
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
meraculous: de novo genome assembly with short paired-end reads

Permalink
https://escholarship.org/uc/item/5pz6p3bm

Author
Chapman, Jarrod A.

Publication Date
2012-05-18

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5pz6p3bm
https://escholarship.org
http://www.cdlib.org/

meraculous: de novo genome assembly with short paired-end reads

Jarrod A. Chapman*[1], Isaac Ho[1], Sirisha Sunkara[1], Shujun Luo[2], Gary P.
Schroth[2], Daniel S. Rokhsar[1,3]

[1] US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
[2] Illumina, Inc., Hayward, CA, USA
[3] Department of Molecular and Cell Biology, University of California, Berkeley
Berkeley, CA, USA
* To whom correspondence should be addressed: jchapman@lbl.gov

Abstract

We describe a new algorithm, meraculous, for whole genome assembly of deep
paired-end short reads, and apply it to the assembly of a dataset of paired 75-bp
Illumina reads derived from the 15.4 megabase genome of the haploid yeast
Pichia stipitis. More than 95% of the genome is recovered, with no errors; half
the assembled sequence is in contigs longer than 101 kilobases and in scaffolds
longer than 269 kilobases. Incorporating fosmid ends recovers entire
chromosomes. Meraculous relies on an efficient and conservative traversal of the
subgraph of the k-mer (deBruijn) graph of oligonucleotides with unique high
quality extensions in the dataset, avoiding an explicit error correction step as
used in other short-read assemblers. A novel memory-efficient hashing scheme
is introduced. The resulting contigs are ordered and oriented using paired reads
separated by ~280 bp or ~3.2 kbp, and many gaps between contigs can be closed
using paired-end placements. Practical issues with the dataset are described,
and prospects for assembling larger genomes are discussed.

Introduction

Massively parallel sequencing methods introduced over the past few years
provide cost-effective, highly redundant sampling of genomes (reviewed in [1]).
Pyrosequencing reads are approaching conventional dideoxy capillary sequences
in their read length, providing a direct substitute for Sanger sequences [2]. While
sequencing by synthesis produces substantially shorter reads, it has lower cost
per base and higher throughput [3]. Such data has proven useful for re-
sequencing variant genomes [4,5,6], since short reads can be readily aligned to a
reference, and the error rates are low enough that variation can be detected by
consistent discrepancy of the aligned short reads versus the reference. The
usefulness of such short-read datasets for de novo genome assembly has been the
subject of increasing excitement (reviewed in [7] [8]), including recent
assemblies of mammalian genomes. [9,10,11,12]

Critical to the assembly of short (<100 bp) reads is the use of paired-end
sequencing protocols, which were first introduced in the early 1990s for use with
Sanger sequencing [13,14,15]. The importance of using a range of paired-end

linkages to organize non-repetitive contigs into scaffolds by linking over
repetitive regions was presciently emphasized by Weber and Myers [16] in the
context of human whole genome shotgun sequencing. This approach became the
dominant paradigm for genome sequencing in the last decade. Pairing also
allows the assembly of localized regions that are repetitive on the scale of the
entire genome, since reads that derive from a particular localized copy of a repeat
can often be inferred by the placement of their mate-pair reads in flanking unique
sequences. With short reads the advantages of paired-end approaches are
accentuated [17], and this strategy figures prominently in recently developed
short-read assemblers (reviewed in ref. [18]) including EULER-SR [19], Velvet
[20,21], ALLPATHS [22,23], ABySS [9] and SOAPdenovo [11]. These assemblers
all take advantage of the deBruijn graph representation of the assembly problem
[24], in which reads are decomposed into overlapping words of length k ("k-
mers"), where k is a fraction of the read length.

Here we present a new assembler, called meraculous, that relies on an efficient
and conservative traversal of a subgraph of the k-mer (deBruijn) graph of
oligonucleotides with unique high quality extensions in the dataset. Unlike other
short-read assemblers, meraculous avoids an explicit error correction step,
instead relying on base quality scores. Meraculous also incorporates a novel low-
memory hash structure to access the deBruijn graph, allowing a small memory
footprint compared with other short-read assemblers. To test meraculous we
also report here a deep Illumina dataset for a yeast genome.

Pichia stipitis CBS 6054 is a predominantly haploid yeast that efficiently
produces ethanol from xylose and other polysaccharides [25]. The P. stipitis
genome (N=8; GC=41.1%) was previously sequenced and finished using Sanger
methods [26], and has been used to assess the abilities of different next
generation sequencing methods to detect variation [6]. As a test set for
meraculous, we report a dataset of three lanes of 75 bp paired-end shotgun for P.
stipitis produced using Illumina sequencing-by-synthesis methods, with both
short-range (~280 bp) and medium-range (~3.2 kbp) pairing data. These data
provide a nominal 425-fold redundant sampling of the 15.4 million base pair
(Mbp) genome. The meraculous assembly reconstructs 95% of the Pichia
genome in long contigs and scaffolds without any errors. If we use the standard
"N50" measure, half the genome is in contigs longer than 101 kbp and scaffolds
longer than 269 kbp. Adding a modest number of fosmid ends recovered entire
chromosomes. Many stages of the meraculous algorithm are parallelized, and to
document their scalability we describe an assembly of simulated data for the
~120 Mbp Arabidopsis thaliana genome, and show that for mammalian genomes
the limiting memory structure requires less than 10 Gb of RAM.

The meraculous software, Pichia shotgun sequence and assembly is available for
download at ftp://ftp.jgi-psf.org/pub/JGI_data/meraculous/.

Materials and Methods

Pichia shotgun sequencing. We constructed short insert "fragment" paired-
end libraries, with an average insert size of ~300 bp, using “Paired-End DNA
Sample Prep Kit V1,” Catalog # PE-102-1001, from Illumina (San Diego, CA). We
also constructed longer-range "mate pair" or "jumping" libraries, with an average
insert size of ~3 kbp, using Illumina’s “Mate Pair Library Prep Kit”, Catalog #:
 PE-112-1002 (Figure 1). Both the fragment and mate pair libraries were
sequenced at read lengths of 75 bases from both ends (2 x 75) using the Illumina
Genome Analyzer II following manufacture’s recommended protocols. Genomic
DNA came from the same sample that was used in the earlier Sanger sequencing
project [26]. For the fragment library, two channels were sequenced, with 15.5
and 15.7 million clusters reporting sequence. For the jumping library, one
channel was sequenced with 12.4 clusters reporting sequence. These reads yield a
nominal 425x coverage of the P. stipitis genome.

Pichia reference sequence. The finished P. stipitis CBS 6054 genome
sequence[26] is NCBI project number NZ_AAVQ01000000, and consists of
sequences AAVQ01000001-AAVQ01000002.

E. coli shotgun sequence and reference. A publicly available paired 36 bp
Illumina dataset for E. coli K-12 MG1655 dataset was downloaded from the NCBI
short read archive, project SRX000429. The finished reference sequence for this
strain [27] is Genbank sequence gi|48994873|gb|U00096.2.

Simulated Arabidopsis dataset. A simulated 100x fragment paired-end
dataset with realistic error profiles was produced using persimmonator (Bret
Barnes, Illumina). Insert sizes were normally distributed with mean 300 bp and
standard deviation 30 bp. Dataset is available upon request.

Assembly algorithm

The algorithm is encoded in four modules encoded in Perl as described below.

Selection of k-mer set. The shotgun reads are initially processed as
follows.
1. Select an odd integer k such that (1) a substantial fraction of the sequence

targeted for assembly is unique as k-mers, and (2) most reads have
multiple overlapping error-free k-mers. A k-mer is an oligonucleotide
sequence of length k. For Pichia we use k = 41.

2. Count the number of occurrences (multiplicity) of each k-mer in the
dataset. This can be accomplished with a single pass through the read set,
and for large datasets is readily parallelized by dividing k-mers into 4m

bins based on their initial m nucleotides, counting k-mers in each bin
independently. In practice, 16-way parallelization is convenient (m=2).

3. Choose a threshold multiplicity d
min

 that separates k-mers that are likely to

contain sequence errors (multiplicity < d
min

) from those that are likely to

be error free and occur in the genome (multiplicity ≥ d
min

). Practically, this

threshold should be selected at (or below) the first minimum in the
multiplicity curve [28]. We describe below and in Supplemental Text S1
alternate methods for setting d

min
. For Pichia we use d

min
 = 10.

4. Keep only k-mers of multiplicity ≥ d
min

 (the "k-mer set" below). That is,

for the construction of U-U-contigs (see below), ignore k-mers of
multiplicity less than d

min
 as arising either from sequencing errors or low

coverage regions. (k-mers with multiplicity below d
min

can be recovered in

the assembly if they are the unique closure of a gap, see below.)

meraculous.pl implements the following algorithm, which produces a set of
maximal linear sub-paths of the deBruijn graph.

1. For each k-mer, count all single-base extensions (forward and backward)
of high quality, that is, occurrences of the k-mer in reads such that the next
or previous base has quality value greater than or equal to a threshold
(Q

min
) that occur in the shotgun reads. Based on analysis of available data,

we use Q
min

= 20, where Q is the quality value assigned to a nucleotide by

the Illumina base-calling software. Single base extensions to a base with Q
> Qmin are referred to as "high quality extensions" below.

2. Designate each end of a k-mer as X, U, or F depending on whether that
end has 0, 1, or ≥ 2 distinct high quality extensions of multiplicity at least
d
min

. k-mer ends designated "X" have no high quality extensions; this

condition occurs at persistently unsequenceable or low depth positions. k-
mer ends marked "U" have a unique high quality extension in the dataset.
k-mer ends marked "F" represent a "fork" in the deBruijn graph that
correspond to exits from a repetitive sequence into multiple alternate
sequence contexts. (Polymorphisms in diploid genomes also lead to forks;
such cases are not considered further here.)

