proportion
estimate of 0.143 (mean = 0.181) (Fig. 5c).

We identified two eGene-meCpG pairs that have an adjusted
q value < 0.05 in the SME analysis but have an adjusted q value > 0.1 in
the SEM analysis: TUBD1/cg02095219 and CHKB-CPT1B/cg00047287.
In particular, the CpG cg02095219 is located in the open sea near the
TUBD1 gene, and is significant inmediating the effect of rs111282327 on
TUBD1 (SME p-value = 0.002, adjusted q value 0.04, Fig. 6a), whose
expression is associated with copy number status in primary breast
tumors54. The CpG site cg00047287 is located in the CpG island and
TSS200 of the CPT1B gene, and is significant inmediating the effect of
rs8137478 on CHKB-CPT1B (SME p-value = 0.0015, adjusted q value
0.03, Fig. 6b), which is a potential target for age-dependent intra-
muscular lipid accumulation and insulin resistance55. In addition,
we also identified one eGene-meCpG pair that has an adjusted
q value > 0.1 in the SME analysis but has an adjusted q value < 0.05

in the SEM analysis: MB21D2/cg08100000. In particular, the CpG site
cg08100000 is located in the genebodyofMB21D2 and is significant in
mediating the effect of rs13069487 on cg08100000 (SEM p-value =
0.0093, adjusted p-value 0.024, Fig. 7). The MB21D2 gene was identi-
fied to be a differentially methylated region (DMR) for human squa-
mous cell carcinoma56, and overexpression of MB21D2 can facilitate
cell proliferation and invasion in cancer57.

Discussion
We have presented a comprehensive meQTL mapping study on
728,578 CpG sites and 8,993,056 unique cis-SNPs in 961 African
Americans. We have identified a total of 4,565,687 cis-meQTLs and
320,965 meCpG sites20,58, as well as 320,965 primary meQTLs and
614,195 independentmeQTLs in the conditional analysis, revealing the
comprehensive genetic architecture underlyingmethylation variation.
The colocalization andmediation analyses from the present study also
provide evidence supporting co-regulation of methylation and gene
expression in African Americans. Overall, our results represent an
important step toward revealing the co-regulation between DNA
methylation and gene expression, facilitating the functional integra-
tion and interpretation of epigenetic and gene regulatory changes that
influence human disease etiology in African Americans.

Comparing to the eQTL mapping study in the same cohort26, we
found that the proportion of CpG sites identified to harbor meQTLs
(44%) is higher than theproportionof genes identified toharboreQTLs
(31.08%). The number of independent meQTLs per meCpG site
(mean= 1.914;max = 19) is alsohigher than the number of independent
eQTLs per eGene (mean= 1.474; max = 9). In addition, the identified
meQTLs explain a slightly higher proportion of cis-SNP heritability
than that by eQTLs. Specifically, the primarymeQTLs explain amedian
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Fig. 5 | Mediation analyses provide evidence for shared regulatory mechan-
isms. Results for two-sided Sobel test on 2246 potentially co-localized eGene-
meCpG pairs identified using a p12 value 6.3e−04 are presented. a, bHistograms of
two-sided Sobel test p-values for SEM (a) and SME (b). c,dHistograms ofmediation
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sided Sobel tests. SME: SNP-Methylation-Expression direction; SEM: SNP-
Expression-Methylation direction.
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of 68.62% cis-heritability of methylation while the primary eQTLs
explain amedian of 64.52% cis-heritability of expression. Both primary
and conditional meQTLs explain a median of 87.35% cis-heritability of
methylation while primary and conditional eQTLs explain a median of
77.83% cis-heritability of expression. These results suggest that
methylation likely has stronger genetic determinant as compared to
gene expression. Nevertheless, we acknowledge that the identified
primarymeQTLs do not explain all cis-SNP heritability in meCpGs, and
neither do the additional conditional meQTLs identified through the
conditional analysis. In addition, the cis-SNP heritability only repre-
sents a small proportion of total SNP heritability, suggesting that a
large fraction of SNP heritability remains largely unidentified. Future
studies with larger sample sizes are necessary to fully capture the
polygenic genetic architecture underlying DNA methylation
variation20,24. While the sample sizes of the eQTL study (N = 1032) and
the meQTL study (N = 961) are similar, we acknowledge that many
other factors may influence the comparison of results and contribute
to the observed differences. First, the tissues for the samples in the
expression andmethylation data are different: the expression data are
collected from lymphoblastoid cell lines (LCLs), while the methylation
data are collected from peripheral blood leukocytes. Second, the
technologies used for the measurement are different. The expression
was measured using the Affymetrix Human Transcriptome Array 2.0,
which surveys the entire transcriptome. In contrast, the methylation
was assessed using the Illumina Infinium HumanMethylationEPIC
BeadChip, which covers only 30% of the human methylome with a
particular focus on regulatory regions59. The limited methylome cov-
erage should be taken into consideration when generalizing the
meQTL findings to the whole genome38.