3. Store k-mers with unique high quality extensions at both ends (i.e., those
designated U-U in the previous step) in a hash where the "key" is the k-
mer and the "value" is a two-letter code [acgt][acgt] that indicates the
unique bases that immediately precede and follow the k-mer in the read
dataset. This hash represents the "U-U graph," which is a subgraph of the
full deBruijn graph. Implementation of a novel hashing scheme is
described in more detail below.

4. Remove all linkages that are not reciprocal. That is, if the k-mer v is the
unique high quality extension of u in one direction, then u must be the
unique high quality extension of v in the opposite direction. This step
eliminates subpaths corresponding to residual errors (see Figure 2) that
evade the minimum depth condition.

5. Arbitrarily select k-mers to seed forward and reverse traversals of the U-U
graph to produce an initial set of "contigs." These U-U contigs have the

property that each k-mer is represented only once in them. The resulting
contigs are independent of the selection of seed k-mers. We retain only
contigs longer than a specifiable minimum length (which is required to
exceed 2k-1 bases); for the reported Pichia assembly, only contigs ≥100 bp
are considered.

blastMap.pl aligns reads back to the assembly to identify read-pair
information that may be used to link strings of contigs together into scaffolds.

1. All reads are aligned to the contigs produced by meraculous using BLAST
[29]. Aligners designed specifically for short reads could also be used; we
initially opted for BLAST for simplicity. Parameters for BLASTN were -b
100 -v 100 -K 100 -e 1e-10 -U -F F -W k. Notably the word size was chosen
to be k, since by construction the U-U contigs contain each U-U k-mer
exactly once.

2. Alignments were parsed using a custom Perl script (blastView3.pl,
Chapman, unpublished) that reports the highest-scoring HSP (high-
scoring segment pair) for all contigs to which a given read is aligned.
Alignments of a minimal length (a parameter value ≥ k) are retained. For
"jumping" libraries, alignment orientations are reversed to conform to
standard paired end conventions (see Figure 1B), and alignments with
less than 600 bp between the 5' end of the aligning read and a contig end
are rejected to prevent inclusion of artifactual pairs which can comprise a
significant fraction of these libraries (see Results).

3. Read vs. contig alignments are categorized as full-length, gap-projecting
(alignment ends at contig boundary), incomplete (less than 5 bp
unaligned; not at contig boundary), or truncated (at least 5 bp not aligned;
not at contig boundary) at each end and also categorized as "pointing out"
(3' end within 1.2x insert size of a contig end), "pointing in" (5' end within
1.2x insert size of a contig end), or "in the middle" (neither end within 1.2x
insert size of a contig end) of the target (contig) sequence.

4. Full length alignments in which both ends of a pair are placed within a
common contig (and appropriately oriented) are used to estimate the
insert size of the pair library.

5. Alignments that project into a gap (at either 3' or 5' end) or are "pointing
out" from a contig end are retained and categorized as anchored
completely within a contig (neither end terminates at a contig boundary),
pointing into a gap (3' end terminates at contig boundary), pointing out of
a gap (5' end terminates at contig boundary), or "splinting" a gap (i.e.,
having two alignments to different contigs, each of which terminates at a
contig boundary). Pairs and singleton reads with these properties are
reported for use by subsequent scaffolding and gap-closure steps
(discussed below).

oNo.pl uses paired reads and splinting singletons from blastMap to produce

a scaffolding by "ordering and orienting" a set of contigs (or a previous
scaffolding).

1. The number of links between contig-end pairs are tabulated and the
estimated gap size between contig ends calculated using a correction that
accounts for the fact that pairs spanning a given gap must be longer than
that gap size (see Results below).

2. Pairs of contig ends that are unambiguously linked by pairing information
are "locked" together. In cases where two possible links are found, if the
greater of the two estimated gap sizes is large enough to accomodate the
smaller gap as well as its associated contig, the smaller gap is accepted. In
order for contigs to be "locked" together they must be mutually unique
extensions of each other based on pairing (in analogy to the U-U k-mer
relationship in the contig-building step).

3. The graph of locked contig ends is traversed to produce scaffolds which
terminate when no linking information is available or the linking
information does not represent a consistent, mutually unique pairing
relation. A minimum number of links (paired or splinting) is required to
accept a contig end connection. This threshold, p

min
, is defined by

observing the distribution of the number of links per gap and may be
adjusted to produce more or less conservative scaffolding. For Pichia,
p
min

= 6 was used.

4. Gapped contig sequence and a report of the flanking k-mers ("virtual
primer pairs") and the estimated size of each gap are generated and passed
on to the next phase of the process, gap-resolution.

merauder.pl closes gaps contained within scaffolds using reads that are
projected to lie within the gap based on their mate reads.

1. For each gap in the scaffolds, reads that project into the gap by direct
alignment and unaligned reads whose mates' alignments suggest that they
fall into the gap are collected as potential gap-fillers.

2. Potential gap-filling reads are searched to identify those that contain both
gap-flanking primer sequences and produce a closure within a given
tolerance of the estimated gap size (the tolerance is based on the pair-end
separation uncertainty). Such reads are said to "splint" across a gap. Note
that some gaps from oNo scaffolds may be negative, indicating that the
flanking contigs overlap but that the overlap is either too short or
repetitive (i.e., relevant k-mers are not in the U-U set). If splinting reads
are found, then the gap is filled (or negative gap joined) if there is a unique
gap-resolving sequence found in all reads that contain both primers.
(Note that an optional more aggressive gap-resolution may be obtained by
using the most common gap-resolving sequence and eliminating the
uniqueness requirement.)

3. If "splinting" fails, merauder.pl attempts a k-mer walk starting from the
forward primer using the meraculous algorithm above ("mini-

meraculous") . The gap is closed if a unique path to the reverse primer is
found that is within tolerance of the estimated gap size. Should the gap
fail to close due to an unresolved repeat within the gap-filling read subset,
the k-mer size is iteratively increased by two until either the gap is
successfully closed or the failure is due to a lack of extension data (i.e.,
only reaching an "X" in the graph terminates the process).

4. Gap-resolved scaffolds are reported with gap closure sequences indicated
by lower-case letters, as well as a report of the success/failure of each
attempted gap resolution.

Multiple insert sizes. The oNo and merauder steps may be iterated if multiple
insert sizes exist, using paired end sets of increasing insert size.

Lightweight Hash. To reduce the memory needed to store and randomly
access the deBruijn graph, we designed and implemented a lightweight hash
scheme that uses a recursive collision strategy with multiple hash functions to
avoid explicitly storing the keys themselves. In the typical use case, there is a
fixed dictionary of keys and associated values.

First, the hash must be "primed" as follows: (we assume there are hash functions
h0...hn already defined).

0. Initialize hash depth d to 0, write all keys to file Fd.
1. For all keys in file Fd, evaluate the hash function hd and update a "primer

object" Pd to keep track of which hash values occur multiple times at hash
depth d (i.e. the keys collide under the hash function hd).

2. Write all colliding keys to file Fd+1 ; increment hash depth d.
3. Repeat steps 1,2 until the number of colliding keys is 0.

All primers P0...Pd are then sent to the lightweight hash initializer to create a
lightweight hash object. Thereafter, each key-value pair is simply added to the
hash object: the hash checks the primer information to determine at which level
of the recursion to store the value, while the key itself is discarded. At this point,
the hash is ready to be queried. Note that the client must never attempt to look
up a key that was not used in the priming step, as the hash cannot verify the
identity of the key associated within a given value after priming.

Using the lightweight hash in meraculous. In the contig generation stage,
a lightweight hash object stores all relevant k-mers and allows contigs to be
formed by walking from random "seed" starting points. Preprocessing is done to
ensure that both U-U mers and terminating k-mers connected to those k-mers
are stored in the hash. The terminating k-mers are needed because lightweight
hashes do not support queries on non-existent keys. The lightweight hash is first
"primed" by exposing it to each k-mer. Next, the k-mers are loaded, along with
their extension codes, as key-value pairs.

Implementation. The algorithm was implemented in a combination of C and

Perl and uses SWIG to wrap the lightweight hash data structure. All benchmarks
were run on 32-core AMD Opterons running at 1.8 GHz with 512 GB RAM and
the "Linux AMD64-K8-SMP" operating system. At times, where noted,
parallelized steps were also run on commodity clusters managed by Sun Grid
Engine.

Results

Algorithm overview. Our algorithm follows the broad outline first described
in detail for the Celera assembler [30] (see also the TIGR assembler [31]). First,
we assemble contigs that do not span any repeat boundaries and therefore are
either unique sequence or multi-copy sequences within recently diverged
repeats. Next, we link these contigs into scaffolds, using paired-end links to jump
over unassembled repetitive regions, leaving gaps whose size and flanking
sequences are known. Finally, we fill intra-scaffold gaps ("captured" gaps, or
"sequence-mapped" gaps) using reads whose mate pairs constrain them to lie
within the gap.

Instead of computing read-read overlaps, we use the deBruijn representation of
sequencing reads in terms of (overlapping) words of length k ("k-mers") [24].
The word size k plays a role analogous to the minimum confidently detectable
read-read overlap in alignment-based assembly [32], and is generally an
empirical parameter. Larger k provides more specificity, but fewer k-mers per
read, reducing the effective depth [20]. For each k-mer in a read, we can define
its "single-base extension" in the forward direction as the k-mer that results by
sliding the word forward by a single base. The first k-1 bp of this extension are
the same as the last k-1 bp of the original word.