Comparing to the previous meQTL studies, we found a higher
replication rate in African ancestry than other ancestries. For the
PB and CBA samples from African ancestry, the replication rate is
0.98 in GENOA. In contrast, for the European ancestry samples
from GoDMC, FHS, and Hawe et al., the replication rate in GENOA
is 0.77, 0.82, and 0.93, respectively. In the South Asian ancestry

samples from BEST and Hawe et al., the replication rate is 0.91
and 0.93, respectively. This may be in part because the PB and
CBA samples have a more similar ancestral background and LD
structure than the FHS and BEST samples when compared with
GENOA samples. Also, the FHS study has a much larger sample
size, which allowed them to detect meQTLs with small effects that
are not detectable by other studies. It also may be a direct result
of the methylation platforms used, as the meQTL studies in
African ancestry samples were conducted using the 27 K Bead-
Chip, which is comprised almost exclusively of methylation sites
in gene promoters and CpG islands60. The FHS and BEST meQTL
studies were conducted using the 450 K array that interrogates a
much broader array of CpG types across the epigenome. We also
note that we did not perform tests on all of the significant SNP-
CpG pairs obtained from other studies. This is because we
selected different cis-window sizes for the SNP-CpG pairs and
used different methylation platforms.

Multiple lines of future research are possible. First, multivariate
analysis that jointly models multiple CpG sites or multiple SNPs, such
as the recent high dimensional mediation analysis framework61–63,
could be beneficial as those methods can account for the correlations
in methylation among CpG sites and the correlations among SNPs due
to LD. Second, the methylation data in the present study are collected
from peripheral blood leukocytes, which consist of a set of closely
related cell types such as neutrophils, monocytes, eosinophils, baso-
phils, and lymphocytes. Consequently, deconvolution of the methy-
lation data in the future could enable cell-type specific meQTL
mapping analysis for the identification of cell-type specific meQTLs.
Third, extending the analysis beyond cis-meQTL mapping by con-
ducting trans-meQTL mapping could help comprehensively char-
acterize the genetic architecture underlying methylation31.
Unfortunately, due to the extremely heavy computation burden
resulted from the very large number of SNP-CpGpairs to be examined,
wewere unable to perform trans-meQTLmapping in the present study
(Supplementary Table 9). Finally, collecting methylation data from
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populations with additional ancestries can help us better understand
the diverse genetic architectures underlying methylation variation in
the different populations.

Methods
GENOA study
TheGenetic EpidemiologyNetwork of Arteriopathy (GENOA) study is a
community-based study of hypertensive sibships that was designed to
investigate the genetics of hypertension and target organdamage. The
study includes African Americans (AA) from Jackson. In the initial
phase of GENOA (Phase I: 1996–2001), all members of sibships con-
taining at least 2 individuals with essential hypertension clinically
diagnosed before age 60 were invited to participate, including both
hypertensive and normotensive siblings. The exclusion criteria for
GENOA included secondary hypertension, alcoholism or drug abuse,
pregnancy, insulin-dependent diabetes mellitus, or active malignancy.
Eighty percent of AA (N = 1482) from the initial study population
returned for the second examination (Phase II: 2001–2005). Demo-
graphic information, medical history, clinical characteristics, lifestyle
factors, and blood samples were collected in each phase. Written
informed consent was obtained from all subjects and approval was

granted by participating institutional review boards (University of
Michigan, University of Mississippi Medical Center, and Mayo Clinic).

Genotype data and quality control
AA blood samples were genotyped using either the Affymetrix
Genome-wide Human SNP Array 6.0 platform or the Illumina
Human1M-DUO BeadChip. For each platform, participants were
excluded if they had an overall SNP call rate <95% or sex mismatch
between genotype and self-report. SNPs were excluded if they had a
call rate <95%. Principal component analysis was performed to identify
and remove samples whose genotype profile appeared to be different
from all other samples (outliers). After removing outliers, there were
1599 AA samples with available genotype data. Imputation was per-
formed using the SegmentedHAPlotype Estimation & Imputation Tool
(SHAPEIT64), version v2.r and IMPUTE version 265 using the 1000
Genomes project Phase I integrated variant set release (v3) in NCBI
build 37 (hg19) coordinates (released on March 2012). Since geno-
typing was performed on multiple platforms, imputation was per-
formed separately by platform and then the imputed data were
combined. After imputation, SNPs with minor allele frequency
(MAF) ≤0.01 or imputation quality score (info score) ≤0.4 in any
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platform-based imputationwere removed, leaving 30,022,375markers
covering both SNPs and SNVs/INDELs. After removing the SNVs/
INDELs with PLINK66, we retained 28,681,763 SNPs. The GENESIS
package in R was used to infer population structure67. We used the PC-
AiR function to extract the first five genotype PCs and used GEMMA68

to estimate an individual relatedness matrix. We controlled for both
PCs and the relatedness matrix in the meQTL mapping analysis.