For a random sequence of length G, it is sufficient to use k ~ log4 (2G) +3, but in

practice the repetitive structure of a genome can require longer k-mers. While
this repetitive structure is typically not known a priori, analysis of related known
genomes can suggest reasonable values of k. One way to assess this is to identify
runs of single-base k-mer extensions that are unambiguous in the genome. That
is, for each k-mer in a run there is only a single k-mer in the genome that
overlaps it by k-1 bp. Such unambiguously extendable runs of k-mers are related
to contigs, as discussed below, and we seek k large enough that a substantial
fraction of the genome is contained in such runs. For P. stipitis we choose k = 41
to recover ~95% of the genome in uniquely extendable k-mer runs longer than
500 bp. For more complex genomes like Drosophila melanogaster, k = 41
recovers ~86% of the genome in such regions, while for the rice genome, with its
long-terminal-repeat retrotransposons, k = 41 recovers only 59% of the genome
in such regions. These runs of overlapping unique k-mers are a useful starting
point for assembly, and can be improved using paired-end constraints as
described below.

The meraculous algorithm first constructs an initial set of high confidence contig
sequences by decomposing reads into overlapping k-mers, and identifying
maximal paths in the space of all k-mers such that (1) every k-mer in a path
occurs at least d

min
times in the dataset, (2) consecutive k-mers are each other's

unique "high-quality" single-base extension in the read set. The k-mer b is a high
quality extension of a if there are at least d

min
instances in the reads where b

follows a (that is, the last k-1 bp of a are the same as the first k-1 bp of b), and the
newly added nucleotide at the end of b has quality at least Q

min
. Extensions must

be unique to be considered in these paths; k-mers that have multiple high quality
extensions are candidates for the boundaries of repeats and are not included.

We mark each k-mer end with U if it has a unique high quality extension, F if it
has more than one (is a "fork"), and X if it has no high quality extension. We then
isolate the subgraph of the deBruijn graph for which all k-mers are designated
"U-U". By omitting forked k-mers, the tangled full deBruijn graph is simplified
into a set of linear chains, which are easily traversed. The two parameters d

min
and

Q
min

 are selected empirically, as described below. Note that we make no explicit

error correction; regions of reads containing errors are excluded from
participating in U-U paths based on k-mer depth and sequence quality.

Given a set of U-U contigs, we next map reads back to these contigs by
alignment. For simplicity we use BLAST, but other algorithms better suited to
short-reads can be substituted, as long as alignments of reads to multiple contig
locations are reported (see below). Since a k-mer that occurs in the U-U graph
occurs only once in the U-U contigs, we require at least a k-bp exact match to
seed the alignment of reads back to the U-U contigs, and allow mapped reads to
project off the ends of contigs. Using alignment to map reads relieves us of the
need to track read placements through the initial traversal of the U-U subgraph,
simplifying the implementation. Once paired-end reads are placed, uncontested
pair-linkages between contigs are used to form scaffolds.

Short gaps between successive contigs can then be filled in by applying the U-U
procedure to the small subset of reads that are inferred to lie in a gap based on
the placement of their paired end sequence. As with Sanger reads, this gap-filling
process is dramatically simplified relative to the full assembly problem, since only
a small region is assembled for each gap. Gap filling is readily parallelized, and
can be iterated using progressively longer pairs.

A novel lightweight hash for the deBruijn graph. It is common to store
and access a deBruijn graph using a hash, which is a data structure that enables
rapid lookup of a "value" associated with each "key." To efficiently store and
access the U-U deBruijn graph, we use a hash in which the "key" is a U-U k-mer,
and the "value" is the (unique) high quality nucleotide that follows the key in the
read dataset. In a conventional hash, a hash function h(key) is used to map each
key into a position within a linear array of length H. The hash function is
approximately uniformly distributed between 1 and H. Since multiple keys can

hash to the same value, the data structure and methods must allow for such
"collisions," at additional cost in speed and memory. In a typical hash
implementation, the possibility of collisions for a general and possibly changing
set of keys require that keys themselves also be stored in the array.

Since the number of distinct keys is comparable to the genome size G, the
memory that would naively be required to store the hash is ~2G*(k+1) bits, with
most of the memory cost associated with storing the key. (The factor of two
arises from allocating two bits per nucleotide.) For example, for a human
genome G ~ 3x109; for k = 75, storing this hash would require 450 Gb. Unlike
many applications of hashes, however, most of this memory is required to store
the keys; the value associated with each key is only a single nucleotide (two bits).
Working with such a hash requires either large memory systems [11] or
distributed memory parallelization schemes [9].

To dramatically reduce the memory requirement for meraculous, we developed a
novel perfect static hashing scheme that can be applied whenever the complete
set of keys is known initially and does not change during the use of the hash, as is
the case with the U-U deBruijn graph for a given shotgun dataset. In contrast,
general dynamic hashing schemes typically retain the flexibility to add new (key,
value) combinations at any time. Our hashing scheme is "perfect" in the sense
that the average lookup time does not depend on the genome size. For a genome
of size G, our hash requires only ~e*G bytes of memory, independent of the
choice of k, where e=2.71828… is base of natural logarithms. The U-U hash for a
human genome then requires only ~8 Gb, a ~60-fold memory savings relative to
a standard hash and well within the range of many desktop systems.

Our perfect hash h(u) is constructed using a preprocessing step that iteratively
identifies and progressively eliminates collisions for all U-U k-mers (Methods).
Let hi(u) be a series of independent hash functions defined on k-mers. Each hash
function hi(u) returns an integer between 1 and Hi that is assumed to be
uniformly distributed over that range. Then a perfect hash h(u) can be defined

iteratively as follows. First, compute h1(u) for all U-U k-mers, and record all

collisions. Applying the Poisson distribution, H1*exp(-G1/H1) k-mers do not
collide. For such k-mers, we assign a hash "level" of 1, and define the perfect

hash by h(u) = h1(u). The G2 = G1-H_1*exp(-G1/H1) k-mers that collide at level 1

are then hashed at the second level using an independent hash function h2(u)

with a reduced range H2. Those that do not collide are assigned h(u) = H1 +

h2(u); those that do collide are passed to the third level. This process is iterated
until there are no more collisions.

The result is a "perfect" hash h(u) that, by construction, has no collisions. Since
each of the input U-U k-mers is uniquely mapped by this function, we do not
need to store the "key" k-mer with each entry, and need only store the "value,"
which is just a single nucleotide. This results in a memory savings of order 1/k.

The total memory usage is Htot = H1 + H2 + H3 +… If for each iteration we use a

hash size Hi proportional to the number of elements Gi to be hashed, i.e., Hi =

λGi, then it is straightforward to show that the optimal λ = 1, and the total

memory usage is Htot = e*G1. In practice we do not allow Hi to drop below some

cutoff Hmin ~ 1,000, to avoid excessive iteration. Although the maximum

number of iterations (levels) needed to avoid collisions is order log(G), the
average number of iterations needed is e in the Poisson approximation.

Pichia sequencing summary, accuracy, and coverage. As a test dataset
for assembling small eukaryotic genomes, we produced 87.3 million paired 75-bp
reads for P. stipitis CBS 6054 using the Illumina GA II sequencer. Two libraries
were sequenced, a ~300 bp insert standard library (two lanes on a GAII
Instrument) and a ~3 kbp mate-pair ("jumping") library (one GAII lane), as
described in Materials and Methods. The two short-insert paired-end lanes had a
somewhat higher cluster density than the mate-pair library (15.5 and 15.7 million
clusters reporting sequence vs. 12.4 million). These reads yielded data that totals
6.55 Gbp, or nominal 425x redundant coverage of the 15.4 Mbp P. stipitis
genome.

The per-base error rate relevant to k-mer assembly can be estimated by
measuring the probability that a k-mer that starts at position i in a read (and ends
at i+k-1) is observed in the genome. For the Pichia dataset, we find that the
matching probability against the reference genome is higher for forward reads of
a pair than for reverse reads. For these three lanes, the matching probability of
the first 41-mer ranges from 80.9%-87.8% for forward reads, and 70.5%-77.4%
for reverse reads. Similarly, the matching probability for the last 41-mer
(beginning at i=35 for our 75 bp reads) ranges from 72.7%-77.1% for forward
reads and 54.2%-71.1% for reverse reads.

Overall, the matching probability for all 41-mers is 74.2%, so that ~3/4 of all 41-
mers are error-free. If we crudely assume that errors are uniformly distributed
across reads (and neglect the effect of contamination, which also reduces the
matching probability) then this corresponds to a per-base error rate of 1-

0.742
41 = 0.7%. In the absence of a reference genome as we have for Pichia, we
find that Illumina quality scores provide a useful surrogate for the accuracy of
base calls, so that the probability that a k-mer is correct is well-approximated by

[1−10
−Q j /10

j=1

i+k−1

∏], where Q j is the Phred [33] quality score at position j (data not

shown).

Counting both strands, the Pichia nuclear genome contains 29,746,832 distinct
41-mers (i.e., 41-bp words). 29,746,314 (99.998%) of these occur at least once in
the Illumina shotgun data set. The mitochondrial genome contains 60,344

distinct 41-mers and all occur at least once in the data set. (68 distinct k-mers
occur in both the nuclear and mitochondrial genome, and all occur in the
dataset).

Due to sequencing errors, the Pichia shotgun data set contains 1,211,630,294
distinct 41-mers, ~40-fold more than found in the genome. Most of the errors
are single occurrences of a k-mer in the dataset, and are due to isolated base-
calling errors. In particular, 1,042,166,572 (86%) of observed 41-mers occur only
once in the data set, of which only 96 (9.2 x 10-6%) are true genomic mers. The
size of the 41-mer set used in an assembly can therefore be dramatically reduced
with minimal impact by discarding k-mers that occur only once in the dataset,
since the vast majority of these are erroneous. The remaining ~140 million
erroneous 41-mers found in the dataset but not in the genome are recurrent
sequence errors in the same sequence context (which may or may not occur in
multiple locations in the genome).

Depth statistic. A common statistic for a sequencing project of N reads with
average read length R is the raw depth of coverage d = NR/G = total number of
nucleotides sequenced divided by genome size [32]. Assuming no errors, the
number of times that a k-mer covers a given nucleotide in the genome
is deff = d[1− (k −1) /R], since each read of length R only contains R-k+1 k-mers

(see, e.g., [20]). This reduction in effective depth is equivalent to the θ
parameter introduced by Lander and Waterman in the analysis of restriction
maps [32], with k-1 corresponding to the minimum detectable overlap between
reads in the deBruijn formulation of assembly. Since k is comparable to the read
length R for many short-read assembly applications, this factor can be
substantial. Thus while for our Pichia dataset the raw depth is d = 425x, for k =
41 the finite read length correction reduces deff to ~ 200x. A similarly large factor

arises from sequencing errors; as we have seen, ~3/4 of observed 41-mers in
Pichia are error-free. Since ~75% of the k-mers contained in the reads map
perfectly to the genome, the effective depth of true k-mers is ~150x, consistent
with the mean multiplicity of 145x (modal value 130x, see Figure 3A). (The
mitochondrial genome is at 2,900x in true 41-mer coverage.)

Paired-end separation, chimerism, and mate-pair artifacts. To assess
insert size distributions and chimerism rates independent of the assembly, we
aligned reads from one lane of short insert pairs and one jumping library lane to
the finished reference genome using BLAST (see Materials and Methods). The
single highest scoring HSP (high-scoring segment pair [29]) was retained for
each read. (In cases where multiple equally high scoring HSPs exist a best hit was
chosen at random, so the chimerism rate inferred from this result should be
considered an upper bound.) For the short insert lane, 11,472,868 read pairs had
both ends aligned to the genome, so that ~73% of reported clusters provide a
successful read pair. The aligned pairs from each lane therefore represent ~200x
physical ("clone") coverage of the genome. 150,085 pairs (1.3%) had best hits on
differing chromosomes and 27,045 pairs (0.2%) align to the same chromosome
but on the same strand. The remaining appropriately-oriented pairs have a tight,

nearly symmetrical insert size distribution with mean and standard deviation of
279 ± 7 bp (see Figure 1A). 174,044 of these pairs (1.5%) have ends separated by

a distance more than three standard deviations above or below this mean value.
We estimate from this an upper bound of 3% chimeric pairs in this library.

For the ~3 kbp jumping library, 10,380,635 read pairs had both ends aligned to
the genome, so that 84% of reported clusters provide a successful read pair. Of
the aligned read pairs, 3.7% had ends hitting different chromosomes, and 0.8%
hit on the same chromosome but the same strand. The remaining oppositely
oriented read pairs have a bimodal distribution of separations Approximately
2/3 of all read pairs are directed away from each other and ~3.2 kbp apart, as
expected. Most of the remaining aligned, oppositely directed read pairs are
directed towards each other and separated by less than 500 bp. This second
group of pairs ("innies") represents an artifact of mate pair library construction,
in which the sequenced fragment is derived from a portion of the circularized
DNA that does not contain the junction region (see Figure 1B).

The orientation and separation of these artifactual pairs makes them easy to
exclude in the scaffolding step (Materials and Methods). The distribution of the
innie separations is not normally distributed, and contains at least three
components: a broad peak at ~100 bp, and two somewhat narrower peaks at
~300 bp and ~400 bp. Excluding the "innies", the mean and standard deviation
of the end-separation for the jumping library is 3,273 ± 196 bp, although the

distribution is somewhat skewed, with mode ~3,215 bp and half maximum range
~3,045-3,525 bp (Figure 1C). Since a negligible fraction of the "innie" artifact is
due to chimerism (which would be unlikely to yield paired reads within 500 bp
and with a specified orientation), we can estimate the chimerism rate of mate
pairs as less than ~7%. The mate pairs provide a staggering ~1,450x spanning
coverage of the genome.

Multiplicity distribution, error rates, and local properties of the
deBruijn graph. The multiplicity of a k-mer is the number of times it occurs in
the dataset [24,28]. The multiplicity distribution n(d) is then the number of k-
mers that occur exactly d times in the dataset. If sampling is random, and in the
absence of errors, then n(d) is Poisson distributed with mean deff . As noted

previously [28], in practice n(d) has a sharp peak near d=0 and another broad
peak somewhat below deff . The peak near zero corresponds to k-mers that arise

from relatively rare sequencing errors; the peak near deff corresponds to k-mers

that occur in the genome and are present in many reads. A simple way to
distinguish erroneous k-mers from true k-mers is to separate them based on a
depth cutoff d

min
, retaining only k-mers with at least this multiplicity.

The number of U-U contigs of the deBruijn graph depends on the choice of d
min

(which in our formulation determines the nodes and edges of the graph). For
high values of d

min
, U-U contigs are likely to terminate at positions marked X,

indicating that the terminal k-mer of the contig has no single base extensions that

occur in the dataset more than d
min

 times. In contrast, for low values of d
min

,

many U-U contigs will terminate at F (forked) positions where the terminal k-
mer of the contig has two (or more) possible single base extensions, each with at
least d

min
occurrences in the dataset. Ideally, we would choose d

min
 to produce the

fewest U-U contigs. We show next that the number of contigs as a function of
d
min

can be expressed simply in terms of k-mer-local properties of the deBruijn

graph. This allows us to identify an appropriate choice for d
min

 prior to the

time/memory-intensive U-U contig formation step.

The number of k-mers with at least d occurrences is given byM +
(d) = n(x)

x= d

∞

∑ ,

and similarly the number of k-mers with fewer than d occurrences in the dataset

is M−
(d) = n(x)

x=1

d−1

∑ . The total number of k-mers is simply

M = n(x)
x=1

∞

∑ = M
+
(d) +M

−
(d) . We note that M +

(d) is also the number of k-mers

in the graph when d
min

= d, and similarly M−
(d) is the number of k-mers excluded

from the graph when d
min

= d .

Let n

1
(d) and n

2
(d) be the number of k-mers with precisely d high quality

extensions to their most frequent next k-mer, and their second most frequent

next k-mer, respectively. Then X
mer
(d) = n

1
(x)

x=1

d−1

∑ is the number of k-mers that

are X-terminated when d
min

 = d, and X(d) = X
mer
(d) −M

−
(d) is the number of k-

mers in the graph that are X-terminated when d
min

 = d. Similarly,

F(d) = n
2
(x)

x= d

∞

∑ is the number of k-mers in the graph that are F-terminated

when d
min

 = d. So finally, the total number of contigs when d
min

 = d can be

written as)()()(dFdXdC += , which is readily calculated from histograms that

are produced by meraculous.

Results for Pichia with k=41 are shown in Figure 3B. Evidently, the "X"s
dominate the "F"s because of the large number of k-mers that arise from low
frequency error. Minimizing C(d) would lead us to choose d

min
 ~ 30. In practice,

d
min

 ~10 yields a much better assembly, which is near the "knee" in the F(d)

curve. While there are more total "contigs" at this point, the great majority of
them are small contigs of size ~2k -1 with a central erroneous base. These small
contigs are disconnected from the rest of the graph, and are discarded in the
output of meraculous due to a minimum contig size cutoff ~2k. Distinguishing
between these small erroneous fragments and true contigs requires more than
nearest-neighbor information on the graph. In practice, however, we find
empirically that the best results occur for dmin just above the rise in F(d).

Scaffolding using paired-ends. Rather than tracking the position of reads
through the de Bruijn graph, reads were mapped to the U-U contig set by
alignment; for simplicity, BLAST was used, but other aligners designed for short

reads could be used instead. As noted above, the k-mer uniqueness of the initial
U-U contigs means that read-contig alignments with exact k-mer matches are
necessarily unique placements of that k-mer. Gap filling (described below)
removes this property of the contigs, since the sequences between U-U contigs
need not be unique. We represent gap-filled sequence by lower case letters,
which both (1) indicates the derivation of the sequence as outside of the U-U
subgraph, and (2) allows us to run BLAST in a mode that prohibits seeding
matches in gap-filled sequence. Reads can be (1) placed entirely within a contig,
(2) project into a gap, or (3) "splint" across two contigs if the read aligned
consistently to the ends of two different contigs. The splinting configuration
allows a gap to be closed directly.

Paired-end sequences from sheared and size-selected ~279-bp fragments were
used to create an initial scaffolding. The pair-ends have a tight, nearly
symmetrical insert size distribution (standard deviation 7 bp, see Figure 1A),
and provided ~400x spanning clone depth, with negligible chimerism. Typical
contig-contig links involve several hundred pairs (mean = 310); scaffolds were
produced using uncontested linkages from pmin or more read pairs, where pmin =
6. For the ~3.2 kbp jumping library, the mean number of paired-end links
between contigs is 809, with the weakest uncontested link is spanned by 37
pairs. (This can be substantially less than the overall depth for long gaps, since
only pairs with separations from the high end of the distribution can span long
gaps, see below.)

Insert size estimation accounting for bias. The sizes of captured gaps can
be estimated from spanning pairs given a known distribution of separations
between paired end sequences. Accurate estimates, however, must correct for the
bias introduced by the fact that the pairs that span a given gap of size g must be
longer than g+2R, where R is the read length. Since the probability that a given
read pair of separation l

c
 spans a gap is proportional to the size of the spanning

region (the unsequenced portion of the genome between the two end-reads,
l
c
− 2R), the mean separation of pairs spanning a gap of size g can be written as

 lc (g) =
l(l − 2R − g)Pc (l)dl

g+2R

∞

∫

(l − 2R − g)Pc (l)dl
g+2R

∞

∫
 (eq. 1)

where P

c
(l) is the distribution of end separations in the library. If we model

P
c
(l)by a normal distribution with meanL

c
 and standard deviationσ

c
, then

analytic estimates can be made in the small and large gap limits. In the small gap
limit g→ 0,

 lc (g) ≈ Lc 1+
(σ /Lc)

2

1− 2R /Lc

⎡

⎣
⎢

⎤

⎦
⎥ , (eq. 2)

while in the large gap limit g→ Lc − 2R

 l
c
≈ L

c
1+

π

2

σ

L
c

⎡

⎣
⎢

⎤

⎦
⎥ . (eq. 3)

The true gap size is then the self-consistent solution to

 g = g

0
+ lc (g) − Lc (eq. 4)

where g
0
 is the naive gap size (assuming the mean of the spanning pairs is the

overall mean L
c
). This equation can be solved iteratively. In practice, it is

initially tabulated for each possible gap size.