Methylation data and quality control
Genomic DNA was extracted from stored peripheral blood leukocytes
that was collected at Phase 1 (N = 1106) or Phase 2 (N = 304) using
AutoGen FlexStar (AutoGen, Holliston, MA). Bisulfite conversion was
performed with the EZ DNA Methylation Kit (Zymo Research, Irvine,
CA), and methylation was assessed using the Illumina Infinium
HumanMethylationEPIC BeadChip. The shinyMethyl R package was
used to generate the density plot of the raw intensity data to identify
sex mismatches or sample outliers. Samples with incomplete bisulfite
conversionwere identified and removedusing theQCinfo() function in
the ENmix R package. Sample identity was checked using the 59 SNP
probes implemented in the EPIC chip, and mismatched samples were
removed. Next, the Minfi R package was used to perform background
correction and normalization using Noob. The regression on corre-
lated probes (RCP) method was used to adjust probe-type bias. Indi-
vidual probes with detection p-value <1e−16 were considered
successfully detected. Samples and probes with detection rate <10%
were removed. Following these steps, 857,121 probes for 1100 samples
at Phase I and 294 samples at Phase II remained for analysis. Next, we
removed CpG sites on the X and Y chromosomes. We then followed15

to further remove 36,860 cross-reactive probes59 and 24,495 probes
with a SNP at the target CpG site or within a single-base extension,
resulting in a final set of 771,134 CpG sites. White blood cell counts
were estimated using Houseman method. The extracted methylation

data were then converted from β-values toM-values69 through log2
β

1�β.

Here the methylation β-values are often interpreted as the proportion
of methylation at a given site. Converting β-values to M-values better
controls for the heteroskedasticity that is present in the β-values. In
this analysis, M-values are treated as the outcome variable. We used a
linear mixed model to remove batch effects, extracted residuals from
the model, and quantile normalized the residuals across CpG sites for
the meQTL analysis.

meQTL mapping analysis
The meQTL mapping analysis was performed using individuals with
both genotype and methylation data (N = 961). For each CpG site in
turn, we followed18,21 to extract cis-SNPs that are +/−50 kb of the CpG
site. We performed a sensitivity analysis on chromosome 22 using cis-
SNPs that reside +/−50 kb, +/−500 kb,or+/−1Mbof theCpG site for cis-
meQTL mapping and heritability estimation and found similar results
across different window sizes; thus, we used +/−50kb for subsequent
analyses. In the meQTL mapping analysis, we focused on a set of
728,578 CpG sites that contain at least one cis-SNP and genotype
information for 8,993,056 imputed cis-SNPs on 961 AA individuals that
also have methylation data. The median number of cis-SNPs per ana-
lyzed CpG site is 300 (mean= 304.1; sd = 136.3), with range varying
from1 to 2298. ForeachanalyzedCpG site,we examinedone cis-SNP at
a time and applied a linearmixedmodel implemented in GEMMA68 for
meQTL mapping.

For each variant, we fitted the following linear mixed model:

y=μ+xβ+u+ e, ð1Þ

u∼MVN 0,σ2
uK

� �
, ð2Þ

e∼MVNð0, σ2
eIÞ, ð3Þ

and tested the null hypothesis H0: β=0 vs the alternative H1: β ≠0.
Above, y is the n by 1 vector of residual DNA methylation levels at a
CpG site for the n individuals, where the residual DNA methylation
levels were obtained by first correcting for age, gender, cell type
proportions of five cell types (including CD8 T cells, CD4 T cells, NK
cells, B cell, and monocyte cells), the top five genotype PCs from PC-
AiR;μ is the intercept;x is thenby 1 vector of genotypes for the genetic
variant of interest; β is the variant’s effect size; the nby 1 vector ofu is a
random effects term to control for individual relatedness and other
sources of population structure, where the n by n matrix K is the
genetic relatednessmatrix calculated fromGEMMA; the residual errors
are represented by e, an n by 1 vector, and MVN denotes the multi-
variate normal distribution. We used the command “gemma -bfile
cpgname -maf 0.01 -r2 0.9999999 -hwe 0 -n phenotype -k relatedness
-lmm 1 -o output” to fit the model in GEMMA.

Aftermixedmodel analysis, we selected the SNPwith the lowestp-
value for eachCpG site as the candidatemeQTL and used its p-value as
the CpG site-level significance measure. We permuted the sample
labels 10 times and applied the same meQTL mapping procedure to
obtain an empirical null distribution of CpG site-level p-values70–72. As a
sensitivity analysis, we also evaluated constructing the empirical sig-
nificance cutoff using 2, 5, 10, 50, 100, 200, 300, 400, and 500 per-
mutations on chromosome 22; however, since the results were similar,
we used 10 permutations for our subsequent analyses. With the
empirical null distribution, we computed the false discovery rate (FDR)
associated with each p-value threshold following refs. 70,71 and
obtained the p-value threshold that corresponded to a 5% FDR control,
which is 2.267195e−4 in thepresent study.We refer to anyCpG site that
passes the FDR threshold of 5% as anmeCpG and refer to the SNP with
the lowest p-value in each meCpG site as the primary meQTL. Fol-
lowing refs. 70,71, we also refer to any cis-SNP with a significant asso-
ciation with a meCpG site as an meQTL.