Closure of gaps. The estimated gap sizes that result from scaffolding the U-U
contigs are shown in Figure 4, plotted vs. the true gap size. (The true gap size is
known from the Pichia genome, and is shown to demonstrate accuracy of the gap
size estimates; this information is not used in the assembly.) "Negative" gaps
arise when adjacent U-U contigs cannot be joined in the U-U graph, but are
inferred to overlap based on paired-end constraints. This situation can arise due
to short repetitive sequences (typically tandem short microsatellite repeats)
whose associated k-mers are not in the U-U set, which prevents a U-U path from
linking the contigs. Nevertheless, reads can sometimes be anchored by uniquely
occurring k-mers in the two flanking contigs. Such "splints" are only allowed if
their mate pair read is placed nearby with the appropriate orientation. 95% of
estimated negative gaps (938 out of 985) were closed, as were 36% of positive
gaps (183 out of 515), resulting in an approximately four-fold increase in contig
N50 size after gap resolution.

For each gap that is not spanned by splinting reads, we collect the reads that are
projected to lie within the gap based on the location of their pair. Even if the gap
contains a repetitive sequence, this modest collection of reads often has a simple
assembly, since there is no interference from reads that lie in other similar copies
of the repeat. To close such gaps, we attempt a meraculous assembly of the reads
projected to the gap. Since in some cases short localized repeats are still present,
if no path across the gap is found that agrees with the gap estimate, k is
incremented by 2 and another attempt is made. This iterative procedure either
terminates when a gap-filling path is found, or all paths connecting the flanking
sequences terminate by X, indicating lack of unique continuous sequence. Using
both splints and iterative meraculous assemblies, 75% of gaps between U-U
contigs are closed. 97% of the gap-filling sequences are within 4 bp of the
estimated gap size, and 58% are within 1 bp. Gap filling sequences are reported
in lower case, since they do not have the uniqueness property of U-U contigs.
Though there are no such errors in the Pichia assembly, we have observed rare

errors occuring in gap-filled sequence due to the collapse of short tandem
repeats.

Pairing from a jumping library. A single "jumping" library was produced by
shearing genomic DNA to ~3 kbp, circularizing it, and shearing the circles again
to produce short ~250 bp fragments that were then sequenced at both ends.
Nearly 70% of the paired-ends produced in this manner are oriented away from
each other and separated by ~3.2 kb on the genome, as expected. The
distribution of insert sizes is slightly skewed (Figure 1C). The remaining ~30%
of the pairs were directed towards each other and separated by less than ~250 bp,
a configuration that results from sequencing fragments that do not include the
junction of the ~3 kbp circles (Figure 1B). These aberrant pairs can be
excluded by requiring that only end-sequences that lie > 500 bp from the end of a
contig are used (Figure 1C). This in turn limits the order and orientation from
jumping libraries to be done on contigs longer than this length scale.

Using fosmid-ends for chromosome-scale scaffolding. We performed a
long-range scaffolding using paired-end Sanger sequences from ~9,200 fosmid
clones generated previously [26] (insert size ~36 ± 3.2 kbp; 21.5x clone
coverage). When the assembly is bolstered by this modest amount of additional
long-range linking information, 90% of the genome is spanned by 12 scaffolds, all
longer than 344 kbp. Since the Pichia genome is comprised of 8 chromosomes
ranging from 980 kbp to 3.5 Mbp, the fosmid-end-scaffolded assembly therefore
recovers chromosome-scale sequences.

Accuracy of Pichia assembly. The meraculous assembly reconstructs 95% of
the Pichia genome in long contigs and scaffolds. The contig N50 is 101 kbp, and
the scaffold N50 is 269 kbp. (The contig N50 is the length such that half of the
assembly is in contigs longer than that length; scaffold N50 is similarly defined.)
When compared with the finished reference sequence, we observed no local
sequence errors or global misjoins. More precisely, seven single nucleotide
discrepancies were noted, but all seven loci had unanimous support for the
meraculous consensus among the Illumina reads, and no support for the finished
reference. These seven discrepancies represent errors in the reference sequence
and not genotypic differences between the original and current projects, since the
genomic DNA was from the same source. The total assembled contigs spanned
14,703,442 bp, and covered 14,763,519 bp of the reference genome, with ~124
kbp of identically duplicated sequences in the reference genome that are
assembled only once. Only 4.2% of the reference sequence was unaligned to the
assembly. 20% of these missing bases occurred within the first or last 2% of
chromosomes, and are telomeric sequences. Half of the missing bases are in 38
long stretches of more than 5 kbp, and 13 stretches longer than 10 kb account for
about a third of the missing bases. These regions represent chromosomal regions
that are typically annotated as transposable elements or repetitive genes,
including the rDNA locus (See Supplemental Table S1).

Assembly with a reduced dataset. The Pichia dataset described here

includes two lanes of short ~280 bp pairs, and 1 lane of medium ~3 kbp pairs,
providing a total of ~150x sequence coverage based on the distribution 41-mer
multiplicities. Assembly quality decreased only marginally when we reassembled
with only a single lane of short pairs (contig N50 90 kbp; scaffold N50 254 kbp;
total assembled length unchanged). With half a lane of each paired-end type
(~1/3 of total starting data, or ~50x true 41-mer coverage), the typical contig size
was halved (N50 = 41 kbp) but the N50 scaffold length decreased only slightly
(250 kbp); again the total assembled length was unchanged. When only 20% of a
lane of each paired-end type was included (~13% of the starting data, or ~10x
depth based on 41-mer count), however, the contig N50 and total assembled
lengths decreased substantially.

Implementation. Most steps of the meraculous assembly pipeline are
parallelized to take advantage of commodity clusters, by partitioning reads or k-
mers among processors. Additional parallelization is possible since gap filling
can be done independently for each gap; in practice, this step is fast compared
with other steps. The two steps that are not parallelized are (1) the construction
of the U-U subgraph, which requires the entire k-mer hash to be held in memory,
and (2) the scaffolding step (which is not memory intensive).

Benchmarking against other short-read assemblers. To benchmark
meraculous against other short-read assemblers, we assembled a publicly
available E. coli K-12 MG1655 dataset of 10.4 million pairs of 36-bp reads, with
insert size 215 ± 11 bp. A finished reference sequence for this 4.64 Mbp genome
is available [27]. The short-read dataset represents a nominal ~160x shotgun
coverage (total sequence/genome size), although the distribution of 21-mer
frequencies peaks at 65, due to both short read length (see deff above) and errors.

Assemblies of this dataset are reported in refs. [9] (for ABySS [9], EULER-SR
[19], SSAKE [34], and Edena [35]), [23] (for AllPaths2 [23], as well as Velvet [20]
and EULER [19]) and [11] (for SOAPdenovo). Assemblies vary depending on
parametrization and other details. With parameters k=21, d

min
= 9, and pmin= 5,

meraculous assembled 97.8% of the 4.64 Mbp genome into contigs ranging from
200 bp to 175 kbp, with half the assembly in 36 (26) contigs (scaffolds) longer
than 40.7 (56.6) kbp. (Our assembly includes 26 contigs that are redundant on
the genome, which represent perfect repeats spanning 51 kbp of the genome.)
While the meraculous contigs and scaffolds are comparable in size to those
produced by other assemblers on this data [9,11,23] no assembly errors were
made (see Table 1). The number of errors reported for other assemblers on this
dataset range from 1 for AllPaths2 to 36 for SSAKE. Four apparent discrepancies
between the meraculous assembly and the reference (one insertion, one deletion,
and two substitutions) were identified. In all four of these cases, Illumina reads
unanimously support the meraculous sequence over the Genbank reference,
suggesting either an error in the reference or a slight difference in genotype
between the Sanger project and the Illumina sequence (see also ref. [23]).

We also identified three locations in the finished reference sequence (~257,905,

~1,298,720, and 1,871,060) that were discrepant in a manner consistent with the
insertion of an IS1 transposase in the meraculous assembly relative to the
reference. These have not been noted previously in other Illumina assemblies of
this dataset. The situation is shown schematically in Figure 5. At these
locations, the meraculous assembly is confirmed by all available Illumina data,
which does not match the reference sequence. We suggest that these loci are
either incorrectly finished regions (which seems unlikely given the special care
used in [27], who were focusing on intraspecies variation) or, more intriguingly,
recent insertions of IS1 in the lineage separating the E. coli K-12 MG1655
genotype used by [27] from the sample used in Illumina library construction.

Comparison of meraculous Pichia assembly with other short-read
assemblers. We applied several previously published short-read assemblers to
the Pichia dataset, with results summarized in Tables 2, 3. Details of the
assembly protocols and resource utilization of the assemblers used in this
comparison are included in Supplemental Text S2. Compared with the other
assemblers tested, meraculous has the fewest errors (none in the genome, vs.
~1/10 kb for the others), and comparable completeness (~95%), contig, and
scaffold N50. (Although ABySS has substantially more total assembly than
meraculous and the other assemblers that were tested, a large fraction of the
additional ABySS sequence is redundantly assembled, which explains why the
unique coverage is less than that of the others (last column of Table 3).)

Simulated assembly and scaling for larger genomes. To assess the
feasibility of using meraculous to assemble larger genomes, we performed two
experiments with simulated data for the ~119 Mbp genome of A. thaliana, which
is ~8-fold larger than the P. stipitis genome. First, we assembled an idealized 41-
mer dataset (all 41-mers present in the TAIR8 A. thaliana reference). 35,208
contigs longer than 200 bp were produced, totalling 105,782,921 bp (89% of the
118,960,067 bp in the finished A. thaliana reference sequence). The N50 was
13.1 kb, and no errors were made. Of the 35,208 gaps between these contigs,
15,591 (44%) are negative, corresponding to short repetitive sequences that
should be closed using splinting reads. Another 5,902 gaps (17%) are between 0
and 100 bp, readily captured and closed by short-insert pairs as described here
for Pichia. These results suggest that ~50-60% of gaps could be closed with
short-insert pairs, reaching a contig N50 of ~25-30 kbp. Only 1,302 gaps are
longer than 2 kbp, further suggesting that scaffolding with medium insert pairs as
described for Pichia would produce typical scaffolds of ~100 kbp.

We also simulated a 100x nominal depth coverage sampling of A. thaliana with
realistic error profiles (Methods), with 79,456,596 75-bp read pairs with end-
separation normally distributed with mean and standard deviation 300±30 bp.
The initial contigs (prior to gap closing) closely matched expectation based on the
idealized 41-mer dataset described above (total length 105.4 Mbp; 36,854 contigs
ranging in size from 200 to 102,310 bp; half the assembly in 2,375 contigs of at
least 11,621 bp). With gap closing, we obtained 17,609 contigs ranging in size
from 200 to 180,022 bp, with half the assembly in 1,066 contigs of at least 26,949

bp, again as expected. Scaffolding with these 300 bp pairs was modest, with half
the assembly in 679 scaffolds longer 42,556 bp, consistent with estimates based
on the idealized data set. This assembly contains eight localized sequence errors
and one non-local scaffolding error relative to the reference sequence.

To demonstrate the memory scaling of our algorithm for larger genomes, we
determined the U-U contigs for the human genome, based on a shred of the 2.8
Gbp reference sequence into its constituent 75-mers. The U-U contigs longer
than 150 bp accounted for 98% of the reference genome, with N50 contig length
of 8.7 kbp. No scaffolding or gap closing step was attempted in this
demonstration. As expected, only 8.8 Gb of memory was required to represent
the U-U deBruijn sub-graph using our lightweight hash scheme.

Discussion

Using meraculous, a new short-read assembler, we have shown that high quality,
near-complete de novo assemblies of small fungal genomes can be produced
using deep short-read paired-end datasets. Half the genome assembly is
contained in contigs of at least 101 kbp (N50 contig), and in scaffolds of at least
269 kbp (N50 scaffold). Adding a modest number of fosmid-ends allows
recovery of entire chromosomes. Approximately 4.2% of the genome (650 kbp
out of 15.4 Mbp) is not captured in the assembly, representing repetitive
sequences, notably including telomeric sequences, long retrotransposons, and
high copy tandemly-arrayed elements. Comparing the assembly consensus to the
previously finished and validated reference sequence, we find no errors across the
entire assembly.

Our algorithm incorporates elements used in other long- and short-read paired-
end assemblers, in a new combination and with new parallel implementations
and heuristics based on our analysis of the Pichia dataset. The deBruijn graph,
first applied to shotgun sequence assembly nearly a decade ago by Pevzner et al.
[24] (following previous introduction in sequencing by hybridization [36]; see
also [37,38]), is the basis for all of the current generation of short-read
assemblers [18]. In our approach, however, we do not construct the full de Bruijn
graph defined by the reads. Instead, we limit ourselves to the "U-U" subgraph
that includes only likely k-mers from the genome that possess unique, reciprocal,
high quality extensions at each end. In this way we remove most error-
containing k-mers and produce a graph that consists of a collection of simple
unbranched paths. These paths are closely related to the "unitigs" of the Celera
Assembler [30] and the "unipaths" of ALLPATHS [22] in that they represent
genomic regions whose assembly into contigs is uncontested based on read-read
alignments or their equivalent in the deBruijn formulation. A related approach is
taken in SOAPdenovo [11]. The U-U subgraph can be readily produced with a

memory footprint that scales linearly with the genome size, a characteristic of de
Bruijn graph based methods.

Overall, memory usage in Meraculous depends not only on the size of the U-U
subgraph, but also on the parallelization parameters used in the stages that
preprocess the U-U subgraph. By dividing the k-mer sample space into disparate
chunks, peak RAM usage and running time can be adjusted to user requirements.
For instance, on our 32-core test machine, one can optimize for speed by allowing
all k-mer sample chunks to be processed simultaneously: in this case, the Pichia
assembly runs in 3 hours 37 minutes with a peak RAM footprint of 153Gb. By
varying the number of simultaneously-processed chunks processed on a per-
stage basis, one can optimize for RAM use: the Pichia assembly then runs in 12
hours 28 minutes but with a peak RAM footprint of 7.72Gb. In general, given P
chunks preprocessed simultaneously out of C total chunks of the k-mer space of
M mers and genome size G, the peak RAM R is characterized by R = O(P * M / C)
+ 3.7 * G. In other words, meraculous can be made to fit (at the expense of
increased runtime) into an arbitrarily small RAM footprint down to the limit of
the U-U subgraph hash itself which, in practice, requires ~3.7 bytes per base in
the genome to store.

Our implementation avoids explicit error correction [24 ,28], a feature of most
other short-read deBruijn assemblers [9,11,19,20,22], in favor of a brute force
approach that is made possible by the quality and quantity of current Illumina
data. Error correction takes advantage of the preponderance of accurate
sequence to identify outliers (e.g., error-containing k-mers that occur only a few
times in the dataset when the typical true k-mer from that genomic region occurs
dozens or hundreds of times). Assuming that such k-mers contain errors, the
error-correction approach seeks the minimal sequence change to convert these
outlying k-mers into sequences found more often in the data [24]. While this
approach is clearly feasible in uniquely assemblable regions of strong coverage, it
is also not necessary there, since the correct assembly will often be evident
anyway due to overwhelming depth of accurate sequence. From this perspective,
it is sufficient to simply ignore the erroneous k-mer, as we do here. Our algorithm
identifies these outliers (using a combined quality and depth filter) and
disregards them in a robust way that does not degrade the assembly but allows
the algorithms and their implementation to be simplified and streamlined.

Using mate-pair information, scaffolds of nominally single copy sequences can be
constructed. Gaps captured within these scaffolds (comprising repeats) can then
be back-filled using paired-ends, as first described in [16] and robustly
implemented for large-scale assembly in the Celera Assembler [30]. This "gap-
filling" step allows residual errors to be corrected through the construction of
consensus sequences. Thus by combining the efficient deBruijn approach for
determining an initial set of contigs, with a read-based approach using mate-
pairs to link across and fill in gaps between the initial contigs, meraculous can
produce accurate assemblies of short-read datasets.

A limitation of the current meraculous algorithm is that it assumes data from a
haploid genome. In a diploid sample, heterozygous single nucleotide variations
generate forks in the deBruijn graph, and our algorithm's reliance on the linear
U-U component of the graph as a starting point for making contigs must be
augmented to allow for bubbles in the graph that arise from such heterozygous
regions.

Acknowledgements

The work conducted by the U.S. Department of Energy Joint Genome Institute is
supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231. We thank Len Pennacchio, Alex Sczyrba,
and Jeff Froula for useful discussions.

References

1. Metzker ML (2010) Sequencing technologies - the next generation. Nat Rev
Genet 11: 31-46.

2. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, et al. (2005) Genome
sequencing in microfabricated high-density picolitre reactors. Nature 437:
376-380.

3. Bentley DR (2006) Whole-genome re-sequencing. Curr Opin Genet Dev 16:
545-552.

4. Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, et al. (2008) The
complete genome of an individual by massively parallel DNA sequencing.
Nature 452: 872-876.

5. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, et al.
(2008) Accurate whole human genome sequencing using reversible
terminator chemistry. Nature 456: 53-59.

6. Smith DR, Quinlan AR, Peckham HE, Makowsky K, Tao W, et al. (2008) Rapid
whole-genome mutational profiling using next-generation sequencing
technologies. Genome Res 18: 1638-1642.

7. Pop M, Salzberg SL (2008) Bioinformatics challenges of new sequencing
technology. Trends Genet 24: 142-149.

8. Flicek P, Birney E (2009) Sense from sequence reads: methods for alignment
and assembly. Nat Methods 6: S6-S12.

9. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, et al. (2009) ABySS: a
parallel assembler for short read sequence data. Genome Res 19: 1117-
1123.

10. Li R, Fan W, Tian G, Zhu H, He L, et al. (2010) The sequence and de novo
assembly of the giant panda genome. Nature 463: 311-317.

11. Li R, Zhu H, Ruan J, Qian W, Fang X, et al. (2010) De novo assembly of
human genomes with massively parallel short read sequencing. Genome
Res 20: 265-272.

12. Schuster SC, Miller W, Ratan A, Tomsho LP, Giardine B, et al. (2010)
Complete Khoisan and Bantu genomes from southern Africa. Nature 463:
943-947.

13. Edwards A, Voss H, Rice P, Civitello A, Stegemann J, et al. (1990) Automated
DNA sequencing of the human HPRT locus. Genomics 6: 593-608.

14. Edwards A, Caskey CT (1991) Closure strategies for random DNA sequencing.
Methods: A Companion to Methods in Enzymology 3: 41-47.

15. Roach JC, Boysen C, Wang K, Hood L (1995) Pairwise end sequencing: a
unified approach to genomic mapping and sequencing. Genomics 26: 345-
353.

16. Weber JL, Myers EW (1997) Human whole-genome shotgun sequencing.
Genome Res 7: 401-409.

17. Chaisson MJ, Brinza D, Pevzner PA (2009) De novo fragment assembly with
short mate-paired reads: Does the read length matter? Genome Res 19:
336-346.

18. Pop M (2009) Genome assembly reborn: recent computational challenges.
Brief Bioinform 10: 354-366.

19. Chaisson MJ, Pevzner PA (2008) Short read fragment assembly of bacterial
genomes. Genome Res 18: 324-330.

20. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read
assembly using de Bruijn graphs. Genome Res 18: 821-829.