For eachmeCpG in turn, we performed conditional analysis using
forward and backward stepwise selection to identify additional con-
ditionalmeQTLs following refs. 72,73. To do so, we refer to the primary
meQTLs as E1 SNPs. In the forward stages, for each CpG in turn, we
performed association analysis conditional on the E1 SNP and identi-
fied the strongest SNP association among the remaining SNPs.We refer
to the identified SNP as an E2 SNP if its conditional p-value is below the
genome-wide significance threshold established above (2.267195e−4).
Next, we performed further association analysis conditional on both E1
and E2 SNPs to identify E3 SNPs. We repeated this process until the
smallest p-value among the remaining SNPs no longer exceeded the
genome-wide significance threshold. In the backward stages,we tested
each variant that is already included in the model while controlling for
all the other included variants for a CpG site and dropped the variant if
it was not significant.

Comparison with eQTL mapping results
We obtained eQTL mapping results on GENOA AA samples from a
previous study26. The previous eQTL mapping analysis focused on
expression measurements for 17,616 protein-coding genes and geno-
type information for 30,022,375 imputed SNPs from 1032 AA indivi-
duals. Among the 1032 AA individuals used in eQTL mapping, 800
overlapped with the 961 individuals used in the present meQTL map-
ping analysis. In the previous eQTL analysis, the gene expression data
were processed with Combat74 to remove batch effects or other
technical covariates. The cis-SNPs within 100 kb of each gene were
extracted and the linearmixedmodels implemented inGEMMA68 were
used for eQTL mapping. The eQTL mapping adjusted for age, gender,
the top five genetic principal components (PCs), as well as a genetic
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relatedness matrix to control for familial relationships. We identified
5475 primary eQTLs and used them in the colocalization analysis
described in the following section.

Comparison of cis-meQTL results with previous studies
We compared our cis-meQTL mapping results to six previous cis-
meQTLmapping studies that include the Genetics of DNAMethylation
Consortium (GoDMC)24, Hawe et al.25, Framingham Heart Study
(FHS)20, a study on adult peripheral blood (PB) samples, and umbilical
cord blood at birth (CBA) samples21,75,76, and the Bangladesh Vitamin E
and Selenium Trial (BEST) study15. We selected these cis-meQTL stu-
dies for comparison because they are blood-based genome-wide
meQTL studies with sample size greater than 100 from diverse
ancestries. We did not compare with the HapMap meQTL study18 due
to its small sample size and low detection power for cis-meQTLs.

The GoDMC study24 measured DNA methylation levels in whole
blood using the Illumina HumanMethylation 450K BeadChip. Cis-
meQTL mapping analysis in the GoDMC study was performed on
27,750 European participants, with 420,509 CpG sites and 10 million
SNPs. Among the 71,616,458 cis-SNP-CpGpairs separated by <1Mb, the
GoDMC study identified 169,370 significant meCpGs with p-values
below 1e−8. The GoDMC study made SNP-CpG pairs with nominal
significant p-values in at least one study publicly available. In the
comparison, wematchedCpG sites between the two studies usingCpG
site IDs and matched SNPs using base pair positions. Among the
71,616,458 SNP-CpG pairs available in European population, the SNPs
and CpG sites are separated by <50kb in 21,023,205 pairs, and
9,010,077 of them were tested in GENOA AA samples.

Haweet al.25measuredDNAmethylation levels inperipheralblood
using the Illumina HumanMethylation 450K BeadChip. Cis-meQTL
mapping analysis in Hawe et al. was performed on 3799 European and
3195 South Asian participants. Among the cis-SNP-CpGpairs separated
by <1Mb, Hawe et al. identified 41,608 significant meCpGs in Eur-
opeans and 69,495 significant meCpGs in South Asians with p-values
below 1e−14. The Hawe et al. study made SNP-CpG pairs with sig-
nificant p-values in at least one study publicly available. In the com-
parison, wematched CpG sites between the two studies using CpG site
IDs andmatched SNPs using base pair positions. Among the 11,165,559
SNP-CpG pairs available in European and South Asian population, the
SNPs and CpG sites are separated by <50kb in 2,507,048 (European)
and 4,292,518 (South Asian) pairs, 1,338,027 and 1,223,921 of them
were tested in GENOA AA samples.

The FHS study20 measured DNA methylation levels using the
Illumina Infinium Human Methylation450 BeadChip (450K) in the
whole blood buffy coat samples for 4170 European ancestry partici-
pants. The cis-meQTL mapping analysis in FHS was performed using
415,318 CpG sites and 8.5 million SNPs. SNPs and CpG sites separated
by <1Mb were tested for association. This study identified 4,447,327
uniquemeQTLs at the Bonferroni-corrected p-value threshold of 0.05,
along with 121,599 meCpGs and 27,235,697 significant SNP-CpG pairs.
The FHS study onlymade available the significant SNP-CpGpairs at the
Bonferroni-corrected p-value threshold of 0.05. We obtained the sig-
nificant SNP-CpG pairs from FHS and compared themwith ourmeQTL
mapping results. In the comparison, we matched CpG sites between
the two studies using CpG site IDs and matched SNPs using base pair
positions. Among the 27,235,697 significant SNP-CpG pairs available in
the FHS study, the SNPs and CpG sites are separated by <50kb in
10,894,656 pairs, and 4,951,955 of them were tested in GENOA AA
samples.