21. Zerbino DR, McEwen GK, Margulies EH, Birney E (2009) Pebble and rock
band: heuristic resolution of repeats and scaffolding in the velvet short-
read de novo assembler. PLoS One 4: e8407.

22. Butler J, MacCallum I, Kleber M, Shlyakhter IA, Belmonte MK, et al. (2008)
ALLPATHS: de novo assembly of whole-genome shotgun microreads.
Genome Res 18: 810-820.

23. Maccallum I, Przybylski D, Gnerre S, Burton J, Shlyakhter I, et al. (2009)
ALLPATHS 2: small genomes assembled accurately and with high
continuity from short paired reads. Genome Biol 10: R103.

24. Pevzner PA, Tang H, Waterman MS (2001) An Eulerian path approach to
DNA fragment assembly. Proc Natl Acad Sci U S A 98: 9748-9753.

25. Jeffries TW, Jin YS (2004) Metabolic engineering for improved fermentation
of pentoses by yeasts. Appl Microbiol Biotechnol 63: 495-509.

26. Jeffries TW, Grigoriev IV, Grimwood J, Laplaza JM, Aerts A, et al. (2007)
Genome sequence of the lignocellulose-bioconverting and xylose-
fermenting yeast Pichia stipitis. Nat Biotechnol 25: 319-326.

27. Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, et al. (2006) Highly
accurate genome sequences of Escherichia coli K-12 strains MG1655 and
W3110. Mol Syst Biol 2: 2006 0007.

28. Chaisson M, Pevzner P, Tang H (2004) Fragment assembly with short reads.
Bioinformatics 20: 2067-2074.

29. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local
alignment search tool. J Mol Biol 215: 403-410.

30. Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, et al. (2000) A
whole-genome assembly of Drosophila. Science 287: 2196-2204.

31. Sutton GG, White O, Adams MD, Kerlavage AR (1995) TIGR Assembler: A
new tool for assembling large shotgun sequencing projects. Genome
Science and Technology 1: 9-19.

32. Lander ES, Waterman MS (1988) Genomic mapping by fingerprinting
random clones: a mathematical analysis. Genomics 2: 231-239.

33. Ewing B, Green P (1998) Base-calling of automated sequencer traces using
phred. II. Error probabilities. Genome Res 8: 186-194.

34. Warren RL, Sutton GG, Jones SJ, Holt RA (2007) Assembling millions of
short DNA sequences using SSAKE. Bioinformatics 23: 500-501.

35. Hernandez D, Francois P, Farinelli L, Osteras M, Schrenzel J (2008) De novo
bacterial genome sequencing: millions of very short reads assembled on a
desktop computer. Genome Res 18: 802-809.

36. Idury RM, Waterman MS (1995) A new algorithm for DNA sequence
assembly. J Comput Biol 2: 291-306.

37. Myers EW (1995) Toward simplifying and accurately formulating fragment
assembly. J Comput Biol 2: 275-290.

38. Myers EW (2005) The fragment assembly string graph. Bioinformatics 21
Suppl 2: ii79-85.

Figure Legends

Figure 1. Paired ends. A. Fragment pair end separation distribution.
Pairs are separated by 279 ± 7 bp. B. Mate-pairs are produced by
circularizing a genomic segment (vertical line indicates junction). End-
sequences from sheared fragments that contain the junction (1) represent reads
that point outward at the ends of the original segment. End-sequences from
sheared fragments that do not contain the junction (2) are inwardly directed and
adjacent on the original segment. C. Mate-pair end separation
distribution. Two-thirds of all pairs are found to be divergently oriented and
separated by 3.2 ± 0.2 kb. An artifactual population of convergently oriented
pairs separated by less than 500 bp is apparent, representing fragments of type
(2) shown above in panel B.

Figure 2. Example of a 7-mer graph. The node a is X-terminated to the
left. The non-reciprocal linkage between nodes b and c is removed because the
terminal base (lower case "a" in the sequence) of node c is low quality. Node e is
F-terminated to the right. The resultant U-U contig is the union of nodes b and
d: CTGCTGCT .

Figure 3. k-mer frequency and extension characteristics in Pichia.
A. 41-mer frequency distributions. The overall 41-mer distribution (green)
is decomposed into genomic (red) and non-genomic (yellow) contributions. At
fewer than ~30 occurrences non-genomic (error-induced) 41-mers dominate.
The modal frequency is ~135. B. Graph features as functions of dmin. The
total number of nodes (blue), total number of X-terminated nodes (red), and total

number of F-terminated (yellow) nodes in the 41-mer graph are calculated as
functions of the assembly parameter dmin. We find the optimal assembly to occur
at dmin = 10.

Figure 4. Estimated gap sizes vs. actual contig separation in the
Pichia genome. 75% of the initial inter-contig gaps are resolved during gap
closing. 97% of gaps are found to be within 4 bp of their estimated size, and 58%
within 1 bp.

Figure 5. Differences between E. coli meraculous and reference
sequence identify transposon insertion. Bottom line shows portion of the
Genbank reference genome for E. coli str. K-12 substr. MG1655 produced by
Sanger sequencing and directed finishing strain [27]. Top shows alignment of the
de novo meraculus contigs to reference sequence. Solid lines agree perfectly.
Angled dashed lines represent unaligned meraculous contig-ends that
correspond to the beginning and end of a transposable element. All short-read
data supports the meraculous sequence, indicating either insertion of the
transposon in the Illumina-sequenced lineage, or an error in the MG1655
reference.

Supporting Information Legends

Supplemental Table S1. Summary of unassembled genome sequences.
This table lists the locations, sizes, and annotations of 38 regions of the Pichia
genome larger than 5kb which contain 62% of the sequence missing from the
meraculous assembly.

Supplemental Text S1. Optimal Choice of d
min

. This note presents a

formal calculation of the contig-number minimizing choice of the assembly
parameter dmin.

Supplemental Text S2: Timing and memory comparisons with other
assemblers. This note details the protocols and computational resources we
used to perform assemblies of Pichia with alternative available assembler
software.

Table 1: Comparison of assembles of E. coli K12 MG1655 benchmark dataset.

Assembler Assembly
as reported
in

Contig
N50

(kbp)

Scaffold
N50

(kbp)

Coverage Errors reported

Allpaths2 Allpaths2 337 2,680 99.3% Base accuracy Q67;
no misassemblies

Soapdenovo Soapdenovo 89 105 NR 5 incorrect contigs
Velvet Allpaths2 62 298 97.7 Base accuracy Q34;

6.9% of 10 kb
regions
missassembled

Velvet ABySS 54 NR 98.8 9 incorrect contigs
(mean size 33 kbp)

Euler-SR ABySS 57 NR 99.8 26 incorrect contigs
(mean size 52 kbp)

Euler Allpaths2 19 19 94.6 Base accuracy Q30;
7.0% of 10 kb
regions
misassembled

Meraculous This report 41 57 97.8% No errors*
Edena ABySS 16 NR 99.1% 6 incorrect contigs

(mean size 13 kbp)
ABySS ABySS 45 NR 99.4% 13 incorrect contigs

(mean size 33 kbp)
SSAKE ABySS 11 NR 99.99% 38 incorrect contigs

(mean size 6 kbp)

In ref. [9] analysis of ABySS, Velvet, Euler-SR, SSAKE, and Edena, only contigs of
at least 100 bp were considered and genome coverage was based on full length,
partial, and broken alignments with at least 95% identity to reference. Contigs
with broken alignments, or that aligned with less than 95% identity, were
considered incorrect. In the ref. [23] analysis of Allpaths2, Velvet, and Euler,
only contigs of at least 1 kbp were considered. Genome coverage computed as the
fraction of 100-mers in the reference sequence that are present in the assembly,
allowing for multiple occurrences in the assembly. Base quality reported as total
number of discrepancies to reference, computed over ~10 kb assembly segments
that contain fewer than 1% such discrepancies. Misassemblies were reported as
the total fraction of bases in ~10 kb segments containing at least 1% error. In the
ref. [11] summary of Soap denovo assembly, contigs >100 bp were reported.

NR: not reported.

* Four localized discrepancies were noted between our meraculous assembly and
the E. coli K12 MG1655 reference sequence. As described in the text, further

examination showed that all four discrepancies were in fact errors in the
reference (or mutations in the lineages separating the MG1655 reference sample
from the short read dataset sample). Analysis of errors reported for other
assemblers have not been analysed.

Table 2: Comparison of P. Stipitis assembly scaffold characteristics (including
scaffolds of size at least 2kbp).

Assembler
No.

Scaffolds

Total
Size

(Mbp)

Scaffold N50
(no. / kbp)

Total gap
bases (kbp; %)

Scaffolding
errors

ABySS 111 15.48 20 / 263 7.3 (0.05%) 0

Meraculous 118 14.79 18 / 269 81.7 (0.55%) 0

SOAPdenovo 88 14.74 14 / 348 156 (1.06%) 0

Velvet 157 14.82 24 / 202 136 (0.92%) 78

To assess accuracy of the assemblies, contigs were aligned to the reference
genome using BLAST. Scaffolding errors include non-colinear arrangements of
contigs within scaffolds with respect to the reference sequence.

Table 3: Comparison of P. Stipitis assembly contig characteristics (including
contigs of at least 100bp).

Assembler
No.

Contigs

Total
Size

(Mbp)

Contig N50
(no. / kbp)

Contig
error rate

Reference
coverage

Unique
coverage

ABySS 132 15.48 21 / 263 1/29kbp 97.8% 92.2%

Meraculous 489 14.70 44 / 101 <1/15000kbp 95.8% 95.8%

SOAPdenovo 561 14.58 64 / 65 1/6.4kbp 95.2% 95.1%

Velvet 572 14.69 87 / 53 1/15kbp 96.5% 95.4%

Contig error rate is measured for only the single best-aligning BLAST HSP per
contig. Reference coverage is based on the total number of bases spanned by at
least one HSP; unique coverage is based on the total number of reference bases
spanned by exactly one HSP.