ThemeQTLmapping studies on PB76 andCBA samples75 (n = 177 in
total) were performed on individuals with African ancestry, with
detailed analysis in ref. 21. Briefly, the PB study contains n = 90 samples
and the CBA study contains n = 87 samples, with a common set of
222,888 SNPs and 20,093CpG sitesmeasured in both studies using the
HumanMethylation27 BeadChip (Illumina). The cis-meQTL mapping

analyses in both studies were performed on 529,224 unique SNP-CpG
pairs that were separated by <50kb. The cis-meQTL mapping analysis
detected 724 cis-meQTLs in PB and 629 cis-meQTLs in CBA with a
conservative Holm adjustment for multiple testing, with these sig-
nificant SNP-CpG pairs publicly available. We obtained the significant
SNP-CpGpairs fromboth studies and compared themwith our results.
In the comparison, we matched CpG sites between the two studies
using the CpG site IDs and matched SNPs using base pair positions.
Among the 724 significant SNP-CpG pairs available in PB, 517 of them
were tested inGENOAAA samples. Among the629 significant SNP-CpG
pairs available in CBA, 531 of them were tested in GENOA AA samples.

Finally, the BEST study15 measured DNA methylation levels in
whole blood using Illumina HumanMethylation 450K BeadChip kit
(Illumina). Cis-meQTL mapping analysis in the BEST study was per-
formed on 337 Bangladesh samples, with 423,604 CpG sites and
8,639,940 SNPs. Among the 994,862,964 SNP-CpG pairs separated by
<500 kb, the BEST study identified 77,664 significant meCpGs with
empirical p-values below the FDR threshold of 0.01. The BEST study
made all SNP-CpG pairs with p-value <0.05 publicly available. We
obtained the SNP-CpGpairs, ranked themeCpGs based on the smallest
p-value in each meCpG, extracted the top 10,507,576 significant SNP-
CpG pairs that correspond to the 77,664 significant meCpGs, and
compared them with our results. In the comparison, we matched CpG
sites between the two studies using CpG site IDs and matched SNPs
using base pair positions. Among the 94,168,979 SNP-CpG pairs
available in the BEST study, the SNPs and CpG sites are separated by
<50 kb in 17,862,650 pairs, and 8,395,396 of them were tested in
GENOA AA samples.

We compared themeQTLmapping results fromeach of the above
studies. In each comparison, we calculated the replication rate (Stor-
ey’s π1), which is defined as the expected true positive rate and was
estimated by selecting significant SNP-CpG pairs in each comparison
cohort and examining their p value distribution in GENOA77,78. There-
fore, the replication rate effectively captures the proportion of signals
in the previous study that is replicated in the present study. We were
unable to calculate π1 in the reversed way to estimate the proportion
of signals in the present study that is replicated in the previous study,
because the previous meQTL studies often analyzed a different set of
SNP-CpGpairs and reported only the significant SNP-CpGpairs but not
all the tested pairs. Specifically, the FHS (EU) study only provided
significant SNP-CpGpairswithp-value <2e−11. TheHawe et al. 2022 (EU
and SA) only provided SNP-CpG pairs significant (p < 1e−14) in at least
one population. TheGoDMC (EU) only provided SNP-CpGpairs with p-
value < 1e−5 in at least one cohort and provided association statistics
frommeta-analysis. The BEST study (SA) only provided SNP-CpG pairs
with p-value <0.05, and did not provideMAF or allele information. The
PB and CBA studies (African) only provided significant pairs with p-
value <0.05 after Holm adjustment. Consequently, when some
meQTLs identified in the present study were not replicated in the
previous studies, we often do not know whether the previous studies
did not identify these meQTLs or simply did not test these SNP-
CpG pairs.

Because previous studies used different significance thresholds,
we examined three different thresholds in the comparison: (1) the p-
value threshold used in the original study, (2) a p-value threshold of 1e
−5 for both studies, and (3) the Bonferroni corrected p-value threshold
of 0.05 for the tested SNP-CpG pairs in both studies. In each com-
parison, we also separated the meQTLs from the present study into
two sets: the ones that replicate previous study and the ones that do
not. We then compared SNP effect sizes and allele frequencies
between the two sets.

Methylation heritability estimation and partitioning
For each CpG site, we estimated the proportion of variance in
methylation level explained by all SNPs using the Bayesian sparse
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linear mixed model (BSLMM) implemented in GEMMA. Following
ref. 79, we also used BSLMM80 to partition the methylation level var-
iance into a cis-component and a trans-component. The cis-
component represents the proportion of methylation level variance
explained by cis-SNPs while a trans-component represents the pro-
portion ofmethylation level variance explained by trans-SNPs. The cis-
SNPs were defined as those SNPs that reside within 50kb of the CpG
site as described above while the trans-SNPs were defined as all
other SNPs.