Supplemental Text S1. Optimal Choice of d
min

.

Instead of an error correction step as performed in other short-read assemblers,
we simplify the deBruijn graph by discarding k-mers that occur fewer than
d
min

times in the dataset. Since the error rate is small, and the depth of coverage

so high, this has only a small effect on our ability to assemble. If d
min

is chosen

too small, however, many contigs will end at forks (i.e., k-mer ends marked F) for
which one or more branches are due to errors. Conversely, if d

min
is chosen too

large, contigs will end at regions of low coverage (i.e., k-mer ends marked X).
With some simple assumptions, we can derive an optimal choice of d

min
that

minimizes the number of contigs.

Let the number of k-mers of frequency x be denoted by n(x). We assume that
n(x) can be decomposed into the sum of two contributions, the true genomic k-
mers of frequency x, t(x), and the erroneous (false) k-mers of this frequency,
f(x). Thus n(x) = t(x)+f(x). We may then define the following integrals
(assuming that the functions of the discrete variable x are smooth):

T = total number of true k-mers = t(x)dx
0

∞

∫ (eq. S1)

F = total number of erroneous k-mers = f (x)dx
0

∞

∫ (eq. S2)

For a given choice of d

min
, the number of contig ends (i.e., twice the number of

contigs) that are produced will be the sum of two contributions: those contigs C
T

that are prematurely truncated at true k-mers whose frequency is less than d
min

(contigs ending with X), and those contigs C
F

 that are prematurely truncated at

erroneous k-mers whose frequency is greater than d
min

(contigs ending with F). In

our simple model, these values are approximated by the integrals:

C
T
(d)= t(x)dx

0

d

∫ (eq. S3)

CF (d)= f (x)dx
d

∞

∫ = F − f (x)dx
0

d

∫ (eq. S4)

To minimize the number of contigs, we minimize the sum of these contributions
C(d) = C

T
(d) +C

F
(d) , which can be rewritten using Eqs. S3 and S4 as

 C(d)= F + [t(x) − f (x)]dx
0

d

∫ (eq. S5)

which is extremal with respect to d when the integrand vanishes. The optimal

choice of d
min

 is therefore the frequency d* at which the number of false k-mers

f
*
= f (d

*
) is equal to the number of true k-mers t* = t(d*) . In practice, for a

given observed mer-frequency distribution this value can be obtained by fitting
the low-frequency k-mer distribution (e.g., to a power law) and the peak-
frequency distribution (e.g., to a Gaussian) independently and finding the
intersection point of the two fits. Due to the sharp crossing of true and false k-
mers that is typically observed, the common choice of the minimum of the k-mer
frequency distribution [17] may be a simple and useful approximation, but is
distinct from the condition derived here. As discussed in the main text, in
practice a lower choice of d

min
is preferred since the calculation presented here

includes short contigs of length 2k-1 centered on errors.

Supplemental Text S2: Timing and memory comparisons with other
assemblers for Pichia.

For comparison with the meraculous assembly of Pichia, we used three other
short read assemblers (SOAPdenovo, Abyss, Velvet). We could not use the
current AllPaths-LG since the data in hand did not meet the requirements of
overlapping paired-end reads. For these analyses and comparisons with
meraculous, we used a Quad-Core AMD Opteron(tm) 8376 HE, with 8 CPU per
core running at 2.3 GHz, and 517 GB total RAM.

SOAP De Novo (Version 1.3, Released Nov 23, 2009)

All libraries were used in the contig building step, while short-insert libraries
were ranked 1 during scaffolding, followed by long insert lib, ranked 2.

The following steps were perfomed:

Pregraph building: SOAPdenovo pregraph -p 32 -K 31 -d 9
Contig building: SOAPdenovo contig -M 1 -D 1 -R no
Map reads to contigs: SOAPdenovo map -p 32
Scaffold building: SOAPdenovo scaff -G 50 -p 32 -L 100

Total wall clock time used was 2,360 sec (0.7 hrs), and 20.8 GB main memory
was required.

ABySS (Version: 1.2.3)

abyss-pe -j3 k=31 n=6 lib='lib1 lib2 lib3'

Memory and Time Usage:

Total wall clock time used was 21,729 sec (6.0 hrs), and 19.5 GB main memory
was required.

Velvet (Version: 1.0.13)

To incorporate jumping libraries, reads were reverse complemented prior to use
in Velvet. These pairs were used with the longPaired option. Total wall clock time
used was 16,598 sec (4.6 hrs) and 32.0 GB main memory was required.

velveth 41 -longPaired ‘3kb long insert lib’

velvetg -exp_cov auto -ins_length 279 -ins_length_sd 50 -ins_length2
279 -ins_length_sd 50 -ins_length_long 3260 -ins_length_long_sd
450 -min_contig_lgth 100 -min_pair_count 6

Supplemental Table S1. Summary of unassembled genome sequences.
62% of missing bases in the meraculous assembly of Pichia are contained in 38
regions longer than 5 kb. This table shows the locations, sizes, and annotations
of these regions, which include telomeric DEAD-like helicases; Zorro L1-like
non-LTR retrotransposon; Ty5-like retrotransposon; tandem repetitive arrays;
and a near-identical two-copy beta glucosidase.

chrom

ID
start-stop length annotation

chr_1.1 1-8,155 8.2kb DEAD-like helicase (telomeric)

chr_1.1 8,776-16,860 8.1kb DEAD-like helicase (telomeric)

chr_4.1 1-8,723 8.7kb DEAD-like helicase (telomeric)

chr_7.1 1-11,058 11.1kb DEAD-like helicase (telomeric)

chr_7.1 1,106,260-1,114,415 8.2kb DEAD-like helicase (telomeric)

chr_8.1 971,156-979,380 8.2kb DEAD-like helicase (telomeric)

chr_1.1 433,581-440,252 6.7kb
Polyprotein L1-like non-LTR retrotransposon

Zorro [Candida]

chr_1.1 1,660,593-1,668,237 7.6kb
Polyprotein L1-like non-LTR retrotransposon

Zorro [Candida]

chr_1.1 1,714,075-1,719,555 5.5kb
Polyprotein L1-like non-LTR retrotransposon

Zorro [Candida]

chr_1.1 1,780,129-1,786,989 6.9kb
Polyprotein L1-like non-LTR retrotransposon

Zorro [Candida]

chr_1.1 1,901,111-1,907,939 6.8kb
Polyprotein L1-like non-LTR retrotransposon

Zorro [Candida]

chr_2.1 931,139-940,161 9.0kb
Polyprotein L1-like non-LTR retrotransposon

Zorro [Candida]

chr_2.1 2,112,216-2,118,847 6.6kb
Polyprotein L1-like non-LTR retrotransposon

Zorro [Candida]

chr_2.1 2,592,668-2,597,804 5.1kb
Polyprotein L1-like non-LTR retrotransposon

Zorro [Candida]

chr_3.1 459,644-466,306 6.7kb
Polyprotein L1-like non-LTR retrotransposon

Zorro [Candida]

chr_3.1 602,522-609,330 6.8kb
Polyprotein L1-like non-LTR retrotransposon

Zorro [Candida]

chr_3.1 1,383,796-1,390,728 6.9kb
Polyprotein L1-like non-LTR retrotransposon

Zorro [Candida]

chr_3.1 1,704,841-1,722,550 17.7kb
rDNA operon + Polyprotein L1-like non-LTR

retrotransposon Zorro [Candida]

chr_4.1 274,100-286,614
12.5kb

(2copy)

Polyprotein L1-like non-LTR retrotransposon

Zorro [Candida]

chr_5.1 1,370,505-1,377,227 6.7kb
Polyprotein L1-like non-LTR retrotransposon

Zorro [Candida]

chr_1.2 84,789-114,565 29.8kb
Ty5-like Retrotransposon polyprotein

[Candida]

chr_2.1 1,669,998-1,704,019 34.0kb
Ty5-like Retrotransposon polyprotein

[Candida]

chr_3.1 1,419,264-1,442,092 22.8kb
Ty5-like Retrotransposon polyprotein

[Candida]

chr_3.1 1,442,651-1,452,230 9.6kb
Ty5-like Retrotransposon polyprotein

[Candida]

chr_4.1 1,032,738-1,062,620 29.9kb
Ty5-like Retrotransposon polyprotein

[Candida]

chr_5.1 646,479-666,746 20.3kb
Ty5-like Retrotransposon polyprotein

[Candida]

chr_6.1 891,281-915,737 24.5kb
Ty5-like Retrotransposon polyprotein

[Candida]

chr_7.1 254,910-276,429 21.5kb
Ty5-like Retrotransposon polyprotein

[Candida]

chr_7.1 276,988-296,948 20.0kb
Ty5-like Retrotransposon polyprotein

[Candida]

chr_8.1 285,849-326,849
41.0kb

(2copy)

Ty5-like Retrotransposon polyprotein

[Candida]

chr_1.2 1,302,321-1,309,486 7.2kb 147bp x 30 + 114bp x 13 tandem array

chr_3.1 15,087-20,242 5.2kb 114bp x 12 + 147bp x 20 tandem array

chr_2.1 307,130-313,583 6.5kb 108bp x 60 tandem array

chr_6.1 1,689,039-1,694,489 5.5kb 135bp x 18 + 132bp x 19 tandem array

chr_7.1 1,001,988-1,008,049 6.1kb 135bp x 20 tandem array

chr_8.1 948,440-959,197 10.8kb 126bp x 70 + 141bp x 8 tandem array

chr_4.1 1,775,707-1,782,934 7.2kb beta-glucosidase (98-99% nt identical to below)

chr_6.1 1,708,452-1,715,563 7.1kb beta-glucosidase (98-99% nt identical to above)