Functional enrichment of meCpG sites
We examined whether the identified meCpG sites are enriched in
functional genomic regions defined based on four sets of geno-
mic annotations. The first set of genomic annotations are
obtained from the R package “IlluminaHumanMethylationEPI-
Canno.ilm10b2.hg19”. In particular, the R package annotated the
analyzed CpG sites based on their relation to CpG islands, which
are short genomic regions with high CpG density, into the fol-
lowing six regions: CpG islands, north and south shores, north
and south shelves, and open sea81. Specifically, CpG shores are
defined as the 2 kb of sequence flanking of a CpG island. CpG
shelves are defined as the 2 kb of sequence further flanking CpG
shores. While the remaining regions outside of CpG island/shore/
shelf are denoted as open sea81.

The second set of genomic annotations are obtained based on the
relative position of CpG sites with respect to genes. It includes seven
genomic annotations: TSS1500 (if theCpG site resides 200–1500bases
upstream of the transcription start site, TSS, of a gene), TSS200 (if the
CpG site resides 0–200 bases upstream of the TSS of a gene), 5′UTR (if
the CpG site resides within the 5′ untranslated region of a gene,
between its TSS and the ATG start site), 1st exon (if the CpG site resides
in the first exon of a gene), gene body (if the CpG site resides between
the ATG and the stop codon), 3′UTR (if the CpG site resides between
the stop codon and poly A tail), and intergenic regions81. Following82, if
a CpG site has multiple annotations, we select one according to the
following criteria: TSS200> TSS1500 > 5′UTR> 1st Exon > Body > 3′
UTR> Intergenic.

The third set of genomic annotations are based on the epigenetic
states inferred from ChromHMM using the functional genomic data
from Roadmap reference epigenomes83 and ENCODE84,85. Specifically,
we downloaded 111 Roadmap reference epigenomes83 and 16 addi-
tional epigenomes from ENCODE84,85 for a wide range of human cell
types and tissue types. We focused on 25 blood-related epigenomes
(E062, E034, E045, E033, E044, E043, E039, E041, E042, E040, E037,
E048, E038, E047, E029, E031, E035, E051, E050, E036, E032, E046,
E030, E116, E124) and used the ChromHMM model to define 15 epi-
genetic states: (1) active TSS (TssA), (2) flanking active TSS (TssAFlnk),
(3) transcription at gene 5′ and 3′ (TxFlnk), (4) strong transcription
(Tx), (5) weak transcription (TxWk), (6) genic enhancers (EnhG), (7)
enhancers (Enh), (8) zinc finger genes and repeats (ZNF/Rpts), (9)
hetero-chromatin (Het), (10) bivalent/poised TSS (TssBiv), (11) flanking
bivalent TSS/enhancers (BivFlnk) (12) bivalent enhancers (EnhBiv), (13)
repressed Polycomb (ReprPC), (14) weak repressed Polycomb
(ReprPCWk), and (15) quiescent/low (Quies).

The last set of genomic annotations are based on the posi-
tions of regulatory motifs. Specifically, we downloaded 3,961,042
predicted human regulatory motif sites (hg19) for 607
motifs from the motifmap86 (http://motifmap.ics.uci.edu) and
annotated 79,331 SNPs in the present study to be within the motif
binding sites.

For each of the above functional genomic ormotif annotations in
turn,weperformed Fisher’s exact test to examinewhether themeQTLs
are enriched with the annotation. In addition, we performed enrich-
ment analysis usingTorus37, whichmodels themeQTL signal landscape
and multiple annotations jointly.

Co-localization analysis
Weobtained a list of eGene-meCpGpairs for co-localization analysis to
examine whether a common causal variant may influence both gene
expression and methylation (Supplementary Fig. 1). To do so, we first
obtained 5475 primary eQTLs from GENOA AA samples based on the
eQTLmapping analysis. We also obtained 35,629meCpG sites that are
significantly associated with the 5475 primary eQTLs at the 5% FDR
threshold in the meQTL mapping analysis. Because some of the
meCpG sites are correlatedwith eachother and influencedby the same
cis-SNP87, we followed refs. 15,88 and pruned the list of meCpG sites.
Specifically, if a primary eQTL is associated withmultiplemeCpG sites,
we only retained the meCpG site whose primary meQTL had the
highest LD with the primary eQTL. We then extracted the retained
meCpG site, paired it with the eGene, with the eQTL being the link, to
obtain a total of 4854 eGene-meCpG pairs. The 4854 eGene-meCpG
pairs were used for down-stream co-localization and mediation
analyses.

We performed co-localization analysis using coloc39 on each
eGene-meCpG pair to examine the extent to which a single causal
variant affects both gene expression andmethylation. For each eGene-
meCpG pair, we obtained two sets of summary statistics in the formof
p-values to serve as inputs for coloc: one set from the eQTL analysis
representing the association evidence between SNPs and gene
expression, and the other set from the meQTL analysis representing
the association evidence between SNPs and methylation. Specifically,
for each pair of eGene-meCpG, we obtained the association results for
all SNPswithin +/−50kb of the eQTL from the eQTL analysis andwithin
+/−50 kb of the meQTL from the meQTL analysis. Colocalization ana-
lysis in coloc requires specifying prior probabilities that a SNP is
associated with gene expression (p1), methylation (p2), or both (p12).
We set p1 + p12 at 0.00084 aswe identified 5406 unique primary eQTLs
among the 6,432,684 examined cis-SNPs in the eQTL analysis. We set
p2 + p12 to be 0.03 as we identified 254,113 unique primary meQTLs
among 8,993,056 cis-SNPs in the meQTL analysis. Following the
recommendation of ref. 15, we examined six choices of p12 (4.2e−05,
8.4e−05, 2.1e−04, 4.2e−04, 6.3e−04, 7.56e−04), corresponding to the
probability that an eQTL is also an meQTL being either 5%, 10%, 25%,
50%, 75%, or 90%. Also following ref. 15, we evaluated the validity of the
sixp12 choices using internal empirical calibration89, whichassesses the
similarity between the prior and posterior expectations from the
colocalization analysis. With this criterion, we selected 6.3e−04 as the
best choice for p12 (Supplementary Fig. 21), which corresponds to a
prior probability of 75% that an eQTL is also an meQTL and a prior
probability of 2% that an meQTL is also an eQTL. With these prior
choices, we performed colocalization analysis and declared the eGene-
meCpG pair to share a colocalized SNP if the posterior probability of
sharing, PP4, is greater than 0.8 as recommended by coloc.

For each GWAS trait in turn, we performed colocalization analysis
using both the default setting of coloc and the Susie version of coloc to
estimate the posterior probability that the same variant is responsible
for GWAS-meQTL or for GWAS-eQTL. Specifically, among the eGene-
meCpG pairs used in co-localization analysis in the previous para-
graph, we extracted eQTL andmeQTL association results for SNPs that
reside within 50kb of the lead-eQTL and intersected these SNPs with
the GWAS SNPs based on SNP positions to arrive at a common set of
SNPs. Only pairs with at least one GWAS association signal that sur-
passed a relaxed significance threshold (p < 1e−5) were included in the
analysis. In addition, for the GWAS-meQTL colocalization analysis, in
addition to using only the CpGs in the eGene-meCpG pairs, we also
performed a genome-wide scanning of GWAS-meQTL colocalization
signals. To do so, we followed36 and split the GWAS summary statistics
into 2583 approximately linkage disequilibrium (LD) independent
regions90. We only included GWAS hit loci that encompassed a GWAS
significant (p < 5e−8 and p < 1e−5) signal and with at least 50 SNPs in
common between the SNPs in GWAS and SNPs tested in an meCpG.
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In addition, weperformed colocalization analysis using amatched
number of European samples from the UK Biobank (UKBB) for SBP,
DBP, and BMI, as we did not have access to HTN, PP, and the phecode
of T2D in our UKBB application. For each of the three traits in turn, we
obtained a random subsample of individuals of white British ancestry
to match the sample size of the African ancestry GWAS studies. We
then performedGWAS analysis wherewe included age, sex, and top 20
genetic PCs as covariates to obtain summary statistics. Afterwards, we
performed colocalization analysis with coloc (between GWAS and
meQTLs, and between GWAS and eQTLs) and performed multi-traits
colocalization analysis with moloc (among GWAS, meQTLs and
eQTLs), using the GWAS summary statistics from UKBB.

Multi-trait co-localization analysis
We obtained GWAS summary statistics for six complex traits that
include type 2 diabetes (T2D), body mass index (BMI), and four blood
pressure traits including pulse pressure (PP), diastolic blood pressure
(DBP), systolic blood pressure (SBP), and hypertension (HTN). All
GWAS were conducted in African ancestry samples. For T2D, we
obtained the GWAS summary statistics from the MEta-analysis of type
2 DIabetes in African Americans (MEDIA) Consortium study, which is a
meta-analysis of 17 GWASs with a total of 8284 cases and 15,543
controls40. For BMI, we obtained the GWAS summary statistics from
the African Ancestry Anthropometry Genetics Consortium (AAAGC)
with 52,895 individuals41. For the four blood pressure traits, we
obtained the GWAS summary statistics from COGENT-BP meta-ana-
lyses with a total of 31,968 individuals from 21 African ancestry
cohorts42.

For each GWAS trait in turn, we performed multi-trait colocali-
zation analysis usingmoloc91 to estimate the posterior probability that
the samevariant is shared across GWAS traits, eGenes andmeCpGs. To
do so, in addition to the eQTL andmeQTL summary statistics from the
GENOA study that were used in the coloc analysis, we included the
additional GWAS summary statistics in themoloc analysis. Specifically,
on each eGene-meCpG pair, we extracted association results for all
SNPs that reside within 100 kb of the eQTL from the eQTL andmeQTL
analyses.We intersected theseSNPswith theGWASSNPsbasedonSNP
IDs to arrive at a common set of SNPs shared between datasets. We
retained eGene-meCpG pairs with association results for at least 10
SNPs in the moloc analysis. In moloc, 15 configurations of possi-
ble variant sharing schemes were calculated across the GWAS trait,
gene expression, and methylation91. We used the posterior probability
of association (PPAs) threshold of 0.8 as evidence for multi-trait co-
localization. We followedmoloc recommendation44,91 and set the prior
probabilities to be 1e−4, 1e−6, and 1e−7 for the association of one, two,
or three traits, respectively.

Mediation analysis
We performed mediation analysis on the eGene-meCpG pairs used in
the co-localization analysis using 800 individuals who have gene
expression, methylation, and genotype data. We conducted the med-
iation analysis in two directions. The first is the SNP-Methylation-
Expression (SME) direction, where the SNP genotype is treated as the
exposure,methylation level for the CpG site is treated as themediator,
and gene expression is treated as the outcome. The second is the SNP-
Expression-Methylation (SEM) direction, where the SNP genotype is
treated as the exposure, gene expression is treated as the mediator,
and methylation is treated as the outcome. In both types of mediation
analyses, for methylation, we adjusted for gender, age, top 5 genetics
PCs, white blood cell type proportions, and batch effects using the
lmer function in R, and then took the residuals and quantile normal-
ized them. For gene expression, we used ComBat method in the sva R
package74 to remove batch effects, and adjusted for age, gender, the
top five genotype PCs, and then took the residuals and quantile nor-
malized them.We then re-estimate the exposure-outcome association

adjusting for the mediator in the following regression:

Y=μ1 +β3X+ β1M+ ϵ1, ð4Þ

whereX is the exposure,M is themediator, Y is the outcome, μ1 is the
intercept, β3 is the effect of exposure on outcome, β1 is the effect of
mediator on outcome, and ϵ1 is the residual error.

We also estimated the exposure on mediator effect through the
following regression:

M = μ2 +β2X+ ϵ2, ð5Þ

where μ2 is the intercept, β2 is the effect of exposure onmediator, and
ϵ2 is the residual error.

We then obtained the Sobel test statistics for testing the media-
tion effect in the form of

t =
β1β2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β2
1σ

2
β2
+β2

2σ
2
β1

q , ð6Þ

where σ2
β1
and σ2

β2
are the variance ofβ1 and β2. β1β2 is often referred as

the indirect effect ormediation effect.With the Sobel test statistics, we
obtained the corresponding p-values based on a standard normal
distribution. We declared significance at an FDR of 0.05.

Following92, we also calculated the mediation proportion, which
represents the proportion of the total effect of the exposure on the
outcome mediated through the mediator, in the form of:

ρ=
β1β2

β3 +β1β2
, ð7Þ

where ρ is the mediation proportion, β1β2 is the indirect effect of
exposure on outcome mediated through the mediator.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The methylation data generated in this study have been deposited in
the Gene Expression Omnibus (GEO) database under accession code
GSE210256. The genotype data are available in the Database of Geno-
types and Phenotypes (dbGaP) under accession number phs001238.
v2.p1 under restricted access due to the requirement of Institutional
Review Board (IRB), access can be obtained by written request to J.A.S.
(smjenn@umich.edu) and S.L.R.K. (skardia@umich.edu) who will aim
to respond to requests within 2 weeks. The UK Biobank data are from
UK Biobank resource under application number 30686. The human
regulatory motif sites are downloaded from http://motifmap.ics.uci.
edu86. The summary statistics from the GoDMC study24 are available at
http://mqtldb.godmc.org.uk. The summary statistics fromHaweet al.25

are available at https://zenodo.org/record/5196216#.YRZ3TfJxeUk.
The summary statistics from the FHS study20 are available at https://
ftp.ncbi.nlm.nih.gov/eqtl/original_submissions/FHS_meQTLs. The
summary statistics from the PB and CBA samples21 are available at
https://static-content.springer.com/esm/art%3A10.1186%2F1471-2164-
15-145/MediaObjects/12864_2013_5906_MOESM1_ESM.csv. The sum-
mary statistics from the BEST study15 are available at https://datadryad.
org/stash/dataset/doi:10.5061/dryad.hq68q. The summary statistics
from the GENOA eQTL mapping analysis26 are available at http://www.
xzlab.org/data.html. The gene expression data used in the GENOA
eQTL mapping analysis is available at the Gene Expression Omnibus
(GEO) database under accession codes GSE138914 for AA and
GSE49531 for EA. The summary statistics (mapped to Genome
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Assembly GRCh37) generated in the GENOA meQTLmapping analysis
are available at http://www.xzlab.org/data.html and https://doi.org/10.
5281/zenodo.769750993. The authors declare that all the other data
supporting the findings of this study are available within the article, its
Supplementary Information file or from the corresponding author
upon reasonable request.

Code availability
The code used to reproduce the analysis in this study is available at
Github repository https://github.com/shangll123/GENOA_meQTL and
at Zenodo platform (https://doi.org/10.5281/zenodo.7697509)93.
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